Showing 5180 open source projects for "learning"

View related business solutions
  • Build AI Apps with Gemini 3 on Vertex AI Icon
    Build AI Apps with Gemini 3 on Vertex AI

    Access Google’s most capable multimodal models. Train, test, and deploy AI with 200+ foundation models on one platform.

    Vertex AI gives developers access to Gemini 3—Google’s most advanced reasoning and coding model—plus 200+ foundation models including Claude, Llama, and Gemma. Build generative AI apps with Vertex AI Studio, customize with fine-tuning, and deploy to production with enterprise-grade MLOps. New customers get $300 in free credits.
    Try Vertex AI Free
  • AI-powered service management for IT and enterprise teams Icon
    AI-powered service management for IT and enterprise teams

    Enterprise-grade ITSM, for every business

    Give your IT, operations, and business teams the ability to deliver exceptional services—without the complexity. Maximize operational efficiency with refreshingly simple, AI-powered Freshservice.
    Try it Free
  • 1
    Learning Interpretability Tool

    Learning Interpretability Tool

    Interactively analyze ML models to understand their behavior

    The Learning Interpretability Tool (LIT, formerly known as the Language Interpretability Tool) is a visual, interactive ML model-understanding tool that supports text, image, and tabular data. It can be run as a standalone server, or inside of notebook environments such as Colab, Jupyter, and Google Cloud Vertex AI notebooks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    springcloud-learning

    springcloud-learning

    Build microservices with the Spring Cloud ecosystem

    ...Each module typically includes minimal bootstrapping, clear dependencies, and example endpoints, making it easy to start, test, and reason about the behavior. The repo is structured as a progressive learning path that mirrors how real teams evolve from a monolith toward a service mesh of independently deployable services.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Mall Learning

    Mall Learning

    Tutorial and sample-code repository

    ...It’s aimed at developers who want to understand how to build scalable e-commerce systems rather than just copy-paste modules. With clearly organized “tiny” modules (mall-tiny-01 etc) the repo supports step-by-step incremental learning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Machine Learning Systems

    Machine Learning Systems

    Introduction to Machine Learning Systems

    Machine Learning Systems is an open educational repository that serves as the source and learning stack for the Machine Learning Systems textbook, a project focused on teaching how to engineer AI systems that work reliably in real-world environments. Rather than concentrating only on model training, the material emphasizes the broader discipline of AI engineering, covering efficiency, reliability, deployment, and evaluation across the full lifecycle of intelligent systems. ...
    Downloads: 10 This Week
    Last Update:
    See Project
  • Cut Data Warehouse Costs up to 54% with BigQuery Icon
    Cut Data Warehouse Costs up to 54% with BigQuery

    Migrate from Snowflake, Databricks, or Redshift with free migration tools. Exabyte scale without the Exabyte price.

    BigQuery delivers up to 54% lower TCO than cloud alternatives. Migrate from legacy or competing warehouses using free BigQuery Migration Service with automated SQL translation. Get serverless scale with no infrastructure to manage, compressed storage, and flexible pricing—pay per query or commit for deeper discounts. New customers get $300 in free credit.
    Try BigQuery Free
  • 5
    Interpretable machine learning

    Interpretable machine learning

    Book about interpretable machine learning

    This book is about interpretable machine learning. Machine learning is being built into many products and processes of our daily lives, yet decisions made by machines don't automatically come with an explanation. An explanation increases the trust in the decision and in the machine learning model. As the programmer of an algorithm you want to know whether you can trust the learned model.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 6
    MDN Learning Area

    MDN Learning Area

    GitHub repo for the MDN Learning Area

    learning-area is the official GitHub repository for the MDN Web Docs Learning Area, a collection of educational resources designed to teach core web development technologies. It contains the code examples referenced throughout MDN’s tutorials and articles, covering topics such as HTML, CSS, JavaScript, and web APIs. Each directory in the repository mirrors the module structure of the MDN Learning Area, allowing learners to follow along easily as they read through corresponding lessons. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 7
    The Arcade Learning Environment

    The Arcade Learning Environment

    The Arcade Learning Environment (ALE) -- a platform for AI research

    Arcade Learning Environment (ALE) is a widely used open-source framework that wraps hundreds of Atari 2600 games via an emulator and presents them as RL environments for AI agents. It decouples the game/emulation aspects from the agent interface, providing a clean API (C++, Python, Gymnasium) so researchers can focus on agent design rather than game plumbing.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 8
    CS Self-Learning

    CS Self-Learning

    Chinese-language CS self-learning guide with curated resources

    cs-self-learning is a comprehensive, Chinese-language guide aimed at helping self-learners master computer science concepts. It provides a structured roadmap covering algorithms, operating systems, networks, databases, and more, with curated links to online courses, tutorials, and books. The project is especially useful for non-English speakers pursuing independent or supplemental learning in CS.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    elasticsearch-learning-to-rank

    elasticsearch-learning-to-rank

    Plugin to integrate Learning to Rank

    The Elasticsearch Learning to Rank plugin uses machine learning to improve search relevance ranking. It's powering search at places like Wikimedia Foundation and Snagajob.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Managed MySQL, PostgreSQL, and SQL Databases on Google Cloud Icon
    Managed MySQL, PostgreSQL, and SQL Databases on Google Cloud

    Get back to your application and leave the database to us. Cloud SQL automatically handles backups, replication, and scaling.

    Cloud SQL is a fully managed relational database for MySQL, PostgreSQL, and SQL Server. We handle patching, backups, replication, encryption, and failover—so you can focus on your app. Migrate from on-prem or other clouds with free Database Migration Service. IDC found customers achieved 246% ROI. New customers get $300 in credits plus a 30-day free trial.
    Try Cloud SQL Free
  • 10
    Learning Bitcoin from the Command Line

    Learning Bitcoin from the Command Line

    A complete course for learning Bitcoin programming and usage

    Learning Bitcoin from the Command Line is a tutorial for working with Bitcoin (and Lightning) that teaches direct interaction with the servers themselves, as the most robust and secure way to begin cryptocurrency work. This is a draft in progress, so that I can get some feedback from early reviewers. It is not yet ready for use. Learning Bitcoin from the Command Line is a project of Blockchain Commons.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 11
    Playground Cheatsheet for Python

    Playground Cheatsheet for Python

    Playground and cheatsheet for learning Python

    learn-python is another repository by Oleksii Trekhleb that serves as both a playground and an interactive cheatsheet for learning Python. It contains numerous Python scripts organized by topic (lists, dictionaries, loops, functions, classes, modules, etc.), each with code examples, explanations, test assertions, and links to further readings. The design supports “learn by doing”: you can modify the code, run the tests, see how behavior changes, and thus internalize Python language features, idioms, and good style practices (including linting and PEP8). ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    ML.NET

    ML.NET

    Open source and cross-platform machine learning framework for .NET

    ...ML.NET has been designed as an extensible platform so that you can consume other popular ML frameworks (TensorFlow, ONNX, Infer.NET, and more) and have access to even more machine learning scenarios, like image classification, object detection, and more.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    Deep Learning Is Nothing

    Deep Learning Is Nothing

    Deep learning concepts in an approachable style

    Deep-Learning-Is-Nothing presents deep learning concepts in an approachable, from-scratch style that demystifies the stack behind modern models. It typically begins with linear algebra, calculus, and optimization refreshers before moving to perceptrons, multilayer networks, and gradient-based training. Implementations favor small, readable examples—often NumPy first—to show how forward and backward passes work without depending solely on high-level frameworks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Homemade Machine Learning

    Homemade Machine Learning

    Python examples of popular machine learning algorithms

    homemade-machine-learning is a repository by Oleksii Trekhleb containing Python implementations of classic machine-learning algorithms done “from scratch”, meaning you don’t rely heavily on high-level libraries but instead write the logic yourself to deepen understanding. Each algorithm is accompanied by mathematical explanations, visualizations (often via Jupyter notebooks), and interactive demos so you can tweak parameters, data, and observe outcomes in real time.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Machine Learning Octave

    Machine Learning Octave

    MatLab/Octave examples of popular machine learning algorithms

    This repository contains MATLAB / Octave implementations of popular machine learning algorithms, along with explanatory code and mathematical derivations, intended as educational material rather than production code. Implementations of supervised learning algorithms (linear regression, logistic regression, neural nets). The author’s goal is to help users understand how each algorithm works “from scratch,” avoiding black-box library calls.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Synapse Machine Learning

    Synapse Machine Learning

    Simple and distributed Machine Learning

    SynapseML (previously MMLSpark) is an open source library to simplify the creation of scalable machine learning pipelines. SynapseML builds on Apache Spark and SparkML to enable new kinds of machine learning, analytics, and model deployment workflows. SynapseML adds many deep learning and data science tools to the Spark ecosystem, including seamless integration of Spark Machine Learning pipelines with the Open Neural Network Exchange (ONNX), LightGBM, The Cognitive Services, Vowpal Wabbit, and OpenCV. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Awesome-FL

    Awesome-FL

    Comprehensive and timely academic information on federated learning

    A “awesome” curated list of federated learning (FL) academic resources: research papers, tools, frameworks, datasets, tutorials, and workshops. A hub for FL knowledge maintained by the academic community.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Practical Machine Learning with Python

    Practical Machine Learning with Python

    Master the essential skills needed to recognize and solve problems

    Practical Machine Learning with Python is a comprehensive repository built to accompany a project-centered guide for applying machine learning techniques to real-world problems using Python’s mature data science ecosystem. It centralizes example code, datasets, model pipelines, and explanatory notebooks that teach users how to approach problems from data ingestion and cleaning all the way through feature engineering, model selection, evaluation, tuning, and production-ready deployment patterns. ...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 19
    satellite-image-deep-learning

    satellite-image-deep-learning

    Resources for deep learning with satellite & aerial imagery

    This page lists resources for performing deep learning on satellite imagery. To a lesser extent classical Machine learning (e.g. random forests) are also discussed, as are classical image processing techniques. Note there is a huge volume of academic literature published on these topics, and this repository does not seek to index them all but rather list approachable resources with published code that will benefit both the research and developer communities.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 20
    Deep Learning Essay Reading

    Deep Learning Essay Reading

    Read classic and new deep learning papers paragraph by paragraph

    Deep Learning Essay Reading repository is a comprehensive collection of machine learning and deep learning research summaries designed to make cutting-edge academic work more accessible. Instead of reading entire dense academic papers, contributors provide structured breakdowns and insights into the most influential research from the past decade, often including explanation highlights and key takeaways.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 21
    Deep-Learning-Interview-Book

    Deep-Learning-Interview-Book

    Interview guide for machine learning, mathematics, and deep learning

    Deep-Learning-Interview-Book collects structured notes, Q&A, and concept summaries tailored to deep-learning interviews, turning scattered study into a coherent playbook. It spans the core math (linear algebra, probability, optimization) and the practitioner topics candidates actually face, like CNNs, RNNs/Transformers, attention, regularization, and training tricks.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 22
    AWS Deep Learning Containers

    AWS Deep Learning Containers

    A set of Docker images for training and serving models in TensorFlow

    AWS Deep Learning Containers (DLCs) are a set of Docker images for training and serving models in TensorFlow, TensorFlow 2, PyTorch, and MXNet. Deep Learning Containers provide optimized environments with TensorFlow and MXNet, Nvidia CUDA (for GPU instances), and Intel MKL (for CPU instances) libraries and are available in the Amazon Elastic Container Registry (Amazon ECR).
    Downloads: 1 This Week
    Last Update:
    See Project
  • 23
    MATLAB Deep Learning Model Hub

    MATLAB Deep Learning Model Hub

    Discover pretrained models for deep learning in MATLAB

    Discover pre-trained models for deep learning in MATLAB. Pretrained image classification networks have already learned to extract powerful and informative features from natural images. Use them as a starting point to learn a new task using transfer learning. Inputs are RGB images, the output is the predicted label and score.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 24
    Deep Learning Models

    Deep Learning Models

    A collection of various deep learning architectures, models, and tips

    This repository collects clear, well-documented implementations of deep learning models and training utilities written by Sebastian Raschka. The code favors readability and pedagogy: components are organized so you can trace data flow through layers, losses, optimizers, and evaluation. Examples span fundamental architectures—MLPs, CNNs, RNN/Transformers—and practical tasks like image classification or text modeling.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    PyTorch

    PyTorch

    Open source machine learning framework

    ...PyTorch consists of torch (Tensor library), torch.autograd (tape-based automatic differentiation library), torch.jit (a compilation stack [TorchScript]), torch.nn (neural networks library), torch.multiprocessing (Python multiprocessing), and torch.utils (DataLoader and other utility functions). PyTorch can be used as a replacement for Numpy, or as a deep learning research platform that provides optimum flexibility and speed.
    Downloads: 83 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next
MongoDB Logo MongoDB