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Abstract— Digital twins enable robots to anticipate and adapt
to physical interactions, but existing models struggle with
elastoplastic articulated objects (EAQOs) that exhibit nonlin-
ear elasticity, plastic yielding, and damage accumulation. We
present BoxTwin, an interactive digital-twin framework that
learns the full dynamics of EAOs from videos. Our pipeline
reconstructs the scene, identifies a physics-aware constitutive
model for each EAO. Experiments on manual folding and
dual-arm manipulation of EAOs show that BoxTwin accu-
rately tracks joint trajectories and reproduces post-contact
plastic behavior over long horizons. By integrating video-driven
reconstruction with elastoplastic-damage modeling, BoxTwin
advances digital twins toward predictive, adaptive control of
deformable articulated objects in unstructured environments.

I. INTRODUCTION

Integrating digital twins into robotic platforms heralds a
new era of safer, more adaptable human-robot collabora-
tion within complex physical settings[1], [2]. By furnishing
physics-based real-time replicas of tangible objects, digital
twins allow robots to foresee interactions, refine manipula-
tion tactics, and improve decision making amid unstructured
environments[3], abilities that are especially vital when han-
dling deformable items. However, modeling deformable ob-
jects persists as a major obstacle in robotic manipulation[4],
[5], [6], [7], [8], [9], [10], [11]; current techniques often
do not cover the full range of mechanical responses elicited
during contact. This issue becomes pronounced for articu-
lated elastoplastic objects, which combine reversible elastic
deformations with irreversible plastic changes and feature
joints that enable intricate motions (e.g. boxes, doors, hinges,
sheet-metal assemblies). Unlike rigid or purely elastic bodies,
these objects display highly non-linear dynamics that evolve
throughout interaction, posing considerable challenges for
precise simulation and control.

The difficulty arises from three tightly coupled physi-
cal effects. First, non-linear elasticity produces stress-strain
relationships far from Hookean behavior, leading to en-
ergy dissipation and interdegree-of-freedom coupling that
a linear model cannot capture. Second, plastic deformation
introduces permanent shape alterations once critical loads
are exceeded, establishing new rest configurations that defy
prediction by elastic models alone. Third, damage evolu-
tion causes elastoplastic material parameters to drift over
repeated loading cycles, demanding time-dependent material
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Fig. 1: Our pipeline begins by reconstructing the entire
scene—from the input video we recover both the EAOs and
the robots. With this reconstructed scene in hand, we can
then perform future prediction.

descriptions. Conventional digital twin frameworks, which
are typically designed for rigid bodies or linearly elastic
materials, do not accommodate this triad of phenomena. Prior
research has largely focused on either rigid dynamics[12],
[13], [14] or static elastic deformation[15], [16], [17], leav-
ing the intertwined plasticity, nonlinear elasticity, and pro-
gressive damage of elastoplastic articulated objects (EAOs)
unaddressed. As a result, robots frequently fail in tasks
involving grasping, folding, or forecasting post-interaction
states, jeopardizing safety and reliability in both domestic
and industrial contexts.

To overcome these limitations, we introduce BoxTwin,
an interactive digital-twin system specifically designed
for EAOs. Instead of relying on hand-crafted physics
models with static parameters, BoxTwin incorporates a
physics-aware architecture that captures the full dynamics
of such objects, including nonlinear elasticity, plastic yield
thresholds, and damage progression, through calibrated con-
stitutive models. The system continuously updates material
properties to reflect time-varying damage accumulation, en-
abling robust simulation and control of EAOs in real-world
robotic tasks. BoxTwin lays the groundwork for interactive
digital twins that enable safe, adaptive robotic manipulation



in real-world environments.

II. METHOD

A. Articulated Body

An EAO is represented as a collection of rigid links that
are connected by ideal hinge joints modeling the flexible
creases of the structure. The topology is captured by a rooted
kinematic tree

G=(V¢E);

a vertex ¢ € V) denotes a link £; equipped with a body-fixed
frame F;, while an edge e = (p,i) € & corresponds to
a hinge joint that allows a single relative rotation about
a known axis a.. The joint angle ¢ € R is the only
configuration variable associated with that edge.

The homogeneous transform that maps the world frame
to link ¢ is obtained by composing the transforms along the
unique path from the root to i:

To-i(a) = Tosp Tpsi(ge)s

R(ac,¢c) 0
Tp%i(Qe) = [ OT 11
where R(a,, g.) is the rotation generated by the hinge angle.
Collecting all joint angles into the vector

q: [QE17"'7q€|g|]T

provides a compact description of the configuration.
Joint-space dynamics follow the standard Lagrange formu-
lation

M(q)4q+ C(q,q)q+g(q) =T,

where M (q) is the inertia matrix, C(q, ¢) combines Coriolis
and centrifugal effects, g(q) denotes the generalized gravity
forces, and T collects the generalized forces generated by
external contacts.

B. Elastic response of the creases

The torque produced by a crease is highly nonlinear with
respect to its bending deformation and cannot be faithfully
captured by a simple linear spring. Let g. be the instan-
taneous hinge angle and g. the associated rest angle; the
deformation that drives the elastic response is the scalar gap

A, = Qe — Ge-

The elastic torque is introduced as a smooth, differentiable
mapping
Teel = fee(Ae)’

where fp,: R— R is parameterised by a set of coefficients
0. that are specific to edge e. This formulation captures
the strongly nonlinear hinge behaviour while remaining
amenable to analytical differentiation, which is required for
subsequent identification and optimization tasks.

C. Plastic deformation

Permanent set of a crease is modelled by allowing the rest
angle . to evolve. An internal scalar variable . records the
accumulated plastic rotation, so that

(76 = q2+aea

with ¢¥ denoting the nominal angle. Plastic flow is activated
once the elastic gap exceeds a material-specific yield thresh-
old AY. The yield condition

D (A) =|A—AY <O

defines an elastic regime (. < 0). When ¢, > 0 the internal
variable evolves according to a smooth flow rule

de = Gy (Ae)7

where gy, : R—R is a function parameterised by coefficients

Ye.

D. Damage evolution

Repeated folding induces micro-fracture, fibre delami-
nation and other degradation mechanisms, which manifest
as a gradual loss of stiffness and a reduced capacity to
accommodate permanent set[18], [19]. To capture this effect
a scalar damage variable d. € [0,1] is introduced for each
hinge; d. = 0 corresponds to an undamaged crease and
d. = 1 to a mechanically inactive joint. Damage attenuates
both the elastic torque and the plastic flow:

7 = (1-d,) fo.(ge — @),

The multiplicative form preserves the sign and monotonicity
of the underlying maps while ensuring a physically mean-
ingful reduction of the joint’s load-bearing capability. The
evolution of d. is driven by the cumulative amount of plastic
slip that has occurred at the hinge. Define the plastic-slip
accumulator

de = (1—de) Qwe(qe - (fe).

Po(t) = /0 | ()| dr,

which records the total absolute plastic rotation experienced
up to time ¢t. The damage-rate law is taken as a smooth,
monotone function of this scalar measure,

de = he (Pe),

where he, : R>o — [0, 1] is parameterised by a modest set
of coefficients &..

III. EVALUATION

To assess the effectiveness of the proposed model, we car-
ried out two experiments. In the first, we manually deformed
an EAO composed of two panels and a single joint, keeping
one panel anchored to the table. In the second experiment,
we employed Aloha robotic arms to manipulate the EAOs
and reproduced the entire sequence within a simulation
environment. Both experiments were implemented using the
MuJoCo simulator[20].
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Fig. 2: Figure (a) depicts the experimental setup. Figure (b)
showcases the expressive power of our proposed model in
capturing the long-horizon dynamics of the EAOs.

(b)

Fig. 3: Figure (a) shows the frames captured from the
real-world video, and Figure (b) presents the corresponding
simulated views.

A. Folding Test

To capture the joint angle of the EAO, color markers are
affixed to the side of the panel; their positions are contin-
uously monitored, allowing the joint angle to be derived as
illustrated in Figure 2(a). Subsequently, the same actuation
applied to the physical object is transferred in simulation, and
the resulting joint angles are recorded throughout the motion.
Figure 2(b) presents the simulated joint angle trajectory
together with the corresponding measurements from the
real-world EAO.

Our proposed model captures the actual behavior of the
object across the long sequence, faithfully reproducing both
the instantaneous kinematic responses and the gradual evolu-
tion of material properties; it accurately tracks the joint-angle
trajectories despite the accumulation of hysteresis and wear,
preserves the nuanced interplay between elastic, plastic, and
damage mechanisms throughout repeated actuation cycles,
and thereby provides a robust, high-fidelity digital twin that
remains reliable even as the system experiences prolonged
exposure to complex loading patterns.

B. Prediction Test

In this experiment we command the Trossen Aloha
dual-arm platform to interact with a variety of EAOs. The
system operates in a leader—follower configuration: the leader

arms receive the high-level motion commands, while the fol-
lower arms execute the physical actions on the objects. Both
simple EAOs that possess a single revolute joint and more
complex assemblies that contain several coupled joints are
handled by the same control framework. The follower arms
are responsible for the complete manipulation sequence.
They approach the object, apply the necessary forces to
translate, rotate, or fold its individual links, and release it
once the desired configuration is achieved.

After each trial we logged the full follower-arm trajectory,
including joint positions, velocities, torques and end-effector
pose at every step. Using these data we reconstructed an
identical virtual scene in a physics-based simulator: the
Trossen Aloha dual-arms were instantiated with the same
kinematic and dynamic parameters (link lengths, masses,
joint limits, friction), and the EAOs were modeled with the
experimentally identified parameters. The recorded control
signals were then replayed on the simulated follower arms,
preserving the exact timing and magnitude of every com-
mand. By comparing the simulated joint angles and overall
object configurations with the measurements obtained on
the physical hardware, we observed a close correspondence
across all test cases, from single-joint modules to multi-joint
assemblies. Figure 3 shows the replay results for a box
with multiple joints. This validation demonstrates that the
simulated environment can be reliably used for further algo-
rithm development, predictive analysis, and transfer-learning
studies without the need for repetitive physical trials.

IV. CONCLUSIONS

We introduce the first interactive digital-twin framework
that captures the full dynamics of elastoplastic articulated
objects (EAOs) during real-world robotic manipulation. By
integrating a video-driven reconstruction pipeline that si-
multaneously handles nonlinear elasticity, plastic deforma-
tion, and damage evolution, our physics-aware twins predict
post-contact plastic behavior—something prior EAO models
could not achieve. BoxTwin thus moves beyond static sim-
ulations, enabling adaptive, predictive control of deformable
objects in unstructured environments where rigid-body as-
sumptions fail.
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