
GIT
jedyny system kontroli wersji jakiego potrzebujesz

Radosław Bułat (radarek), http://radarek.jogger.pl
email: ["6d6f632e6c69616d674074616c75622e6b65646172"].pack("H*").reverse

czwartek, 8 lipca 2010

http://radarek.jogger.pl
http://radarek.jogger.pl

Co to jest Git?

• Git to rozproszony (zdecentralizowany) system
kontroli wersji (DSCV) zaprojektowany pod duże
projekty (linux kernel) z myślą o wydajności i
efektywności.

czwartek, 8 lipca 2010

Dlaczego Git?

• zdecentralizowany

• nieinwazyjny

• niesamowicie szybki i wydajny

• łatwe, szybkie i lekkie branche

• index (staging area)

• pełna kontrola nad kodem

• bezpieczeństwo

• perełki

czwartek, 8 lipca 2010

scentralizowany
vs

zdecentralizowany

czwartek, 8 lipca 2010

scentralizowany (SVN)

czwartek, 8 lipca 2010

scentralizowany (SVN)

• tylko serwer posiada repozytorium

• klonując repozytorium stajemy się właścicielami
tylko jednej konkretnej rewizji (najczęściej HEAD)

• dostęp do poprzednich wersji tylko gdy jesteśmy
online (i serwer przypadkiem nie padł...)

• sporo poleceń wymaga aktywnego połączenia z
serwerem (kto korzysta często z svn log, svn
checkout?)

• jesteśmy zmuszeni do pracy w jednym stylu
(commit, update z głównego repozytorium)

czwartek, 8 lipca 2010

zdecentralizowany (Git)

czwartek, 8 lipca 2010

zdecentralizowany (Git)

• klonując repozytorium stajemy się właścicielami
całego kodu (cała historia) - darmowy backup

• tylko 3 z powszechnie stosowanych poleceń
potrzebują połączenia internetowego: git clone, git
fetch* i git push

• umożliwia stosowanie praktycznie dowolnego stylu

czwartek, 8 lipca 2010

nieinwazyjny

czwartek, 8 lipca 2010

• cd simple_repo

• git init

• Initialized empty Git repository in /Users/radarek/
Desktop/prezentacja/examples/simple_repo/.git/

nieinwazyjny

czwartek, 8 lipca 2010

niesamowicie szybki i wydajny

czwartek, 8 lipca 2010

• praktycznie wszystkie polecenia zwracają rezultat
natychmiast

• brak lagów sieciowych (praca offline), np. git log, git
checkout

• repozytorium zajmuje mało miejsca na dysku
$ git log --oneline | wc -l
4917
$ du -sh .git/ .
31M	

 .git/
79M	

 .

niesamowicie szybki i wydajny

czwartek, 8 lipca 2010

łatwe, szybkie i lekkie branche

czwartek, 8 lipca 2010

• utworzenie nowego brancha jest równoważne z
utworzeniem pliku i zapisaniem do niego 40 bajtów

• domyślnie branche są lokalne

• eksperymenty z kodem, wielowątkowość, nowe
ficzery

łatwe, szybkie i lekkie branche

czwartek, 8 lipca 2010

index (staging area)
• pośredniczy pomiędzy tym co

zmieniliśmy w katalogu
roboczym a tym co faktycznie
commitujemy

• daje pełną kontrolę nad tym co
commitujemy

• git add, git add -i

czwartek, 8 lipca 2010

pełna kontrola nad kodem

czwartek, 8 lipca 2010

• Jakie zmiany poczyniłem w katalogu
roboczym?

• Który commit utworzył dany plik?

• Jakie zmiany poczynili inni?

• Chcę wycofać commit X.

• Jestem w trakcie pracy nad ficzerem
X, ale dostałem polecenia naprawy
błędu Y. Co mam zrobić?

• Jak podejrzeć jak wyglądał plik w
commicie X?

• Jak zrobić commita z częściowymi
zmianami z pliku?

• Popełniłem błąd w opisie commita -
czy mogę go poprawić jeszcze?

• Jak znaleźć commity, których zmiany
zawierają słowo X?

• Jak znaleźć commity, których
komunikat zawiera słowo X?

• Jak wyświetlić zmiany (diff) z
commita X?

pełna kontrola nad kodem

czwartek, 8 lipca 2010

bezpieczeństwo

czwartek, 8 lipca 2010

$ git log --format=oneline -3
bf5d15456757e63598575db42917d702af9da729 Print proper "Usage:" messages for "rails plugin" command
ff44cc284441be894cc6f2bbc1798a21e881414e whitespace
de51cbccf8c9d4e59a128ca8dca8c42d8d7c4dc9 Fixed gruoped_by_title spelling [#5063 state:committed]

• SHA1 commita jednoznacznie identyfikuje jego zawartość a
także całą jego historię!
• praktycznie wszystkie operacje dają się odwrócić (usunięcie
commita, zgubienie referencji itp.)

bezpieczeństwo

czwartek, 8 lipca 2010

perełki

czwartek, 8 lipca 2010

• git bisect

• git add -i

• git log -S, git log --grep

• git cherry-pick sha1

• git format-patch

• git stash

• git commit --amend

• git rebase -i

• git merge --squash

• git fetch && git
log ..origin/master

• git show sha1

• git show sha1:path/to/
file

• git reflog

perełki

czwartek, 8 lipca 2010

flickr credits
http://www.flickr.com/photos/norbertloev/4411625814/sizes/o/
http://www.flickr.com/photos/-sel-/83785279/sizes/l/
http://www.flickr.com/photos/shapeshift/136184752/
http://www.flickr.com/photos/paco_calvino/4643224942/
http://www.flickr.com/photos/webwizzard/3931165508/sizes/l/
http://www.flickr.com/photos/muehlinghaus/241755891/sizes/o/
http://www.flickr.com/photos/tinkernoonoo/195686360/sizes/l/

czwartek, 8 lipca 2010

http://www.flickr.com/photos/norbertloev/4411625814/sizes/o/
http://www.flickr.com/photos/norbertloev/4411625814/sizes/o/
http://www.flickr.com/photos/norbertloev/4411625814/sizes/o/
http://www.flickr.com/photos/norbertloev/4411625814/sizes/o/
http://www.flickr.com/photos/norbertloev/4411625814/sizes/o/
http://www.flickr.com/photos/norbertloev/4411625814/sizes/o/
http://www.flickr.com/photos/paco_calvino/4643224942/
http://www.flickr.com/photos/paco_calvino/4643224942/
http://www.flickr.com/photos/webwizzard/3931165508/sizes/l/
http://www.flickr.com/photos/webwizzard/3931165508/sizes/l/
http://www.flickr.com/photos/muehlinghaus/241755891/sizes/o/
http://www.flickr.com/photos/muehlinghaus/241755891/sizes/o/
http://www.flickr.com/photos/tinkernoonoo/195686360/sizes/l/
http://www.flickr.com/photos/tinkernoonoo/195686360/sizes/l/

