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ABSTRACT

The pandemic state of COVID-19 caused by the SARS CoV-2 put the world in
quarantine, led to hundreds of thousands of deaths and is causing an unprecedented
economic crisis. However, COVID-19 is spreading in different rates at different
countries. Here, we tested the effect of three classes of predictors, i.e., socioeconomic,
climatic and transport, on the rate of daily increase of COVID-19 on its exponential
phase. We found that population size and global connections, represented by countries’
importance in the global air transportation network, are the main explanations for the
early growth rate of COVID-19 in different countries. Climate and socioeconomics
had no significant effect in this big picture analysis. Our results indicate that the current
claims that the growth rate of COVID-19 may be lower in warmer and humid countries
should be taken very carefully, risking to disturb well-established and effective policy
of social isolation that may help to avoid higher mortality rates due to the collapse of
national health systems.

Subjects Ecology, Epidemiology, Spatial and Geographic Information Science

Keywords COVID-19, SARS CoV-2, Exponential growth rates, Network centrality, Spatial
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INTRODUCTION

With the worldwide spread of the novel Coronavirus Disease 2019 (COVID-19), caused
by the SARS-CoV-2 virus, we are experiencing a declared pandemic. One of the largest
preoccupations about this new virus is its notable ability to spread given the absence of
any effective treatment, vaccine, and immunity in human populations. Epidemiologists
quantify the ability of infectious agents to spread by estimating the basic reproduction
number (R0) statistic (Delamater et al., 2019), which measures the average number of
people each contagious person infects. The new coronavirus is transmitting at an average
RO between 2.7 and 3.2 (Billah, Miah & Khan, 2020; Liu et al., 2020), which is greater than
seasonal influenza viruses that spread every year around the planet (median RO of 1.28,
Biggerstaff et al., 2014). To anticipate the timing and magnitude of public interventions
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and mitigate the adverse consequences on public health and economy, understanding the
factors associated with the survival and transmission of SARS-CoV-2 is urgent.

Because previous experimental (Lowen et al., 2007), epidemiological (Shaman et al.,
20105 Barreca ¢ Shimshack, 2012), and modeling (Zuk, Rakowski ¢ Radomski, 2009)
studies show the critical role of temperature and humidity on the survival and transmission
of viruses, recent studies are testing the effect of environmental variables on SARS-
CoV-2 (Wang et al., 2020; Sajadi et al., 2020; Harbert, Cunningham & Tessler, 2020;
Araujo & Naimi, 2020) and forecasting monthly scenarios of the spread of the new
virus based on climate suitability (Araujo & Naimi, 2020, but see Carlson et al., 2020).
Although temperature and humidity affect the spread and survival of other coronaviruses
(i.e., SARS-CoV and MERS-CoV, Tan et al., 2005; Chan et al., 2011; Doremalen, Bushmaker
& Munster, 2013; Gaunt et al., 2010) using the current occurrences of SARS-CoV-2
cases to build correlative climatic suitability models without considering connectivity
among different locations and socioeconomic conditions might be inadequate, especially
considering that the definition of climatic niche of a respiratory virus, transmitted from
person to person, is very challenging (Carlson et al., 2020).

Many factors might influence the distribution of diseases at different spatial scales.
Climate might affect the spread of viruses given its known effect on biological processes
that influences many biogeographical patterns, including the distribution of diseases
and human behavior (e.g., Murray et al., 2018). Geographic distance represents the
geographical space where the disease spread following the distribution of hosts and also
explains biogeographic patterns (Poulin, 2003; Nekola ¢ White, 1999; Warren et al., 2014).
Socioeconomic characteristics of countries include population size, which represent a key
epidemiological parameter that determines the rate and reach of pandemics (Grassly ¢
Fraser, 2008) and other variables that represent a proxy for the ability to identify and treat
infected people and for the governability necessary to make fast political decision and avoid
the spread of new diseases (Adler ¢ Newman, 2002; Gilbert et al., 2020; Khalatbari-Soltani
et al., 2020). Finally, the global transportation network might surpass other factors as it can
reduce the relative importance of geographic distance and facilitate the spread of viruses
and their vectors (Brockmann ¢ Helbing, 2013; Pybus, Tatem ¢ Lemey, 2015). According
to the International Air Transport Association (2019) more than 4 billion passengers made
international travels in 2018. This amount of travelers reaching most of our planet’s surface
represents a human niche construction (Boivin ef al., 2016) that facilitates the global spread
of viruses and vectors (Brockmann ¢ Helbing, 2013) in the same way it facilitated the spread
of invasive species and domesticated animals over modern human history (Boivin et al.,
2016).

The spread of SARS-CoV-2 from central China to other locations might be strongly
associated with inter-country connections, which might largely surpass the effect of climate
suitability. Thus, at this point of the pandemic, there is still a distributional disequilibrium
that can generate very biased predictions based on climatic correlative modeling (De
Marco, Diniz-Filho & Bini, 2008). Here we used an alternative macroecological approach
(Burnside et al., 2012), based on the geographical patterns of early growth rates of the
disease at country level, to investigate the drivers of the growth rates of COVID-19 in
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its exponential phase. We studied the effect of environment, socioeconomic, and global
transportation controlling for spatial autocorrelation that could bias model significance.
By analyzing these factors, we show that the exponential growth rate of COVID-19 at
global scale is explained mainly by population size and country’s importance in the global
transportation network.

MATERIAL & METHODS

We collected the number of detected cases of COVID-19 per day from the John Hopkins
(Dong, Du ¢ Gardner, 2020) and European Centre for Disease Prevention and Control
(ECDC, 2020). For each country we only used the “exponential” portion of the time series
data (i.e., number of new people infected per day) and excluded days after stabilization
or decrease in total number of cases (e.g., Fig. S1). Although we are aware that more
complex logistic-like curves of growing cases are expected, simpler exponential growth
rates are a simpler description of the expansion in early phases and in practice coefficients
are indistinguishable from logistic when N << K. This procedure is also important to
guarantee that only the early phase of the disease is analysed given that stabilization and
decreasing in growth rates are caused both by natural population dynamics (following a
logistic model) and by the interplay of different interventions made by each country, such
as political and legal reinforcements of social distancing measures, including lockdown,
obligatory mask use and others (Chinazzi et al., 2020; Kraemer et al., 2020; Zhang et al.,
2020). Time series data are available for 204 countries, for which 65 had more than 100
cases recorded and for which time series had at least 30 days of exponential growth after
the 100th case. We also performed the analysis considering countries with more than 50
cases, but it did not qualitatively change our results. Thus, we only show the results for
countries with more than 100 cases.

We empirically modelled each time series using an exponential growth model for each
country and calculated both the intrinsic growth rate (r) and the regression coefficient of
the log growth series to be used as the response variable in our models. Because both were
highly correlated (Pearson’s r = 0.97, Fig. 52), we used only the regression coefficient to
represent the growth rate of COVID-19 in our study.

To investigate potential correlates of the virus growth rate, we downloaded climatic
and socioeconomic data of each country. We used climatic data represented by monthly
average minimum and maximum temperature (°C) and total precipitation (mm) retrieved
from the WorldClim database (https://www.worldclim.org) (Fick & Hijmans, 2017). We
used monthly data for 2018, the most recent year available in WorldClim (Fick ¢ Hijmans,
2017; Harris et al., 2014). We extracted climatic data from the months of January, February,
March, and December to represent the climatic conditions of the winter season in the
Northern Hemisphere and the summer season in the Southern Hemisphere. Temperature
and precipitation are used here because of their critical role on virus transmissions (Lowen
et al., 2007; Shaman et al., 2010; Barreca & Shimshack, 2012; Zuk, Rakowski ¢ Radomski,
2009) and because of the recent investigations about its potential effect on the spread of
COVID-19 (Araujo & Naimi, 2020; Harbert, Cunningham & Tessler, 2020). In addition, the
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predefined time period, winter in the northern hemisphere and summer in the southern
hemisphere, represents the seasons in which the virus started to spread in the different
hemispheres. From these data, we computed the mean value of climatic variables across
each country. Finally, minimum, and maximum temperatures were combined to estimate
monthly mean temperature for December, January, February, and March, which was used
in the model along with total precipitation for the same months. However, using different
combinations of these variables (i.e., using means of minimum or maximum temperatures,
as well as minimum or maximum for each month) did not qualitatively affect our results.

We extracted socioeconomic data for each country. Human Development Index (HDI)
rank, mean number of school years in 2015, gross national income (GNI) per capita
in 2018 population size in 2015 and average annual population growth rate between
2010-2015 were used in our study and downloaded from the United Nations database
(http://hdr.undp.org/en/data) and from the World Inequality Database (https://wid.world).
We also obtained a mean value of investments in health care by averaging the annual
investments in health care in each country between 2005-2015 obtained from the World
Health Organization database (http://apps.who.int/gho/data/node.home). Due to the
strong collinearity among some of these predictors, HDI rank and mean number of school
years were removed from our final model.

Finally, we also downloaded air transportation data from the Openflights.org database
(2014) database regarding the airports of the world, which informs where each airport is
located including country location (7,834 airports), and whether there is a direct flight
connecting the airports (67,663 connections). We checked the Openfligths database to
make the airports and connections compatible by including missing or fixing airport codes
and removing six unidentified airport connections resulting in a total of 7,834 airports and
67,657 connections. We used this information to build an air transportation network that
reflects the existence of a direct flight between the airports while considering the direction
of the flight. Thus, the airport network is a unipartite, binary, and directed graph where
airports are nodes and flights are links (Fig. 1, Fig. S3). In the following step, we collapsed
the airports’ network into a country-level network using the country information to merge
all the airports located in a country in a single node (e.g., United States had 613 airports
that were merged in a single vertex representing the country). The country-level network
(Fig. 1, Fig. S3) is a directed weighted graph where the links are the number of connections
between 226 countries which is collapsed for the 65 countries that had more than 100
cases and for which time series data had at least 30 days after the 100th case . Afterward,
we measured the countries centrality in the network using the Eigenvector Centrality
(Bonacich, 1987), that weights the importance of a country in the network considering
the number of connections with other countries and how well connected these countries
are to other countries—indirect connections. All networks analyses were generated using
package igraph (Csardi & Nepusz, 2006).

We evaluated the relationship between the predictors (climatic, socioeconomic and
transport data) and our growth rate parameter (the regression coefficient of the log-
transformed growth series) using a standard multiple regression (OLS) considering the
distribution of the original predictors as well as the normality of residuals. Moreover,
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Figure 1 Air transportation network among 65 countries that had more than 100 cases and for which
time series data had at least 30 days after the 100th case. Different colours represent modules of countries
that are more connected to each other. Different sizes of each node represent the growth rate of COVID-
19 estimated for each country.

Full-size & DOI: 10.7717/peerj.9708/fig-1

OLS residuals were inspected to evaluate the existence of spatial autocorrelation that
could upward bias the significance of predictor variables on the model using Moran’s
correlograms (Legendre & Lengedre, 2013). Prior to the analysis, we applied logarithmic
(mean precipitation, total population size, and network centrality) and square root (mean
health investments) transformations to the data to approximate a normal distribution.

RESULTS

The models used to estimate COVID-19 growth rate on different countries showed an
average R? of 0.91 (SD = 0.04), varying from 0.78 to 0.99, indicating an overall excellent
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Figure 2 Geographical pattern of the early growth rate of COVID-19 in different countries. Growth
rate is represented by the regression coefficient of the log growth series.
Full-size & DOI: 10.7717/peerj.9708/fig-2

Table 1 Model statistics for all variables used in the study.

Standardized Estimate Std error t value P-value

estimate
Intercept 0.074 0.023 3.232 0.002
Eigenvector Centrality 0.387 0.009 0.003 2.812 0.006
Gross National Income 0.264 0.000 0.000 1.764 0.083
Population Size 0.519 0.011 0.002 4.487 <0.001
Annual population growth 0.096 0.003 0.004 0.658 0.513
Heath investment —0.168 0.000 0.000 —1.140 0.259
Mean Temperature —0.208 —0.001 0.000 —1.695 0.095
Mean Precipitation 0.184 0.006 0.003 1.730 0.089

performance on estimating growth rates. The geographical patterns in the growth rates of
COVID-19 cases do not show a clear trend, at least in terms of latitudinal variation, that
would suggest a climatic effect at macroecological scale (Fig. 2).

We build one model including only climate, which explained only 0.03% of the
variation on growth rates. When we added socioeconomic variables, the R? increased
to 53.95%. Finally, when we added country centrality (i.e., country importance in the
global transportation network) as a predictor, the R? increased to 59.56%. In this model,
only population size and country centrality had positive and significant effects (Fig. 3,
Table 1). Thus, exponential growth rates increased strongly in response to countries
population size and their importance in the transportation network (Table 1, Fig. 3).
Statistical coefficients were not upward biased by spatial autocorrelation.

DISCUSSION

At global scale, Gross National Income, annual population growth, investment in
healthcare, mean temperature and mean precipitation had no significant effect on the
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Figure 3 Spatial patterns of predictors and their relationship with COVID-19 growth rates. Countries
importance in the global transportation network (A) and population size (C) are strongly associated with
early growth rates of COVID-19 across the world (B and D).

Full-size G4l DOI: 10.7717/peerj.9708/fig-3

exponential phase of COVID-19. Population size and countries importance in the global
transportation network have key roles on the growth rate of COVID-19.

Population size is a critical factor in epidemiological outbreaks and faster growths of
COVID-19 were reported in cities with larger populations (Stier, Berman ¢ Bettencourt,
2020). Here, we observe the same pattern at country level. Faster spread in regions with
larger populations have been explained by the interaction of frequent trades and people
exchanges, and the difficulty to control early outbreaks within larger populations (Jaffe,
Vera & Jaffe, 2020; Harbert, Cunningham & Tessler, 2020; Stier, Berman & Bettencourt,
2020). Because of the multiple infection routes and faster spread in larger populations,
recent discussions emphasize the need to implement more aggressive social distancing
policies in regions with larger populations (Stier, Berman ¢» Bettencourt, 2020). However,
not only population size explains the exponential growth of COVID-19 in different
countries but also how central a country is in the global transportation network.

Network centrality measures are widely used to discover distinguished nodes on
networks, including epidemiological networks (e.g., Madotto ¢ Liu, 2016). Our findings
reinforce the importance of propagule pressure on disease dissemination (Tian et al.,
2017; Chinazzi et al., 2020). Aerial transportation is an important predictor of COVID-
19 dissemination in China (Kraemer et al., 2020), Brazil (Ribeiro et al., 2020), and
Mexico (Datillo et al., 2020). Countries characterized by higher centrality in the global
transportation network represent distinguished nodes, in terms of how well they are
directly and indirectly connected to other countries. These countries are the ones that are
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more prone to receive higher number of infected individuals in different regions of their
territory, which can potentially contribute to the velocity of the initial spread of the disease.

The rapid international spread of the severe acute respiratory syndrome (SARS) from
2002 to 2003 led to extensively assessing entry screening measures at international borders
of some countries (Bell et al. 2004; John et al., 2005). However, it is important to note that
SARS-CoV-2 can spread from pre-symptomatic and asymptomatic individuals (Gandhi,
Yokoe & Havlir, 2020; Bai et al., 2020). Thus, entry screening measures at international
borders might be only partially effective to identify symptomatic individuals, but not
effective to stop de disease at international borders. Even for diseases that could be stopped
by identifying symptomatic travellers, there is no consensus of the effective and accurate
tools to be used in airports across the globe (Sun et al., 2017). Finally, how effective airports
closures were in different countries to decrease or stabilize the spread of COVID-19 still
needs to be tested in different countries and is beyond the scope of this paper. However, after
local transmissions are identified, we would expect that airport closures are less effective
than any other measure taken by governments, such as increasing social distancing, tracking
and isolating infected individuals (see Chinazzi et al., 2020).

When discussing and modelling the effect of climate on SARS CoV-2 it is important
to remember that modern human society is a complex system composed by strongly
connected societies that are all susceptible to rare events. It is also critical to consider
the negative correlations between climate and local or regional socioeconomic conditions
(i.e., inadequate sanitary conditions and poor nutritional conditions) that could easily
counteract any potential climatic effect at local scales, such as lower survival rates of
viruses exposed to high humidity, temperatures and high UV irradiation (Wang et al.,
2020; Duan et al., 2003). Our analyses call attention to the case of Brazil, a well-connected
and populated tropical country that presents one of the highest increase rates of COVID-19
in its exponential phase. If decision makers consider yet unsupported claims that growth
rates of COVID-19 in its exponential phase might be lower in warmer and humid countries,
we might observe terrible scenarios unrolling in well-connected and populated countries
independent of their climatic conditions.

CONCLUSIONS

Here, we show that countries’ population size and importance in the global transportation
network have key roles on the initial growth rate of COVID-19.We do not expect that our
results using a macroecological approach at a global scale would have a definitive effect on
decision-making in terms of public health in any particular country, province, or city.

However, we call the attention for the absence of effects of climatic variables on the
exponential phase of COVID-19 that is surpassed by how distinguished a country is in the
air transportation network and by their population size. Thus, claims that the growth of
COVID-19 might be lower in warmer and humid countries based on climate suitability
models should be taken very carefully, risking to disturb well-established and effective
policy of social isolation that may help to avoid higher mortality rates due to the collapse
in national health systems.
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