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ABSTRACT

We present two cases of study of ontogenetic allometry in outlines of bivalves
using longitudinal data, a rarity among fossils, based on the preserved post-larval
record of shells. The examples are two infaunal burrowing bivalves of the southern
South America, Claibornicardia paleopatagonica (Archiheterodonta: Carditidae) (early
Paleocene) and Crassatella kokeni (Archiheterodonta: Crassatellidae) (late Oligocene—
late Miocene). Outline analyses were conducted using a geometric morphometric
approach (Elliptic Fourier Analysis), obtaining successive outlines from shells’ growth
lines, which were used to reconstruct ontogenetic trajectories. In both taxa, ontogenetic
changes are characterized by the presence of positive allometry in the extension of
posterior end, resulting in elongated adult shells. This particular allometric growth
is known in others infaunal burrowing bivalves (Claibornicardia alticostata and some
Spissatella species) and the resulting adult morphology is present in representatives
of several groups (e.g., Carditidae, Crassatellidae, Veneridae, Trigoniidae). Taxonomic,
ecological and evolutionary implications of this allometric growth pattern are discussed.

Subjects Evolutionary Studies, Marine Biology, Paleontology, Zoology

Keywords Geometric morphometrics, Ontogeny, Crassatella, Claibornicardia, Allometric growth,
Paleoecology, Archiheterodonta, Elliptic Fourier analysis

INTRODUCTION

According to the Gould-Mosimann school (defined by Klingenberg, 1998), ‘allometry’ is
the association between size and shape. The concept of allometry implies variation of a
trait associated with variation of the overall size of an organism (Klingenberg, 1998). Size
of an organism can be determined by its own biological growth (or ontogeny), and in
these cases, allometry is the covariation between shape and growth through its life-span.
This allometry is known as “ontogenetic allometry” (Klingenberg, 1996a; Klingenberg,
1998). Studies on ontogenetic allometry mainly use “cross-sectional” data (each individual
is measured at a single stage, and an average allometric trajectory is estimated from

a composite sample from many individuals). Some ones use “longitudinal” data
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(e.g., Klingenberg, 1996b; Maunz & German, 1997) (each individual is measured multiple
times during their growths, and individual variability in allometric trajectories is
obtained). Cases of “cross-sectional” data (sensu Klingenberg, 1996b) are frequent in
paleontological studies, for example in trilobites (see Hughes, Minelli ¢~ Fusco, 2006 and
references herein), Cambrian arthropods (e.g., Haug et al., 2011), crinoids (e.g., Brower,
1988), gastropods (e.g., Gould, 1966a), diapsids (e.g., Ezcurra ¢ Butler, 2015), dinosaurs
(e.g., Horner ¢ Goodwin, 20065 Horner ¢ Goodwin, 2009), or mammals (e.g., Christiansen,
2012). “Longitudinal” studies (sensu Klingenberg, 1996b) are not possible for many fossil
organisms, but are viable in organisms with accretionary growth. Some examples are shelled
molluscs (Urdy et al., 2010), brachiopods (Rudwick, 1968; Ackerly, 1989; Tomasovych,
Sandra ¢ Labarbera, 2008), or ammonoids (Korn, 2012; Korn, 2017; De Baets, Klug ¢
Monnet, 2013). Some researches often remain focused on adult stages, not taking into
account the complete ontogeny, what is necessary for a more holistic view.

Bivalves show accretionary growth in their shells where the mantle adds constantly
new layers of calcium carbonate to the edge (Pannella & Maclintock, 1968). Therefore,
they preserve in their shells a complete record of external traits of their post-larval
life-spans (Crampton & Maxwell, 2000), making them a source of “longitudinal” data
(sensu Klingenberg, 1996b) for construction of ontogenetic trajectories. In a pioneer
contribution, Crampton & Maxwell (2000) elaborated a methodology to explore this
particular growth in bivalves. They re-constructed the ontogenetic trajectories of New
Zealand species of Spissatella (Bivalvia: Crassatellidae) and related their allometric growth
to macroevolutionary trends in the clade.

From the paleoecological point of view, fossil bivalves are one of the most valuable
tools, as different morphologies of bivalve shell are strongly related to modes of life and
environmental characteristics (Stanley, 1970). Infaunal burrowing habit of life is the most
extended among bivalves, consisting of the penetration of soft substrates by means of a
pedal locomotion while maintaining a life position of, at least, partial burial (Stanley, 1970).

Geometric morphometrics is a very useful tool for study of allometry and ontogeny
(Zelditch, Bookstein ¢ Lundrigan, 1992; Fink ¢ Zelditch, 1995; Mitteroecker et al., 2004;
Mitteroecker, Gunz ¢ Bookstein, 2005; Monteiro et al., 2005; among others, see a revision on
this topic in Adams, Rohlf & Slice, 2013). Morphometric methods are objective, reliable and
repeatable tools for quantify patterns of shape changes (Brown ¢ Vavrek, 2015). Geometric
morphometric allows visually strong graphical representations of allometry studies (Adars,
Rohlf & Slice, 2013). In particular, outline shape analyses allow to study the variation in
this key character, the outline, which reflects autoecological features in bivalves according
to Stanley (1970) and Stanley (1975). The aim of this contribution is to study ontogenetic
series in two examples of infaunal burrowing bivalves, Claibornicardia paleopatagonica
(Thering, 1903) (Archiheterodonta: Carditidae) and Crassatella kokeni (Ihering, 1899)
(Archiheterodonta: Crassatellidae). Variability in shape of these two bivalves led previous
authors to define new species based on possible juvenile specimens, Venericardia camachoi
(Vigilante, 1977) and C. patagonicus (Ihering, 1907) (nowadays considered as synonymies
of C. paleopatagonica and C. kokeni, respectively). Presence of allometric growth is tested
and changes in shape in these species, and changes present in other infaunal bivalves,
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as well as their paleoecological implications, are discussed. Also, this contribution is an
attempt to apply and to expand the methodology developed by Crampton ¢» Maxwell
(2000). As is already mentioned by Crampton ¢» Maxwell (2000), Gould (1989, p. 537)
noted that “Natural history is a science of relative frequencies”; and as these authors
indicated “advance in many fields of palaeontological debate requires compilation of
detailed observations across diverse fossil groups and time spans” (Crampton ¢ Maxwell,
2000, p. 400). The present is a contribution for thickening the literature of cases studying
allometry patterns, and this is necessary since a debate addressing the relative frequencies
of different phenomena only advance through the compilation of such cases.

MATERIALS & METHODS

Terminology and theoretical background

All terms regarding allometry follow the definitions provided by Klingenberg (1998).
Positive allometry refers to a trait that increases respect to another one (a positive deviation
to expected isometry), and negative allometry is the opposite. Geometric Morphometrics
and Elliptic Fourier Analysis (EFA) terminologies are explained in Kuhl ¢» Giardina (1982),
Lestrel (1997), and Crampton (1995).

According to Crampton & Maxwell (2000), two outlines with identical shapes and
differing only in size will occupy the same point in a morphospace as the distance in this
space is a measure of shape difference, a statement that was followed to perform the analysis
in this paper.

Bivalve species studied herein are considered as infaunal free burrowing bivalves because
they live under the water/sediment interphase and they are not-attached by their byssus.
This categorization was described by Stanley (1970) and its followed in this contribution.
From this point onwards, this mode of life will be called as “infaunal”.

Taxon sampling

Allometric growth was studied in two species from the Cenozoic of Argentina,

C. paleopatagonica (Ihering, 1903) (Archiheterodonta: Carditidae) (Fig. 1A) and C. kokeni
(Thering, 1899) (Archiheterodonta: Crassatellidae) (Fig. 1B). Archiheterodonts are non-
siphonate bivalves, being mainly restricted to shallow infaunal free burrowing. All fossil
shells used in this study are housed at Museo Argentino de Ciencias Naturales “Bernardino
Rivadavia” (MACN-Pi and CIRGEO-PI) and Paleontological Collection of Universidad de
Buenos Aires (CPBA). Sampling details are summarized in Data S1.

The carditid species represents the most ancient record for its genus, being recorded in
the early Danian of Patagonia (Argentina), in the Roca, Jagiiel and Salamanca formations
(Rio Negro, Neuquén and Chubut provinces) and was recently included by Pérez ¢ Del Rio
(2017) in the genus Claibornicardia (Stenzel ¢ Krause, 1957). This taxon is also recognised
in the late Paleocene—early Oligocene of North America and Europe. In these analyses 15
well-preserved shells of C. paleopatagonica from Puesto Ramirez (Salamanca Formation,
Rio Negro Province) (MACN-Pi 5197) were used. The specimen previously assigned to
Venericardia camachoi by Vigilante (1977) is also included in MACN-Pi 5197.
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Figure 1 Case-studies of this work. (A) MACN-Pi 5197, C. paleopatagonica (Ihering, 1903) (Puesto
Ramirez, Salamanca Formation, Early Danian) in lateral view. (B) MACN-Pi 3576, C. kokeni Ihering, 1899
(mouth of Santa Cruz River, Monte Le6n Formation, Early Miocene) in lateral view. Scale bar = 10 mm.
Photo credit: the authors.

Full-size &l DOI: 10.7717/peer;j.5051/fig-1

C. kokeni is the most abundant crassatellid from the Cenozoic of Patagonia (Argentina),
being represented in the San Julidn, Monte Le6n, Camarones and Puerto Madryn
formations (late Oligocene—late Miocene, Chubut and Santa Cruz provinces). The
systematics of this species was reviewed by Santelli ¢» Del Rio (2014), who regarded
Crassatellites patagonicus (Ihering, 1907) as a junior synonymous of C. kokeni. For our
analyses, 32 well-preserved shells of C. kokeni were used (including those previously
assigned to C. patagonicus). These specimens come from Cafiadon de los Artilleros, Punta
Casamayor, Cabo Tres Puntas (late Oligocene—early Miocene, San Julidn Formation, Santa
Cruz Province); mouth of Santa Cruz River, Estancia Los Manantiales, Cafiadén de los
Misioneros, Monte Entrada (early Miocene, Monte Le6n Formation, Santa Cruz Province);
Camarones (early Miocene, Camarones Formation, Chubut Province), and Lote 39 (late
Miocene, Puerto Madryn Formation, Chubut Province) (MACN-Pi 325-327, 331-332,
3576, 3600, 3907, 4775, 5374-5376; CIRGEO-PI 1501-1502; and CPBA 9404).

Elliptic Fourier analysis

The Elliptic Fourier Analysis (Kuhl ¢ Giardina, 1982) method was chosen to analyse the
outlines of our examples because it allows to work with the variation presents in valves
shape. The methodology employed to obtain different outlines is derived from Crampton
& Maxwell (2000) criteria. Each valve was digitally photographed in an inclined position
with their growth lines placed parallel to the surface (Fig. 2A). The outlines obtained in
different angles, regarding to the surface,were limited by coarse growth lines across the
entire shell (Fig. 2B). Strict chronological ages of each individual have not been established,
but previous analyses have well found a strong correlation between ages (based on the use
of stable isotopes) and growth lines (Jones, 1988; Brey ¢ Mackensen, 1997; Jones ¢» Gould,
1999; Lomovasky et al., 2002). As a result, growth lines are a good proxy for the chronological
age of specimens, and size is an estimation for relative time. In C. paleopatagonica annual
growth lines are noticeable but in C. kokeni they are not so evident, being perceptible only
in part of specimens’ shells. For this species, outlines were taken at intervals of 10 mm
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Figure 2 Applied methodology to obtain successive outlines of a single valve. (A) One valve oriented in
different angles. Dotted lines indicate the parallel position of valves regarding to surface, arrows indicate
position of digital camera. (B) Example of successive outlines captured in one specimen (MACN-Pi 5197).
First and last outline illustrated. Photo credit: the authors.

Full-size & DOLI: 10.7717/peerj.5051/fig-2

along the axial length, following the procedure undertaken by Crampton & Maxwell (2000)
for Spissatella. This methodology allows to design an age-structured analysis for our data.

From a digitization procedure using a digital camera, 62 outlines were obtained from
C. paleopatagonica, and 74 outlines from C. kokeni. Noise generated by external sculpture
was removed from outlines with an image-edition software (Adobe Photoshop CS5)
(following Crampton, 1995). Right valves were mirrored on the horizontal axis taking
advantage of the equivalve character of shells, and the analysis was performed only with left
valves. The outlines were grouped into three growth categories: “less than two”, “two to
four”, and “more than four”, each one indicating the number of precedent coarse growth
lines. In the case of C. kokeni, due to different geographic and stratigraphic provenance
of the studied specimens, four geological categories were established to group outlines:
‘Monte Leén’, ‘Camarones’, ‘Puerto Madryn’, and ‘San Julidn’, each one representing the
geological provenance of the material.

For each individual, chain codes were registered along the contour to calculate the
Elliptic Fourier Descriptors (EFDs). Total Fourier power was calculated to estimate the
optimal number of harmonics required for the analysis. The Fourier power of a harmonic
is proportional to its amplitude and provides a measure of the amount of shape described
by that harmonic (Crampton, 1995). A series of harmonics can be truncated when the value
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Table 1 Univariate regression analysis between size (area) and shape (principal component).

Slope Intercept p-value
C. paleopatagonica (PC1) 763.09 —387001.83 1.248E—15
C. kokeni (PC2) 879.3 —208871.5 8.149E—08

of average cumulative Fourier power reachs the 99% of the average total power (sum of the
total harmonics used). The optimal number for this case was stablished in ten harmonics
for C. paleopatagonica, and seven harmonics for C. kokeni. Outlines were normalized to
discard effects of rotation, translation and size, using the parameters of the ellipse defined
by the first harmonic (First Harmonic Ellipse method). Therefore, three of the four EFDs
describing the first harmonic ellipse are constant for all the outlines (Crampton, 1995). The
software Shape 1.3v (Iwata ¢ Ukai, 2002) was used for all the analysis.

Morphospace construction and regression analysis

A Principal Component Analysis (PCA) was performed from the variance—covariance
matrix of normalized coefficients (Data S2 and Data S3 shows normalized Fourier
coefficients for each outline and for each taxon, respectively). The shapes of the shell
for mean and extreme morphologies (the latter are representations of specimens with score
values corresponding to —two and +two standard deviations from the centre for each
component) were reconstructed from the normalized coefficient mean values of the EFDs
using the inverse Fourier transformations (Iwata ¢ Ukai, 2002) and plotted alongside the
morphospace reconstruction. The growth and geological categories previously defined
were both plotted on the PCA. Also, a Univariate Regression Analysis (URA) between
sizes (obtained from the two-dimensional area of each outlines) and shapes using the
principal components in both study-cases was conducted. The components were selected
exploring the morphological variance obtained from PCA. The morphospace construction
were performed using PAST 3.19 (Hamimner, Harper ¢ Ryan, 2001), and the URA using R
environment (R Core Development Team, 2017).

RESULTS

C. paleopatagonica allometric growth

The first three components of PCA explain 74.02% of the total variance (Fig. 3A). The
first component (PC1) explains 46.55% of variance and represents the transition between
subcuadrate (negative extreme) to subrectangular/subelliptic (positive extreme) outlines,
with a posterior-ventral expansion. The second component (PC2; 20.16% of variance)
accounts for changes in convexity and width of umbones (more rounded umbos towards
positive values and less rounded towards negative values). The third component (PC3;
7.3 % of variance) captures variation in concavity of the lunular area (more concave
lunule towards negative values and more convex lunule towards positive values). The
URA between size and PC1 (selected because this component shows a transition between
subcuadrate and subrectangular outlines) is significant (p-value<0.001) (Fig. 4A). Results
of PCA and URA analyses are included in Table 1 and Data S4.
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Less than two growth
lines/succesive outlines

- Two to four growth
lines/succesive outlines

- More than four growth
lines/succesive outlines

C
.

Camarones Formation

San Julién Formation

- Monte Leén Formation
- Puerto Madryn Formation

Figure 3 Results of principal component analyses. (A) C. paleopatagonica arranged by ontogenetic
stage. (B) C. kokeni arranged by ontogenetic stage. (C) C. kokeni arranged by stratigraphic procedence.
Color legends and the extreme morphologies of each principal component are illustrated in the graph.
Black lines in A and B show ontogenetic trajectories of a selected specimen. Triangles indicate specimen
previously assigned to Venericardia camachoi and squares indicate specimen previously assigned to

C. patagonicus.

Full-size & DOI: 10.7717/peerj.5051/fig-3
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Figure 4 Results of univariate regression analyses, between area (size) and principal components

(shapes). (A) includes first principal component obtained from C. paleopatagonica, and (B) includes sec-

ond principal component obtained from C. kokeni. Red line indicates trend line. Photo credit: the authors.
Full-size Gl DOI: 10.7717/peerj.5051/fig-4

Growth categories plotted in the obtained morphospace show a transition across
PC1 from juvenile to adult outlines. Variation across life-span in C. paleopatagonica
can be distinguished in the successive outlines of each individual. Juvenile outlines are
strongly rounded and shows subcentrally placed umbones. Towards more aged shells, an
increase in the projection of posterior end is recognisable. Adult shells of this species have
subrectangular to subelliptic outlines with anteriorly placed umbones. A reconstructed
ontogenetic trajectory can be observed in Fig. 3A linking different stages of the same
specimen in the morphospace (this ontogenetic trajectory was obtained from a single
actual specimen, from which the largest number of outlines were acquired). Different
allometric variation can be detected when overlapping extreme outlines of PC1. Posterior

end has positive allometry, while the dorsal and anterior-ventral margins have negative
allometry (Fig. 5A).
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Figure 5 Overlapping of extreme outline configurations. (A) C. paleopatagonica. (B) C. kokeni. Red out-
line, juvenile specimens. Blue outline, adult specimens. Arrows indicate positive or negative allometry.
Full-size Gl DOI: 10.7717/peerj.5051/fig-5

C. kokeni allometric growth

In this case, the first three components of PCA explain 90.72% of the total variance (Fig. 3B).
The first component (PC1; 66.66% of variance) shows variation between outlines with
subcentrally placed umbones and outlines with anteriorly placed umbones. The second
component (PC2; 19.27% of variance) reflects variation between more subtriangular and
more subrectangular outlines. The third component (PC3; 4.79% of variance) is associated
to variation between less and more truncated posterior end of valves. In this case, the PC2
was selected to the URA test, because this component explains the transition between less
and more elongated outlines. The URA shows more scattered points on the graphs than
C. paleopatagonica, which could be related to the different geological provenance of shells.
Nevertheless, the result is significant (p-value<0.001) (Fig. 4B). Results of PCA and URA
analyses are included in Table 1 and Data S5.

Geological categories show a non-structured arrangement when they are plotted in the
morphospace. The best sampled categories (‘Monte Le6n’ and ‘Puerto Madryn’) occupy
virtually the whole morphospace (Fig. 3C). Growth categories reflect a transition across the
PC1 from juvenile to adult outlines. Juvenile outlines of C. kokeni are strongly subtriangular
with pointed umbones, whereas adult outlines are markedly subrectangular having more
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rounded umbones. The reconstructed ontogenetic trajectory (Fig. 3B), obtained in the
same way as the previous case, and the overlapping of both extreme outlines of PC2
shows an allometric variation similar to those observable in C. paleopatagonica (Fig. 5B).
Specimens originally assigned to C. patagonicus by previous authors fall into the juvenile
sector of the morphospace (Fig. 3B).

DISCUSSION

Morphological change across life-span in C. paleopatagonica and

C. kokeni and related species

An allometric growth pattern shared by both species, C. paleopatagonica and C. kokeni
was found in the analyses. Both taxa have positive allometry detected in the extension
of posterior end, resulting in elongated adult shells. The study of ontogeny in bivalves
had evidenced that some species show allometric growth in certain characters (Stanley,
19755 Stanley, 1977; Tashiro ¢ Matsuda, 1988; Savazzi ¢ Yao, 1992) and the morphological
change recorded herein is also documented in other phylogenetically related infaunal
bivalves. Subquadrate juvenile and elongated adult specimens of the carditid Claibornicardia
alticostata (Conrad, 1833) have a similar allometric variation (Stenzel ¢ Krause, 1957, and
D Perez, pers. obs., 2015 on syntypes ANSP 30562). Crampton & Maxwell (2000) described
a similar variation in some representatives of the crassatellid genus Spissatella, especially in
the species S. subobesa (Marshall & Murdoch, 1919) and S. poroleda (Finlay, 1926).

Elongated adult morphology in other infaunal bivalves

Ontogenetic trajectories have not been described in other infaunal bivalves. However, the
same elongated adult morphology described here is known. Among archiheterodonts,
the morphology documented for adult shells of C. paleopatagonica and C. kokeni can
be observed in species of the genera Megacardita Sacco, 1899 (La Perna, Mandic &
Harzhauser, 2017); Neovenericor Rossi de Garcia, Levy & Franchi, 1980 (Pérez, Alvarez

& Santelli, 2017); Venericor Stewart, 1930 (Gardner ¢ Bowles, 1939); and Bathytormus
Stewart, 1930 (Wingard, 1993; Santelli ¢» Del Rio, 2014). Among other bivalve groups, this
adult morphology is also recorded in species of the Veneroidea and Palaeoheterodonta.
Some species of Veneridae genera as Anomalocardia Schumacher, 1817, Lirophora Conrad,
1863, Chionopsis Olsson, 1932, Lamelliconcha Dall, 1902, Macrocallista Meek, 1876, and
Antigona Schumacher, 1817, among others, have adult shells with a projected posterior
end and elongated outlines. Some Trigoniidae taxa lead this morphology to the extremes,
with the development of wide and very projected posterior ends (e.g., Francis ¢» Hallam,
2003). As an example, Echevarria (2014) found a strong allometric growth developing in
two phases in the trigoniid Myophorella garatei (Leanza, 1981) with a strong extension of
the posterior margin.

Taxonomic implications of allometric growth

Differences between young and adult morphologies could have been be interpreted as
taxonomic differences between species. In both studied cases, new species were proposed
for specimens with young morphologies: Venericardia camachoi Vigilante, 1977 and
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C. patagonicus (Ihering, 1907). These taxa fall into the variation representing young
specimens of C. paleopatagonica and C. kokeni, respectively. The case of C. kokeni and

C. patagonicus was already mentioned by Santelli & Del Rio (2014), being corroborated
the synonymy in this study. Other examples are the carditids Neovenericor paranensis
(Borchert, 1901) (late Miocene, Argentina), the adult morphology of which was described
as Venericor crassicosta Borchert, 1901 (Pérez, Alvarez ¢ Santelli, 2017) and Neovenericor
ponderosa (Suter, 1913) (late Oligocene, New Zealand), the young morphology of which
was named Venericardia caelebs Marwick, 1929 (Beu ¢» Maxwell, 1990). These results reflect
that this allometric change (included into the instraspecific variation) must be considered
in taxonomic revisions of similar infaunal bivalves. These examples show that a different
outline is frequently considered an important feature for taxonomic recognition but
ontogenetic variation is not always taken into account (Alvarez ¢» Pérez, 2016).

Ecological implications of the elongated adult morphology

According to Stanley’s experiments (1970), bivalve shells with streamlined outlines
(cylindrical, blade-like, or disc-like) are the fastest burrowers. Elongated outlines could
be related to fast burrowing in soft substrates but not in all cases. Also, Stanley (1970)
established that moderately elongated burrowing species commonly use a large angle of
rotation, having a strong forward component in their burrowing movement because of
their eccentric axis of rotation. Elongated bivalves generally have a mode oflife with the long
axis in vertical position—for example, this is observed in living species of Anomalocardia—.
Posterior portion of shell is directed to sediment surface, being achieved the elongated
morphotype with a minimum of increase in shell growth, displacing the centre of gravity
and the visceral mass of organisms to a deeper position (Stanley, 1970; Crampton &
Maxwell, 2000). Other possibly related effects could be increasing in stability against scour
(Stanley, 1977; Stanley ¢ Yang, 1987; Francis ¢» Hallam, 2003) or reduction of exposure
and predation (Crampton & Maxwell, 2000; Francis & Hallam, 2003). One possible way to
reach this morphology could be to exploit the positive allometry of posterior end through
the ontogeny.

Crampton & Maxwell (2000) suggested that ontogenetic variation in Spissatella is an
adaptation for life in more energetic environments with coarser substrates but these
parameters were not explored in our data. Nevertheless, these conditions (along with
others such as predation) may have played a part as selective pressures in the evolutionary
history of these infaunal bivalves. Further stratigraphic structured analyses, including
taphonomic and sedimentologic data, are needed to study these hypotheses.

Evolutionary implications of allometric growth

Ontogenetic changes in the mentioned infaunal bivalves seem to be similar and perhaps,
could be induced by similar conditions. Allometry plays a significant role in evolutionary
trends of most lineages (Gould, 1966b; Gould, 1977; Klingenberg, 1998). The study of
allometric changes is sometines necessary for recognition of some cases of heterochronic
processes (e.g., Shea, 1983; McKinney, 1984; Mitteroecker, Gunz & Bookstein, 2005).
Heterochrony is the change in relative time of appearance of characters already presents
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in ancestors (Gould, 1977; McNamara, 1986). Learning more about the ontogenetic
trajectories and allometric changes present in different taxa is essential as the first step
for heterochrony studies. These analyses require ontogenetic trajectories explored and
phylogenetic relationships defined among species, being the cases like the ones described
here fundamental and very important as a starting point.

CONCLUSIONS

Analyses of allometric growth allow to recognize similar ontogenetic changes in

C. paleopatagonica (Ihering, 1903) and C. kokeni (Ihering, 1899). In both species the
ontogeny is characterized by the presence of positive allometry in the growth of posterior
end, resulting in elongated adult shells. The species Venericardia camachoi Vigilante,
1977 and C. patagonicus (Ihering, 1907), proposed as synonyms of both previously
mentioned taxa, fall into the portion of the resulting morphospace that represents juvenile
morphologies, so that the obtained results corroborate these synonymies.

This particular allometric growth, resulting in elongated adult shells, is presumed in
other infaunal bivalve groups (e.g., Veneridae, Trigoniidae, Carditidae and Crassatellidae).
The recognition of this character has taxonomic, ecologic and evolutionary implications,
being important as the starting point for further heterochronic studies in bivalves. This
study includes new observations and discussion about allometric growth in infaunal
bivalves, and represented a contribution for thickening the literature of cases of allometric
patterns.
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