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ABSTRACT
Body size has always been the focus of several ecological studies due to its undeniable
influence on other life-history traits. The conventional representation of body size in
arthropods typically relies on linear measures, such as total body length, or the length
of specific body parts that can be used to represent body size. While these measures
offer simplicity over more complicated alternatives (e.g., dry mass), technical
problems persist for arthropods with complex body structures, as is the case for
scorpions. In these animals, accurate measurements often require extensive handling,
including the stretching of body parts. In light of the difficulties associated with
directly measuring total length and carapace length in scorpions (two prevalent
proxies for body size in the group), this study evaluates the ability of seven simple
linear measurements in predicting length measures of boy size in scorpions under a
phylogenetic framework. Predictive equations derived from phylogenetic mixed
linear models fitted under Bayesian framework were implemented in custom R
functions that can be applied for size prediction in a wide range of scorpions. Overall,
accurate predictions of total length and carapace length could be achieved using any
of the studied traits as single predictors. However, the most accurate predictions for
total length were obtained using the length of metasomal segment V, while the best
predictions for carapace length were achieved using telson length. The addition of a
secondary predictor had low impact on the quality of the size predictions, indicating
that increasing model complexity by incorporating additional predictors is not
necessary to achieve accurate size estimates. Technical advantages and limitations
associated with each linear measurement are discussed. In conclusion, this study
broadens the repertoire of methods available for accurately estimating body size in
scorpions, particularly in instances where body size information can only be obtained
indirectly through allometric relationships.

Subjects Entomology, Zoology
Keywords Body size, Scorpions, Allometry, Arachnida, Phylogeny, Size prediction, Arthropoda

INTRODUCTION
Comparative analysis focusing on body size variation has gained popularity in ecological
and evolutionary studies. This rise in scientific interest can be attributed to the significant
role of body size in influencing and being influenced by various other life-history traits in
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animals (Peters, 1986; Klingenberg & Spence, 1997; Blanckenhorn, 2000; Kozłowski,
Konarzewski & Czarnoleski, 2020; Johnson et al., 2023). Examples of these well-known
associations include relationships linking body size with range size (Noonan et al., 2020;
Seifert, Strutzenberger & Fiedler, 2022), dispersal capability (Alzate & Onstein, 2022),
mobility (Kuussaari et al., 2014), thermal regulation (Gardner et al., 2011), fecundity
(Tammaru, Esperk & Castellanos, 2002), longevity (Holm et al., 2022; Kuparinen, Yeung &
Hutchings, 2023), dietary specialization (Seifert, Strutzenberger & Fiedler, 2023), and sexual
selection (Janicke & Fromonteil, 2021), among others.

Body size is typically represented by weight (mass) or length, depending on how
conveniently and accurately these measures can be obtained for the taxonomic group
under study. For invertebrates, particularly arthropods, measures of weight can serve as a
good proxy for body size when aiming to capture both size and shape within a single value
(e.g., Kendall et al., 2019; Ruiz-Lupión, Gómez &Moya-Laraño, 2020; Foerster et al., 2024a,
2024b; Ude et al., 2024), or in the analysis of metabolic rates and energy allocation (e.g.,
Llandres et al., 2015; Ferral et al., 2020; Turnbull, McNeil & Sinclair, 2023). However, using
weight measurements often requires handling hundreds of individuals under laboratory
conditions. For instance, if dry mass is employed, animals must be sacrificed and
transferred to a laboratory for proper processing, often involving specialized equipment.
Moreover, body weight rather than body length is expected to be more influenced by
factors such as water and fat content, nutritional condition, and reproductive stage (Chown
& Gaston, 2010; Stahlschmidt & Chang, 2021). These factors can produce transient changes
in body weight that may not accurately reflect the actual body size of the organism. Length
measures, in contrast, provide a simpler solution to overcome such challenges. In most
cases, length measures can be directly obtained in the field without the need for specialized
equipment. In addition, for non-flying arthropods, length measures of body size are
typically expressed as the total length of the animal without appendages, which can be thus
considered a homologous trait across the studied species (Ruiz-Lupión, Gómez & Moya-
Laraño, 2020).

Using length measures offers another advantage: specific body parts can be used to
represent body size itself. This is made possible by allometry, where body parts scale in size
relative to overall body size (Pélabon et al., 2018). By studying the allometric
properties of a readily measurable trait, one can use its measurements to estimate body size
or directly represent body size itself. This approach proves useful when directly
measuring body size (e.g., total length) is more labor-intensive, being commonplace in
ecological and evolutionary studies with several invertebrate groups (e.g., Warzecha et al.,
2016; Austin et al., 2022; Jahant-Miller, Miller & Parry, 2022; Lira et al., 2021; Lira,
Andrade & Foerster, 2023; Staton et al., 2023). Not surprisingly, significant efforts have
been directed towards developing predictive models (equations) of body size based on
meristic traits that are simpler to measure (Kendall et al., 2019; Foerster et al., 2024a). This
includes “classical” linear predictive equations on a log-log scale (Huxley, 1932; Packard,
2013; Pélabon et al., 2018), which are commonly employed to predict body size in
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various insect groups, including (but not limited to) Coleoptera, Isoptera, Thysanura
(Ruiz-Lupión, Gómez & Moya-Laraño, 2020), Hymenoptera (Kendall et al., 2019;
Ruiz-Lupión, Gómez & Moya-Laraño, 2020), Lepidoptera (Foerster et al., 2024a), Diptera
(Kendall et al., 2019) and, to a lesser extent, in other arthropods, such as arachnids (Hódar,
1996, 1997; Höfer & Ott, 2009; Shiao et al., 2019).

Simpler proxies and predictive models for estimating body size are especially valuable
for arachnids, especially those belonging to clades with complex body architecture.
Directly measuring the total length of scorpions, for instance, can be methodologically
challenging due to their overall body structure. The nearly 2,830 extant scorpion species
described to date (Rein, 2024) share a characteristic body structure consisting of three main
segments: the prosoma, mesosoma, and metasoma. Obtaining precise measurements of
total length in scorpions requires stretching anatomical parts such as the metasoma,
commonly referred to as “tail”, which demands considerable time and expertise.
Procedures like these are impractical to be performed on live specimens, being also
problematic for museum specimens without the considerable risk of causing damage to the
individual, which in turn, affects the precision of the measurements. This is likely one of
the reasons why carapace length is frequently used as a proxy for body size in scorpions
(e.g., DeSouza et al., 2016; Seiter & Stockmann, 2017; Lira, Andrade & Foerster, 2023;
Moreira et al., 2022; Giménez Carbonari et al., 2024), despite the lack of empirical evidence
demonstrating its suitability as an indicator of body size, at least in comparative contexts.
However, even carapace length cannot always be easily measured. In some instances, the
carapace itself can be damaged, or its edges may be covered by other body parts, such as the
pedipalps, necessitating handling that also increases the risk of structural damage to the
specimen. Therefore, models that enable accurate prediction of body size measurements in
scorpions (e.g., total length, carapace length) from simpler linear measurements of various
body parts are valuable tools, particularly when dealing with highly damaged or fragile
specimens. In some cases, these models represent the only alternative to obtaining
information on body size, such as with old and poorly preserved specimens from scientific
collections and some fossil records.

The aim of this study is to establish coefficients for accurately predicting body size in
scorpions, while considering their evolutionary history. I present a series of simple linear
equations implemented in custom R functions that can be used to effectively predict total
length and carapace length—two commonly used measures of body size in scorpions (e.g.,
Outeda-Jorge, Mello & Pinto-da-Rocha, 2009; Seiter & Stockmann, 2017; Lira et al., 2018;
Lira, Andrade & Foerster, 2023; Giménez Carbonari et al., 2024) based on simple linear
measurements of individual body parts. Specifically, I assessed the predictive power of
seven linear measurements using simple and multiple phylogenetic mixed linear models
across 195 scorpion species from the family Buthidae. The family Buthidae is the most
species-rich clade within the order Scorpiones, offering sufficient morphometric variation
to effectively represent the order in terms of overall body size as well as the size and shape
of individual body parts.
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MATERIALS AND METHODS
Trait data and species
Linear measurements were primarily obtained from a comprehensive list of taxonomic and
ecological studies on buthid scorpions (Supplemental file S1). The measurements were
mainly presented in simple tables that could be manually retrieved from the selected
articles. The present study acknowledges that while measurement errors in the selected
traits can be minimized, they cannot be entirely eliminated. However, it is assumed that
these errors do not significantly impact the quality of size predictions, as (1) the articles
selected for extracting the meristic information were mostly authored by experienced
scorpion taxonomists, and (2) the models are intended to provide an average estimate of
body size rather than precise, exact predictions.

Two proxies for body size were employed in this study (analyzed separately, see below):
total length (toL), measured from the anterior margin of the carapace to the aculeus tip
(Fig. 1), and carapace length (carL), expressed by the maximum distance between the
anterior and the posterior margins of the carapace (Fig. 1). The candidate traits used as
predictors of the two body size measures are illustrated in Fig. 1. These included: chela
length (cheL) measured from the base of the manus to the tip of the fixed finger, chela
width (cheW) measured dorsally at the middle of the manus, telson length (teL) obtained
from the distance connecting the base of the vesicle to the aculeus tip, telson width (teW)
corresponding to the width of the vesicle in dorsal view, and the length (met5L) and width
(met5W) of the metasomal segment V (Fig. 1; Sissom, Polis & Watt, 1990); the ability of
carL in predicting toL was also evaluated. The (predictor) measurements were chosen
because they are relatively easy to measure in well-preserved specimens and readily
available in taxonomic studies of scorpions (Supplemental file S1).

Raw trait values were used to calculate species means separately for males and females
for species represented by more than one individual per sex. On average, two individuals
per sex were used to calculate species means for each species (Supplemental file S1). The
proportion of missing data in the trait matrices ranged from 2% (cheL in both sexes) to
13% (teW inmales). Missing predictor trait values in both matrices were imputed using the
missForest R package (Stekhoven & Bühlmann, 2012) due to its accuracy and
computational efficiency (Penone et al., 2014;May, Feng & Adamowicz, 2023). Imputation
was performed separately for each sex using the log-transformed species means. Phylogeny
was incorporated by including the first 10 eigenvectors from a principal coordinate
analysis on cophenetic distances (Penone et al., 2014) calculated from an ultrametric
phylogeny generated in this study (see below) in each trait matrix.

A second analysis was performed to assess the precision of the imputation procedure on
each trait matrix (one per sex). It consisted in pruning the trait matrices to retain only
species with no missing data (n = 119) in the original scale (mm). Then, 13% of data—the
maximum proportion of missing data observed in the original matrices—was randomly
assigned as missing data in each trait in the pruned matrices. The imputation was
performed on the pruned matrices with their respective phylogenetic eigenvectors, and the
imputation accuracy was assessed using the normalized root mean square error (NRMSE),
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which compares predicted and actual values, with values closer to zero indicating
higher accuracy (Stekhoven & Bühlmann, 2012). The imputation on the pruned
matrices was repeated 10 times for each sex, and the mean NRMSE (in mm) was reported
for each.

Phylogeny
Shared evolutionary history between species were considered by using an ultrametric
phylogenetic tree for the studied species. The tree was derived from nucleotide sequences
of four DNA loci commonly used in systematic studies of scorpions (e.g., Esposito et al.,
2018; Esposito & Prendini, 2019; Štundlová et al., 2022): partial sequences of the
mitochondrial genes cytochrome c oxidase I (COI), 16S rRNA, and partial sequences of the
nuclear genes 18S rRNA and 28S rRNA. DNA data were primarily sourced from GenBank
(Supplemental file S1), with supplementary sequences obtained at the LABBE/UFPE
(Recife, Brazil) as indicated in Supplemental file S1. DNA extraction, purification,
amplification, and sequencing procedures to generate supplementary sequences were
conducted following the methods described by Esposito et al. (2018). Chromatograms were

cheL
carL

cheW

met5L teL

teW

met5W

toL

1 2 3 54

Figure 1 Schematic representation showing the overall morphology of a scorpion and the meristic
traits collected for buthid species. The two variables used to express body size were (toL) total
length, and (carL) carapace length. The following traits were used to predict the two proxies for body size:
(cheL) chela length, (cheW) chela width, (met5L) length of the metasomal segment V, (met5W) width of
the metasomal segment 5, (teL) telson length, and (teW) telson width.

Full-size DOI: 10.7717/peerj.18621/fig-1
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processed with Pregap4 (Staden, Beal & Bonfield, 1999) for the assembly of consensus
sequences, which were subsequently deposited in GenBank (Supplemental file S1).

Sequences of the four loci were aligned independently using MAFFT v.7 (Katoh &
Standley, 2013) with default settings; badly aligned regions were automatically removed
using Gblocks v 0.91b (Castresana, 2000) with default settings. Gene sequences were then
concatenated using the Concatenator software (Vences et al., 2022), resulting in a final
alignment block of 2,836 base pairs for 268 species, with the selection of the bothriurid
species Brachistosternus paposo Ojanguren Affilastro & Pizarro-Araya, 2014 as the sole
outgroup.

Tree topology and branch lengths were estimated by maximum likelihood in IQ-TREE
v.2.3.2 (Minh et al., 2020), with branch support calculated using 1,000 ultrafast bootstraps
(Hoang et al., 2018), and the SH-aLRT test (-alrt 1,000; Guindon et al., 2010). For the COI
sequences, partitioning was based on codon position, while the remaining (ribosomal)
genes were partitioned by gene. The optimal partitioning scheme for the genes was
determined using ModelFinder (Chernomor, Von Haeseler & Minh, 2016;
Kalyaanamoorthy et al., 2017) in IQ-TREE (-m MF+MERGE), which also identified the
best-fit evolutionary model for each partition (Information S1) based on evolutionary
substitution models available in BEAST v1.10.4 (Suchard et al., 2018). The resulting
maximum likelihood tree was converted to ultrametric (branch lengths in million years)
using the penalized likelihood method implemented in the chronos function from the ape
R package (Paradis & Schliep, 2019). To do so, nine calibration points were established
based on fossil records and previous node age estimations (Information S1). The “clock”
model was used in the chronos function as it had the lowest score for penalized
hierarchical information criterion among the available models (Paradis & Schliep, 2019).
Subsequently, node ages were estimated for the ultrametric phylogeny using Bayesian
inference with fixed tree topology operators in BEAST. Lognormal priors were defined to
align with the calibration points used in IQ-TREE. The parameters meanlog and sdlog of
the lognormal distributions were optimized, ensuring that the 2.5% and 97.5% quantiles of
each distribution matched the age intervals of the respective calibration point. The custom
R function for defining these optimal lognormal priors is available in Supplemental file S1,
along with a brief explanation and tutorial. The Markov chain Monte Carlo (MCMC)
sampling in BEAST was configured with two chains, each consisting of 50 million
iterations, sampled every 1,000 iterations, with a 25% burn-in. The resulting log and tree
files were combined using LogCombiner 1.10.4 (Suchard et al., 2018) and analyzed in
Tracer 1.7.2 (Rambaut et al., 2018). No convergence issues were detected for all estimated
parameters (ESS > 200).

Data analysis
All analyses were conducted using R software (R Core Team, 2024), with natural
logarithmic transformation applied to all linear measurements. The phylogenetic tree was
pruned using the function drop.tip in the ape R package to retain only the species
presented in the trait data (n = 195). To better understand the covariation structure of the
trait data, considering evolutionary dependence, a phylogenetic principal component
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analysis (PCA) was carried out using the function phyl.pca and the Pagel’s λ method
(Pagel, 1997, 1999) as implemented in the phytools R package (Revell, 2024). The
phylogenetic PCA facilitated the evaluation of how effectively the candidate predictors
captured size information within the trait space (e.g., Konuma & Chiba, 2007; Konuma,
Nagata & Sota, 2011; Foerster et al., 2024a).

The following analysis focused on assessing the predictive ability of each linear
measurement for estimating both toL and carL. This was achieved using phylogenetic
mixed linear models implemented in the MCMCglmm v.2.36 R package (Hadfield, 2010).
By including species-level (repeated measures) random intercept factors, alongside the
inverse of phylogenetic covariance matrix, the mixed models enabled testing the
interaction effects between each predictor trait and sex, taking phylogeny into account.
The model coefficients were estimated using Bayesian inference with default priors in
MCMCglmm; a single MCMC chain with 50,000 iterations sampled every 50 was set for
each model, with a burn-in of 5,000 iterations. Such parameters were enough to ensure
proper convergence and mixture of MCMC chains, as evidenced by high effective sample
sizes (see Results). The performance of the predictive models was assessed based on the
root-mean-square error (RMSE), which represents the average difference (in mm) between
predicted and actual values, with the best model presenting the lowest associated RMSE
value. Only one predictor was tested at a time, allowing the identification of the most
effective single predictor of toL and carL—i.e., the model with the lowest RMSE. After
finding the best single predictor for each body size measurement, a second predictor was
added to the best-fit simple regression model to explore whether increasing model
complexity resulted in substantial improvement in prediction accuracy. Only one
secondary predictor was added at time, ensuring that the resulting multiple regression
model contained only two predictors. Subsequently, the accuracy of body size predictions
was compared between the simple and the multiple regression models using their
respective RMSE values. Based on the results obtained with buthids, where the best
predictions of body size were achieved with simple regression models (see results), the
best-fit simple regression model was applied to predict toL and carL in 30 randomly
selected non-buthid scorpions. Deviances, calculated as the difference between predicted
and actual values of toL and carL, were reported for non-buthids.

RESULTS
General findings
Total length ranged from 14.9 to 116.2 mm in females (mean ± standard deviation: 53.7 ±
20.8 mm) and 11.9 to 119.1 mm in males (50.6 ± 20.6 mm). Measurements of carapace
length ranged from 2 to 12.5 mm in females (5.9 ± 2.2 mm) and 1.6 to 10.9 mm in males
(5.3 ± 2.1 mm). The phylogenetic trait imputation performed on the missing values for
predictor traits proved to be highly accurate, with mean NRMSE (calculated across 10
iterations) of 0.01 mm for both sexes. The visual inspection of the trait space through
phylogenetic PCA indicated high correlation between the studied traits (Figs. 2A, 2B),
which was corroborated by the high trait loadings on the phylogenetic PC1 (Table 1).
Specifically, all traits correlated more strongly (and in the same direction) with PC1,
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indicating that PC1 effectively captured size (length) information. The strength and
direction of trait correlations in relation to PC1 indicated a size gradient along this axis.
Smaller species were primarily located on the right side of the size gradient (positively
correlated with PC1), while larger species occupied the left side of the gradient (negatively
correlated with PC1). Species appeared more dispersed in the two-dimensional trait space
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Figure 2 Phylogenetic principal component analysis conducted with (A) female and (B) male buthid
scorpions, illustrating the arrangement of species (points) and examined traits (arrows) across the
two principal components. Refer to Fig. 1 for the abbreviations of traits. The gradient in size along
axis 1 is depicted by the proximity of trait vectors to axis 1 and the linear variation in total length values
across axis 1. The analysis was performed using natural logarithms of trait values, taking phylogenetic
relationships among species into account. Full-size DOI: 10.7717/peerj.18621/fig-2
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of male data (Fig. 2B) compared to the trait space constructed from female data.
Additionally, smaller species tended to be more widely distributed in the bidimensional
trait space for both sexes, though this pattern was more pronounced in males (Fig. 2B). The
tree topology and node age estimations were largely consistent with previous phylogenetic
hypotheses (e.g., Ojanguren-Affilastro et al., 2017; Santibáñez-López et al., 2022; Štundlová
et al., 2022), recovering major buthid clades, such as the Tityus and Buthus groups, with
strong statistical support (Supplemental file S1). The monophyly of species-rich genera
such as Tityus and Centruroideswas also well supported (Supplemental file S1). Divergence
times were estimated at 57.7 Mya (95% HPD: 53–63 Mya) for the Tityus group and 43.2
Mya (39.7–46.6 Mya) for the Buthus group.

Predicting total length
Overall, all studied traits predicted toL with satisfactory accuracy, with RMSE values not
exceeding 12.2 mm (Table 2). The most effective single predictor of toL was met5L
(RMSE = 6.4), closely followed by carL (Table 2). The linear relationship between met5L
and toL was consistent across males and females (Fig. 3A), further supported by the
non-significant interaction between met5L and sex, as observed for all other traits used to
predict toL (Supplemental file S1). Conversely, met5W proved to be the least accurate
single predictor (Table 2), aligning with its lower loadings on the first axis of the
phylogenetic PCA, evidencing its limited ability to represent overall size (length) compared
to the other traits (Table 1). The coefficients obtained from the model including met5L
proved to be efficient in predicting toL in non-buthid scorpions, with differences between
predicted and actual values not exceeding 7.5 mm (Table 3).

The multiple regression analyses revealed that total length predictions could be slightly
improved by adding a secondary predictor alongside met5L (Supplemental file S1).
However, these improvements were modest: the difference in RMSE between the best-fit
multiple regression model (met5L + cheW, RMSE = 5.13 mm) and the best
single-predictor model was only 1.28 mm.

Table 1 Trait loadings on the first two axes of the phylogenetic principal component analysis
performed on linear measurements of body parts of buthid scorpions (n = 195).

Female Male

Trait PC1 PC2 PC1 PC2

Carapace length −0.97 0.03 −0.98 0.07

Chela length −0.89 −0.43 −0.91 0.26

Chela width −0.93 0.08 −0.90 −0.36

Length of metasomal segment V −0.95 −0.01 −0.93 0.25

Width of metasomal segment V −0.90 0.25 −0.90 −0.17

Telson length −0.96 0.0004 −0.96 0.16

Telson width −0.96 0.12 −0.96 −0.04

Variance (%) 87.70 4.40 86.70 5.30

Note:
Phylogenetic dependence in trait values was accounted for by using the lambda method. All trait values were
log-transformed before the analysis.
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Predicting carapace length
The simple phylogenetic regression models identified teL as the best single predictor of
carL (Table 2), with a common slope coefficient across sexes (Fig. 3B, Supplemental file
S1). cheW, on the other hand, was the least accurate predictor of carL, yielding an RMSE of
1.1 mm (Table 2). The interactions between predictor traits and sex were largely
non-significant when predicting carL, with the exception of the sex*met5L interaction
(Supplemental file S1). However, the model incorporating this interaction did not
outperform the best simple regression model for carL: the RMSE for the interaction model
was 0.9 mm, compared to 0.7 mm when using teL alone. Predictions of carL based on teL

Table 2 The performance of linear measurements in predicting (ToL) total length and (CarL)
carapace length in buthid scorpions (n = 195) was assessed using Bayesian phylogenetic mixed
linear models.

Response Predictor RMSE Coefficients Mean Lower Upper ESS

toL met5L 6.41 Intercept 2.13 2.03 2.22 900

Slope 0.95 0.91 0.99 795

carL 6.46 Intercept 2.18 2.08 2.27 900

Slope 1.01 0.97 1.05 900

teL 7.22 Intercept 2.32 2.21 2.44 1,088

Slope 0.90 0.86 0.94 900

cheL 8.84 Intercept 2.27 2.08 2.50 900

Slope 0.72 0.67 0.78 900

teW 9.27 Intercept 3.29 3.13 3.44 994

Slope 0.82 0.77 0.86 900

cheW 10.70 Intercept 3.40 3.23 3.57 900

Slope 0.63 0.57 0.69 900

Met5W 12.24 Intercept 3.13 2.94 3.34 678

Slope 0.71 0.65 0.77 805

carL teL 0.68 Intercept 0.24 0.13 0.34 800

Slope 0.84 0.80 0.87 752

teW 0.76 Intercept 1.12 0.99 1.22 810

Slope 0.78 0.74 0.81 1,090

Met5L 0.96 Intercept 0.10 −0.02 0.22 900

Slope 0.85 0.80 0.90 900

cheL 0.98 Intercept 0.22 0.04 0.42 900

Slope 0.66 0.61 0.71 900

Met5W 1.02 Intercept 0.95 0.75 1.09 870

Slope 0.71 0.66 0.76 900

cheW 1.06 Intercept 1.22 1.08 1.39 1,156

Slope 0.60 0.55 0.65 900

Note:
See Fig. 1 for trait abbreviations.
All variables were log-transformed (using natural logarithms) before the analysis. Repeated measurements for species
(i.e., one measurement per sex) were included as random intercept factors in the models. The equation for predicting the
desired body size metric (in mm) is given by: Y = exp(a + ln(x)b), where a is the intercept, x is the predictor, and b is the
slope of the predictor. RMSE represents the residual mean squared error, lower and upper 95% credible intervals are
presented. ESS, effective sample size.
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Figure 3 Linear relationships between (A) total length and the length of metasomal segment V, and
(B) carapace length and telson length in buthid scorpions (n = 195) were estimated using Bayesian
phylogenetic mixed linear models. The thick line represents the slopes of these relationships, calculated
from the mean posterior estimates (50,000 MCMC samples). The thin lines indicate the 95% credible
intervals of the slope coeûcients, derived from 50 randomMCMC samples from each model. All variables
were log-transformed (natural logarithms) before the analysis.

Full-size DOI: 10.7717/peerj.18621/fig-3

Table 3 Size predictions for non-buthid scorpions (n = 30) according to the best-fit phylogenetic simple regression models fitted under a
Bayesian framework.

Species Family Sex ToL ToL Dev. CarL CarL Dev. Source

Vaejovis vorhiesi Vaejovidae Female 28.25 −0.36 3.45 −0.09 Ayrey & Soleglad (2015)

Orobothriurus grismadoi Bothriuridae Male 30.36 −0.61 3.47 0.85 Ojanguren Affilastro et al. (2009)

Scorpiops kovariki Scorpiopidae Female 32.95 −0.68 4.84 −0.39 Tang et al. (2024)

Chaerilus seiteri Chaerilidae Male 24.20 −0.80 3.60 0.19 Kovařík (2012b)

Teuthraustes braziliensis Chactidae Male 52.20 −1.24 7.50 −0.49 Lourenço & Duhem (2010)

Calchas kosswigi Iuridae Female 34.25 −1.53 4.30 0.33 Yağmur et al. (2013)

Typhlochactas mitchelli Typhlochactidae Male 8.99 1.68 1.17 0.66 Sissom (1988)

Diplocentrus izabal Diplocentridae Male 53.85 1.79 6.75 −0.71 Armas & Trujillo (2016)

Scorpiops tongtongi Scorpiopidae Female 41.90 1.82 6.70 −0.85 Tang (2022a)

Megacormus franckei Euscorpiidae Female 42.48 −2.12 6.38 −0.53 Kovařík (2019)

Euscorpius gulhanim Euscorpiidae Male 26.96 −2.13 3.97 −0.03 Yağmur (2024)

Diplocentrus franckei Diplocentridae Male 57.80 2.50 7.10 −2.06 Santibáñez-López (2014)

Balsateres cisnerosi Vaejovidae Male 47.00 2.52 6.10 −0.10 González-Santillán & Prendini (2018)

Vaejovis troupi Vaejovidae Female 25.70 2.94 3.40 0.04 Ayrey & Soleglad (2015)

Hadrurus anzaborrego Hadruridae Male 84.90 −3.32 11.45 −1.38 Soleglad, Fet & Lowe (2011)

Calchas anlasi Iuridae Male 28.55 3.43 3.70 0.60 Yağmur et al. (2013)

(Continued)
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were also fairly accurate for non-buthid scorpions, with the differences between predicted
and actual values generally remaining under 1 mm (Table 3).

Again, adding a secondary predictor alongside teL provided no substantial
improvement in model accuracy. The difference in RMSE between the best simple
regression model and the best multiple regression model (teL + met5W) was only 0.1 mm
when predicting carL (Table 2, Information S1).

Implementation
All predictive equations presented in this study are implemented in four R functions,
allowing for the prediction of toL and carL using either single predictors or a combination
of two predictors. These functions are provided in Supplemental file S2 (scorpion_sizeR.
R). After downloading the file to the working directory in R, the functions can be loaded
into the R environment by using the command: source (“scorpion_sizeR.R”).

The functions simple_toL and simple_carL are used for predicting toL and carL based
on single predictors. The user provides measurements (in mm) using the values_mm
argument and specifies the predictor trait via the predictor argument, which can take one
of the following values: “met5l”, “met5w”, “carl” (for simple_toL only), “tel”, “tew”, “chel”,
and “chew”.

The functions multi_toL and multi_carL predict toL and carL using multiple regression
models. For multi_toL, the user needs to supply the length of the fifth metasomal segment
(met5l_mm), along with the value and name of the secondary predictor via the arguments
secPred_mm and second_predictor, respectively. For multi_carL, the user provides teL
(tel_mm) and the secondary predictor in the same way as for multi_toL. All measurements
should be in millimeters; predicted values are also returned in millimeters.

Table 3 (continued)

Species Family Sex ToL ToL Dev. CarL CarL Dev. Source

Chactas moreti Chactidae Male 43.10 3.52 5.60 0.40 Lourenço (2014)

Scorpiops deshpandei Scorpiopidae Male 54.24 −3.71 8.43 −1.46 Tang et al. (2024)

Urophonius trewanke Bothriuridae Male 32.53 3.73 3.71 1.44 Ojanguren-Affilastro et al. (2024)

Euscorpiops thaomischi Scorpiopidae Male 45.00 3.79 7.80 −0.86 Kovařík (2012a)

Alpiscorpius lambda Euscorpiidae Male 21.13 3.81 3.52 0.09 Kovařík et al. (2019)

Spinochactas mitaraka Chactidae Female 12.92 4.33 2.00 0.54 Lourenço (2016)

Qianxie solegladi Pseudochactidae Female 24.70 5.05 3.10 0.69 Tang (2022b)

Brachistosternus mattonii Bothriuridae Male 54.46 −5.23 5.74 0.66 Ojanguren-Affilastro (2005)

Hadruroides tishqu Caraboctonidae Female 57.90 5.26 7.60 0.39 Ochoa & Prendini (2010)

Bothriurus delmari Bothriuridae Female 25.90 5.34 3.70 0.43 Santos-Da-Silva, Carvalho & Brescovit (2017)

Hadrurus anzaborrego Hadruridae Female 104.30 −5.57 13.20 −1.66 Soleglad, Fet & Lowe (2011)

Chaerilus solegladi Chaerilidae Male 45.00 5.96 6.40 0.23 Kovařík (2012b)

Diplocentrus izabal Diplocentridae Female 52.25 −6.72 7.50 −1.69 Armas & Trujillo (2016)

Troglotayosicus akaido Troglotayosicidae Male 19.53 7.47 3.32 0.33 Moreno-González, Luna-Sarmiento & Prendini (2024)

Note:
Deviances were calculated as the difference between predicted and actual values of toL and carL. All measurements are reported in millimeters.
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DISCUSSION
This study explored the ability of linear measurements of specific body parts in predicting
the overall body size in buthid scorpions taking phylogenetic relationships among species
into account. As a result, several predictive equations that accurately and easily estimate
body size metrics such as toL and carL, which are commonly used to express body size in
scorpions (e.g., Fox, Cooper & Hayes, 2015; McLean, Garwood & Brassey, 2018), are
reported and implemented in custom R functions.

The general lack of statistically significant interactions involving sex indicated that the
predictive models can be generalized for size prediction in both male and female scorpions.
This is particularly useful in cases where species exhibit subtle morphological differences
between the sexes or when specimens are heavily damaged or fragmented in a way that the
determination of sex is impossible. The latter scenario may be common in various fields,
including paleontology where only partial remains may be available or visible for
performing precise measurements (e.g., Santiago-Blay et al., 2004; Riquelme et al., 2015;
Lourenço, 2023), and studies of feeding ecology, where only parts of the specimens may be
recovered (e.g., Sahley et al., 2015; Nordberg et al., 2018; Karawita et al., 2020; Qashqaei,
Ghaedi & Coogan, 2023). Moreover, the predictive equations presented here can also be
valuable for obtaining precise measurements of body size for scorpions stored in scientific
collections, as the conventional measurement can be challenging without risking damage
to the specimen.

The simple phylogenetic regression models indicated that carL was an effective
predictor and good proxy for body size (toL), albeit not the best. Although this finding may
not sound surprising given that several studies have used carL as an indicator of body size
in scorpions (e.g.,DeSouza et al., 2016; Seiter & Stockmann, 2017;Moreira et al., 2022; Lira,
Andrade & Foerster, 2023; Giménez Carbonari et al., 2024), it constitutes the first empirical
validation of the suitability of carL in predicting total length and also as being a reliable
proxy for body size in these animals, tested with robust comparative data. With a few
exceptions (McLean, Garwood & Brassey, 2018) the use of carL as an indicator of body size
is not always clearly justified. From a technical perspective, using carL offers some useful
methodological advantages over toL, the most straightforward of them being the ease of
measure. Ideally, however, such methodological advantages should be supported by
empirical validations obtained from compelling evidence, which the present study now
provides.

The visual inspection of trait space provided by the phylogenetic principal component
analysis indicated no major differences in the covariation structure of the trait data
between sexes, aligning with the general absence of sex-specific slopes in the linear
relationships between each trait and the two body size metrics. However, the phylogenetic
PCA revealed that species were more widely dispersed in the two-dimensional trait space
constructed from male data, particularly for smaller species. This suggests that
morphological diversity, in a multivariate context, may be greater in males, supporting
previous hypotheses that link sexual selection as a key driver of sexual size dimorphism in
scorpions, particularly influencing the size and shape of male body parts (Lira et al., 2018;
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McLean, Garwood & Brassey, 2018; Visser & Geerts, 2021, but see Sánchez-Quirós, Arévalo
& Barrantes, 2012). Besides sexual selection, other selective forces such as predation
pressure and resource exploitation are also correlated with body size, in which smaller
species are generally more vulnerable to negative impacts, including higher predation rates
(Moreira et al., 2022) and foraging constraints (Polis & McCormick, 1987). These adverse
effects are likely to be more pronounced in male scorpions, as they tend to be more active
on the surface while foraging and seeking mates (Polis, 1990). Therefore, it is plausible that
the greater overall dispersion observed in male trait space, especially among the smallest
species, reflects, to some extent, these selective forces influencing species morphology.

The size gradient observed along the phylogenetic PC1, supported by the observed trait
loadings, suggests that not only do length-related traits contain significant information
about overall size, but also traits related to the widths of the chela and telson. These
findings indicate that while obtaining a reasonable indicator of size (length) in scorpions is
relatively easy, the same cannot be said for reliably capturing information on overall shape.
In such a context, morphometric ratios between different body parts or size-normalized
trait measurements might offer alternative means of capturing shape-related information.
Some morphometric ratios have been utilized as diagnostic characters in a taxonomic
context (e.g., Soleglad & Fet, 2010; Kovařík & Lowe, 2022, but see González-Santillán &
Prendini, 2015) or in intraspecific analyses of morphological variation (Alqahtani et al.,
2022). However, for the purposes of this study, the choice was made to prioritize the
primary goal of proposing simple predictive equations capable of accurately estimating
body size without the necessity of measuring multiple body parts or calculating secondary
variables (i.e., morphometric ratios) for size prediction. Still, the arrangement of trait
values within the two-dimensional space of the phylogenetic PCA, together with the
magnitude and direction of trait loadings on axis 1, suggests that allometry likely plays a
crucial role in determining the size of the traits examined in this study. However, the
phylogenetic PCA is unable to clearly reveal the specific allometric patterns associated with
each trait—for instance, whether they follow isometry, positive, or negative allometric
patterns. Therefore, the findings reported here serve as a foundation for further
investigations in this area, which could offer valuable insights not only into the
evolutionary forces (such as sexual and natural selection) shaping the morphology of
scorpions but also into the evolution of sexual size dimorphism and sexual body
component dimorphism (Fox, Cooper & Hayes, 2015) in these animals.

Regarding the predictive ability of the studied traits, the simple phylogenetic regression
models indicated that met5L was the best single predictor of toL. Met5L is particularly
advantageous for measurement because assessing it typically does not require fully
extending the metasoma or manipulating other body parts for obtaining the
measurements. Furthermore, metasomal segments are highly sclerotized structures in
scorpions, which makes them less prone to breakage compared to other anatomical parts
such as the aculeus (part of the telson)—it is not uncommon to encounter individuals with
broken aculeus tip (e.g., Armas, 1999; Teruel & Rein, 2010; Teruel & Kovařík, 2014). This
issue might be more concerning for the utilization of teL as a predictor of body size,
particularly in smaller species because the accuracy of predicting carapace or total length
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may be compromised in specimens with broken aculeus. The degree of this artifact will
vary depending on the amount of aculeus missing relative to the approximate length of the
telson. For example, if one considers a hypothetical scenario where an aculeus breakage
results in the loss of 1 mm length in the telson of an adult specimen of Centruroides
exilimanus Teruel & Stockwell, 2002, it will represent, on average, only 9% of the telson
length in this species (average telson length = 10.8 mm, Teruel & Stockwell, 2002; Viquez &
Armas, 2005). In contrast, the same damage would correspond (on average) to 68% of the
telson length in a specimen ofMicrotityus fundorai Armas, 1974 (telson length = 1.46 mm,
Armas, 1974). Fortunately, all other predictors performed relatively well in estimating both
toL and carL. Hence, the general recommendation is to use teL as a predictor of body size
only when the telson is fully intact. This is particularly relevant for predicting carL, where
teL proved to be the most accurate predictor. In such cases, it might be more advantageous
to use teW, as the vesicle (the anatomical region from which telson width is measured)
appears to be less prone to damage compared to the aculeus.

Interestingly, the phylogenetic multiple regression models indicated that the inclusion
of a secondary predictor did not result in substantial enhancement of body size estimation.
This is likely because all predictor traits had a strong size (length) component that was not
removed prior to fitting the models. Including a secondary predictor would be more
beneficial for body size prediction if that trait provided information on shape rather than
just length, as body size is a composite metric incorporating length, width, and height
(Sohlström et al., 2018; Foerster et al., 2024a). It is important to note that removing the size
component from the predictor traits would not be appropriate in this study, as the
methods provided here are designed to estimate body size based on linear measurements of
body parts, under the assumption that body size is not known beforehand. Conveniently,
comparing the average accuracy of simple and multiple phylogenetic regression models
showed that a single predictor is typically sufficient for accurate estimations of toL and
carL. This opens the possibility of performing size predictions in scorpions with minimal
effort, an assumption that, to some extent, can be generalized to scorpions in general as the
best-fit simple regression models resulted in accurate size estimations in non-buthid
species. This is particularly suited for working with severely damaged specimens or when
the identification at the family level is not possible. Yet, this finding supports the idea that
the trait predictors of body size within the Buthidae clade reflect those found in the order
Scorpiones. Ultimately, the flexibility of having multiple traits capable of accurately
predicting body size through the simple linear equations presented in this study offers
researchers a range of options for choosing the most suitable predictor traits.

CONCLUSIONS
The predictive equations introduced in this study offer several alternatives for researchers
across various fields to precisely estimate body size in scorpions, whether it pertains to total
length or carapace length—the primary indicators of body size in these animals. By
utilizing the methods outlined here, researchers can generate accurate estimations of body
size even in scenarios where the specimens are extensively damaged or only parts of the
specimens are available. Furthermore, while the focus of this study has been directed to
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buthid scorpions, it has been demonstrated that the proposed predictive equations could
be applicable to make educated body size predictions in non-buthid scorpions, particularly
those sharing similar morphological characteristics in the examined traits and within the
same size range as buthid scorpions. These may also include fossil records, though it is
important to consider that size predictions for older and phylogenetically distant fossils
may not be as accurate as those made for extant buthid species—an issue that is not
exclusive to the present research.
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