login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a283877 -id:a283877
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of non-isomorphic set-systems covering n vertices with at least one endpoint/leaf.
+10
11
0, 1, 3, 14, 198
OFFSET
0,3
COMMENTS
A set-system is a finite set of finite nonempty sets. Elements of a set-system are sometimes called edges. A leaf is an edge containing a vertex that does not belong to any other edge, while an endpoint is a vertex belonging to only one edge.
Also covering set-systems with minimum vertex-degree 1.
EXAMPLE
Non-isomorphic representatives of the a(1) = 1 through a(3) = 14 set-systems:
{{1}} {{1,2}} {{1,2,3}}
{{1},{2}} {{1},{2,3}}
{{2},{1,2}} {{1},{2},{3}}
{{1,3},{2,3}}
{{3},{1,2,3}}
{{1},{3},{2,3}}
{{2,3},{1,2,3}}
{{2},{1,3},{2,3}}
{{2},{3},{1,2,3}}
{{3},{1,3},{2,3}}
{{1},{2},{3},{2,3}}
{{3},{2,3},{1,2,3}}
{{2},{3},{1,3},{2,3}}
{{2},{3},{2,3},{1,2,3}}
CROSSREFS
Unlabeled covering set-systems are A055621.
The labeled version is A327229.
The non-covering version is A327335 (partial sums).
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Sep 01 2019
STATUS
approved
Number of non-isomorphic set-systems of weight n with no singletons or endpoints.
+10
11
1, 0, 0, 0, 0, 0, 1, 1, 3, 5, 16, 24, 90, 179, 567, 1475, 4623, 13650, 44475, 144110, 492017, 1706956, 6124330, 22442687, 84406276, 324298231, 1273955153, 5106977701, 20885538133, 87046940269, 369534837538, 1596793560371, 7019424870960, 31374394197536, 142514998263015
OFFSET
0,9
COMMENTS
A set-system is a finite set of finite nonempty set of positive integers. A singleton is an edge of size 1. An endpoint is a vertex appearing only once (degree 1). The weight of a set-system is the sum of sizes of its parts. Weight is generally not the same as number of vertices.
LINKS
EXAMPLE
Non-isomorphic representatives of the a(7) = 1 through a(10) = 16 set-systems:
{12}{13}{123} {12}{134}{234} {12}{134}{1234} {12}{1345}{2345}
{12}{34}{1234} {123}{124}{134} {123}{124}{1234}
{12}{13}{24}{34} {12}{13}{14}{234} {123}{145}{2345}
{12}{13}{23}{123} {12}{345}{12345}
{12}{13}{24}{134} {12}{13}{124}{134}
{12}{13}{124}{234}
{12}{13}{14}{1234}
{12}{13}{24}{1234}
{12}{13}{245}{345}
{12}{13}{45}{2345}
{12}{34}{123}{124}
{12}{34}{125}{345}
{12}{34}{135}{245}
{13}{24}{123}{124}
{12}{13}{14}{23}{24}
{12}{13}{24}{35}{45}
PROG
(PARI)
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
K(q, t, k)={my(g=x*Ser(WeighT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k)))); (1-x)*g-subst(g, x, x^2)}
S(q, t, k)={(x-x^2)*sum(j=1, #q, if(t%q[j]==0, q[j])) + O(x*x^k)}
a(n)={if(n==0, 1, my(s=0); forpart(q=n, s+=permcount(q)*polcoef(exp(sum(t=1, n, subst(K(q, t, n\t)-S(q, t, n\t), x, x^t)/t )), n)); s/n!)} \\ Andrew Howroyd, Jan 27 2024
CROSSREFS
The labeled version is A330056.
The "multi" version is A320665.
Non-isomorphic set-systems with no singletons are A306005.
Non-isomorphic set-systems with no endpoints are A330054.
Non-isomorphic set-systems counted by vertices are A000612.
Non-isomorphic set-systems counted by weight are A283877.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 30 2019
EXTENSIONS
a(11) onwards from Andrew Howroyd, Jan 27 2024
STATUS
approved
BII-number of the VDD-normalization of the set-system with BII-number n.
+10
11
0, 1, 1, 3, 4, 5, 5, 7, 1, 3, 3, 11, 33, 19, 19, 15, 4, 5, 33, 19, 20, 21, 37, 23, 5, 7, 19, 15, 37, 23, 51, 31, 4, 33, 5, 19, 20, 37, 21, 23, 5, 19, 7, 15, 37, 51, 23, 31, 20, 37, 37, 51, 52, 53, 53, 55, 21, 23, 23, 31, 53, 55, 55, 63, 64, 65, 65, 67, 68, 69, 69
OFFSET
0,4
COMMENTS
First differs from A330101 at a(148) = 274, A330101(148) = 545, with corresponding set-systems 274: {{2},{1,3},{1,4}} and 545: {{1},{2,3},{2,4}}.
A set-system is a finite set of finite nonempty sets of positive integers.
We define the VDD (vertex-degrees decreasing) normalization of a set-system to be obtained by first normalizing so that the vertices cover an initial interval of positive integers, then applying all permutations to the vertex set, then selecting only the representatives whose vertex-degrees are weakly decreasing, and finally taking the least of these representatives, where the ordering of sets is first by length and then lexicographically.
For example, 156 is the BII-number of {{3},{4},{1,2},{1,3}}, which has the following normalizations, together with their BII-numbers:
Brute-force: 2067: {{1},{2},{1,3},{3,4}}
Lexicographic: 165: {{1},{4},{1,2},{2,3}}
VDD: 525: {{1},{3},{1,2},{2,4}}
MM: 270: {{2},{3},{1,2},{1,4}}
BII: 150: {{2},{4},{1,2},{1,3}}
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
EXAMPLE
56 is the BII-number of {{3},{1,3},{2,3}}, which has VDD-normalization {{1},{1,2},{1,3}} with BII-number 21, so a(56) = 21.
MATHEMATICA
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
fbi[q_]:=If[q=={}, 0, Total[2^q]/2];
sysnorm[m_]:=If[Union@@m!={}&&Union@@m!=Range[Max@@Flatten[m]], sysnorm[m/.Rule@@@Table[{(Union@@m)[[i]], i}, {i, Length[Union@@m]}]], First[Sort[sysnorm[m, 1]]]];
sysnorm[m_, aft_]:=If[Length[Union@@m]<=aft, {m}, With[{mx=Table[Count[m, i, {2}], {i, Select[Union@@m, #>=aft&]}]}, Union@@(sysnorm[#, aft+1]&/@Union[Table[Map[Sort, m/.{par+aft-1->aft, aft->par+aft-1}, {0, 1}], {par, First/@Position[mx, Max[mx]]}]])]];
Table[fbi[fbi/@sysnorm[bpe/@bpe[n]]], {n, 0, 100}]
CROSSREFS
This sequence is idempotent and its image/fixed points are A330100.
Non-isomorphic multiset partitions are A007716.
Unlabeled spanning set-systems counted by vertices are A055621.
Unlabeled set-systems counted by weight are A283877.
Other fixed points:
- Brute-force: A330104 (multisets of multisets), A330107 (multiset partitions), A330099 (set-systems).
- Lexicographic: A330120 (multisets of multisets), A330121 (multiset partitions), A330110 (set-systems).
- VDD: A330060 (multisets of multisets), A330097 (multiset partitions), A330100 (set-systems).
- MM: A330108 (multisets of multisets), A330122 (multiset partitions), A330123 (set-systems).
- BII: A330109 (set-systems).
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 04 2019
STATUS
approved
a(n) is the number of set-systems using nonempty subsets of {1,...,n} in which all sets have the same size.
+10
10
1, 2, 5, 16, 95, 2110, 1114237, 68723671292, 1180735735906024030715, 170141183460507917357914971986913657850, 7237005577335553223087828975127304179197147198604070555943173844710572689401
OFFSET
0,2
COMMENTS
A058673(n) <= a(n). - Lorenzo Sauras Altuzarra, Aug 10 2023
FORMULA
a(n) = 1 - n + Sum_{d = 1..n} 2^binomial(n, d).
EXAMPLE
a(3) = 16 set-systems in which all sets have the same size:
{}
{{1}}
{{2}}
{{3}}
{{1,2}}
{{1,3}}
{{2,3}}
{{1,2,3}}
{{1},{2}}
{{1},{3}}
{{2},{3}}
{{1,2},{1,3}}
{{1,2},{2,3}}
{{1,3},{2,3}}
{{1},{2},{3}}
{{1,2},{1,3},{2,3}}
MAPLE
a := n -> 1-n+add(2^binomial(n, d), d = 1 .. n):
seq(a(n), n = 0 .. 10); # Lorenzo Sauras Altuzarra, Aug 11 2023
MATHEMATICA
Table[1+Sum[2^Binomial[n, d]-1, {d, n}], {n, 10}]
PROG
(PARI) a(n) = 1 - n + sum(d = 1, n, 2^binomial(n, d)); \\ Michel Marcus, Aug 10 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 17 2018
STATUS
approved
Number of non-isomorphic strict multiset partitions (sets of multisets) of weight n with empty intersection.
+10
10
1, 0, 1, 3, 12, 37, 130, 428, 1481, 5091, 17979, 64176, 234311, 869645, 3295100, 12720494, 50083996, 200964437, 821845766, 3423694821, 14524845181, 62725701708, 275629610199, 1231863834775, 5597240308384, 25844969339979, 121224757935416, 577359833539428, 2791096628891679
OFFSET
0,4
COMMENTS
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.
LINKS
EXAMPLE
Non-isomorphic representatives of the a(2) = 1 through a(4) = 12 strict multiset partitions with empty intersection:
2: {{1},{2}}
3: {{1},{2,2}}
{{1},{2,3}}
{{1},{2},{3}}
4: {{1},{2,2,2}}
{{1},{2,3,3}}
{{1},{2,3,4}}
{{1,1},{2,2}}
{{1,2},{3,3}}
{{1,2},{3,4}}
{{1},{2},{1,2}}
{{1},{2},{2,2}}
{{1},{2},{3,3}}
{{1},{2},{3,4}}
{{1},{3},{2,3}}
{{1},{2},{3},{4}}
PROG
(PARI)
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
K(q, t, k)={EulerT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k))}
R(q, n)={vector(n, t, subst(x*Ser(K(q, t, n\t)/t), x, x^t))}
a(n)={my(s=0); forpart(q=n, my(f=prod(i=1, #q, 1 - x^q[i]), u=R(q, n)); s+=permcount(q)*sum(k=0, n, my(c=polcoef(f, k)); if(c, c*polcoef(exp(sum(t=1, n\(k+1), x^(t*k)*u[t] - subst(x^(t*k)*u[t] + O(x*x^(n\2)), x, x^2), O(x*x^n) ))*if(k, 1+x^k, 1), n))) ); s/n!} \\ Andrew Howroyd, May 30 2023
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 27 2018
EXTENSIONS
Terms a(11) and beyond from Andrew Howroyd, May 30 2023
STATUS
approved
Number of antichain covers of n vertices by distinct sets whose dual is also an antichain of distinct sets.
+10
10
1, 1, 1, 2, 20, 2043
OFFSET
0,4
COMMENTS
The dual of a multiset partition has, for each vertex, one block consisting of the indices (or positions) of the blocks containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}.
EXAMPLE
The a(1) = 1 through a(3) = 2 antichain covers:
1: {{1}}
2: {{1},{2}}
3: {{1},{2},{3}}
{{1,2},{1,3},{2,3}}
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Sep 25 2018
STATUS
approved
Number of non-isomorphic set-systems of weight n with at least one endpoint.
+10
10
0, 1, 2, 4, 8, 18, 40, 94, 228, 579, 1508, 4092, 11478, 33337, 100016, 309916, 990008, 3257196, 11021851, 38314009, 136657181, 499570867, 1869792499, 7158070137, 28003286261, 111857491266, 455852284867, 1893959499405, 8017007560487, 34552315237016, 151534813272661
OFFSET
0,3
COMMENTS
A set-system is a finite set of finite nonempty sets of positive integers. An endpoint is a vertex appearing only once (degree 1). The weight of a set-system is the sum of sizes of its parts. Weight is generally not the same as number of vertices.
LINKS
FORMULA
a(n) = A283877(n) - A330054(n). - Andrew Howroyd, Jan 27 2024
EXAMPLE
Non-isomorphic representatives of the a(1) = 1 through a(5) = 18 multiset partitions:
{1} {12} {123} {1234} {12345}
{1}{2} {1}{12} {1}{123} {1}{1234}
{1}{23} {12}{13} {12}{123}
{1}{2}{3} {1}{234} {12}{134}
{12}{34} {1}{2345}
{1}{2}{13} {12}{345}
{1}{2}{34} {1}{12}{13}
{1}{2}{3}{4} {1}{12}{23}
{1}{12}{34}
{1}{2}{123}
{1}{2}{134}
{1}{2}{345}
{1}{23}{45}
{2}{13}{14}
{1}{2}{3}{12}
{1}{2}{3}{14}
{1}{2}{3}{45}
{1}{2}{3}{4}{5}
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
strnorm[n_]:=Flatten[MapIndexed[Table[#2, {#1}]&, #]]&/@IntegerPartitions[n];
brute[{}]:={}; brute[m_]:=If[Union@@m!={}&&Union@@m!=Range[Max@@Flatten[m]], brute[m/.Rule@@@Table[{(Union@@m)[[i]], i}, {i, Length[Union@@m]}]], First[Sort[brute[m, 1]]]]; brute[m_, 1]:=Table[Sort[Sort/@(m/.Rule@@@Table[{i, p[[i]]}, {i, Length[p]}])], {p, Permutations[Union@@m]}];
Table[Length[Select[Union[brute/@Join@@mps/@strnorm[n]], UnsameQ@@#&&And@@UnsameQ@@@#&&Min@@Length/@Split[Sort[Join@@#]]==1&]], {n, 0, 5}]
CROSSREFS
The complement is counted by A330054.
The multiset partition version is A330058.
Non-isomorphic set-systems with at least one singleton are A330053.
Non-isomorphic set-systems counted by vertices are A000612.
Non-isomorphic set-systems counted by weight are A283877.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 30 2019
EXTENSIONS
a(11) onwards from Andrew Howroyd, Jan 27 2024
STATUS
approved
Number of non-isomorphic set-systems of weight n with no endpoints.
+10
10
1, 0, 0, 0, 1, 0, 4, 4, 16, 26, 87, 181, 570, 1453, 4464, 13038, 41548, 132217, 442603, 1506803, 5305174, 19092816, 70548770, 266495254, 1029835424, 4063610148, 16366919221, 67217627966, 281326631801, 1199048810660, 5201341196693, 22950740113039, 102957953031700
OFFSET
0,7
COMMENTS
A set-system is a finite set of finite nonempty set of positive integers. An endpoint is a vertex appearing only once (degree 1). The weight of a set-system is the sum of sizes of its parts. Weight is generally not the same as number of vertices.
LINKS
EXAMPLE
Non-isomorphic representatives of the a(0) = 1 through a(8) = 16 multiset partitions (empty columns not shown):
0 {1}{2}{12} {12}{13}{23} {13}{23}{123} {12}{134}{234}
{1}{23}{123} {1}{3}{23}{123} {1}{234}{1234}
{1}{2}{13}{23} {3}{12}{13}{23} {12}{34}{1234}
{1}{2}{3}{123} {1}{2}{3}{13}{23} {1}{12}{34}{234}
{12}{13}{24}{34}
{1}{2}{134}{234}
{1}{2}{34}{1234}
{2}{13}{14}{234}
{2}{13}{23}{123}
{3}{13}{23}{123}
{1}{2}{13}{24}{34}
{1}{2}{3}{14}{234}
{1}{2}{3}{23}{123}
{1}{2}{3}{4}{1234}
{2}{3}{12}{13}{23}
{1}{2}{3}{4}{12}{34}
PROG
(PARI)
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
K(q, t, k)={my(g=1+x*Ser(WeighT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k)))); (1-x)*g - subst(g, x, x^2)}
a(n)={if(n==0, 1, my(s=0); forpart(q=n, s+=permcount(q)*polcoef(exp(sum(t=1, n, subst(K(q, t, n\t)/t, x, x^t) )), n)); s/n!)} \\ Andrew Howroyd, Jan 27 2024
CROSSREFS
The complement is counted by A330052.
The multiset partition version is A302545.
Non-isomorphic set-systems with no singletons are A306005.
Non-isomorphic set-systems counted by vertices are A000612.
Non-isomorphic set-systems counted by weight are A283877.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 30 2019
EXTENSIONS
a(11) onwards from Andrew Howroyd, Jan 27 2024
STATUS
approved
Number of set partitions of set-systems with total sum n.
+10
10
1, 1, 1, 4, 6, 11, 26, 42, 78, 148, 280, 481, 867, 1569, 2742, 4933, 8493, 14857, 25925, 44877, 77022, 132511, 226449, 385396, 657314, 1111115, 1875708, 3157379, 5309439, 8885889, 14861478, 24760339, 41162971, 68328959, 113099231, 186926116, 308230044
OFFSET
0,4
COMMENTS
Number of sets of disjoint nonempty sets of nonempty sets of positive integers with total sum n.
LINKS
FORMULA
a(n) = Sum_k A330462(n,k) * A000110(k).
EXAMPLE
The a(6) = 26 partitions:
((6)) ((15)) ((123)) ((1)(2)(12))
((24)) ((1)(14)) ((1))((2)(12))
((1)(5)) ((1)(23)) ((12))((1)(2))
((2)(4)) ((2)(13)) ((2))((1)(12))
((1))((5)) ((3)(12)) ((1))((2))((12))
((2))((4)) ((1))((14))
((1))((23))
((1)(2)(3))
((2))((13))
((3))((12))
((1))((2)(3))
((2))((1)(3))
((3))((1)(2))
((1))((2))((3))
MATHEMATICA
ppl[n_, k_]:=Switch[k, 0, {n}, 1, IntegerPartitions[n], _, Join@@Table[Union[Sort/@Tuples[ppl[#, k-1]&/@ptn]], {ptn, IntegerPartitions[n]}]];
Table[Length[Select[ppl[n, 3], And[UnsameQ@@Join@@#, And@@UnsameQ@@@Join@@#]&]], {n, 0, 10}]
PROG
(PARI) \\ here L is A000009 and BellP is A000110 as series.
L(n)={eta(x^2 + O(x*x^n))/eta(x + O(x*x^n))}
BellP(n)={serlaplace(exp( exp(x + O(x*x^n)) - 1))}
seq(n)={my(c=L(n), b=BellP(n), v=Vec(prod(k=1, n, (1 + x^k*y + O(x*x^n))^polcoef(c, k)))); vector(#v, n, my(r=v[n]); sum(k=0, n-1, polcoeff(b, k)*polcoef(r, k)))} \\ Andrew Howroyd, Dec 29 2019
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 17 2019
EXTENSIONS
Terms a(18) and beyond from Andrew Howroyd, Dec 29 2019
STATUS
approved
Number of non-isomorphic set multipartitions of weight n satisfying a strict version of the axiom of choice.
+10
10
1, 1, 2, 4, 9, 18, 43, 95, 233, 569
OFFSET
0,3
COMMENTS
A set multipartition is a finite multiset of finite nonempty sets. The weight of a set multipartition is the sum of cardinalities of its elements. Weight is generally not the same as number of vertices.
The axiom of choice says that, given any sequence of nonempty sets, it is possible to choose a sequence containing an element from each. In the strict version, the elements of this sequence must be distinct, meaning none is chosen more than once.
EXAMPLE
Non-isomorphic representatives of the a(1) = 1 through a(5) = 18 set multipartitions:
{{1}} {{1,2}} {{1,2,3}} {{1,2,3,4}} {{1,2,3,4,5}}
{{1},{2}} {{1},{2,3}} {{1,2},{1,2}} {{1},{2,3,4,5}}
{{2},{1,2}} {{1},{2,3,4}} {{1,2},{3,4,5}}
{{1},{2},{3}} {{1,2},{3,4}} {{1,4},{2,3,4}}
{{1,3},{2,3}} {{2,3},{1,2,3}}
{{3},{1,2,3}} {{4},{1,2,3,4}}
{{1},{2},{3,4}} {{1},{2,3},{2,3}}
{{1},{3},{2,3}} {{1},{2},{3,4,5}}
{{1},{2},{3},{4}} {{1},{2,3},{4,5}}
{{1},{2,4},{3,4}}
{{1},{4},{2,3,4}}
{{2},{1,3},{2,3}}
{{2},{3},{1,2,3}}
{{3},{1,3},{2,3}}
{{4},{1,2},{3,4}}
{{1},{2},{3},{4,5}}
{{1},{2},{4},{3,4}}
{{1},{2},{3},{4},{5}}
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]& /@ sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mpm[n_]:=Join@@Table[Union[Sort[Sort /@ (#/.x_Integer:>s[[x]])]&/@sps[Range[n]]], {s, Flatten[MapIndexed[Table[#2, {#1}]&, #]]& /@ IntegerPartitions[n]}];
brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{i, p[[i]]}, {i, Length[p]}])], {p, Permutations[Union@@m]}]]];
Table[Length[Union[brute /@ Select[mpm[n], And@@UnsameQ@@@#&&Select[Tuples[#], UnsameQ@@#&]!={}&]]], {n, 0, 6}]
CROSSREFS
The case of unlabeled graphs is A134964, complement A140637.
Set multipartitions have ranks A302478, cf. A073576.
The case of labeled graphs is A133686, complement A367867.
The complement without repeats is A368094 connected A368409.
Without repeats we have A368095, connected A368410.
The complement allowing repeats is A368097, ranks A355529.
Allowing repeated elements gives A368098, ranks A368100.
Factorizations of this type are counted by A368414, complement A368413.
The complement is counted by A368421.
A000110 counts set partitions, non-isomorphic A000041.
A003465 counts covering set-systems, unlabeled A055621.
A007716 counts non-isomorphic multiset partitions, connected A007718.
A058891 counts set-systems, unlabeled A000612, connected A323818.
A283877 counts non-isomorphic set-systems, connected A300913.
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Dec 26 2023
STATUS
approved

Search completed in 0.081 seconds