login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a283877 -id:a283877
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of (0,1) matrices with n ones and no zero rows or columns, up to row and column permutations.
+10
133
1, 3, 6, 16, 34, 90, 211, 558, 1430, 3908, 10725, 30825, 90156, 273234, 848355, 2714399, 8909057, 30042866, 103859678, 368075596, 1335537312, 4958599228, 18820993913, 72980867400, 288885080660, 1166541823566, 4802259167367, 20141650236664
OFFSET
1,2
COMMENTS
Also the number of bipartite graphs with n edges, no isolated vertices and a distinguished bipartite block, up to isomorphism.
The EULERi transform (A056156) is also interesting.
a(n) is also the number of non-isomorphic set multipartitions (multisets of sets) of weight n. - Gus Wiseman, Mar 17 2017
LINKS
Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
Peter J. Cameron, D. A. Gewurz and F. Merola, Product action, Discrete Math., 308 (2008), 386-394.
Peter J. Cameron, Problems on Permutation Groups, see Problem 3
FORMULA
Calculate number of connected bipartite graphs + number of connected bipartite graphs with no duality automorphism, then apply EULER transform.
a(n) is the coefficient of x^n in the cycle index Z(S_n X S_n; 1+x, 1+x^2, ...), where S_n X S_n is Cartesian product of symmetric groups S_n of degree n.
EXAMPLE
E.g. a(2) = 3: two ones in same row, two ones in same column, or neither.
a(3) = 6 is coefficient of x^3 in (1/36)*((1 + x)^9 + 6*(1 + x)^3*(1 + x^2)^3 + 8*(1 + x^3)^3 + 9*(1 + x)*(1 + x^2)^4 + 12*(1 + x^3)*(1 + x^6))=1 + x + 3*x^2 + 6*x^3 + 7*x^4 + 7*x^5 + 6*x^6 + 3*x^7 + x^8 + x^9.
There are a(3) = 6 binary matrices with 3 ones, with no zero rows or columns, up to row and column permutation:
[1 0 0] [1 1 0] [1 0] [1 1] [1 1 1] [1]
[0 1 0] [0 0 1] [1 0] [1 0] ....... [1].
[0 0 1] ....... [0 1] ............. [1]
Non-isomorphic representatives of the a(3)=6 set multipartitions are: ((123)), ((1)(23)), ((2)(12)), ((1)(1)(1)), ((1)(2)(2)), ((1)(2)(3)). - Gus Wiseman, Mar 17 2017
PROG
(PARI)
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
K(q, t, k)={WeighT(Vec(sum(j=1, #q, gcd(t, q[j])*x^lcm(t, q[j])) + O(x*x^k), -k))}
a(n)={my(s=0); forpart(q=n, s+=permcount(q)*polcoef(exp(x*Ser(sum(t=1, n, K(q, t, n)/t))), n)); s/n!} \\ Andrew Howroyd, Jan 16 2023
KEYWORD
nonn,nice
EXTENSIONS
More terms and formula from Vladeta Jovovic, Jul 29 2000
a(19)-a(28) from Max Alekseyev, Jul 22 2009
a(29)-a(102) from Aliaksandr Siarhei, Dec 13 2013
Name edited by Gus Wiseman, Dec 18 2018
STATUS
approved
Number of P-equivalence classes of switching functions of n or fewer variables, divided by 2.
(Formerly M1712 N0677)
+10
131
1, 2, 6, 40, 1992, 18666624, 12813206169137152, 33758171486592987164087845043830784, 1435913805026242504952006868879460423834904914948818373264705576411070464
OFFSET
0,2
COMMENTS
Also number of nonisomorphic sets of nonempty subsets of an n-set.
Equivalently, number of nonisomorphic fillings of a Venn diagram of n sets. - Joerg Arndt, Mar 24 2020
Number of hypergraphs on n unlabeled nodes. - Charles R Greathouse IV, Apr 06 2021
REFERENCES
M. A. Harrison, Introduction to Switching and Automata Theory. McGraw Hill, NY, 1965, p. 153.
S. Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, p. 38 Table 2.3.2. - Row 5.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
M. A. Harrison, The number of equivalence classes of Boolean functions under groups containing negation, IEEE Trans. Electron. Comput. 12 (1963), 559-561.
M. A. Harrison, The number of equivalence classes of Boolean functions under groups containing negation, IEEE Trans. Electron. Comput. 12 (1963), 559-561. [Annotated scanned copy]
Geon Lee, Seokbum Yoon, Jihoon Ko, Hyunju Kim, and Kijung Shin, Hypergraph Motifs and Their Extensions Beyond Binary, arXiv:2310.15668 [cs.SI], 2023.
Peter H. van der Kamp, Hypergraphs and homogeneous Lotka-Volterra systems with linear Darboux polynomials, arXiv:2411.18264 [nlin.SI], 2024. See p. 4.
Wikipedia, Venn diagram
FORMULA
a(n) = A003180(n)/2.
EXAMPLE
Non-isomorphic representatives of the a(2) = 6 set-systems are 0, {1}, {12}, {1}{2}, {1}{12}, {1}{2}{12}. - Gus Wiseman, Aug 07 2018
MAPLE
a:= n-> add(1/(p-> mul((c-> j^c*c!)(coeff(p, x, j)), j=1..degree(p)))(
add(x^i, i=l))*2^((w-> add(mul(2^igcd(t, l[i]), i=1..nops(l)),
t=1..w)/w)(ilcm(l[]))), l=combinat[partition](n))/2:
seq(a(n), n=0..9); # Alois P. Heinz, Aug 12 2019
MATHEMATICA
sysnorm[{}] := {}; sysnorm[m_]:=If[Union@@m!=Range[Max@@Flatten[m]], sysnorm[m/.Rule@@@Table[{(Union@@m)[[i]], i}, {i, Length[Union@@m]}]], First[Sort[sysnorm[m, 1]]]]; sysnorm[m_, aft_]:=If[Length[Union@@m]<=aft, {m}, With[{mx=Table[Count[m, i, {2}], {i, Select[Union@@m, #>=aft&]}]}, Union@@(sysnorm[#, aft+1]&/@Union[Table[Map[Sort, m/.{par+aft-1->aft, aft->par+aft-1}, {0, 1}], {par, First/@Position[mx, Max[mx]]}]])]];
Table[Length[Union[sysnorm/@Subsets[Rest[Subsets[Range[n]]]]]], {n, 4}] (* Gus Wiseman, Aug 07 2018 *)
a[n_] := Sum[1/Function[p, Product[Function[c, j^c*c!][Coefficient[p, x, j]], {j, 1, Exponent[p, x]}]][Total[x^l]]*2^(Function[w, Sum[Product[2^GCD[t, l[[i]]], {i, 1, Length[l]}], {t, 1, w}]/w][If[l=={}, 1, LCM @@ l]]), {l, IntegerPartitions[n]}]/2;
a /@ Range[0, 9] (* Jean-François Alcover, Feb 04 2020, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,easy,nice,core,changed
EXTENSIONS
More terms from Vladeta Jovovic, Feb 23 2000
STATUS
approved
Number of sets of nonempty subsets of {1..n} contradicting a strict version of the axiom of choice.
+10
66
0, 0, 1, 67, 30997, 2147296425, 9223372036784737528, 170141183460469231731687303625772608225, 57896044618658097711785492504343953926634992332820282019728791606173188627779
OFFSET
0,4
COMMENTS
The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.
FORMULA
a(n) + A367904(n) + A367772(n) = A058891(n+1) = 2^(2^n-1).
EXAMPLE
The a(2) = 1 set-system is {{1},{2},{1,2}}.
The a(3) = 67 set-systems have following 21 non-isomorphic representatives:
{{1},{2},{1,2}}
{{1},{2},{3},{1,2}}
{{1},{2},{3},{1,2,3}}
{{1},{2},{1,2},{1,3}}
{{1},{2},{1,2},{1,2,3}}
{{1},{2},{1,3},{2,3}}
{{1},{2},{1,3},{1,2,3}}
{{1},{1,2},{1,3},{2,3}}
{{1},{1,2},{1,3},{1,2,3}}
{{1},{1,2},{2,3},{1,2,3}}
{{1,2},{1,3},{2,3},{1,2,3}}
{{1},{2},{3},{1,2},{1,3}}
{{1},{2},{3},{1,2},{1,2,3}}
{{1},{2},{1,2},{1,3},{2,3}}
{{1},{2},{1,2},{1,3},{1,2,3}}
{{1},{2},{1,3},{2,3},{1,2,3}}
{{1},{1,2},{1,3},{2,3},{1,2,3}}
{{1},{2},{3},{1,2},{1,3},{2,3}}
{{1},{2},{3},{1,2},{1,3},{1,2,3}}
{{1},{2},{1,2},{1,3},{2,3},{1,2,3}}
{{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}
MATHEMATICA
Table[Length[Select[Subsets[Rest[Subsets[Range[n]]]], Select[Tuples[#], UnsameQ@@#&]=={}&]], {n, 0, 3}]
CROSSREFS
Multisets of multisets of this type are ranked by A355529.
The version without singletons is A367769.
The version for simple graphs is A367867, covering A367868.
The version allowing empty edges is A367901.
The complement is A367902, without singletons A367770, ranks A367906.
For a unique choice (instead of none) we have A367904, ranks A367908.
These set-systems have ranks A367907.
An unlabeled version is A368094, for multiset partitions A368097.
A000372 counts antichains, covering A006126, nonempty A014466.
A003465 counts covering set-systems, unlabeled A055621.
A058891 counts set-systems, unlabeled A000612.
A059201 counts covering T_0 set-systems.
A323818 counts covering connected set-systems.
A326031 gives weight of the set-system with BII-number n.
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Dec 05 2023
EXTENSIONS
a(5)-a(8) from Christian Sievers, Jul 26 2024
STATUS
approved
Number of sets of nonempty subsets of {1..n} satisfying a strict version of the axiom of choice.
+10
64
1, 2, 7, 61, 1771, 187223, 70038280, 90111497503, 397783376192189
OFFSET
0,2
COMMENTS
The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.
FORMULA
a(n) = A370636(2^n-1). - Alois P. Heinz, Mar 09 2024
EXAMPLE
The a(2) = 7 set-systems:
{}
{{1}}
{{2}}
{{1,2}}
{{1},{2}}
{{1},{1,2}}
{{2},{1,2}}
MATHEMATICA
Table[Length[Select[Subsets[Subsets[Range[n]]], Select[Tuples[#], UnsameQ@@#&]!={}&]], {n, 0, 3}]
CROSSREFS
The version for simple graphs is A133686, covering A367869.
The version without singletons is A367770.
The complement allowing empty edges is A367901.
The complement is A367903, without singletons A367769, ranks A367907.
For a unique choice we have A367904, ranks A367908.
These set-systems have ranks A367906.
A000372 counts antichains, covering A006126, nonempty A014466.
A003465 counts covering set-systems, unlabeled A055621.
A058891 counts set-systems, unlabeled A000612.
A059201 counts covering T_0 set-systems.
A323818 counts covering connected set-systems.
A326031 gives weight of the set-system with BII-number n.
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Dec 05 2023
EXTENSIONS
a(6)-a(8) from Christian Sievers, Jul 25 2024
STATUS
approved
Number of non-isomorphic multiset partitions of weight n in which all parts have the same size.
+10
58
1, 1, 4, 6, 17, 14, 66, 30, 189, 222, 550, 112, 4696, 202, 5612, 30914, 63219, 594, 453125, 980, 3602695, 5914580, 1169348, 2510, 299083307, 232988061, 23248212, 2669116433, 14829762423, 9130, 170677509317, 13684, 1724710753084, 2199418340875, 14184712185, 38316098104262
OFFSET
0,3
COMMENTS
A multiset partition of weight n is a finite multiset of finite nonempty multisets whose sizes sum to n.
Number of distinct nonnegative integer matrices with all row sums equal and total sum n up to row and column permutations. - Andrew Howroyd, Sep 05 2018
From Gus Wiseman, Oct 11 2018: (Start)
Also the number of non-isomorphic multiset partitions of weight n in which each vertex appears the same number of times. For n = 4, non-isomorphic representatives of these 17 multiset partitions are:
{{1,1,1,1}}
{{1,1,2,2}}
{{1,2,3,4}}
{{1},{1,1,1}}
{{1},{1,2,2}}
{{1},{2,3,4}}
{{1,1},{1,1}}
{{1,1},{2,2}}
{{1,2},{1,2}}
{{1,2},{3,4}}
{{1},{1},{1,1}}
{{1},{1},{2,2}}
{{1},{2},{1,2}}
{{1},{2},{3,4}}
{{1},{1},{1},{1}}
{{1},{1},{2},{2}}
{{1},{2},{3},{4}}
(End)
LINKS
FORMULA
For p prime, a(p) = 2*A000041(p).
a(n) = Sum_{d|n} A331485(n/d, d). - Andrew Howroyd, Feb 09 2020
EXAMPLE
Non-isomorphic representatives of the a(4) = 17 multiset partitions:
{{1,1,1,1}}
{{1,1,2,2}}
{{1,2,2,2}}
{{1,2,3,3}}
{{1,2,3,4}}
{{1,1},{1,1}}
{{1,1},{2,2}}
{{1,2},{1,2}}
{{1,2},{2,2}}
{{1,2},{3,3}}
{{1,2},{3,4}}
{{1,3},{2,3}}
{{1},{1},{1},{1}}
{{1},{1},{2},{2}}
{{1},{2},{2},{2}}
{{1},{2},{3},{3}}
{{1},{2},{3},{4}}
MATHEMATICA
permcount[v_List] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
K[q_List, t_, k_] := SeriesCoefficient[1/Product[g = GCD[t, q[[j]]]; (1 - x^(q[[j]]/g))^g, {j, 1, Length[q]}], {x, 0, k}];
RowSumMats[n_, m_, k_] := Module[{s = 0}, Do[s += permcount[q]* SeriesCoefficient[Exp[Sum[K[q, t, k]/t*x^t, {t, 1, n}]], {x, 0, n}], {q, IntegerPartitions[m]}]; s/m!];
a[n_] := a[n] = If[n==0, 1, If[PrimeQ[n], 2 PartitionsP[n], Sum[ RowSumMats[ n/d, n, d], {d, Divisors[n]}]]];
Table[Print[n, " ", a[n]]; a[n], {n, 0, 35}] (* Jean-François Alcover, Nov 07 2019, after Andrew Howroyd *)
PROG
(PARI) \\ See A318951 for RowSumMats.
a(n)={sumdiv(n, d, RowSumMats(n/d, n, d))} \\ Andrew Howroyd, Sep 05 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 17 2018
EXTENSIONS
Terms a(11) and beyond from Andrew Howroyd, Sep 05 2018
STATUS
approved
Number of non-isomorphic connected set-systems of weight n.
+10
55
1, 1, 1, 2, 4, 7, 18, 37, 96, 239, 658, 1810, 5358, 16057, 50373, 161811, 536964, 1826151, 6380481, 22822280, 83587920, 312954111, 1197178941, 4674642341, 18620255306, 75606404857, 312763294254, 1317356836235, 5646694922172, 24618969819915, 109125629486233, 491554330852608
OFFSET
0,4
COMMENTS
The weight of a set-system is the sum of cardinalities of the sets. Weight is generally not the same as number of vertices.
LINKS
Jean-François Alcover, Table of n, a(n) for n = 0..50 [using Andrew Howroyd's b-file for A283877]
FORMULA
Inverse Euler transform of A283877.
EXAMPLE
Non-isomorphic representatives of the a(1) = 1 through a(5) = 7 set systems:
1: {{1}}
2: {{1,2}}
3: {{1,2,3}}
{{2},{1,2}}
4: {{1,2,3,4}}
{{3},{1,2,3}}
{{1,3},{2,3}}
{{1},{2},{1,2}}
5: {{1,2,3,4,5}}
{{4},{1,2,3,4}}
{{1,4},{2,3,4}}
{{2,3},{1,2,3}}
{{2},{3},{1,2,3}}
{{2},{1,3},{2,3}}
{{3},{1,3},{2,3}}
Non-isomorphic representatives of the a(6) = 18 connected set-systems:
{{1,2,3,4,5,6}}
{{5},{1,2,3,4,5}}
{{1,5},{2,3,4,5}}
{{3,4},{1,2,3,4}}
{{1,2,5},{3,4,5}}
{{1,3,4},{2,3,4}}
{{1},{1,4},{2,3,4}}
{{1},{2,3},{1,2,3}}
{{3},{4},{1,2,3,4}}
{{3},{1,4},{2,3,4}}
{{3},{2,3},{1,2,3}}
{{4},{1,4},{2,3,4}}
{{1,2},{1,3},{2,3}}
{{1,3},{2,4},{3,4}}
{{1,4},{2,4},{3,4}}
{{1},{2},{3},{1,2,3}}
{{1},{2},{1,3},{2,3}}
{{2},{3},{1,3},{2,3}}
MATHEMATICA
A283877 = Import["https://oeis.org/A283877/b283877.txt", "Table"][[All, 2]];
(* EulerInvTransform is defined in A022562 *)
{1} ~Join~ EulerInvTransform[A283877 // Rest] (* Jean-François Alcover, Nov 07 2019, updated Mar 17 2020 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 19 2018
EXTENSIONS
a(11)-a(31) from Jean-François Alcover, Nov 07 2019
STATUS
approved
Number of non-isomorphic multiset partitions of weight n in which (1) all parts have the same size and (2) each vertex appears the same number of times.
+10
47
1, 1, 4, 4, 10, 4, 21, 4, 26, 13, 28, 4, 128, 4, 39, 84, 150, 4, 358, 4, 956, 513, 86, 4, 12549, 1864, 134, 9582, 52366, 4, 301086, 4, 1042038, 407140, 336, 4690369, 61738312, 4, 532, 28011397, 2674943885, 4, 819150246, 4, 54904825372, 65666759973, 1303, 4, 4319823776760
OFFSET
0,3
COMMENTS
a(p) = 4 for p prime. - Charlie Neder, Oct 15 2018
LINKS
EXAMPLE
Non-isomorphic representatives of the a(1) = 1 through a(6) = 21 multiset partitions:
(1) (11) (111) (1111) (11111) (111111)
(12) (123) (1122) (12345) (111222)
(1)(1) (1)(1)(1) (1234) (1)(1)(1)(1)(1) (112233)
(1)(2) (1)(2)(3) (11)(11) (1)(2)(3)(4)(5) (123456)
(11)(22) (111)(111)
(12)(12) (111)(222)
(12)(34) (112)(122)
(1)(1)(1)(1) (112)(233)
(1)(1)(2)(2) (123)(123)
(1)(2)(3)(4) (123)(456)
(11)(11)(11)
(11)(12)(22)
(11)(22)(33)
(11)(23)(23)
(12)(12)(12)
(12)(13)(23)
(12)(34)(56)
(1)(1)(1)(1)(1)(1)
(1)(1)(1)(2)(2)(2)
(1)(1)(2)(2)(3)(3)
(1)(2)(3)(4)(5)(6)
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 10 2018
EXTENSIONS
Terms a(12) and beyond from Andrew Howroyd, Feb 03 2022
STATUS
approved
Number of unlabeled antichains of weight n.
+10
46
1, 1, 2, 3, 6, 9, 20, 33, 72, 139
OFFSET
0,3
COMMENTS
An antichain is a finite set of finite nonempty sets, none of which is a subset of any other. The weight of an antichain is the sum of cardinalities of its elements.
From Gus Wiseman, Aug 15 2019: (Start)
Also the number of non-isomorphic set multipartitions (multisets of sets) of weight n where every vertex is the unique common element of some subset of the edges. For example, the a(1) = 1 through a(6) = 20 set multipartitions are:
{1} {1}{1} {1}{1}{1} {1}{2}{12} {1}{2}{2}{12} {12}{13}{23}
{1}{2} {1}{2}{2} {1}{1}{1}{1} {1}{2}{3}{23} {1}{2}{12}{12}
{1}{2}{3} {1}{1}{2}{2} {1}{1}{1}{1}{1} {1}{2}{13}{23}
{1}{2}{2}{2} {1}{1}{2}{2}{2} {1}{2}{3}{123}
{1}{2}{3}{3} {1}{2}{2}{2}{2} {1}{1}{2}{2}{12}
{1}{2}{3}{4} {1}{2}{2}{3}{3} {1}{1}{2}{3}{23}
{1}{2}{3}{3}{3} {1}{2}{2}{2}{12}
{1}{2}{3}{4}{4} {1}{2}{3}{3}{23}
{1}{2}{3}{4}{5} {1}{2}{3}{4}{34}
{1}{1}{1}{1}{1}{1}
{1}{1}{1}{2}{2}{2}
{1}{1}{2}{2}{2}{2}
{1}{1}{2}{2}{3}{3}
{1}{2}{2}{2}{2}{2}
{1}{2}{2}{3}{3}{3}
{1}{2}{3}{3}{3}{3}
{1}{2}{3}{3}{4}{4}
{1}{2}{3}{4}{4}{4}
{1}{2}{3}{4}{5}{5}
{1}{2}{3}{4}{5}{6}
(End)
FORMULA
Euler transform of A293607.
EXAMPLE
Non-isomorphic representatives of the a(5) = 9 antichains are:
((12345)),
((1)(2345)), ((12)(134)), ((12)(345)),
((1)(2)(345)), ((1)(23)(45)), ((2)(13)(14)),
((1)(2)(3)(45)),
((1)(2)(3)(4)(5)).
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Oct 13 2017
STATUS
approved
Number of non-isomorphic multiset partitions of weight n with no singletons.
+10
46
1, 0, 2, 3, 12, 23, 84, 204, 682, 1977, 6546, 21003, 72038, 248055, 888771, 3240578, 12152775, 46527471, 182339441, 729405164, 2979121279, 12407308136, 52670355242, 227725915268, 1002285274515, 4487915293698, 20434064295155, 94559526596293, 444527730210294, 2122005930659752
OFFSET
0,3
COMMENTS
A multiset partition is a finite multiset of finite nonempty multisets of positive integers. A singleton is a multiset of size 1. The weight of a multiset partition is the sum of sizes of its elements. Weight is generally not the same as number of vertices.
Also non-isomorphic multiset partitions of weight n with no endpoints, where an endpoint is a vertex appearing only once (degree 1). For example, non-isomorphic representations of the a(4) = 12 multiset partitions are:
{{1,1,1,1}}
{{1,1,2,2}}
{{1},{1,1,1}}
{{1},{1,2,2}}
{{1,1},{1,1}}
{{1,1},{2,2}}
{{1,2},{1,2}}
{{1},{1},{1,1}}
{{1},{1},{2,2}}
{{1},{2},{1,2}}
{{1},{1},{1},{1}}
{{1},{1},{2},{2}}
LINKS
EXAMPLE
The a(4) = 12 multiset partitions:
{{1,1,1,1}}
{{1,1,2,2}}
{{1,2,2,2}}
{{1,2,3,3}}
{{1,2,3,4}}
{{1,1},{1,1}}
{{1,1},{2,2}}
{{1,2},{1,2}}
{{1,2},{2,2}}
{{1,2},{3,3}}
{{1,2},{3,4}}
{{1,3},{2,3}}
PROG
(PARI) \\ compare with similar program for A007716.
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
K(q, t, k)={EulerT(Vec(sum(j=1, #q, gcd(t, q[j])*x^lcm(t, q[j])) + O(x*x^k), -k)) - Vec(sum(j=1, #q, if(t%q[j]==0, q[j]*x^t)) + O(x*x^k), -k)}
a(n)={my(s=0); forpart(q=n, s+=permcount(q)*polcoef(exp(x*Ser(sum(t=1, n, K(q, t, n)/t))), n)); s/n!} \\ Andrew Howroyd, Jan 15 2023
CROSSREFS
The set-system version is A330054 (no endpoints) or A306005 (no singletons).
Non-isomorphic multiset partitions are A007716.
Set-systems with no singletons are A016031.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 20 2018
EXTENSIONS
Extended by Gus Wiseman, Dec 09 2019
Terms a(11) and beyond from Andrew Howroyd, Jan 15 2023
STATUS
approved
Number of set-systems spanning {1,...,n} in which all sets have the same size.
+10
43
1, 1, 2, 6, 54, 1754, 1102746, 68715913086, 1180735735356265746734, 170141183460507906731293351306656207090, 7237005577335553223087828975127304177495735363998991435497132232365910414322
OFFSET
0,3
COMMENTS
a(n) is the number of labeled uniform hypergraphs spanning n vertices. - Andrew Howroyd, Jan 16 2024
LINKS
FORMULA
a(n) = Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k)*(1 - k + Sum_{d = 1..k} 2^binomial(k, d)).
Inverse binomial transform of A306020. - Andrew Howroyd, Jan 16 2024
EXAMPLE
The a(3) = 6 set-systems in which all sets have the same size:
{{1,2,3}}
{{1}, {2}, {3}}
{{1,2}, {1,3}}
{{1,2}, {2,3}}
{{1,3}, {2,3}}
{{1,2}, {1,3}, {2,3}}
MATHEMATICA
Table[Sum[(-1)^(n-k)*Binomial[n, k]*(1+Sum[2^Binomial[k, d]-1, {d, k}]), {k, 0, n}], {n, 12}]
PROG
(PARI) a(n) = if(n==0, 1, sum(k=0, n, sum(d=0, n, (-1)^(n-d)*binomial(n, d)*2^binomial(d, k)))) \\ Andrew Howroyd, Jan 16 2024
CROSSREFS
Row sums of A299471.
The unlabeled version is A301481.
The connected version is A299353.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 17 2018
STATUS
approved

Search completed in 0.091 seconds