Displaying 1-10 of 205 results found.
page
1
2
3
4
5
6
7
8
9
10
... 21
Number of (0,1) matrices with n ones and no zero rows or columns, up to row and column permutations.
+10
133
1, 3, 6, 16, 34, 90, 211, 558, 1430, 3908, 10725, 30825, 90156, 273234, 848355, 2714399, 8909057, 30042866, 103859678, 368075596, 1335537312, 4958599228, 18820993913, 72980867400, 288885080660, 1166541823566, 4802259167367, 20141650236664
COMMENTS
Also the number of bipartite graphs with n edges, no isolated vertices and a distinguished bipartite block, up to isomorphism.
The EULERi transform ( A056156) is also interesting.
a(n) is also the number of non-isomorphic set multipartitions (multisets of sets) of weight n. - Gus Wiseman, Mar 17 2017
LINKS
Peter J. Cameron, D. A. Gewurz and F. Merola, Product action, Discrete Math., 308 (2008), 386-394.
FORMULA
Calculate number of connected bipartite graphs + number of connected bipartite graphs with no duality automorphism, then apply EULER transform.
a(n) is the coefficient of x^n in the cycle index Z(S_n X S_n; 1+x, 1+x^2, ...), where S_n X S_n is Cartesian product of symmetric groups S_n of degree n.
EXAMPLE
E.g. a(2) = 3: two ones in same row, two ones in same column, or neither.
a(3) = 6 is coefficient of x^3 in (1/36)*((1 + x)^9 + 6*(1 + x)^3*(1 + x^2)^3 + 8*(1 + x^3)^3 + 9*(1 + x)*(1 + x^2)^4 + 12*(1 + x^3)*(1 + x^6))=1 + x + 3*x^2 + 6*x^3 + 7*x^4 + 7*x^5 + 6*x^6 + 3*x^7 + x^8 + x^9.
There are a(3) = 6 binary matrices with 3 ones, with no zero rows or columns, up to row and column permutation:
[1 0 0] [1 1 0] [1 0] [1 1] [1 1 1] [1]
[0 1 0] [0 0 1] [1 0] [1 0] ....... [1].
[0 0 1] ....... [0 1] ............. [1]
Non-isomorphic representatives of the a(3)=6 set multipartitions are: ((123)), ((1)(23)), ((2)(12)), ((1)(1)(1)), ((1)(2)(2)), ((1)(2)(3)). - Gus Wiseman, Mar 17 2017
PROG
(PARI)
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
K(q, t, k)={WeighT(Vec(sum(j=1, #q, gcd(t, q[j])*x^lcm(t, q[j])) + O(x*x^k), -k))}
a(n)={my(s=0); forpart(q=n, s+=permcount(q)*polcoef(exp(x*Ser(sum(t=1, n, K(q, t, n)/t))), n)); s/n!} \\ Andrew Howroyd, Jan 16 2023
CROSSREFS
Cf. A049312, A048194, A028657, A055192, A055599, A052371, A052370, A053304, A053305, A007716, A002724.
Number of P-equivalence classes of switching functions of n or fewer variables, divided by 2.
(Formerly M1712 N0677)
+10
131
1, 2, 6, 40, 1992, 18666624, 12813206169137152, 33758171486592987164087845043830784, 1435913805026242504952006868879460423834904914948818373264705576411070464
COMMENTS
Also number of nonisomorphic sets of nonempty subsets of an n-set.
Equivalently, number of nonisomorphic fillings of a Venn diagram of n sets. - Joerg Arndt, Mar 24 2020
REFERENCES
M. A. Harrison, Introduction to Switching and Automata Theory. McGraw Hill, NY, 1965, p. 153.
S. Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, p. 38 Table 2.3.2. - Row 5.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
EXAMPLE
Non-isomorphic representatives of the a(2) = 6 set-systems are 0, {1}, {12}, {1}{2}, {1}{12}, {1}{2}{12}. - Gus Wiseman, Aug 07 2018
MAPLE
a:= n-> add(1/(p-> mul((c-> j^c*c!)(coeff(p, x, j)), j=1..degree(p)))(
add(x^i, i=l))*2^((w-> add(mul(2^igcd(t, l[i]), i=1..nops(l)),
t=1..w)/w)(ilcm(l[]))), l=combinat[partition](n))/2:
MATHEMATICA
sysnorm[{}] := {}; sysnorm[m_]:=If[Union@@m!=Range[Max@@Flatten[m]], sysnorm[m/.Rule@@@Table[{(Union@@m)[[i]], i}, {i, Length[Union@@m]}]], First[Sort[sysnorm[m, 1]]]]; sysnorm[m_, aft_]:=If[Length[Union@@m]<=aft, {m}, With[{mx=Table[Count[m, i, {2}], {i, Select[Union@@m, #>=aft&]}]}, Union@@(sysnorm[#, aft+1]&/@Union[Table[Map[Sort, m/.{par+aft-1->aft, aft->par+aft-1}, {0, 1}], {par, First/@Position[mx, Max[mx]]}]])]];
Table[Length[Union[sysnorm/@Subsets[Rest[Subsets[Range[n]]]]]], {n, 4}] (* Gus Wiseman, Aug 07 2018 *)
a[n_] := Sum[1/Function[p, Product[Function[c, j^c*c!][Coefficient[p, x, j]], {j, 1, Exponent[p, x]}]][Total[x^l]]*2^(Function[w, Sum[Product[2^GCD[t, l[[i]]], {i, 1, Length[l]}], {t, 1, w}]/w][If[l=={}, 1, LCM @@ l]]), {l, IntegerPartitions[n]}]/2;
KEYWORD
nonn,easy,nice,core,changed
Number of sets of nonempty subsets of {1..n} contradicting a strict version of the axiom of choice.
+10
66
0, 0, 1, 67, 30997, 2147296425, 9223372036784737528, 170141183460469231731687303625772608225, 57896044618658097711785492504343953926634992332820282019728791606173188627779
COMMENTS
The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.
EXAMPLE
The a(2) = 1 set-system is {{1},{2},{1,2}}.
The a(3) = 67 set-systems have following 21 non-isomorphic representatives:
{{1},{2},{1,2}}
{{1},{2},{3},{1,2}}
{{1},{2},{3},{1,2,3}}
{{1},{2},{1,2},{1,3}}
{{1},{2},{1,2},{1,2,3}}
{{1},{2},{1,3},{2,3}}
{{1},{2},{1,3},{1,2,3}}
{{1},{1,2},{1,3},{2,3}}
{{1},{1,2},{1,3},{1,2,3}}
{{1},{1,2},{2,3},{1,2,3}}
{{1,2},{1,3},{2,3},{1,2,3}}
{{1},{2},{3},{1,2},{1,3}}
{{1},{2},{3},{1,2},{1,2,3}}
{{1},{2},{1,2},{1,3},{2,3}}
{{1},{2},{1,2},{1,3},{1,2,3}}
{{1},{2},{1,3},{2,3},{1,2,3}}
{{1},{1,2},{1,3},{2,3},{1,2,3}}
{{1},{2},{3},{1,2},{1,3},{2,3}}
{{1},{2},{3},{1,2},{1,3},{1,2,3}}
{{1},{2},{1,2},{1,3},{2,3},{1,2,3}}
{{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}
MATHEMATICA
Table[Length[Select[Subsets[Rest[Subsets[Range[n]]]], Select[Tuples[#], UnsameQ@@#&]=={}&]], {n, 0, 3}]
CROSSREFS
Multisets of multisets of this type are ranked by A355529.
The version without singletons is A367769.
The version allowing empty edges is A367901.
These set-systems have ranks A367907.
A059201 counts covering T_0 set-systems.
A323818 counts covering connected set-systems.
A326031 gives weight of the set-system with BII-number n.
Cf. A007716, A083323, A092918, A102896, A283877, A306445, A355739, A355740, A367862, A367905, A368409, A368413.
Number of sets of nonempty subsets of {1..n} satisfying a strict version of the axiom of choice.
+10
64
1, 2, 7, 61, 1771, 187223, 70038280, 90111497503, 397783376192189
COMMENTS
The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.
EXAMPLE
The a(2) = 7 set-systems:
{}
{{1}}
{{2}}
{{1,2}}
{{1},{2}}
{{1},{1,2}}
{{2},{1,2}}
MATHEMATICA
Table[Length[Select[Subsets[Subsets[Range[n]]], Select[Tuples[#], UnsameQ@@#&]!={}&]], {n, 0, 3}]
CROSSREFS
The version without singletons is A367770.
The complement allowing empty edges is A367901.
These set-systems have ranks A367906.
A059201 counts covering T_0 set-systems.
A323818 counts covering connected set-systems.
A326031 gives weight of the set-system with BII-number n.
Cf. A007716, A083323, A092918, A102896, A283877, A306445, A355739, A355740, A367862, A367905, A370636.
Number of non-isomorphic multiset partitions of weight n in which all parts have the same size.
+10
58
1, 1, 4, 6, 17, 14, 66, 30, 189, 222, 550, 112, 4696, 202, 5612, 30914, 63219, 594, 453125, 980, 3602695, 5914580, 1169348, 2510, 299083307, 232988061, 23248212, 2669116433, 14829762423, 9130, 170677509317, 13684, 1724710753084, 2199418340875, 14184712185, 38316098104262
COMMENTS
A multiset partition of weight n is a finite multiset of finite nonempty multisets whose sizes sum to n.
Number of distinct nonnegative integer matrices with all row sums equal and total sum n up to row and column permutations. - Andrew Howroyd, Sep 05 2018
Also the number of non-isomorphic multiset partitions of weight n in which each vertex appears the same number of times. For n = 4, non-isomorphic representatives of these 17 multiset partitions are:
{{1,1,1,1}}
{{1,1,2,2}}
{{1,2,3,4}}
{{1},{1,1,1}}
{{1},{1,2,2}}
{{1},{2,3,4}}
{{1,1},{1,1}}
{{1,1},{2,2}}
{{1,2},{1,2}}
{{1,2},{3,4}}
{{1},{1},{1,1}}
{{1},{1},{2,2}}
{{1},{2},{1,2}}
{{1},{2},{3,4}}
{{1},{1},{1},{1}}
{{1},{1},{2},{2}}
{{1},{2},{3},{4}}
(End)
EXAMPLE
Non-isomorphic representatives of the a(4) = 17 multiset partitions:
{{1,1,1,1}}
{{1,1,2,2}}
{{1,2,2,2}}
{{1,2,3,3}}
{{1,2,3,4}}
{{1,1},{1,1}}
{{1,1},{2,2}}
{{1,2},{1,2}}
{{1,2},{2,2}}
{{1,2},{3,3}}
{{1,2},{3,4}}
{{1,3},{2,3}}
{{1},{1},{1},{1}}
{{1},{1},{2},{2}}
{{1},{2},{2},{2}}
{{1},{2},{3},{3}}
{{1},{2},{3},{4}}
MATHEMATICA
permcount[v_List] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
K[q_List, t_, k_] := SeriesCoefficient[1/Product[g = GCD[t, q[[j]]]; (1 - x^(q[[j]]/g))^g, {j, 1, Length[q]}], {x, 0, k}];
RowSumMats[n_, m_, k_] := Module[{s = 0}, Do[s += permcount[q]* SeriesCoefficient[Exp[Sum[K[q, t, k]/t*x^t, {t, 1, n}]], {x, 0, n}], {q, IntegerPartitions[m]}]; s/m!];
a[n_] := a[n] = If[n==0, 1, If[PrimeQ[n], 2 PartitionsP[n], Sum[ RowSumMats[ n/d, n, d], {d, Divisors[n]}]]];
PROG
(PARI) \\ See A318951 for RowSumMats.
a(n)={sumdiv(n, d, RowSumMats(n/d, n, d))} \\ Andrew Howroyd, Sep 05 2018
CROSSREFS
Cf. A000005, A001315, A007716, A038041, A049311, A283877, A298422, A306018, A306019, A306020, A306021, A318951.
Number of non-isomorphic connected set-systems of weight n.
+10
55
1, 1, 1, 2, 4, 7, 18, 37, 96, 239, 658, 1810, 5358, 16057, 50373, 161811, 536964, 1826151, 6380481, 22822280, 83587920, 312954111, 1197178941, 4674642341, 18620255306, 75606404857, 312763294254, 1317356836235, 5646694922172, 24618969819915, 109125629486233, 491554330852608
COMMENTS
The weight of a set-system is the sum of cardinalities of the sets. Weight is generally not the same as number of vertices.
FORMULA
Inverse Euler transform of A283877.
EXAMPLE
Non-isomorphic representatives of the a(1) = 1 through a(5) = 7 set systems:
1: {{1}}
2: {{1,2}}
3: {{1,2,3}}
{{2},{1,2}}
4: {{1,2,3,4}}
{{3},{1,2,3}}
{{1,3},{2,3}}
{{1},{2},{1,2}}
5: {{1,2,3,4,5}}
{{4},{1,2,3,4}}
{{1,4},{2,3,4}}
{{2,3},{1,2,3}}
{{2},{3},{1,2,3}}
{{2},{1,3},{2,3}}
{{3},{1,3},{2,3}}
Non-isomorphic representatives of the a(6) = 18 connected set-systems:
{{1,2,3,4,5,6}}
{{5},{1,2,3,4,5}}
{{1,5},{2,3,4,5}}
{{3,4},{1,2,3,4}}
{{1,2,5},{3,4,5}}
{{1,3,4},{2,3,4}}
{{1},{1,4},{2,3,4}}
{{1},{2,3},{1,2,3}}
{{3},{4},{1,2,3,4}}
{{3},{1,4},{2,3,4}}
{{3},{2,3},{1,2,3}}
{{4},{1,4},{2,3,4}}
{{1,2},{1,3},{2,3}}
{{1,3},{2,4},{3,4}}
{{1,4},{2,4},{3,4}}
{{1},{2},{3},{1,2,3}}
{{1},{2},{1,3},{2,3}}
{{2},{3},{1,3},{2,3}}
MATHEMATICA
A283877 = Import["https://oeis.org/ A283877/b283877.txt", "Table"][[All, 2]];
(* EulerInvTransform is defined in A022562 *)
Number of non-isomorphic multiset partitions of weight n in which (1) all parts have the same size and (2) each vertex appears the same number of times.
+10
47
1, 1, 4, 4, 10, 4, 21, 4, 26, 13, 28, 4, 128, 4, 39, 84, 150, 4, 358, 4, 956, 513, 86, 4, 12549, 1864, 134, 9582, 52366, 4, 301086, 4, 1042038, 407140, 336, 4690369, 61738312, 4, 532, 28011397, 2674943885, 4, 819150246, 4, 54904825372, 65666759973, 1303, 4, 4319823776760
EXAMPLE
Non-isomorphic representatives of the a(1) = 1 through a(6) = 21 multiset partitions:
(1) (11) (111) (1111) (11111) (111111)
(12) (123) (1122) (12345) (111222)
(1)(1) (1)(1)(1) (1234) (1)(1)(1)(1)(1) (112233)
(1)(2) (1)(2)(3) (11)(11) (1)(2)(3)(4)(5) (123456)
(11)(22) (111)(111)
(12)(12) (111)(222)
(12)(34) (112)(122)
(1)(1)(1)(1) (112)(233)
(1)(1)(2)(2) (123)(123)
(1)(2)(3)(4) (123)(456)
(11)(11)(11)
(11)(12)(22)
(11)(22)(33)
(11)(23)(23)
(12)(12)(12)
(12)(13)(23)
(12)(34)(56)
(1)(1)(1)(1)(1)(1)
(1)(1)(1)(2)(2)(2)
(1)(1)(2)(2)(3)(3)
(1)(2)(3)(4)(5)(6)
Number of unlabeled antichains of weight n.
+10
46
1, 1, 2, 3, 6, 9, 20, 33, 72, 139
COMMENTS
An antichain is a finite set of finite nonempty sets, none of which is a subset of any other. The weight of an antichain is the sum of cardinalities of its elements.
Also the number of non-isomorphic set multipartitions (multisets of sets) of weight n where every vertex is the unique common element of some subset of the edges. For example, the a(1) = 1 through a(6) = 20 set multipartitions are:
{1} {1}{1} {1}{1}{1} {1}{2}{12} {1}{2}{2}{12} {12}{13}{23}
{1}{2} {1}{2}{2} {1}{1}{1}{1} {1}{2}{3}{23} {1}{2}{12}{12}
{1}{2}{3} {1}{1}{2}{2} {1}{1}{1}{1}{1} {1}{2}{13}{23}
{1}{2}{2}{2} {1}{1}{2}{2}{2} {1}{2}{3}{123}
{1}{2}{3}{3} {1}{2}{2}{2}{2} {1}{1}{2}{2}{12}
{1}{2}{3}{4} {1}{2}{2}{3}{3} {1}{1}{2}{3}{23}
{1}{2}{3}{3}{3} {1}{2}{2}{2}{12}
{1}{2}{3}{4}{4} {1}{2}{3}{3}{23}
{1}{2}{3}{4}{5} {1}{2}{3}{4}{34}
{1}{1}{1}{1}{1}{1}
{1}{1}{1}{2}{2}{2}
{1}{1}{2}{2}{2}{2}
{1}{1}{2}{2}{3}{3}
{1}{2}{2}{2}{2}{2}
{1}{2}{2}{3}{3}{3}
{1}{2}{3}{3}{3}{3}
{1}{2}{3}{3}{4}{4}
{1}{2}{3}{4}{4}{4}
{1}{2}{3}{4}{5}{5}
{1}{2}{3}{4}{5}{6}
(End)
EXAMPLE
Non-isomorphic representatives of the a(5) = 9 antichains are:
((12345)),
((1)(2345)), ((12)(134)), ((12)(345)),
((1)(2)(345)), ((1)(23)(45)), ((2)(13)(14)),
((1)(2)(3)(45)),
((1)(2)(3)(4)(5)).
Number of non-isomorphic multiset partitions of weight n with no singletons.
+10
46
1, 0, 2, 3, 12, 23, 84, 204, 682, 1977, 6546, 21003, 72038, 248055, 888771, 3240578, 12152775, 46527471, 182339441, 729405164, 2979121279, 12407308136, 52670355242, 227725915268, 1002285274515, 4487915293698, 20434064295155, 94559526596293, 444527730210294, 2122005930659752
COMMENTS
A multiset partition is a finite multiset of finite nonempty multisets of positive integers. A singleton is a multiset of size 1. The weight of a multiset partition is the sum of sizes of its elements. Weight is generally not the same as number of vertices.
Also non-isomorphic multiset partitions of weight n with no endpoints, where an endpoint is a vertex appearing only once (degree 1). For example, non-isomorphic representations of the a(4) = 12 multiset partitions are:
{{1,1,1,1}}
{{1,1,2,2}}
{{1},{1,1,1}}
{{1},{1,2,2}}
{{1,1},{1,1}}
{{1,1},{2,2}}
{{1,2},{1,2}}
{{1},{1},{1,1}}
{{1},{1},{2,2}}
{{1},{2},{1,2}}
{{1},{1},{1},{1}}
{{1},{1},{2},{2}}
EXAMPLE
The a(4) = 12 multiset partitions:
{{1,1,1,1}}
{{1,1,2,2}}
{{1,2,2,2}}
{{1,2,3,3}}
{{1,2,3,4}}
{{1,1},{1,1}}
{{1,1},{2,2}}
{{1,2},{1,2}}
{{1,2},{2,2}}
{{1,2},{3,3}}
{{1,2},{3,4}}
{{1,3},{2,3}}
PROG
(PARI) \\ compare with similar program for A007716.
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
K(q, t, k)={EulerT(Vec(sum(j=1, #q, gcd(t, q[j])*x^lcm(t, q[j])) + O(x*x^k), -k)) - Vec(sum(j=1, #q, if(t%q[j]==0, q[j]*x^t)) + O(x*x^k), -k)}
a(n)={my(s=0); forpart(q=n, s+=permcount(q)*polcoef(exp(x*Ser(sum(t=1, n, K(q, t, n)/t))), n)); s/n!} \\ Andrew Howroyd, Jan 15 2023
CROSSREFS
The set-system version is A330054 (no endpoints) or A306005 (no singletons).
Non-isomorphic multiset partitions are A007716.
Set-systems with no singletons are A016031.
Cf. A049311, A283877, A293606, A293607, A306008, A317533, A317794, A317795, A320665, A330053, A330055, A330058.
Number of set-systems spanning {1,...,n} in which all sets have the same size.
+10
43
1, 1, 2, 6, 54, 1754, 1102746, 68715913086, 1180735735356265746734, 170141183460507906731293351306656207090, 7237005577335553223087828975127304177495735363998991435497132232365910414322
COMMENTS
a(n) is the number of labeled uniform hypergraphs spanning n vertices. - Andrew Howroyd, Jan 16 2024
FORMULA
a(n) = Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k)*(1 - k + Sum_{d = 1..k} 2^binomial(k, d)).
EXAMPLE
The a(3) = 6 set-systems in which all sets have the same size:
{{1,2,3}}
{{1}, {2}, {3}}
{{1,2}, {1,3}}
{{1,2}, {2,3}}
{{1,3}, {2,3}}
{{1,2}, {1,3}, {2,3}}
MATHEMATICA
Table[Sum[(-1)^(n-k)*Binomial[n, k]*(1+Sum[2^Binomial[k, d]-1, {d, k}]), {k, 0, n}], {n, 12}]
PROG
(PARI) a(n) = if(n==0, 1, sum(k=0, n, sum(d=0, n, (-1)^(n-d)*binomial(n, d)*2^binomial(d, k)))) \\ Andrew Howroyd, Jan 16 2024
CROSSREFS
Cf. A000005, A001315, A007716, A038041, A049311, A283877, A298422, A306017, A306018, A306019, A306020.
Search completed in 0.091 seconds
|