# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a283877 Showing 1-1 of 1 %I A283877 #29 Jan 16 2024 17:42:29 %S A283877 1,1,2,4,9,18,44,98,244,605,1595,4273,12048,34790,104480,322954, %T A283877 1031556,3389413,11464454,39820812,141962355,518663683,1940341269, %U A283877 7424565391,29033121685,115921101414,472219204088,1961177127371,8298334192288,35751364047676,156736154469354 %N A283877 Number of non-isomorphic set-systems of weight n. %C A283877 A set-system is a finite set of finite nonempty sets. The weight of a set-system is the sum of cardinalities of its elements. %H A283877 Andrew Howroyd, Table of n, a(n) for n = 0..50 %F A283877 Euler transform of A300913. %e A283877 Non-isomorphic representatives of the a(4)=9 set-systems are: %e A283877 ((1234)), %e A283877 ((1)(234)), ((3)(123)), ((12)(34)), ((13)(23)), %e A283877 ((1)(2)(12)), ((1)(2)(34)), ((1)(3)(23)), %e A283877 ((1)(2)(3)(4)). %o A283877 (PARI) %o A283877 WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)} %o A283877 permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} %o A283877 K(q, t, k)={WeighT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k))} %o A283877 a(n)={if(n==0, 1, my(s=0); forpart(q=n, my(g=sum(t=1, n, subst(x*Ser(K(q, t, n\t)/t),x,x^t) )); s+=permcount(q)*polcoef(exp(g - subst(g,x,x^2)), n)); s/n!)} \\ _Andrew Howroyd_, Jan 16 2024 %Y A283877 Cf. A007716, A034691, A049311, A056156, A089259, A116540, A300913. %K A283877 nonn %O A283877 0,3 %A A283877 _Gus Wiseman_, Mar 17 2017 %E A283877 a(0) = 1 prepended and terms a(11) and beyond from _Andrew Howroyd_, Sep 01 2019 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE