# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a001422 Showing 1-1 of 1 %I A001422 #43 Jan 07 2025 21:53:54 %S A001422 2,3,6,7,8,11,12,15,18,19,22,23,24,27,28,31,32,33,43,44,47,48,60,67, %T A001422 72,76,92,96,108,112,128 %N A001422 Numbers which are not the sum of distinct squares. %C A001422 This is the complete list (Sprague). %D A001422 S. Lin, Computer experiments on sequences which form integral bases, pp. 365-370 of J. Leech, editor, Computational Problems in Abstract Algebra. Pergamon, Oxford, 1970. %D A001422 Harry L. Nelson, The Partition Problem, J. Rec. Math., 20 (1988), 315-316. %D A001422 J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 222. %H A001422 R. E. Dressler and T. Parker, 12,758, Math. Comp. 28 (1974), 313-314. %H A001422 T. Sillke, Not the sum of distinct squares %H A001422 R. Sprague, Über Zerlegungen in ungleiche Quadratzahlen, Math. Z. 51, (1948), 289-290. %H A001422 Eric Weisstein's World of Mathematics, Square Number. %H A001422 Index entries for sequences related to sums of squares %t A001422 nn=50; t=Rest[CoefficientList[Series[Product[(1+x^(k*k)), {k,nn}], {x,0,nn*nn}], x]]; Flatten[Position[t,0]] (* _T. D. Noe_, Jul 24 2006 *) %o A001422 (PARI) select( is_A001422(n,m=n)={m^2>n&& m=sqrtint(n); n!=m^2&&!while(m>1,isSumOfSquares(n-m^2,m--)&&return)}, [1..128]) \\ _M. F. Hasler_, Apr 21 2020 %Y A001422 Complement of A003995. Subsequence of A004441. %Y A001422 Cf. A025524 (number of numbers not the sum of distinct n-th-order polygonal numbers) %Y A001422 Cf. A007419 (largest number not the sum of distinct n-th-order polygonal numbers) %Y A001422 Cf. A053614, A121405 (corresponding sequences for triangular and pentagonal numbers) %Y A001422 Cf. A033461, A276517. %Y A001422 Cf. A001476, A046039, A194768, A194769 for 3rd, 4th, 5th, 6th powers. %K A001422 nonn,fini,full,changed %O A001422 1,1 %A A001422 _N. J. A. Sloane_, Jeff Adams (jeff.adams(AT)byu.net) # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE