|
REFERENCES
| G. Birkhoff, Lattice Theory, Amer. Math. Soc., 1961, p. 4.
J. I. Brown and S. Watson, The number of complements of a topology on n points is at least 2^n (except for some special cases), Discr. Math., 154 (1996), 27-39.
K. K.-H. Butler, A Moore-Penrose inverse for Boolean relation matrices, pp. 18-28 of Combinatorial Mathematics (Proceedings 2nd Australian Conf.), Lect. Notes Math. 403, 1974.
K. K.-H. Butler and G. Markowsky, Enumeration of finite topologies, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 169-184.
L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 60, 229.
M. Erne, Struktur- und Anzahlformeln fuer Topologien auf endlichen Mengen, PhD dissertation, Westfaelische Wilhelms-Universitaet zu Muenster, 1972.
M. Erne and K. Stege, Counting Finite Posets and Topologies, Order, 8 (1991), 247-265.
M. Erne and K. Stege, The number of labeled orders on fifteen elements, personal communication.
J. W. Evans, F. Harary and M. S. Lynn, On the computer enumeration of finite topologies, Commun. ACM, 10 (1967), 295-297, 313.
J. Heitzig and J. Reinhold, The number of unlabeled orders on fourteen elements, Order 17 (2000) no. 4, 333-341.
D. J. Kleitman and B. L. Rothschild, Asymptotic enumeration of partial orders on a finite set, Trans. Amer. Math. Soc., 205 (1975) 205-220.
G. Kreweras, Denombrement des ordres etages, Discrete Math., 53 (1985), 147-149.
A. Shafaat, On the number of topologies definable for a finite set, J. Austral. Math. Soc., 8 (1968), 194-198.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, Chap. 3, pages 96ff; Vol. 2, Problem 5.39, p. 88.
|
|
LINKS
| G. Brinkmann, B. D. McKay, Posets on up to 16 Points, Order 19 (2) (2002) 147-179
P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
S. R. Finch, Transitive relations, topologies and partial orders
Institut f. Mathematik, Univ. Hanover, Erne/Heitzig/Reinhold papers
N. Lygeros and P. Zimmermann, Computation of P(14), the number of posets with 14 elements: 1.338.193.159.771
G. Pfeiffer, Counting Transitive Relations, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.2.
Bob Proctor, Chapel Hill Poset Atlas
Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
D. Rusin, Number of topologies
N. J. A. Sloane, Classic Sequences
Index entries for sequences related to posets
|