Chowdren

Chowdren converts the EXE build of an MMF2 application to C++.

This means that Chowdren is divided into two parts:

Converter written in Python
Runtime written in C++

The idea is that you never change the generated C++ code, but always make any required
changes in the MFA, and then use the converter again.

To port a complete game using Chowdren, you will have to port any missing

Extension modules
Movements

Events

Objects

Shaders

This includes changing both the converter and runtime to handle these.

Usually, the converter only needs a minimal amount data to “understand” new features.
However, the runtime will need the implementation itself in C++/GLSL, which can be large
in scope depending on the feature/extension.

Chowdren has a lot of these already implemented, either partially or completely.

The list of native objects is

Active
String
Backdrop

The list of extensions is

Advanced Direction object
Alpha Channel object
Associate Array

Phizix object (Box2D)
Background Images object
Binary

Binary Array object
Capture

Charlmage

Clickteam Movement
Controller object
Colorizer

Console object

Control X

Dialog Box

Easing

MMF2 Params object
ForEach

Global Store X

The list of movements is

Ball
Path

Quick Backdrop
Counter
RTF

Image Manipulator
INI++

Joystick 2 object
Array object

Active System Box
Background System Box
Date and Time
Direction Calculator
File object

Fast Loop object
Window Focus

INI object

List object

Active Picture
Picture

Vitalize! object
Popup Object
Window Control
Key object

Eight Directions
Pinball

Lives
Sub Application

Keyboard object
Layer object
Masked Edit

String Parser
Perspective object
Platform object
Python object
Sound Player
Steam object
Steamworks object
Stochastic Utility
String Replace
String Tokenizer
Surface object
Text Blitter
Ultimate Fullscreen
Value Add
Viewport

XBOX Gamepad

Static

Create Object

Shoot

Start Loop

Stop Loop

Set X

SetY

Set Alterable Value
Add To Alterable
Spread Value

Subtract From Alterable
Set Alterable String
Add Counter Value
Subtract Counter Value
Set Counter Value

Set Maximum Value
Set Minimum Value

Set Global String

Set Global Value

Add Global Value
Subtract Global Value
Set String

Set Bold

Hide

Show

Set Paragraph

Lock Channel

Stop Channel

Resume Channel
Pause Channel

Set Channel Position
Set Channel Pan

Set Channel Volume
Play Looping Channel File
Sample

Play Channel File Sample
Play Channel Sample
Play Looping Channel
Sample

Play Looping Sample
Play Sample

Set Channel Frequency
Set Direction

Set R G B Coefficient
Set Angle

Deactivate Group
Activate Group

Center Display X
Center Display Y

The list of native actions (excluding the ones from extensions) is

Center Display

End Application
Restart Application
Look At

Set Position

Execute Evaluated Program
Hide Cursor

Show Cursor
Fullscreen Mode
Next Frame

Previous Frame
Move To Layer

Jump To Frame
Restart Frame

Set Alpha Coefficient
Set Semi Transparency
Set X Scale

Set Y Scale

Set Scale

Force Animation
Restore Animation
Force Frame

Force Speed

Restore Frame

Set Ink Effect

Set Effect

Add To Debugger
Set Frame Rate
Destroy

Bring To Back

Bring To Front
Delete All Created
Backdrops

Delete Created Backdrops
Set Effect Parameter
Set Effect Image

Set Frame Background Color
Add Backdrop

Paste Active

Move In Front

Move Behind

Force Direction
Restore Direction
Stop Animation

Start Animation
Restore Speed

Set Main Volume

Stop All Samples
Pause All Sounds
Resume All Sounds
Stop Sample

Set Sample Pan

Set Sample Position
Set Sample Volume
Set Sample Frequency
Next Paragraph
Pause Application
Set Random Seed
Set Timer

Set Loop Index
Ignore Controls
Restore Controls
Change Control Type
Flash During

Set Maximum Speed
Set Speed

Bounce

Start

Stop

Set Directions

Go To Node

Select Movement
Next Movement
Enable Flag

Disable Flag

Toggle Flag

Reverse

Replace Color

Set Lives

Set Score

Subtract Lives

Add Lives

Enable Vsync
Disable Vsync

Set Gravity

Load Active Frame
Set Clipboard

Set Frame Effect

Set Frame Effect Parameter
Set Frame Alpha Coefficient
Pause Debugger
Jump Sub Application Frame
Set Text Color

Set Frame Height

Compare Alterable Value
Compare Alterable String
Compare Global Value
Compare Global String
Compare Counter
Compare X

Compare Y

Compare

Is Overlapping

On Collision

Object Visible

Object Invisible

While Mouse Pressed
Mouse On Object
Always

Mouse Clicked

Object Clicked

Player Key Down
Player Key Pressed
Key Down

Key Pressed

On Group Activation

Speed

String

To Number

To Int

Abs

To String

Get RGB

Long

Double

End Parenthesis
Plus

Multiply

Divide

Minus

Virgule

Parenthesis

Modulus

AND

OR

XOR

Random

Application Path
Alterable Value
Alterable Value Index
Alterable String Index
Alterable String
Global String

Global Value

Global Value Expression
Y Position

X Position

Action X

Action Y

Get Paragraph
Paragraph Count
Current Paragraph Index
Loop Index

The list of native conditions (excluding the ones from extensions) is

Facing In Direction
Animation Playing
Chance

Compare Fixed Value
Inside Playfield
Outside Playfield

Is Obstacle

Is Overlapping Background

On Background Collision
Pick Random
Objects In Zone
Pick Objects In Zone
Pick Alterable Value
Number Of Objects
Group Activated

Not Always
Animation Frame
Channel Not Playing
Sample Not Playing
Once

Every

Timer Equals

Current Text

X Mouse

Y Mouse

Min

Max

Sin

Cos

Exp

Log

Get Angle

Frame Height
Frame Width
String Length
Find

Reverse Find
Lower String
Upper String
Right String

Mid String

Left String

Fixed Value
Animation Frame
Object Left
Object Right
Object Top
Object Bottom
Get Direction
Get X Scale

Get Y Scale
Power

Square Root
Asin

Atan2

Atan

Alpha Coefficient
Semi Transparency
Effect Parameter

Timer Greater
Timer Less

Is Bold

Is Italic

Movement Stopped
Path Finished
Node Reached
Compare Speed
Flag On

Flag Off

Near Window Border
Animation Finished
Start Of Frame
Never

Number Of Lives
Any Key Pressed
Repeat

Restrict For

Sub Application Finished
Leaving Playfield
On Loop

The list of native expressions (excluding the ones from extensions) is

Floor

Round

Animation Number
Ceil

Get Main Volume

Get Channel Position
Get Sample Position
Get Sample Duration
Get Channel Volume
Get Channel Duration
Get Channel Frequency
Object Layer

New Line

X Left Frame

X Right Frame

Y Bottom Frame

Y Top Frame

Object Count
Counter Maximum Value
Application Directory
Application Drive
Timer Value

Timer Hundreds
Counter Value
Current Frame

Get Flag

Get Command Item
Display Mode

Get Clipboard

Total Object Count
Frame Rate
Temporary Path

Get Collision Mask
Font Color

RGB Coefficient
Movement Number
Frame Background Color

Finally, the list of shaders is

e Subtract e Lens ¢ Under Water

« Add * Linear Dodge * Rotate Sub

* Color Mixer * Soft Light * Simple Mask

* Looki Offset * Pin Light * Offsetstationary
* Hue * Invert e Pattern Overlay
 Dodge Blur * Grain PS2 e« Sub Px

* Monochrome e Multiply e Col Dir Blur

« Blend e Hard Light e Overlay Alpha

* Subtract * Tint e Gradient

* Hard Mix e Channel Blur * Zoom Offset

* Overlay « BgBloom

You can review the list of implemented features and cross-check with the MFA (there is a
"Data Elements" tab in MMF2 which displays some of this information).
However, this will not work for native events, movements and objects.

Converter

To set up the converter

1) Install Python 2.7.8
2) Install a native compiler
3

) Check out the following repository from Git:
https://github.com/matpow2/anaconda
4) Build all Python modules using build_all.bat.

Finally, to run the converter on the EXE, run the following in a console in the “Chowdren”
subdirectory:

C:\Python27\python -m chowdren.run MyGame.exe mygamesrc

This will give a lot of console output, with some statistics at the end like the following:

unimplemented generated groups in 'TITLE screen': [('SystemBox*', 3), 'PlayerKeyPressed', 'Never', (
'Undefined*', 2)]

stats:

ACTIONS

[('surface transform resize 13', 2), ('surface transform resize canvas 78', 1), ('ctrlx player set d
own 8', 1), ('surface input output load from file 15', 1), ('ctrlx enable disable disable alt tab ct
rl_esc and ctrl alt del 15', 1), ('valueadd set value 0', 1), ('ctrlx player set up 7', 1), ('ctrlx
player set right 10', 1), ('ctrlx simulate keyboard simulate key value down 33', 1), ('ctrlx player
set fire 1 11', 1), ('ctrilx_player set fire 4 39', 1), ('ctrix_player set fire 2 12', 1), ('kcwctrl_
17', 1), ('ctrix player set left 9', 1), ('ctrlx player set fire 3 38', 1)]

CONDITIONS
[('kcfile file is readable 2', 5), ('PlayerKeyPressed', 2)]

EXPRESSIONS

[('stringreplace automatic replace 1', 14), ('txtblt alignment get horizontal alignment 9', 4), ('in
i extra functions hash string string 26', 2), ('kcwctrl 0', 2), ('kcwctrl 1', 2), ('DisplayMode', 1)
|

You can use this to get an overview over what events and extensions have yet to be
ported into Chowdren.

https://www.python.org/downloads/
https://github.com/matpow2/anaconda
http://www.microsoft.com/en-us/download/details.aspx?id=44266

To give you an idea of what the converter outputs, here is an excerpt of some generated
code:

void Frames::event func 2099()
{

// event 901 6

{

beholder4 372 instances.clear selection();

for (ObjectIterator it (beholder4 372 instances); !it.end(); ++it) {
if (! ((((Active*) (*it))->alterables->values.get(2)) <= (0))) it.deselect();
}
if (!beholder4 372 instances.has_selection()) goto event 901 6 end;
if (!pick random(beholder4 372 instances)) goto event 901 6 end;
if (! ((global values->get(13)) == (0))) goto event 901 6 end;
for (ObjectlIterator it (beholder4 372 instances); !it.end(); ++it) {

((Active*)*it) ->alterables->values.set (3, 0);

}

for (ObjectIterator it (beholder4 372 instances); !it.end(); ++it) {
((Active*)*it) ->alterables->values.set (0, 0);

}

playermask 77 instances.clear selection();

for (ObjectlIterator it (playermask 77 instances); !it.end(); ++it) {
((Active*) *it)->alterables->values.add (7, 1);

}

for (ObjectIterator it (beholder4 372 instances); !it.end(); ++it) {
((Active*) *it) ->destroy () ;

for (ObjectIterator it (playermask 77 instances); !it.end(); ++it) {
((Active*) *it)->alterables->values.set (8, 20);

}

media->stop_sample ("zapper 4");

particlegenerator 83 instances.clear selection();

for (ObjectlIterator it(particlegenerator 83 instances); !it.end(); ++it) {
FrameObject * parent = ((Active*)get single(beholder4 372 instances, it.current index));
if (parent == NULL) goto pos_end 901 6 0;

(*it) ->set global position(parent->get x() + 0, parent->get y() + 0);

pos_end 901 6 0: ;

((Active*)get single(particlegenerator 83 instances))->alterables->values.set (0, 3);
media->play name ("Explosion80", -1, 1);

ent 901 6 end: ;

That is, all the events (which are normally interpreted in MMF2) are converted directly to
C++. Even though the output is not very readable, the result is very efficient.

The important code related to the converter can be found here:

Extension converters
https://qgithub.com/matpowZ2/anaconda/tree/master/Chowdren/chowdren/writers/extensions

Native event converters
https://qgithub.com/matpow?2/anaconda/blob/master/Chowdren/chowdren/writers/events/sys

tem.py

Native object converters
https://qgithub.com/matpowZ2/anaconda/blob/master/Chowdren/chowdren/writers/objects/sy

stem.py

Converter core
https://qgithub.com/matpowZ2/anaconda/blob/master/Chowdren/chowdren/converter.py

https://github.com/matpow2/anaconda/blob/master/Chowdren/chowdren/converter.py
https://github.com/matpow2/anaconda/blob/master/Chowdren/chowdren/writers/objects/system.py
https://github.com/matpow2/anaconda/blob/master/Chowdren/chowdren/writers/objects/system.py
https://github.com/matpow2/anaconda/blob/master/Chowdren/chowdren/writers/events/system.py
https://github.com/matpow2/anaconda/blob/master/Chowdren/chowdren/writers/events/system.py
https://github.com/matpow2/anaconda/tree/master/Chowdren/chowdren/writers/extensions

Runtime

The runtime is the base code which is compiled together with the converted C++ events,
frame and object data.

On desktop platforms, it uses

* OpenGL 2.1
« GLSL1.20

* OpenAL Soft
« SDL2

Currently, the status of each platform backend is
* Windows, Mac, Linux (complete)
* Wii U (complete)
* PS4 (complete)
* PS Vita (almost complete, audio remaining)
» 3DS (almost complete, audio and some shaders remaining)

The remaining work on the 3DS and PS Vita is expected to be complete in 2~3 months
(and in that order).

The important code related to the runtime can be found here:

Extension runtime
https://qgithub.com/matpowZ2/anaconda/tree/master/Chowdren/base/objects

Movement runtime
https://qgithub.com/matpowZ2/anaconda/blob/master/Chowdren/base/movement.h

Native object & events runtime
https://qgithub.com/matpow?2/anaconda/blob/master/Chowdren/base/common.cpp

https://github.com/matpow2/anaconda/blob/master/Chowdren/base/common.cpp
https://github.com/matpow2/anaconda/blob/master/Chowdren/base/movement.h
https://github.com/matpow2/anaconda/tree/master/Chowdren/base/objects

