AR Sominde

T A A T . st~ g Y ———

", - *-‘i

- A
> -'&.’..’3;,‘"( %

g -

o
SRR TINEW, N,

v PP P TV i - B T, M s e A _?"if - . e > P R v ——
. . . : p ) . < i 2" - ¢ - LI .
bl AN . T ‘3 2 o y: g J M '
Wt mhe e A A S o et &-..,‘ g X r. ke ~ -~
: . o . - “f B - o b i s AL -

i AR > ¥ : ‘ * o

‘ Miwm&dmm, gl ne
Ft ot L e e \
/ - a Y4 o da » - - - - ' e’ J D
B i P AP SRS S

" ‘
E . z E :

R et T T L SRR o = S, B
. T . W 2

b - v £y - L RE L
Y R s &
s £ - hY - -
i o P
c. £ i3 b - a’,\ \‘ "4 " B bid ',‘:
A\



http://pgcon.org

Dackgrouna: VWnere the data comes rom

| run modern-sgl.com:

mode

.

A Lot Has Changed Sinc SOL@ v
» feaching “new” SQL »Showing availability of
features 1o developers those features in popular

databases


http://modern-sql.com

Background: Vvnere

a COINMes

filter clause

Emulation using case

OThe filter plugin extension (3rd party) rewrites filter to case using regular expressions.

The charts are based on test cases.!!

(O]

The test cases are created while reading ISO/IEC 9075:2016.
The level of detall for different features varies widely at the moment.

% Some “legacy charts” are still based on reading the docs.



One last Word

For brevity, I'm using the word

Gcerng 7)
O mean

“not conforming to the standard”

This neither implies that it is “bad” nor that it Is a bug,
nor that It Is worth changing.
| just means that it iIs not the way | understand the standard.



e or Con

L ess Comple

orming Features



EXTRACT
et a Field from a Date or Time Value



EXTRACT: "WWrong™ declared type

extract(.. from <datetime>)

extract(.. from <interval>)

cast(<timestamp> as date)

cast(<timestamp> as time)

0 No time zone fields.
L NPNE2TEoY= | include fractions. Use SECOND_MICROSECOND.

2 Returns approximate numeric type.




EXTRACT: "WWrong™ declared type

extract(field from timestamp) doub}e.
precision

extract(field from interval) doub}e.
precision

extract(.. from <datetime>)TT"";T"1

Pl
D
extract(.. from <interval>) x X X
v | X
V|V X
ONo time zone fields.

1 N time include fractions. Use SECOND MICROSECOND.

N\NQ alla AINIRNalaY~ ala
2 Returns approximate numeric type.

cast(<timestamp> as date) J

SKNR

cast(<timestamp> as time) J




EXTRACT: "WWrong™ declared type

extract(field from timestamp) doubl!.e.
precision

7) If <extract expression> is specified, then B ( field from interval) doub}e.
precision

Case:

a) If <extract field> is a <primary datetime field> that does not specify SECOND or <extract field> 1s
not a <primary datetime ficld>, then the declared type of the result is an implementation-defined exact
numeric type with scale 0 (zero).

b) Otherwise, the declared type of the result is an implementation-defined exact numeric type with scale
not less than the specified or implied <time fractional seconds precision> or <interval fractional seconds
precision>, as appropriate, of the SECOND <primary datetime field> of the <extract source>.

jnclude fractions. Use SECOND MICROSECOND.




[RESPECT | IGNORE] NULLS

Skip over null values in window functions
lead, lag, fist value, last value, nth value

(1616, 1618



Window Functions: null handling, from last

LEAD and LAG

FIRST VALUE, LAST VALUE

NTH_VALUE | of'
Nested window functions X X x

0 No IGNORE NULLS Different syntax: first_value(<expr>, "'IGNORE NULLS') (it's a string argument)

1 No TGNORE [\ o default possible (3rd argument).
2 No IGNORE NULLS
NOo IGNORE NULLS Different syntax: lead(<expr>, 1, null, 'IGNORE NULLS") (it's a string argument)

“No IGNORE NULLS. No FROM LAST

%< <
%% %%




Window Functions: null handling, from last

Note

The SQL standard defines a RESPECT NULLS or IGNORE NULLS option for lead, lag,

first value, last value, and nth value. This is not implemented in PostgreSQL: the
behavior is always the same as the standard's default, namely RESPECT NULLS. Likewise,
the standard's FROM FIRST or FROM LAST option for nth wvalue is not implemented: only
the default FROM FIRST behavior is supported. (You can achieve the result of FROM LAST by

reversing the ORDER BY ordering.)

NTH_VALUE | of [ o/ | /.| V | AL IXK
Nested window functions X X X x x

0 No IGNORE NULLS Different syntax: first_value(<expr>, 'IGNORE NULLS') (it's a string argument)

1 No TGNORE [\ o default possible (3rd argument).
NOo IGNORE NULLS Different syntax: lead(<expr>, 1, null, 'IGNORE NULLS") (it's a string argument)

X
: : oo - VLV X
X
X




COUNT(DISTINCT ..) OVER(..)

Distinct aggregates as window function
(1611)



Window Functions: no distinct aggregates

Aggregates (count, sum, min, ...)

Distinct Aggregates




FETCH [FIRST|NEXT] ..

[he standard’'s answer to LIMIT, but more options
(1600, 1867)



FETCH FIRST: no percent, no with ties

)
)
Q
O/@

Top-level fetch first

Subqueries with fetch first

SNSSN 6

Dynamic quantity

fetch first .. percent

RN

fetch first .. with ties

Q

Top-level fetch first in views X2
X

X

6

xS

SQL State 2201W if quantity < 1

®»

0 Use proprietary 1imit
1 Use proprietary top
2 Use nested query: CREATE VIEW .. AS SELECT .. FROM (SELECT .. FROM .. FETCH FIRST ..) t

4 Use proprietary select top .. percent
° Use proprietary select top .. with ties

~ NG O ¥ (ZelO



FETCH FIRST: no percent, no with ties

Docs: unsupported features: // // /K

FETCH FIRST clause: PERCENT

root option
FETCH FIRST clause: WITH
reo/ TIES option

v
XS
X

Top-level fetch first in views

R
RIRIR RV

Dynamic quantity

fetch first .. percent

%% <%
%% (%% %

fetch first .. with ties

RENSNNS
RN (R (R

SQL State 2201W if quantity < 1

6

0 Use proprietary 1imit

1 Use proprietary top

2 Use nested query: CREATE VIEW .. AS SELECT .. FROM (SELECT .. FROM .. FETCH FIRST ..) t
3 Requires parenthesis: (?)

4 Use proprietary select top .. percent

° Use proprietary select top .. with ties

5 Not for 0 (zero)



-unctional Dependencies

([1301)



Functional dependencies: only simplest cases

Base table PRIMARY KEY

Base table UNIQUE

Q
X
X
Joined tables X
X
X

WHERE clause

GROUP BY clause

O Not following joins to PRIMARY KEYs or UNIQUE constraints

Docs: unsupported features:
1301 Functional dependencies partially supported




Functional dependenmes only simplest cases

//rLECT COUNT(*) cnt, t2.b \
FROM t1
INNER JOIN t2 ON (tl.pk = t2.pk)

GROUP BY t1.pk
\_ i

Base table PRIMARY KEY

Base table UNIQUE

Joined tables

WHERE clause

GROUP BY clause

O Not following joins to PRIMARY KEYs or UNIQUE constraints

Docs: unsupported features:
1301 Functional dependencies partially supported




Functional dependencies: only simplest cases

4.24 Functional dependencies. . . ... ot e e 97
424.1  Overview of functional dependency rules and notations. . . ... ... ... . ... 97
4242  General rules and definitions. . . ... ... e e e e 98
4243  Known functional dependencies inabasetable. . .. ......... . . i i i e 99
4244  Known functional dependencies in a viewed table. . .. ... ... . e, 99
4245 Known functional dependencies in a transition table. . . ... ... . . i e 100
4246  Known functional dependencies in <table value constructor>. . .. ... ... .. i 100
4247  Known functional dependencies in a <joined table>. . . ... ... . . i i e e 100
4.24.8  Known functional dependencies 1n a <table primary>. . .. ... ... . i e 102
4249  Known functional dependencies in a <table factor>. . . ... ... . . . i i e, 103
4.24.10 Known functional dependencies in a <table reference>. .. ...... ... . .. i i 103
424.11 Known functional dependencies in the result of a <from clause>. ... ....... ... ... ... ... .. ... 103
4.24.12 Known functional dependencies in the result of a <where clause>. .. ......... ... ... ... ... ... ... ... 104
4.24.13 Known functional dependencies in the result of a <group by clause>. . ......... ... ... ... ... ... ... 104
4.24.14 Known functional dependencies in the result of a <having clause>. .. ......... ... ... ... ... ... ... ... 105
4.24.15 Known functional dependencies in a <query specification>. . .. ... ittt ittt 105

4.24.16 Known functional dependencies In @ <QUETY EXPIreSSION . . . . ot vvvt ettt ee e et iteee e aenneeeenn, 106



Functional dependencies: only simplest cases

( Still room for vendor extensions. \
Overview of functional dependency rules and notatio c.d related 1o ROW_N UMBER and

4.24
4.24.1
4.24.2
4.24.3
4244
4.24.5
4.24.6
4.24.7
4248
4249
4.24.10
4.24.11
4.24.12
4.24.13
4.24.14
4.24.15
4.24.16

Functional dependencies. .. ....................

General rules and definitions. ................... \\ ORDINALITY.

Known functional dependencies in a base table. . . . ...

J

Known functional dependencies in a viewed table. . .. ... ... ... i e e 99
Known functional dependencies in a transition table. . . ... ... i i e e 100
Known functional dependencies in <table value constructor>. . ....... ... ... . 100
Known functional dependencies in a <joined table>. . . ...... ... . . . i e 100
Known functional dependencies 1n a <table primary>. . ... ... . it i e 102
Known functional dependencies in a <table factor>. . . ... ... . . i e 103
Known functional dependencies in a <table reference>. ... ... ... .. i e 103
Known functional dependencies in the result of a <from clause>. . ......... ... ... ... ... ... 103
Known functional dependencies in the result of a <where clause>. ... ........ ... .. ... ... ... .. ... 104
Known functional dependencies in the result of a <group by clause>. . ......... ... ... ... ... ... ... 104
Known functional dependencies in the result of a <having clause>. .. ......... ... ... ... ... ... ... 105
Known functional dependencies in a <query specification>. . ........ ... ittt 105

Known functional dependencies 1n @ <QUETry eXPreSSION >. . ... v vttt ittt et it ee et teeeeeeennns 106




JNsuppor

ed T

cd

- other DBS have

ures tha




Row Pattern Recognition

match recognize)

ROT0, RO20, RO30)



Row Pattern Matcning Since SQL:2016

30 minutes
X AKX XK X XHHK—X

Time

SELECT COUNT(*) sessions
, AVG(duration) avg duration
FROM log
MATCH RECOGNIZE (
ORDER BY ts
MEASURES
LAST(ts) - FIRST(ts) AS duration
ONE ROW PER MATCH
PATTERN ( any cont* )
DEFINE cont AS ts < PREV(ts)

+ INTERVAL '30' minute
) t

Oracle doesn’t support avg on intervals — query doesn’t work as shown



Row Pattern Matcning Since SQL:2016

30 minutes
X ' e XXX X MR
Time
SELECT COUNT(*) sessions
, AVG(duration) avg duration
FROM log
MATCH_ RECOGNIZE(
ORDER BY ts
MEASURES
LAST(ts) - FIRST(ts) AS duration
ONE ROW PER MATCH
PATLERN=—(—amnyV cont T ——
- “"DEFINE cont AS ts < PREV(ts)
define + INTERVAL '30' minute
contineed

Oracle doesn’t support avg on intervals — query doesn’t work as shown



Row Pattern Matcning Since SQL:2016

30 minutes
X PAKHKONK XK—HRK X KK X S
Time
SELECT COUNT(*) sessions
, AVG(duration) avg duration
FROM log
MATCH RECOGNIZE (
ORDER BY ts
MEASURES
LAST(ts) - FIRST(ts) AS duration
ONE_ROW-PRER-MATCH
- . PATTERN (_any cont* )
wUndefined DFEZ OTrCF PREV(ts)

+ INTERVAL '30' minute

pattern variable:
matchres any roew

Oracle doesn’t support avg on intervals — query doesn’t work as shown



Row Pattern Matcning Since SQL:2016

30 minutes
X AKX XK X XHHK—X

Time

SELECT COUNT(*) sessions
, AVG(duration) avg duration

FROM log
MATCH_RECOGNIZE (
ORDER BY ts -
MEASURES any rumber
LAST(ts) - FIRST(ts) AS o cont’
0 RO i
“PATTERN ( any cont* Pouwrs
DEFINE~COmTt=" PREV(ts)
+ INTERVAL '30' minute
) t

Oracle doesn’t support avg on intervals — query doesn’t work as shown



Row Pattern Matcning Since SQL:2016

30 minutes
X PAKHKONK XK—HRK X KK X S
Time
SELECT COUNT(*) sessions
, AVG(duration) avg duration
FROM log
o MATCH RECOGNIZE (
\/ ORDER BY ts
ZL
el‘y > 6/7 MEASURES

/‘fe 6'(0460 ZY ? LAST(ts) - FIRST(ts) AS duration

. ONE ROW PER MATCH
PATTERR any cont* )
DEFINE cont AS ts < PREV(ts)
+ INTERVAL '30' minute
) t

Oracle doesn’t support avg on intervals — query doesn’t work as shown



Row Pattern Matcning Since SQL:2016

30 minutes
X PAKHKONK XK—HRK X KK X S
Time
SELECT COUNT(*) sessions
, AVG(duration) avg duration
@ FROM log
\/ery oy, MATCH_RECOGNIZE (
//,ée SfoCT EASS
- AST(ts) - FIRST(ts) AS duration
ONE ROW PER MATCF

PATTERN ( any cont* )
DEFINE cont AS ts < PREV(ts)

+ INTERVAL '30' minute
) t

Oracle doesn’t support avg on intervals — query doesn’t work as shown



Row Pattern Matcning Since SQL:2016

30 minutes
X

XK—HRX X XK X

Time

ONE ROW PER CH
PATTERN ( any cont¥* )
DEFINE cont AS ts < PREV(ts)
+ INTERVAL '30' minute

LAST(ts) - FI?ST(ts) AS duration

) t

Oracle doesn’t support avg on intervals — query doesn’t work as shown



Row Pattern Matcning Since SQL:2016

30 minutes
X AKX XK X XHHK—X

Time

SELECT COUNT(*) sessions
, AVG(duration) avg duration
FROM log
MATCH RECOGNIZE (
ORDER BY ts
MEASURES
LAST(ts) - FIRST(ts) AS duration
ONE ROW PER MATCH
PATTERN ( any cont* )
DEFINE cont AS ts < PREV(ts)

+ INTERVAL '30' minute
) t

Oracle doesn’t support avg on intervals — query doesn’t work as shown



Row Pattern Matcning “ndless possibilites

GROUP BY
= ONE ROW PER MATCH

OVER ()
= ALL ROWS PER MATCH, FINAL, RUNNING

HAVING, WHERE
= PATTERN (unmatched, suppressed {- .. -}

Mixing GROUP BY and OVER()
= ALL ROWS PER MATCH + all-but-one rows suppresseo

Data-driven match length
= SUM, COUNT, ... N DEFINE

Duplicating rows (to some extend)
= ALL ROWS PER MATCH + AFTER MATCH SKIP TO ..



Row pattern matching — match recognize

from clause

window clause

full aggregate support

Free technical report by [SO:

http://standards.iso.org/ittf/PubliclyAvailableStandards/
c065143 ISO [EC TR 19075-5 2016.zip



http://standards.iso.org/ittf/PubliclyAvailableStandards/c065143_ISO_IEC_TR_19075-5_2016.zip

Row Pattern Matcning Since SQL:2016

\.l 110

https://www.slideshare.net/Markus\Winand/row-pattern-matching-in-sgl2016

Stew Ashton has a lot material on this too:
https://stewashton.wordpress.com/category/match_recognize/


https://www.slideshare.net/MarkusWinand/row-pattern-matching-in-sql2016

Temporal and bi-temporal tables

(1180, 1181,



Temporal and bi-temporal tables
First appeared in SQL:2011.

There Is an excellent free paper on It:

Temporal features in SQL:2011

https://sigmodrecord.org/publications/sigmodRecord/1209/pdfs/07.industry.kulkarni.pdf

f you don't have access to the standarad,
this Is the next best resource on it.


https://sigmodrecord.org/publications/sigmodRecord/1209/pdfs/07.industry.kulkarni.pdf

Temporal and bi-temporal tables

There are two versioning features:

= System Versioning = Application Versioning
Mostly transparent Managed by the application
(done by the system). (with SQL support).
Models when changes Can model when changes
happened in the DB. happened in the real world.

Both can be applied on per table level as needed.



Temporal and bi-temporal tables

Both require explicit datetime columns and a period:

= System Versioning = Application Versioning
Generated columns Arbitrary columns
GENERATED ALWAYS
Period name fixed: Arpitrary period names

SYSTEM TIME (lout only one per table)



Temporal and bi-temporal tables

System versioning takes care of the DMLSs.

= System Versioning = Application Versioning
Datetime columns visible Datetime columns visible
(not 100% transparent)®
User cannot set them. User has to provide values.
Constraints remain Constraints need to
unchanged. consider periods

(e.g. WITHOUT OVERLAPS).

Ol Some databases offer invisible or hidden columns for transparency:.



Temporal and bi-temporal tables

For queries, they use a different syntax:

= System Versioning = Application Versioning
FROM ... INn where clause.
FOR SYSTEM _TIME New predicates for periods:

[AS OF |[BETWEEN | FROM...TO] contains, overlaps,

precedes, succeeds,...



Temporal and bi-temporal tables

Recent discussions on -hackers:

= System Versioning = Application Versioning
‘AS OF Queries” “Periods”
Konstantin Knizhnik VIK Fearing

Dec 2017 - Jan 2018 May 2018



System-versioned tables

(1180



System-versioned tables )
)

-~

Released A

May 25, 2018/

generate always as row ..

period for system time

Add system versioning to table

Drop system versioning from table

for system time as of ..

for system time between ..

RIRRRIRIRRR
RIRRRIRIRRR

4
for system time from .. J J
X.

Immutable transaction time J

RIRRRIRRR R

%% % %% %W

\_

Oracle has similar
(yet different) syntax
to access undo data

(“flashback”).

~

/

0 Requires row begin instead of row start

T Without keyword for (period system time (..))

2 Syntax varies widely

3 Expressions not supported.

4 Without between symmetric

S Expressions not supported. Without between symmetric

6 Row [start]|end] uses statement time, not transaction time.



System-versioned tables

Limitations and gaps in the standard:

= Schema changes are not supported
(Most ALTER statements on system-versioned tables fail)

= No functionality for retention
also: delete cannot delete historic rows— GDPR right of erasure ;)

= FOR SYSTEM TIME only works for base tables
(Not for views, for example. Also No session setting In the standard).

= Based on “transaction time” (= commit time)



System-versioned tables

Notes from current implementations:

= History tables are most popular
Db2 (LUW) and SQL Server use separate tables for old data.

= Partitions let the user choose
MariaDB 10.3 use a single logical table that can optionally be
partitioned so that current and historic data are segregated.

= Finding history data in UNDO (data kept for rollback)
Oracle uses the UNDO segment to access historic data.
Automatic retention, configurable up to 232 seconds (136yrs)!.

Ol Don’t know if there is a way to retire selected rows (GDPR)



Application-versioned tables

(1181)



Application-versioned tables — model the real world

period for business time

without overlaps constraint

update .. for portion of

delete .. for portion of

0 Use range type. | o .
" Use exclusion constraint. Functionality is available,

MISSIN
- 9

only the standard syntax is

“Periods” Patch from
May 26 2018

~

J

/




Period Predicates

([15602)



Period Predicates — like range type operators

Y / A

/(@ /S

\/(DQO-\/ &Q)a\\@

@W‘&\g& oa"&@/@/
Q/</<)/O o/ %

overlaps

equals

contains

precedes

succeeds

immediately precedes

W% [ [ %R
W% [ %[ %[ %R R
W[ %[ %[ %% R R
W% %[ %[ %R R
PR BRI
W% %[ %% R %
W[ %% %% R

immediately succeeds

0 Doesn't recognize period names. Use (start_ts, end ts) syntax without keyword period.
1 Use range type and respective operators.



Period Predicates — like range type operators

overlaps

"\  equals

contains

Functionality is available,

only the standard syntax is
MIssin

_ 9

precedes

4// succeeds

i~ ediately precedes

———

RIRIRIRIRIRIR
RIRIRIRIR RNV
RIRIRIRIRIRIR

inediately succeeds

Wt ts, end ts) syntax witho

..‘ I - [ ) . ‘.‘.. Aar=laalr~ -
1 Use range type and respective operators.




(Generated Columns

(1179



Generated Columns

4 . .
Syntax is shared with Q é?’ 3
system-versioned tables \9 (DQQ? 37/ 0§® %@* @
and identity columns. o\ N £ @0 Oé“ 3 @/\
- — Q/Y/S/0/C 5/
generate always as (..) l ; ; / X 1 x
0 Requires data type declaration.
1 Requires data type declaration. Without keywords generated always.
From standards perspective: Other use cases
= Generated columns can = Function-based indexes

pe used almost like base columns  (MariaDB/MySQL, SQL Server)
(e.9. In constraint definitions)



Combined data change and retrieval
Similar to writeable CTES
(1495)



Combined Data Change and Retrieval

INSERT INTO target
SELECT *
FROM OLD TABLE (DELETE FROM source)

/\
//NITH cte AS ( \\\

DELETE FROM source
RETURNING *

)
INSERT INTO target

SELECT *

\\¥ FROM cte ///




Combined Data Change and Retrieval

INSERT INTO demo t495 c

SELECT *
FROM OLD TABLE (DELETE FROM demo_t495)

Differences to writeable CTES:
= [Three modes: OLD, NEW, FINAL (similar to triggers)

= NEW and FINAL is still before AFTER triggers
= FINAL fails In case the target table is further modified by

= constraints (cascade)
= AFTER triggers



Combined Data Change and Retrieval

[new|final] TABLE (INSERT ..

[0ld] TABLE (DELETE ..

)
[..] TABLE (UPDATE ..)
)
)

[..] TABLE (MERGE ..

In DML

0 Main statement must be select. Workaround via chained with clause.




Partitioned Join
(Not related to partitioned tables)
F403)




Partitioned Join — Filling gaps in time series

ts value

OB~ W=




Partitioned Join — Filling gaps in time series

ts | value gen
1 1
3 | .. KT >
4 - OUTER 3
O 4

5

SELECT *
FROM data

RIGHT JOIN generate series(..)
ON ..



Partitioned Join — Filling gaps in time series

ts | value gen ts |value| gen
1 1 1 1
3 | .. KIG¥ 2 2
p ——» —>

. 04/7”{( 3 3 3
O 4 4 4

5 5 5
SELECT *
FROM data

RIGHT JOIN generate series(..)
ON ..



Partitioned Join — Filling gaps in time series

grp ts | value
A 1
A 3
A 4
A 5
B 2
B 4
B 5

What It you have several time series,
all of them to be padded”

SELECT *
FROM (SELECT DISTINCT grp
FROM data) dist
CROSS JOIN LATERAL
(SELECT *
FROM data
RIGHT JOIN generate series(..)
ON ..
AND data.grp = dist.grp



Partitioned Join — Filling gaps in time series

grp ts | value
A 1
A 3
A 4
A 5
B 2
B 4
B 5

What It you have several time series,
all of them to be padded”

SELECT *
FROM data PARTITION BY (grp)
RIGHT JOIN generate series(..)
ON ..



Partitioned Join — Filling gaps in time series

LEFT OUTER partitioned join

RIGHT OUTER partitioned join

FULL OUTER partitioned join

0 Alternative: Select distinct partition key and join lateral for each partition.
! Alternative: join to cross join of distinct partition key and gap-filler.



LISTAGG
|ike STRING AGG

(1625



LISTAGG

S/ &
\$\/ &S/
\/O'\QC))OJ’\&
Q?cl/&b@ooé&@/@/
</0 %/ %

Q
listagg(..) within group (..) J
X

listagg(.. on overflow ..)

listagg(distinct ..)

SQLSTATE 22001 on truncation | X

listagg with grouping sets J
stagg.. within group.. filter.. X

RIRIRIR|RIR IR
SRERRKS
RIRRRIRIR RS
RIRIRRIRIR IR
RIRIRIRIRIR IR

listagg.. within group.. over.. x

0 Since 12.2

1If ordered by the aggregated values: 1istagg(distinct X,..) within group (order by X)
2 SQLSTATE 54006

3 SQLSTATE 72000



Distinct data types
CREATE TYPE .. AS <predefined types>

SO011 - Core SQL



Distinct Data lypes

CREATE TYPE..AS <pred. type> [of [ X[ X[ X | X | X | X




VVOrK In progress



MERGE

-312.

-3713,

-314)



MERGE — conditional inser

/update/dele

S/ &
S/ P/ &
V.&@’\QS%\Q’
@W‘{S?@ooé&@’@’\
/)0 WA%

Merge

Multiple update/insert branches

Q

v

[NOT] MATCHED AND <condition> | ¢f/
v

v

RIRIR (R

WHEN MATCHED DELETE

0 Alternative syntax: WHEN MATCHED (UPDATE|INSERT) ... [WHERE ...]
T Two when matched clauses are allowed if one uses update and the other delete.
2 Alternative syntax: WHEN MATCHED UPDATE ... [DELETE [WHERE ...]]




MERGE — conditional inser

/update/dele

¥,

S/ &
S/ P/ &
V.c?@/\®$@.\®
@W‘Z’?\?\Q’ooé@’@’\
/)0 /%

Merge

[NOT] MATCHED AND <condition>

Multiple update/insert branches

RIRIR (R

WHEN MATCHED DELETE

0 Alternative syntax: WHEN MATCHED (UPDATE|INSERT) ... [WHERE ...]
T Two when matched clauses are allowed if one uses update and the other delete.
2 Alternative syntax: WHEN MATCHED UPDATE ... [DELETE [WHERE ...]]

~ Multiple update/insert branches [ o/ T X' X

-~

As of cO9c875a

~

/

\(just before revert)
: V
Y /A
) 5 &
Vv L/cP/ @
Q)O x> \/CO >,
)
N/ &Y/.0 %O (OO

WHEN MATCHED DELETE ‘/'

X

X

0 Alternative syntax: WHEN MATCHED (UPDATE|INSERT) ...

[WHERE ...]

1 Two when matched clauses are allowed if one uses update and the other delete.

2 Alternative syntax: WHEN MATCHED UPDATE ...

[DELETE [WHERE

S |




JSON

(18111838



JSON

is [not] json predicate

on [ error | empty ] clauses

X

O No type constraints: is json f—value|-array|objeet |+ sealar—3. Also unique keys (T822).

1 No unknown on error. No expressions in default ...

on [ error | empty ]

json_object

json_array

json_objectagg

json_arrayagg(.. order by ..)

5

9 No colon syntax (T814). No key uniqueness constraint (T830):

! Defaults to absent on null. No construction by query: json_array(select ..).

2 No construction by query: json_array(select ..).

3 Supports comma (,) instead of values or colon (:).

4 No colon syntax (T814). No key uniqueness constraint (T830):
> Absent on null is buggy.

. Sug




JSON

json_exists

json_query

Q
X
json_value X
X
X

json_table

OOnly returning [ varchar2 | number ] — neither is a standard type.
! Defaults to error on error.

2 No quotes behavior: fkeep—}omit—Jquotes.
3with unconditional wrapper seems to be buggy. No quotes behavior: f—keep—tomit—I—quotes.

4 Without plan clause.




JSON

S gﬁ
S/ o @o}’kfb
Q/VQ)OC}%QV$
V/ X/ &/ /O /C
Q/<)/ O /%

JSON path: 1ax mode (default)

A

JSON path: strict mode

JSON path: item method

JSON path: multiple subscripts

JSON path: .* member accessor

JSON path: filter expressions

JSON path: starts with

%% %% %[ %[ %%
%% %[ % %[ %[:

RINRIRIRIRIRIRIR
RIRIR(K (R R| R

JSON path: 1like_regex

0 Lax mode does not unwrap arrays.

! Keyword lax not accepted (only default mode). Lax mode does not unwrap arrays.

2 Keyword strict is accepted but not honored.

3 Only in filters. Not supporting size(), datetime(), keyvalue(). type() returns null for arrays.
4 Not in json_value. Not in json_query. Not in json_table. Only as last step of expression.

> Not in json_query. Only as last step of expression.




F

JSON — Prelminary testing of patches

Used 7fe04ce9?2 as basis, applied those patches on top:

0001 -strict-do_to _ti
0002-pass-cstring-
0003-add-to_datetl
patr
patr
patr

0004-]

0005-]
0006-]

0007 -

0010-ac
0011-ac
0012-sgljson-v13.patch

0013-sql|

0014-)
0015-]

SO
SO
SO

h

n

n

eImMoVve-

SO

SO

A

A

tab
tab

mestamp-v14.patch

0-do_to_timestamp-v14.patch

-v14.patch
-gin-v14.patch

-json-v14.patch

PG_T

RY-in-jso

d-invisible-coercion-
d-function-formats-v13.patch

|son-json-v13.patch
e-v13.patch

oo aich tSQL/JSON: JSON_TABLE

A

me-v14.patch

SQL/JSON: jsonpath

oath-arithmetics-v14.patch

‘orm-v13.patch

SQL/JSON: functions



JSON — Preliminary testing of patches

A S/
S &/ &
N/ O/ /S D)@
NS/ T S
Q/N/O/R/2/%
is [not] json predicate | X | X . J1 X | X o/ <
on [ error | empty ] clauses x x . x x Q& Q?,O @C\Q’
O No type constraints: is json ' . Also unique keys (T822). NV C}\/ \Q’ O§ %) ~\.®
1 Also uni @, O/ & ;
unique keys (T822). Q)q/ KN 103 (%) O\/ O\/
2 No unknown on error. No expressions in default ... on [ error | empty ] @ Q& QO & %)

. |

json_object

Q
X
json_array x 1 , ,
X
X

json_objectagg
LV

O No colon syntax (T814). No key uniqueness constraint (T830): fwith{without}uniquefkeys].
! Defaults to absent on null. No construction by query: json_array(select ..).

2 No construction by query: json_array(select ..).
3 Supports comma (,) instead of values or colon (:).

RN RN
RN

json_arrayagg(.. order by ..)

4 No colon syntax (T814). No key uniqueness constraint (T830): fwithtwithout}unique—fkeys3. Sug

> Absent on null is buggy.




JSON — Preliminary testing of patches

v/ &

QA Qg} (;b

\90\/\Q’ $®@®.\Q’
o ~\®«®ooé6’§
\y4e s/ %

json_exists

json_query

Q
X
json_value X
X
X

json_table

OOnly returning [ varchar2 | number ] — neither is a standard type.
! Defaults to error on error.

2 No quotes behavior: f—keep—}—omit—J}-quotes.
3with unconditional wrapper seems to be buggy. No quotes behavior: f—keep—omit—quotes.

4 Without plan clause.




JSON — Preliminary testing of patches

A (378
vaooaé“gv$
V/X/ &/ /O /O
Q/<)/0O o/ %

JSON path: 1ax mode (default)
JSON path: strict mode
JSON path: item method

JSON path: multiple subscripts

JSON path: .* member accessor

JSON path: filter expressions

JSON path: starts with
JSON path: like_regex

0 Lax mode does not unwrap arrays.

1 Keyword 1ax not accepted (only default mode). Lax mode does not unwrap arrays.

2 Keyword strict is accepted but not honored.

3 Only in filters. Not supporting size(), datetime(), keyvalue(). type() returns null for arrays.
4 Not in json_value. Not in json_query. Not in json_table. Only as last step of expression.

> Not in json_value. Not in json_query.

 Not in json_query. Only as last step of expression.

7 Not in json_value.
T ———— T —

%% %% %[ %[ %%
%% %< %[ %%
<[«

w %[ %[ % %%
%% %% %%




Standard SQL Gap Analysis

Incomplete or "wrong™: Missing
» extract (declared type) » Row pattern recognition
» ignore nulls » lemporal tables
» agg(distinct) over() » Generated Columns
» fetch..percent,with ties » Combined data change
» Functional dependencies and retrieval

» Partitioned join

» listagg

Work In progress

» Distinct data types
» merge » JSON » ... (this list is not exhaustive)



How can | help?

=| publish an article on each new version once it Is released
(oretty late for helpful feedback)

= | start preparing for this article once a public beta is available
(but it is often pushed by higher priority tasks -> no guarantee)

=| do not monitor -nhackers, but Depesz's “waiting for”
(This is typically the first time | notice a new feature is coming up)

= |t you have questions on the standard or would like to get
conformance test results at a earlier stage, ping me.

Twitter: @MarkusWinand — markus.winand@winand.at




