SOME DETAILS OF THE ELLENBERG-GIJSWIJT PROOF OF
THE CAP SET PROBLEM

1. INTRODUCTION

In order to formalize, e.g. in the theorem prover Lean, the Ellenberg-Gijswijt
proof [I] of the cap set problem (and generalization) we spell out most details of
this proof, basically starting at Section (and a bit in the two sections before).
For the asymptotics at the end, we follow a different method. Furthermore, we
write out several details of the preliminary underlying mathematics (mainly linear
algebra).

NOTE: the only actual intended use of this informal document was for Johannes,
Rob, and Sander to work from in combination with discussions, explanations, etc.
In particular, with very few exceptions, no attempt was made to correct errors or
complete omissions unless still beneficial for the formalization process.

2. NOTATION AND CONVENTIONS

Throughout this whole article, k denotes a field.

A ring R contains a one, denoted 1 (which could be equal to zero, denoted 0r).
A ring homomorphism R — S sends 1g to 1g.

When we write ‘R-module’ in a statement, then this can be read throughout
the whole statement as ‘left R-module’ or throughout the whole statement as ‘right
R-module’.

We use ‘C’ for inclusion, and ‘C’ for strict inclusion.

3. VERY BASIC LEMMATA FOR SETS

Lemma 3.1. Let A and B be sets. Then the following hold.
(1) |AUB|+[ANB| = |A] + [B].
(ii) |AUB| < |A| +|B|.

Lemma 3.2. Let A and B be sets with A C B and A finite. Then |A| < |B].

4. VERY BASIC LEMMATA FOR GROUPS AND FIELDS

Lemma 4.1. Let & be an element of finite order m in a group (with identity e),
and n € Z. Then

m|n & 2" =e.

Proof. Note m € Z~¢. By devision with remainder we have unique ¢, € Z with
n=qgm+r and 0 <r <m. Note

m|n < r=0.
Since 0 < r < m = ord(z) we get

r=0sz2" =e.
1
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Using n = gm +r and 2™ = e gives: z" = (z™)%2" = elz” = 2", so
=es " =e.
Composing the three equivalences above, yields the desired result. O
Here is a quick corollary to Lagrange’s theorem in group theory
Lemma 4.2. Let G be a finite group (with identity e) and x € G. Then z!Cl = e.

Proof. We give a quick proof in the case that G is abelian (which is the only case
we need). The general case follows of course quickly from Lagrange’s theorem.
Note that G — G : g — zg is bijective. Now assume G is abelian. We get that
[lyec9 = lljec g = zlCl [I,ec 9. The result follows from multiplying the left

—1
and right hand side by (ngc g) . a

Lemma 4.3. Let F; be a finite field with q elements and x € F,. Then

g—1 0, ifx=0;
€T =
1, ifx#0.
Proof. If x = 0, then obviously 7= = 09~ = 0 (since ¢ > 1). Now let = # 0.
Then z € F}, which is a group of order ¢ — 1 with identity 1. So by Lemma we
get 2971 = 1. O

The previous lemma immediately translates to the following.

Lemma 4.4. Let F, be a finite field with q elements and x,a € F,. Then

| (5 —a)! = 1, ifz=aq;
0, ifz+#a.

5. VERY BASIC LEMMATA FOR MODULES

Throughout this section, R denotes a ring.
Kernel and image of a module are modules.

Lemma 5.1. Let M and N be R-modules and f € Hom(V,W).
(i) ker(f) is an R-submodule of M.
(i) im(f) is an R-submodule of N.
Proof. Just write out definitions ... (Il

The restriction of a morphism to a submode is a morphism and the corresponding
image is a submodule.

Lemma 5.2. Let M and N be R-modules, P an R-submodule of M, and f €
Hom(M, N). Then the following hold.

(i) flp (the restriction of f to P) is in Hom(P, N).

(i) f(P) is an R-submodule of N.

Proof. {]: Just write out definitions ...
fif: flp is in Hom(P,N) by part l So im(f|p) is an R-submodule of N by
Lemma [5.1] part (i). Finally, note f(P) = f|p(P) = im(f|p). O
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6. SOME BASICS FOR VECTOR SPACES

Lemma 6.1. Let V and W be finite dimensional k-vector spaces with dim(V') =
dim(W). Let f € Hom(V,W). Then the following statements are equivalent.
(i) [ is injectve.
(i) f is surjective.
(iii) f is bijective.
(iv) f € Isom(V,W).

For the part above Propostion 2 in Elleberg-Gijswijt, we actually only need

= @

A spanning set contains a basis (accepting the axiom of choice).

Lemma 6.2. Let V be a k-vector space and S a subset of V' that spans V. Then
S contains a basis of V.

Proof. Consider the collection of all linearly independent subsets of .S, ordered by
inclusion. By Zorn’s lemma this collection contains a maximal element B C S. One
checks (...) that such B must be a basis of V. O

A linearly independent set can be enlarged to a basis (accepting the axiom of
choice).

Lemma 6.3. Let V' be a k-vector space and S a linearly independent subset of V.
Then S is contained in a basis of V.

Proof. Consider the collection of all linearly independent supersets of S, ordered
by inclusion. By Zorn’s lemma this collection contains a maximal element B C S.
One checks (...) that such B must be a basis of V. O

Remark 6.4. 1If V is finite dimensional, we do of course not need the axiom of choice.
The Rank-nullity theorem.
Theorem 6.5. Let V and W be k-vector spaces and f € Hom(V,W). Then
dim(im(f)) 4+ dim(ker(f)) = dim(V).
Lemma 6.6. Let V' be a k-vector space and X a linear subspace of V. Then the
following hold.
(i) dim(X) < dim(V).
(i1) If dim(X) is finite and X # V, then dim(X) < dim(V).
Proof. Let B be basis for X. By Lemmal6.3 we have a basis B’ for V with B C B'.
Part (i) follows immediately.
For part (i), assume that dim(X) is finite and X # V. So B is finite and

B ¢ B’. By Lemma we get that |B| < |B’|. This means by definition that
dim(X) < dim(V). O

Lemma 6.7. Let V and W be k-vector spaces, X be a linear subspace of V', and
f € Hom(V,W). Then the following hold.

(i) f(X) is a linear subspace of W.
(i1) dim(f(X)) < dim(V).
(i4i) dim(f(X)) < dim(W).

() dim(f(X)) < dim(X).
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Proof. {iI: Specialize R = k in Lemma [5.2] part ().
Rest: also very basic (several possibilities. .. ). O

Definition 6.8. Let V be a k-vector space and Wi, Wy linear subspaces of V.
Then

(1) Wi+ Wy i={w; +we €V :w; €Wy and wy € Wi},

Lemma 6.9. Let V be a k-vector space and W1, Wy linear subspaces of V.. Then
W1 + Ws is a linear subspace of V.

Proof. Write out definitions. O

Lemma 6.10. Let V be a k-vector space and W1, Wy linear subspaces of V. Then
dim(W1 + Wg) < dlm(Wl) + dlm(Wg)

Proof. Let B, By be bases for Wi, W5 respectively. Then By U By spans Wy + Wa
(write out definitions). By Lemma we have a subset S C B; U By such that §
is a basis for Wy + W5. Now

dim(Wy + Wy) = | S| by definition since S is a basis for Wy + W)

< |By U Bs| since S C By U Bs)
< |Bi| + | B2| by Lemma [3.1] part (i)

—~ o~ o~

= dim(W1) + dim(W2) (by definition).

7. RANKS
Definition 7.1. Let V and W be k-vector spaces and f € Hom(V, W). Then

rank(f) := dim(im(f)).
It is basically immediate that the rank is bounded by the dimensions of the
domain and codomain.

Lemma 7.2. Let V and W be k-vector spaces and f € Hom(V,W). Then
rank(f) < min(dim(V'), dim(W)).
Proof. Apply e.g. Lemma [6.7} O
An important basic property is that the rank is subadditive.

Proposition 7.3. Let V and W be k-vector spaces and f,g € Hom(V,W). Then
rank(f + g) < rank(f) + rank(g).

Proof. We claim that
(2) im(f +g) Cim(f) + im(g).

Indeed, let w € im(f 4+ g). Then we have v € V such that w = (f + g)(v) =
f(v) + g(v) € im(f) 4 im(g), which proves the claim. Now

rank(f + g) = dim(im(f + g)) by definition)
< dim(im(f) + im(g)) by (2) and Lemma [6.6] part (i)

< dim(im(f)) + dim(im(g)) (by Lemma
= rank(f) + rank(g) by definition).

o~ o~ o~ o~



SOME DETAILS OF THE ELLENBERG-GIJSWIJT PROOF OF THE CAP SET PROBLEM 5

Next, a rank-property for multiplying (i.e. composing) linear maps.

Proposition 7.4. Let U, V, and W be k-vector spaces and f € Hom(V,W), g €
Hom(U,V). Then
rank(fg) < min(rank(f), rank(g)).

Proof. Note that is suffices to prove

(3) rank(fg) < rank(f)
and to prove
(4) rank(fg) < rank(g).

We start with proving ([@). ¢(U) C V, hence f(g(U)) C f(V), hence (using
Lemma [6.6] part (i) dim(f(g(U))) < dim(f(V)), which translates by definition to
rank(fg) < rank(f).

Next, we prove . By Lemma part with X = ¢g(U) (which is a linear
subspace by the same Lemma part (if)) we get dim(f(g(U))) < dim(g(U)), which
translates by definition to rank(fg) < rank(g). O

8. MATRICES

For finite sets A, B and vector spaces V := k4 W := kP we identify f €
Hom(V, W) with the B x A matrix associated to bases of indicator functions of
the singletons for A and B respectively.

Below are rank bounds for matrices of a specific form.

Lemma 8.1. Let A be a finite set, x,y : A — k functions, and consider the A x A
matriz M with entry My, := z(a)y(b) (for a,b € A). Then rank(M) < 1.

Proof. Let {e} denote a singelton. Consider the linear maps X : kit — kA with
matrix X, := 2(a) (for a € A) and Y : k4 — k{*} with matrix Y, , := y(a) (for
a € A). One immediately checks that we have the factorization M = XY. So by
Proposition [7.4) we get rank(M) < min(rank(X),rank(Y")). By Lemma|7.2] we have
rank(X) <1 and rank(Y) < 1. We conclude that rank(M) < 1. O

Lemma 8.2. Let A be a finite set and M an A x A diagonal matriz, i.e. Mgp =0
ifa#0b (fora,be A). Then

rank(M) = [{a € A: M, , # 0}].

Proof. Compute im(M) = span{¢, | a € A, My, # 0} where ¢, denotes the
indicator function of {a} ... O

Perhaps it is easier to write everything in terms of n X n matrices.

Lemma 8.3. Letn € Z>g and x := (z1,...,%n),Yy = (Y1,...,Yn) € k™. Consider
the n x n matriz M with entry M; ; == x;y; (for 1 <i,j <n). Then rank(M) < 1.

Proof. By definition of matrix multiplication we observe that M = z'y (so z! is a
column vector and y a row vector). So rank(M) < min(rank(z!), rank(y)) < 1. O

Lemma 8.4. Let n € Z>o and M an n x n diagonal matriz, i.e. M; ; =0 if i # j
(for 1 <i,5 <n). Then

rank(M) = |{i e {1,...,n} | M;; #0}|.
Proof. Just write out im(M). .. O
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9. FURTHER PRELIMINARIES

For R a ring and n € Zs>q, the polynomial ring R[zy,...,z,] has a canonical
structure as an R-module, which is free with basis all monomials Mp := {[]_, 27 :
e1,...,en € Z>o}. (Note that when n = 0 we simply get R back with Mp = {1}.)
Now in case R = k (a field) we get a k-vectorspace, whose dimension is (countably)
infinite when n # 0. Of course, any subset S C Mp is the basis of the linear
subspace spany(S) (of dimension |S|).

For every a € R™ we have the (local) evaluation homomorphism (say of R-
modules) ev, : R[z1,...,2,] — R given by f — f(a). This yields a (global)
evaluation homomorphism ev : R[xy,...,2,] — (R™ — R) given by f — (a —
eve(f)), i.e. simply the canonical function associated to a polynomial. Note that
R"™ — R = R®" consists of all function from R™ to R and has (canonically) the
structure of an R-module.

Lemma 9.1. Let Fy,n,M,, and S, be as defined in Section . Then the re-

.. Fr
striction (of ev : Fylz1,...,2n] — Fg* to Sp) ev’ := ev
isomorphism of k-vectorspaces.

Fro
s, @ Sn = Fg' is an

Proof. Note that S,, is a linear subspace of dimension |M,,| = ¢™ of the k-vectorspace
klx1,...,2,] since S, is by definition the span of M, (a subset of the standard

monomial basis of k[z1,...,2,]). Write A := Fy, then ng = IF;;‘ has dimension
|A| = ¢™ (as F,-vectorspace). So dim(S,,) = dim(Iij) and bij Lemma it suffices
to prove that ev’ is surjective. Since the indicator functions ¢, : A — Fy (given
by to(z) = 1 if x = a and (,(x) = 0 otherwise) for a € A give a basis for IF‘q4,
it suffices that these are in the image of ev’. To show the latter, let a € A and
define f =[], (1 —(x; — ai)q_l) € S,,. Then by Lemma we readily see that
ev'(f) = tqg. O

Lemma 9.2. Let V be a linear subspace of the k-vectorspace klxy,...,x,], let
A C K™, and let

X:={peV:Vaec A:p(a)=0}.
Then X is a linear subspace of V with
dim(X) + |4] > dim(V).

Proof. Consider the map

iV =k pe (p(a)aea
Note that this is a linear map with

ker(f) = X

and

dim(im(f)) < dim(k?) = |A|.
By Theorem

dim(V) = dim(X) 4+ dim(im(f)) < dim(X) + |A].

The lemma follows. O
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10. NOTATION FROM [I]

o [,: finite field with ¢ elements

e neZsg

o Fy[z1,...,2,]: the ring of polynomials in n variables with coefficients in
F,; Note that it also has the canonical structure of an F,-vector space (of
infinite dimension).

o M, = {[]'" 2} €Fylz1,...,2,] : 0 < a; < q—1}; note | M,| = q¢".

o S, = {ZmeMﬂ/ CmM @ Gy € Fg}: the Fy-vector space spanned by M,,; note
that M, is a basis, hence dim(S,,) = |M,| = ¢™.

e For d € [0, (¢ — 1)n] (the latter is an interval in the real numbers)

M2 = {m € M, : deg(m) < d}

n n
= {Hxi“ €Fylz1,...,2,]:0<a; <g—1 and Zai <d}.
=1 1=1
o ST:={>, caa Cmm : ¢y € Fy}: the Fy-vector space spanned by Mg; note
that M2 is a basis.
e mg = dim(S%) = | M.

11. PROOF OF PROPOSITION 2 FROM [I]

Proposition 11.1 (Proposition 2 from [1]). Let A C F?

0 @B,y € Fy such that

(5) a+pB+v=0,
and P € S% such that for all a,b € A with a # b:
(6) P(aa+ pb) = 0.
Then

Ha € A: P(—vya) # 0} < 2mg)s.
Let «, 8,7, A, P be as in the assumptions..

See the first 9 lines of the proof of Proposition 2 in [I]. (This part is actually a
key observation for the solution to the cap set problem; it was discussed and largely
formalized at the start of the formalization project.)

We continue after the definition of the A x A matrix B.
For all m € M;,/* the matrices (m(a) Fyn (b)) (a.)caxa and (G (a)m(b)) (asecaxa

have rank < 1 by Lemma B is the sum of 2\M3/2| = 2m o of these rank <1
matrices, so by Proposition (and induction) we get
(7) rank(B) < 2mgys.

We note hat B is a diagonal matrix, indeed for a,b € A with a # b we have
By = P(aa+pb) = 0 (first identity by definition of B and second by assumption@.
For a € A we have B, , = P(aa + fa) = P(—va) (first identity by definition of B
and second by assumption . So by Lemma
(8) rank(B) = [{a € A| P(—ya) # 0}|.

Together, and immediately imply the required conclusion.



8 SOME DETAILS OF THE ELLENBERG-GIJSWIJT PROOF OF THE CAP SET PROBLEM

12. PROOF OF THEOREM 4 FROM [I]

Theorem 12.1 (Theorem 4 from [1]). Let o, 3,y € Fy such that

(9) a#0orB#0ory#0

and

(10) a+B+y=0;

and let A C Fy such that

(11) Vai,as,a3 € A:aar + Baz +vas =0 = a1 = az = as.
Then

|Al < 3M(g—1)n/3-

Let «, B8, , A satisty @, , and . By (@, at least one of «, 3,y is nonzero.
Note that the whole theorem is symmetric in «, 8,7, so by swapping v with « or

we can and will assume that

(12) Y A0,
Let

(13) de[0,(q—1)n]

(in fact, we shall later only need d = 2(q — 1)n/3) and let

(14) Viz {pest|Va e — (—A): pla) =0},

Lemma 12.2.

dim(V) >mg—q" + |A‘
Proof. Note that
[Fg = (=vA)| = [Fg| — | = vA[ = ¢" = [ = vA| = ¢" — |A],

where in the last step we used | —vyA| = |A| since A — —vA : a — —va is a bijection
(since v # 0). By Lemma (with V, A, X replaced by S¢, Fy —(=vA),V) we have

dim(V) > dim(Sy) — [Fy — (—vA)[ = ma — (¢" — |A]) = ma — ¢" + |A|.
(]

For any p € V' we define the set
Sup(p) = {a € F7' | pla) # 0}
Choose P € V such that
(15) VP €V : Sup(P) C Sup(P’) = Sup(P) = Sup(P'),

which is possible since Fy is finite (if such a P would not exist, then we could
inductively obtain an arbitrarily long strictly increasing chain of subsets of Fy,
which is impossible). Let

¥ = Sup(P).

Lemma 12.3.
5] > dim(V)
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Proof. Suppose not, i.e. |X| < dim(V). Let
W:={QeV|VaeX:Q(a)=0}
By Lemma 9.2
dim(W) > dim(V) — |Z| > 0.

So we have some Q € W with Q # 0.
Now let a € X, then by definition Q(a) = 0 and P(a) # 0, so

(P +Q)(a) = P(a) + Q(a) = P(a) # 0.
Since @ # 0, Va € ¥ : Q(a) = 0, and the associated function e(Q) : Fy — F, is not
identically zero, we have some b € Fy — X:

Q) #0.
Since sup(P) = X, we get

hence
(P+Q)(b) = P(b) + Q1) = Qb) 0.
We conclude that P + @ € V satisfies

sup(P) =X C XU {b} C sup(P + Q),

which contradicts the choice of P (|15)). O
Lemma 12.4.

1X] < 2mygs
Proof. Let

S(A) :={aas + Bas € Fy | a1,a2 € A with ay # as }.
We claim that
(16) S(A)N —vA = 0.
Indeed, suppose the claim does not hold, then there are a1, as,as € A with a; # as
and
aay + faz = —yas.
From we get a1 = as = a3, contradicting a; # ag, which proves the claim.
Note that any p € V vanishes on the complement of —yA by definition of V ,
so this holds in particular for P € V. By S(A) is contained in the complement
of —yA, so P vanishes on S(A), i.e. for all a1, a3 € A with a; # as:
P(aa; + Bag) = 0.
Applying Proposition [L1.1| now gives
{a€A| P(=7a) £ 0} < 2mgpn.
Together with X = {b € Fy | P(b) # 0} C —yA we get (through the bijection
a+b:=—va)
Xl =[{aeA[P(—ya) # 0} < 2mys.

Lemma 12.5.
q" —mg < Mg_1)yn—d
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Proof. Let I == {x € Z | 0 < ax < qg—1} (so |I| = ¢q). Note that we have a
(canonical) bijection

n
f:M, —I", H:c;“ = (ar,...,an).
i=1

Define
A=I"
B:={(ai,...,a,) € I"] Zaiﬁd}
i=1
n
O::{(al,...,an)61"| Zai>d}
i=1
D:={(ar,....a,) €I"| > a; < (g—1)n—d}
i=1
E:={(a1,...,an) €I" [ Y a; < (g—1)n—d}.
i=1
Note

Al =q"
B = [£(M;)] = [My| = mq
|Cl=|A| = |B] =¢" —mgq (since A=BUC and BNC = 0).
Note that we have a bijection (actually an involution)
t: A=A (a1,...,0,) = (¢—1—a1,...,q—1—ay).
And «(C) = D, since for (ai,...,a,) € A:

Zai>d<:>Z((q—1)—ai):(q—l)n—Zai<(q—1)n—d.

Note D C E, hence |D| < |E|. Putting things together gives
¢" —mq=|C| = C)| = [D| < |E| = | f(MT ") = M"Y = mg-1yn-a-
O

Combining the four previous lemmata yields a nice upper bound for |A].

Lemma 12.6.
|A] < 2mga + Mg-1)n—d
Proof.
mag —q¢" +|A] <dim(V) (by Lemma
< || (by Lemma
<2mgs  (by Lemma ,
hence

mq —q" + |A] < 2mgys.
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First adding (¢" — mg) to both sides, and next applying Lemma [12.5] gives

|A] < 2mgye + (¢" — ma) < 2mgjo +Mg—1)n—d-

To finish the proof of Theorem we take
d:=2(q— 1)n/3,
which obviously meets . Now
d/2=(q—1)n/3 and also (¢ — 1)n —d = (¢ — 1)n/3,
so Lemma [12.6| specializes to
|A] < 3mg—1yn/3

which was to be proven.

13. PROOF OF ASYMPTOTICS FOR M(g—1)n/3

This includes Corollary 5 in[I].

For the asymptotics, [I] uses Cramér’s theorem on large deviations. A more
elementary approach, using Stirlings’s approximation for the factorial function,
was described in [2]. In [3] another (more) elementary approach, using recurrence
sequences, was given. Inspired by loc. cit., we work out yet another (even more
elementary) approach, as follows.

We start with the geometric sum.

Proposition 13.1. Let R be a ring, v € R, and m € Z>y. Then

m—1

(x—l)ij:xm—l.

Jj=

Proof. Straightforward induction. (Note that for the case m = 0, the sum is empty,
which has value 0.) O

Corollary 13.2. Let m € Z>q and x € k. Then

-1 a1
< 2= m_ll if x # 1
= m ife=1.

A basic estimate for the reciprocal geometric sum.

Lemma 13.3. Letx €¢ R with 0 < x <1 and M € Z>y. Then

PP —
s i — 1 —gaM’
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Proof.
Moy 1 MM
P Eten T D
7=0 7=0
1M
_ M-
= ="
=0
LM
_ 4 i
foZx
1=0
11— M+t
T M g
< 1 1
M1 -z

O

Definition 13.4. Let m € Z>;. An element of k is called a primitive m-th root of
unity if it has order m in the multiplicative group k*.

Lemma 13.5. Let m € Z>1, ¢ € k a primitive m-th root of unity, and ¢ € Z. Then
m—1 . .
Z Ci — {0 if mti;
o mifm|i.
Proof. Apply Corollary with # = ¢*, using that (¢*)™ = (¢(™)! = 1° = 1 and
that (by Lemma ¢* =1 if and only if m | i. O

This lemma is the basis for the discrete analog of using Cauchy’s integral theorem

for picking out a coefficient of a (Laurent) polynomial. We start with the constant
coefficient.

Proposition 13.6. Let f € k[x,x7 '] be a Laurent polynomial. Then for any
positive integer m > max(deg,(f),deg,-1(f)), ¢ € k a primitive m-th root of
unity, and r € k*, the constant coefficient of mf is given by

S 1),

Proof. Write f = Zgil(mfl) a;x* for (unique) a_(m—1),--->0m-1 € k (any of
which could equal zero). So the constant coefficient of mf is mag. Then

=

m— m—1

m—1
Z f(red) = Z Z a;(r¢?)"  (by substituting definitions)

Jj= j=0 i=—(m—1)

m—1 m—1
= Z a;r’ Z ¢*7 (by changing order of summation, etc.)
i=—(m—1) j=0
= aor’m (by Lemma using that for i = —(m —1),...,m—1:
= mag (by commutativity and since r’ = 1 by definition)

O

m|isi=0)
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As a quick corollary we have a handy formula for picking out any coefficient.
The proof of the previous proposition could of course also be adapted to prove the
theorem below directly (so that we do not have to introduce Laurent polynomials).

Theorem 13.7. Let f € k[z] andi € Z>o. Then for any integer m > max(deg(f), 1),
¢ € k a primitive m-th root of unity, and r € k*, the i-th coefficient of mf is given
by

M l

’LC’L] :

7=0

Proof. Note that f/x% is a Laurent polynomial whose constant coefficient equals
the i-th coefficient of f. Now apply Proposition with f/z% instead of f. O

Define for j € Z>g

= {(ar, . an) € 0,1, g =11 | D ai =4},
=1

We have an obvious expression for mg as sum of these values.

Lemma 13.8.

Proof. This follows immediately by noting, as in the proof of Lemma that

ma= (a1, .. an) €{0,1L,....q— 13" | S a; <d}].
=1

In line with [3], we recognise the cg»")’

Lemma 13.9. For all j € Z>y: an)

s as certain polynomial coefficients.

equals the j-th coefficient of the polynomial
(1+z+... +xq*1)n € Z[x].

Proof. For ‘fixed ’ ¢, the statement follows by induction on n. The Lemma trivially
holds for n = 1. Now suppose the lemma holds for a certain n € Z~g. Denote
f=1+xz+...+27 ! € Z[z]. Now for all j € Z>o:

coef; (f" ) = coef; (™ f) Zcoef ) coef j_;( Zc(”)c(l) = (”‘H),

1=0

where the last equality follows readily (on paper...) from the definition of the
(N),
cy s d

Using our earlier theorem to pick out coefficient, we can easily estimate c;(n)
(and hence my).

Lemma 13.10. For any j € Z>o and any r € Ry

g—1\n
C(‘n)<(1+r+..j+r )
J - rJ
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Proof. Choose m € Z~q with m > max(n(qg—1), 7). Let ¢ := exp(2nrv/—1/m) € C.
Then ( is a primitive m-th root of unity and |{| = 1. Now

o = coef; (1+z + ... +2171)") (by Lemma [13.9)
1m—1 1_|_T<j+”._|_7,<jqfln
- E Z ( TJCZJ ( ) ) (by Theorem
1=0
m—1 . .
1 (147 + ...+ (r¢g7)a—Hn ) N
- E Z TJCU (Slnce C; ) 2 0)
=0
1 m—1 1 j o jla—1\n
= m Z LRl LC”T ") (by the triangle inequality, etc.)
1=0

-1

3

SI\IH
™

Il
=)

(I+7r+...4rihn
ri

(since [¢| =1 and r > 0)

(2

_|_

—
—_
=

+ .. rihn
rJ

(since all m summands are independent of 7).
(]

For r € Ry and q € Z~( write

o 14+7r+...+r771
T4 r(a=1)/3

For simplicity we first estimate the relevant asymptotics for Theorem in case
3|n (which is harmless.)

Lemma 13.11. Let n = 3N with N € Z~o andr € R with 0 <r < 1. Then

1 n
Mg-1n/3 = Mg-HN < 7 Crg-

1_
Proof.
(¢-1)N
Mg—1)N = Z cg.BN) (by Lemma [13.8])
§=0
(¢—1)N —1\3N
1 . q
< ¥ (Ltr+ Tj+r ) (by Lemma [[3.10)
j=0
(¢-1)N 1
_ q—1\3N -
=(1+r+...+r77h 2) -
j:

1 1
< o q—1\3N -
I+r+ +7r4) @ON1 7 (by Lemma [13.3])

1 <1+r+...+rq1>”

(since N =n/3)

“1-r r@-1)/3

1
= 17_74077}7‘1 (by definition).

O

We want to consider all n € Z~( but do not care about the constant 1/(1 — r).
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Remark 13.12. Below we do not use Landau’s big O notation since all multiplicative
constants can easily be made explicit.

Theorem 13.13. Letn € Z~g andr € R with 0 <r < 1. Then

2
n

7,4
1—r "7

Proof. Let i € {0,1,2} such that n’ := n + i is divisible by 3. Then

Mg—1)n/3 <

Mg—1)n/3 < Mg—1)n’/3  (since dy < dy = mg, < mg,; similarly for increasing n)

1 7
< 1—6’% (by Lemma [13.11] with n’ instead of n)
— /r ’
1
+2 . /
< 1—7"02‘1 (since n’ <n+2and C, 4 > 1)
C2
=1 ~Lop,  (by rewrite).
—7r )

O

Together with Theorem [12.1| we arrive at the following explicit asymptotic upper
bound for |A|.

Theorem 13.14. Let the notation and conditions be as in Theorem [12.1] and let
reR with0<r<1. Then

303’
1—

4l < ey,

Proof.

|A] = 3m(g—1)ny3 (by Theorem [12.1])
2

3CE 4
< 4cr,  (by Theorem [13.13).

“1l-r

O

Lemma 13.15. For all g € Z>> there exists an r € R with 0 < r < 1 such that
Crq <q

Proof. Note C1 4 = q and £C gl,=1 >0 ...
OR show via elementary way that with r := (¢—1)/(¢+2) wehave C, , < ¢ ... O

We get our main result.

Theorem 13.16. Let the notation and conditions be as in Theorem [12.1 There
exist B,C € Rsq with C < g, such that for alln € Z~o: |A| < B-C".

Proof. Choose r as in Lemma such that C' := C,, < ¢, and let B :=
3C2,/(1—r). Now apply Theorem [13.14 O

For several values of ¢ we can be very explicit about a value of ¢ that works. (In
fact, the values of ¢ below will be optimal (or a precise numerical approximation
thereof) given the proof method, but we shall not prove this.) We keep the notation

and conditions as in Theorem [[2.1]
First the cap set problem.

Theorem 13.17. Let g =3 and c := %\3/ 207 + 33v/33. Then |A| = O (c").
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Proof. Let r:= (—1++/33)/8. Then 0 < r < 1 and

147472 3.\3/7ﬁ

Crq =

Now apply Theorem [13.14

From now on we express results numerically for convenience. For 3 < ¢ < 50 a
prime power we define real (or even rational) numbers r and C; in the following
(Note that the case ¢ = 2 is not very interesting.)

table.

T

O

C

q
0.59307033081725358248132643352736616477753305724785
0.65729810613837599082505552000480171164504768618926
0.70415268204813468689198669322132696343638075791281
0.76780677969242521445924402966336695842991975939993
0.79038872370790461105610875566178974381236959429548
0.80897722790523491111266988703268198209152068465472
0.83776747968601146197311784198457216654957997594351
0.85902510166765698759178640475123322423462991338793
0.88218894242913276503686171517072556839234842435080
0.88830758043507257326234095105382783282727016343919
0.89881856557451588672455240338174322453086526354899
0.91484764548356435179270332283816978457151143428432
0.92109805634831861028657723785713430394845587760601
0.92649385906623403043220219721359816616215863083796
0.93119907005099645802948397596620351689310355515557
0.93533826774922682502465725097793299160275771076073
0.93722658990392746349985428712960304612407039759198
0.94522485380783942198322445203198854044829554690688
0.95029187505308080110749234851246282509920205764457
0.95248941722836481804826949752866830065974434752949
0.9563489979629973022516530178602736927818005298054 1
0.95805283290333388408037131751427604295954501076278

9q
2.7551046130236330002212765465336861952158754264635
3.6107186132760393498186490083840586274651085857365
4.4615777657025778114084821388476409029790387188305
6.1562048632167384164286449905468414662054058278776
7.0015547549940074581322473123914531371412908811578
7.8461205825858057125065843275612459307392375811229
9.533685392075550992755846001437429533000441168130
11.21990798911487743710354307874670920930982759504
13.74776213458745700186503241050408124151866114255
14.59011716296566909733292591731068890488059646602
16.27455106840026451533064402457870391069290751032
19.64263645872880846855649800712949925601009365863
21.32640831010467458504116449092661287095567773974
23.01005118248578718050749133276735336886865749163
24.69359086763659075194245991317129618483238935200
26.37704670973149142375844507925916831824336087591
27.21874795251220672602238447846984018710029446169
31.4270435376707332149753215376086486868022567564
34.7934874191255938965128570261124940396961589056
36.4766612098789974066551907920324679415365311333
39.8429325497588118635458901612103753347737254186
41.5260361969247677787332196251061200739686787636

Theorem 13.18. Let 3 < g < 50 be a prime power. Then |A] = O (Cg),

Proof.

By Theorem

13.14| we have |A| = O (Cﬁq,q). Now check that C;., , < C,.

Not yet checked for round off errors, perhaps the last digit of some of the C,’s has
to be raised by 1 ...

O

These values agree with those given in [3] (where 4 < ¢ < 31).

Remark 13.19. Exact (optimal, for the method) values for Cy and C5 could be
given is terms of radicals, analogous to Theorem [I3.17]

14. A FURTHER SIMPLIFICATION FOR THE ASYMPTOTICS

Thanks to a remark from Dion Gijswijt on our preprint we can significantly
simplify the asymptotics proof from the previous section.

Recall the following two definitions and two lemmas from the previous section.

For j € ZZO let

an) =1{(a1,...,a,) €{0,1,...,¢—1}"| Zaizjﬂ.
i=1

For r € Ry and q € Z~( write

1+7r+...+rit

Crq 1= a—1)/3

Lemma (Lemma [13.8).

Ld]

mq = Z an) .
7=0
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Lemma (Lemma . For all j € Z>: cg.n) equals the j-th coefficient of the
polynomial
(I+z+...+297H)" € Z[a].

We quickly obtain a slightly improved version of Theorem (and Lemma.
Theorem 14.1. Letn € Zsg andr € R with 0 <r < 1. Then
Mg-1)n/3 < Crlg-
Proof. Write e := | (¢ — 1)n/3]. Note that for integers 0 < j < e (using 0 < r < 1)

(17) re <,
Now
M(g—1)n/37" = Z c§")re (by Lemma and distributivity)
§=0
< Z c§")rj (using and that the an) >0)
§=0
(¢—1)n .
< Z cgn)r-7 (since e < (¢ — 1)n and all summands are > 0)
7=0

=(1+7r+...+7r7")" (by Lemmal[i3.9).

Hence

B R s M Lk TS Ay M6 B U SPPPE R
Mg=1)n/3 = rL@a=1)n/3] = rla—T)n/3 - r(a—1)/3 - na

O

Using Theorem instead of Theorem we can replace Theorems [13.14]
and |13.16| by the following slightly cleaner versions.

Theorem 14.2. Let the notation and conditions be as in Theorem [12.1 and let
reR with0<r<1. Then
A] < 3cm,

Theorem 14.3. Let the notation and conditions be as in Theorem [12.1. There
exists C € Rsg with C < q, such that for alln € Zso: |A| <3-C™.
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