
SOME DETAILS OF THE ELLENBERG-GIJSWIJT PROOF OF

THE CAP SET PROBLEM

1. Introduction

In order to formalize, e.g. in the theorem prover Lean, the Ellenberg-Gijswijt
proof [1] of the cap set problem (and generalization) we spell out most details of
this proof, basically starting at Section 10 (and a bit in the two sections before).
For the asymptotics at the end, we follow a different method. Furthermore, we
write out several details of the preliminary underlying mathematics (mainly linear
algebra).

NOTE: the only actual intended use of this informal document was for Johannes,
Rob, and Sander to work from in combination with discussions, explanations, etc.
In particular, with very few exceptions, no attempt was made to correct errors or
complete omissions unless still beneficial for the formalization process.

2. Notation and conventions

Throughout this whole article, k denotes a field.
A ring R contains a one, denoted 1R (which could be equal to zero, denoted 0R).

A ring homomorphism R→ S sends 1R to 1S .
When we write ‘R-module’ in a statement, then this can be read throughout

the whole statement as ‘left R-module’ or throughout the whole statement as ‘right
R-module’.

We use ‘⊂’ for inclusion, and ‘(’ for strict inclusion.

3. Very basic lemmata for sets

Lemma 3.1. Let A and B be sets. Then the following hold.

(i) |A ∪B|+ |A ∩B| = |A|+ |B|.
(ii) |A ∪B| ≤ |A|+ |B|.

Lemma 3.2. Let A and B be sets with A ( B and A finite. Then |A| < |B|.

4. Very basic lemmata for groups and fields

Lemma 4.1. Let x be an element of finite order m in a group (with identity e),
and n ∈ Z. Then

m|n⇔ xn = e.

Proof. Note m ∈ Z>0. By devision with remainder we have unique q, r ∈ Z with
n = qm+ r and 0 ≤ r < m. Note

m|n⇔ r = 0.

Since 0 ≤ r < m = ord(x) we get

r = 0⇔ xr = e.
1
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Using n = qm+ r and xm = e gives: xn = (xm)qxr = eqxr = xr, so

xr = e⇔ xn = e.

Composing the three equivalences above, yields the desired result. �

Here is a quick corollary to Lagrange’s theorem in group theory

Lemma 4.2. Let G be a finite group (with identity e) and x ∈ G. Then x|G| = e.

Proof. We give a quick proof in the case that G is abelian (which is the only case
we need). The general case follows of course quickly from Lagrange’s theorem.
Note that G → G : g 7→ xg is bijective. Now assume G is abelian. We get that∏

g∈G g =
∏

g∈G xg = x|G|
∏

g∈G g. The result follows from multiplying the left

and right hand side by
(∏

g∈G g
)−1

. �

Lemma 4.3. Let Fq be a finite field with q elements and x ∈ Fq. Then

xq−1 =

{
0, if x = 0;

1, if x 6= 0.

Proof. If x = 0, then obviously xq−1 = 0q−1 = 0 (since q > 1). Now let x 6= 0.
Then x ∈ F∗q , which is a group of order q − 1 with identity 1. So by Lemma 4.2 we

get xq−1 = 1. �

The previous lemma immediately translates to the following.

Lemma 4.4. Let Fq be a finite field with q elements and x, a ∈ Fq. Then

1− (x− a)q−1 =

{
1, if x = a;

0, if x 6= a.

5. Very basic lemmata for modules

Throughout this section, R denotes a ring.
Kernel and image of a module are modules.

Lemma 5.1. Let M and N be R-modules and f ∈ Hom(V,W ).

(i) ker(f) is an R-submodule of M .
(ii) im(f) is an R-submodule of N .

Proof. Just write out definitions . . . �

The restriction of a morphism to a submode is a morphism and the corresponding
image is a submodule.

Lemma 5.2. Let M and N be R-modules, P an R-submodule of M , and f ∈
Hom(M,N). Then the following hold.

(i) f |P (the restriction of f to P ) is in Hom(P,N).
(ii) f(P ) is an R-submodule of N .

Proof. ‘i’: Just write out definitions . . .
‘ii’: f |P is in Hom(P,N) by part i. So im(f |P ) is an R-submodule of N by

Lemma 5.1 part (ii). Finally, note f(P ) = f |P (P ) = im(f |P ). �
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6. Some basics for vector spaces

Lemma 6.1. Let V and W be finite dimensional k-vector spaces with dim(V ) =
dim(W ). Let f ∈ Hom(V,W ). Then the following statements are equivalent.

(i) f is injectve.
(ii) f is surjective.

(iii) f is bijective.
(iv) f ∈ Isom(V,W ).

For the part above Propostion 2 in Elleberg-Gijswijt, we actually only need
‘(ii)⇒ (iv)’.

A spanning set contains a basis (accepting the axiom of choice).

Lemma 6.2. Let V be a k-vector space and S a subset of V that spans V . Then
S contains a basis of V .

Proof. Consider the collection of all linearly independent subsets of S, ordered by
inclusion. By Zorn’s lemma this collection contains a maximal element B ⊂ S. One
checks (. . . ) that such B must be a basis of V . �

A linearly independent set can be enlarged to a basis (accepting the axiom of
choice).

Lemma 6.3. Let V be a k-vector space and S a linearly independent subset of V .
Then S is contained in a basis of V .

Proof. Consider the collection of all linearly independent supersets of S, ordered
by inclusion. By Zorn’s lemma this collection contains a maximal element B ⊂ S.
One checks (. . . ) that such B must be a basis of V . �

Remark 6.4. If V is finite dimensional, we do of course not need the axiom of choice.

The Rank-nullity theorem.

Theorem 6.5. Let V and W be k-vector spaces and f ∈ Hom(V,W ). Then

dim(im(f)) + dim(ker(f)) = dim(V ).

Lemma 6.6. Let V be a k-vector space and X a linear subspace of V . Then the
following hold.

(i) dim(X) ≤ dim(V ).
(ii) If dim(X) is finite and X 6= V , then dim(X) < dim(V ).

Proof. Let B be basis for X. By Lemma 6.3 we have a basis B′ for V with B ⊂ B′.
Part (i) follows immediately.

For part (ii), assume that dim(X) is finite and X 6= V . So B is finite and
B ( B′. By Lemma 3.2 we get that |B| < |B′|. This means by definition that
dim(X) < dim(V ). �

Lemma 6.7. Let V and W be k-vector spaces, X be a linear subspace of V , and
f ∈ Hom(V,W ). Then the following hold.

(i) f(X) is a linear subspace of W .
(ii) dim(f(X)) ≤ dim(V ).

(iii) dim(f(X)) ≤ dim(W ).
(iv) dim(f(X)) ≤ dim(X).
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Proof. ‘i’: Specialize R = k in Lemma 5.2 part (ii).
Rest: also very basic (several possibilities. . . ). �

Definition 6.8. Let V be a k-vector space and W1,W2 linear subspaces of V .
Then

(1) W1 +W2 := {w1 + w2 ∈ V : w1 ∈W1 and w2 ∈W2}.
Lemma 6.9. Let V be a k-vector space and W1,W2 linear subspaces of V . Then
W1 +W2 is a linear subspace of V .

Proof. Write out definitions. �

Lemma 6.10. Let V be a k-vector space and W1,W2 linear subspaces of V . Then

dim(W1 +W2) ≤ dim(W1) + dim(W2).

Proof. Let B1, B2 be bases for W1,W2 respectively. Then B1 ∪B2 spans W1 +W2

(write out definitions). By Lemma 6.2 we have a subset S ⊂ B1 ∪ B2 such that S
is a basis for W1 +W2. Now

dim(W1 +W2) = |S| (by definition since S is a basis for W1 +W2)

≤ |B1 ∪B2| (since S ⊂ B1 ∪B2)

≤ |B1|+ |B2| (by Lemma 3.1 part (ii))

= dim(W1) + dim(W2) (by definition).

�

7. Ranks

Definition 7.1. Let V and W be k-vector spaces and f ∈ Hom(V,W ). Then

rank(f) := dim(im(f)).

It is basically immediate that the rank is bounded by the dimensions of the
domain and codomain.

Lemma 7.2. Let V and W be k-vector spaces and f ∈ Hom(V,W ). Then

rank(f) ≤ min(dim(V ),dim(W )).

Proof. Apply e.g. Lemma 6.7. �

An important basic property is that the rank is subadditive.

Proposition 7.3. Let V and W be k-vector spaces and f, g ∈ Hom(V,W ). Then
rank(f + g) ≤ rank(f) + rank(g).

Proof. We claim that

(2) im(f + g) ⊂ im(f) + im(g).

Indeed, let w ∈ im(f + g). Then we have v ∈ V such that w = (f + g)(v) =
f(v) + g(v) ∈ im(f) + im(g), which proves the claim. Now

rank(f + g) = dim(im(f + g)) (by definition)

≤ dim(im(f) + im(g)) (by (2) and Lemma 6.6 part (i))

≤ dim(im(f)) + dim(im(g)) (by Lemma 6.10)

= rank(f) + rank(g) (by definition).

�
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Next, a rank-property for multiplying (i.e. composing) linear maps.

Proposition 7.4. Let U , V , and W be k-vector spaces and f ∈ Hom(V,W ), g ∈
Hom(U, V ). Then

rank(fg) ≤ min(rank(f), rank(g)).

Proof. Note that is suffices to prove

(3) rank(fg) ≤ rank(f)

and to prove

(4) rank(fg) ≤ rank(g).

We start with proving (3). g(U) ⊂ V , hence f(g(U)) ⊂ f(V ), hence (using
Lemma 6.6 part (i)) dim(f(g(U))) ≤ dim(f(V )), which translates by definition to
rank(fg) ≤ rank(f).

Next, we prove (4). By Lemma 6.7 part (iv) with X = g(U) (which is a linear
subspace by the same Lemma part (i)) we get dim(f(g(U))) ≤ dim(g(U)), which
translates by definition to rank(fg) ≤ rank(g). �

8. Matrices

For finite sets A,B and vector spaces V := kA,W := kB we identify f ∈
Hom(V,W ) with the B × A matrix associated to bases of indicator functions of
the singletons for A and B respectively.

Below are rank bounds for matrices of a specific form.

Lemma 8.1. Let A be a finite set, x, y : A→ k functions, and consider the A×A
matrix M with entry Ma,b := x(a)y(b) (for a, b ∈ A). Then rank(M) ≤ 1.

Proof. Let {•} denote a singelton. Consider the linear maps X : k{•} → kA with
matrix Xa,• := x(a) (for a ∈ A) and Y : kA → k{•} with matrix Y•,a := y(a) (for
a ∈ A). One immediately checks that we have the factorization M = XY . So by
Proposition 7.4 we get rank(M) ≤ min(rank(X), rank(Y )). By Lemma 7.2 we have
rank(X) ≤ 1 and rank(Y ) ≤ 1. We conclude that rank(M) ≤ 1. �

Lemma 8.2. Let A be a finite set and M an A×A diagonal matrix, i.e. Ma,b = 0
if a 6= b (for a, b ∈ A). Then

rank(M) = |{a ∈ A : Ma,a 6= 0}|.

Proof. Compute im(M) = span{ ιa | a ∈ A,Ma,a 6= 0 } where ιa denotes the
indicator function of {a} . . . �

Perhaps it is easier to write everything in terms of n× n matrices.

Lemma 8.3. Let n ∈ Z≥0 and x := (x1, . . . , xn), y := (y1, . . . , yn) ∈ kn. Consider
the n×n matrix M with entry Mi,j := xiyj (for 1 ≤ i, j ≤ n). Then rank(M) ≤ 1.

Proof. By definition of matrix multiplication we observe that M = xty (so xt is a
column vector and y a row vector). So rank(M) ≤ min(rank(xt), rank(y)) ≤ 1. �

Lemma 8.4. Let n ∈ Z≥0 and M an n× n diagonal matrix, i.e. Mi,j = 0 if i 6= j
(for 1 ≤ i, j ≤ n). Then

rank(M) = |{ i ∈ {1, . . . , n} |Mi,i 6= 0 }|.

Proof. Just write out im(M). . . �
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9. Further preliminaries

For R a ring and n ∈ Z≥0, the polynomial ring R[x1, . . . , xn] has a canonical
structure as an R-module, which is free with basis all monomials MB := {

∏n
i=1 x

ei
i :

e1, . . . , en ∈ Z≥0}. (Note that when n = 0 we simply get R back with MB = {1}.)
Now in case R = k (a field) we get a k-vectorspace, whose dimension is (countably)
infinite when n 6= 0. Of course, any subset S ⊂ MB is the basis of the linear
subspace spank(S) (of dimension |S|).

For every a ∈ Rn we have the (local) evaluation homomorphism (say of R-
modules) eva : R[x1, . . . , xn] → R given by f 7→ f(a). This yields a (global)
evaluation homomorphism ev : R[x1, . . . , xn] → (Rn → R) given by f 7→ (a 7→
eva(f)), i.e. simply the canonical function associated to a polynomial. Note that
Rn → R = RRn

consists of all function from Rn to R and has (canonically) the
structure of an R-module.

Lemma 9.1. Let Fq, n,Mn, and Sn be as defined in Section 10. Then the re-

striction (of ev : Fq[x1, . . . , xn] → FFn
q

q to Sn) ev′ := ev |Sn
: Sn → FFn

q
q is an

isomorphism of k-vectorspaces.

Proof. Note that Sn is a linear subspace of dimension |Mn| = qn of the k-vectorspace
k[x1, . . . , xn] since Sn is by definition the span of Mn (a subset of the standard

monomial basis of k[x1, . . . , xn]). Write A := Fn
q , then FFn

q
q = FA

q has dimension

|A| = qn (as Fq-vectorspace). So dim(Sn) = dim(FA
q ) and bij Lemma 6.1 it suffices

to prove that ev′ is surjective. Since the indicator functions ιa : A → Fq (given
by ιa(x) = 1 if x = a and ιa(x) = 0 otherwise) for a ∈ A give a basis for FA

q ,
it suffices that these are in the image of ev′. To show the latter, let a ∈ A and
define f :=

∏n
i=1

(
1− (xi − ai)q−1

)
∈ Sn. Then by Lemma 4.4 we readily see that

ev′(f) = ιa. �

Lemma 9.2. Let V be a linear subspace of the k-vectorspace k[x1, . . . , xn], let
A ⊂ kn, and let

X := {p ∈ V : ∀a ∈ A : p(a) = 0}.

Then X is a linear subspace of V with

dim(X) + |A| ≥ dim(V ).

Proof. Consider the map

f : V → kA : p 7→ (p(a))a∈A.

Note that this is a linear map with

ker(f) = X

and

dim(im(f)) ≤ dim(kA) = |A|.

By Theorem 6.5

dim(V ) = dim(X) + dim(im(f)) ≤ dim(X) + |A|.

The lemma follows. �
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10. Notation from [1]

• Fq: finite field with q elements
• n ∈ Z>0

• Fq[x1, . . . , xn]: the ring of polynomials in n variables with coefficients in
Fq; Note that it also has the canonical structure of an Fq-vector space (of
infinite dimension).
• Mn := {

∏n
i=1 x

ai
i ∈ Fq[x1, . . . , xn] : 0 ≤ ai ≤ q − 1}; note |Mn| = qn.

• Sn := {
∑

m∈Mn
cmm : cm ∈ Fq}: the Fq-vector space spanned by Mn; note

that Mn is a basis, hence dim(Sn) = |Mn| = qn.
• For d ∈ [0, (q − 1)n] (the latter is an interval in the real numbers)

Md
n := {m ∈Mn : deg(m) ≤ d}

= {
n∏

i=1

xai
i ∈ Fq[x1, . . . , xn] : 0 ≤ ai ≤ q − 1 and

n∑
i=1

ai ≤ d}.

• Sd
n := {

∑
m∈Md

n
cmm : cm ∈ Fq}: the Fq-vector space spanned by Md

n; note

that Md
n is a basis.

• md := dim(Sd
n) = |Md

n|.

11. Proof of Proposition 2 from [1]

Proposition 11.1 (Proposition 2 from [1]). Let A ⊂ Fn
q , α, β, γ ∈ Fq such that

(5) α+ β + γ = 0,

and P ∈ Sd
n such that for all a, b ∈ A with a 6= b:

(6) P (αa+ βb) = 0.

Then
|{a ∈ A : P (−γa) 6= 0}| ≤ 2md/2.

Let α, β, γ,A, P be as in the assumptions..
...
See the first 9 lines of the proof of Proposition 2 in [1]. (This part is actually a

key observation for the solution to the cap set problem; it was discussed and largely
formalized at the start of the formalization project.)

...
We continue after the definition of the A×A matrix B.
For all m ∈Md/2

n the matrices (m(a)Fm(b))(a,b)∈A×A and (Gm(a)m(b))(a,b)∈A×A

have rank ≤ 1 by Lemma 8.1. B is the sum of 2|Md/2
n | = 2md/2 of these rank ≤ 1

matrices, so by Proposition 7.3 (and induction) we get

(7) rank(B) ≤ 2md/2.

We note hat B is a diagonal matrix, indeed for a, b ∈ A with a 6= b we have
Ba,b = P (αa+βb) = 0 (first identity by definition ofB and second by assumption 6).
For a ∈ A we have Ba,a = P (αa+ βa) = P (−γa) (first identity by definition of B
and second by assumption 5). So by Lemma 8.2

(8) rank(B) = |{ a ∈ A | P (−γa) 6= 0 }|.
Together, (7) and (8) immediately imply the required conclusion.
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12. Proof of Theorem 4 from [1]

Theorem 12.1 (Theorem 4 from [1]). Let α, β, γ ∈ Fq such that

(9) α 6= 0 or β 6= 0 or γ 6= 0

and

(10) α+ β + γ = 0;

and let A ⊂ Fn
q such that

(11) ∀a1, a2, a3 ∈ A : αa1 + βa2 + γa3 = 0⇒ a1 = a2 = a3.

Then

|A| ≤ 3m(q−1)n/3.

Let α, β, γ,A satisfy (9), (10), and (11). By (9), at least one of α, β, γ is nonzero.
Note that the whole theorem is symmetric in α, β, γ, so by swapping γ with α or β
we can and will assume that

(12) γ 6= 0.

Let

(13) d ∈ [0, (q − 1)n]

(in fact, we shall later only need d = 2(q − 1)n/3) and let

(14) V := { p ∈ Sd
n | ∀a ∈ Fn

q − (−γA) : p(a) = 0 }.

Lemma 12.2.

dim(V ) ≥ md − qn + |A|

Proof. Note that

|Fn
q − (−γA)| = |Fn

q | − | − γA| = qn − | − γA| = qn − |A|,

where in the last step we used |−γA| = |A| since A→ −γA : a 7→ −γa is a bijection
(since γ 6= 0). By Lemma 9.2 (with V,A,X replaced by Sd

n,Fn
q −(−γA), V ) we have

dim(V ) ≥ dim(Sd
n)− |Fn

q − (−γA)| = md − (qn − |A|) = md − qn + |A|.

�

For any p ∈ V we define the set

Sup(p) := { a ∈ Fn
q | p(a) 6= 0 }

Choose P ∈ V such that

(15) ∀P ′ ∈ V : Sup(P ) ⊂ Sup(P ′)⇒ Sup(P ) = Sup(P ′),

which is possible since Fn
q is finite (if such a P would not exist, then we could

inductively obtain an arbitrarily long strictly increasing chain of subsets of Fn
q ,

which is impossible). Let

Σ := Sup(P ).

Lemma 12.3.

|Σ| ≥ dim(V )



SOME DETAILS OF THE ELLENBERG-GIJSWIJT PROOF OF THE CAP SET PROBLEM 9

Proof. Suppose not, i.e. |Σ| < dim(V ). Let

W := {Q ∈ V | ∀a ∈ Σ : Q(a) = 0 }
By Lemma 9.2

dim(W ) ≥ dim(V )− |Σ| > 0.

So we have some Q ∈W with Q 6= 0.
Now let a ∈ Σ, then by definition Q(a) = 0 and P (a) 6= 0, so

(P +Q)(a) = P (a) +Q(a) = P (a) 6= 0.

Since Q 6= 0, ∀a ∈ Σ : Q(a) = 0, and the associated function e(Q) : Fn
q → Fq is not

identically zero, we have some b ∈ Fn
q − Σ:

Q(b) 6= 0.

Since sup(P ) = Σ, we get

P (b) = 0,

hence

(P +Q)(b) = P (b) +Q(b) = Q(b) 6= 0.

We conclude that P +Q ∈ V satisfies

sup(P ) = Σ ( Σ ∪ {b} ⊂ sup(P +Q),

which contradicts the choice of P (15). �

Lemma 12.4.

|Σ| ≤ 2md/2

Proof. Let

S(A) := {αa1 + βa2 ∈ Fn
q | a1, a2 ∈ A with a1 6= a2 }.

We claim that

(16) S(A) ∩ −γA = ∅.
Indeed, suppose the claim does not hold, then there are a1, a2, a3 ∈ A with a1 6= a2
and

αa1 + βa2 = −γa3.
From (11) we get a1 = a2 = a3, contradicting a1 6= a2, which proves the claim.

Note that any p ∈ V vanishes on the complement of −γA by definition of V (14),
so this holds in particular for P ∈ V . By (16) S(A) is contained in the complement
of −γA, so P vanishes on S(A), i.e. for all a1, a2 ∈ A with a1 6= a2:

P (αa1 + βa2) = 0.

Applying Proposition 11.1 now gives

|{ a ∈ A | P (−γa) 6= 0 }| ≤ 2md/2.

Together with Σ = { b ∈ Fn
q | P (b) 6= 0 } ⊂ −γA we get (through the bijection

a 7→ b := −γa)

|Σ| = |{ a ∈ A | P (−γa) 6= 0 }| ≤ 2md/2.

�

Lemma 12.5.

qn −md ≤ m(q−1)n−d
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Proof. Let I := {x ∈ Z | 0 ≤ x ≤ q − 1 } (so |I| = q). Note that we have a
(canonical) bijection

f : Mn → In,

n∏
i=1

xa1
i 7→ (a1, . . . , an).

Define

A :=In

B :={ (a1, . . . , an) ∈ In |
n∑

i=1

ai ≤ d }

C :={ (a1, . . . , an) ∈ In |
n∑

i=1

ai > d }

D :={ (a1, . . . , an) ∈ In |
n∑

i=1

ai < (q − 1)n− d }

E :={ (a1, . . . , an) ∈ In |
n∑

i=1

ai ≤ (q − 1)n− d }.

Note

|A| = qn

|B| = |f(Md
n)| = |Md

n| = md

|C| = |A| − |B| = qn −md (since A = B ∪ C and B ∩ C = ∅).

Note that we have a bijection (actually an involution)

ι : A→ A : (a1, . . . , an)→ (q − 1− a1, . . . , q − 1− an).

And ι(C) = D, since for (a1, . . . , an) ∈ A:

n∑
i=1

ai > d⇔
n∑

i=1

((q − 1)− ai) = (q − 1)n−
n∑

i=1

ai < (q − 1)n− d.

Note D ⊂ E, hence |D| ≤ |E|. Putting things together gives

qn−md = |C| = |ι(C)| = |D| ≤ |E| = |f(M (q−1)n−d
n )| = |M (q−1)n−d

n | = m(q−1)n−d.

�

Combining the four previous lemmata yields a nice upper bound for |A|.

Lemma 12.6.

|A| ≤ 2md/2 +m(q−1)n−d

Proof.

md − qn + |A| ≤ dim(V ) (by Lemma 12.2)

≤ |Σ| (by Lemma 12.3)

≤ 2md/2 (by Lemma 12.4),

hence

md − qn + |A| ≤ 2md/2.
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First adding (qn −md) to both sides, and next applying Lemma 12.5 gives

|A| ≤ 2md/2 + (qn −md) ≤ 2md/2 +m(q−1)n−d.

�

To finish the proof of Theorem 12.1, we take

d := 2(q − 1)n/3,

which obviously meets (13). Now

d/2 = (q − 1)n/3 and also (q − 1)n− d = (q − 1)n/3,

so Lemma 12.6 specializes to

|A| ≤ 3m(q−1)n/3,

which was to be proven.

13. Proof of asymptotics for m(q−1)n/3

This includes Corollary 5 in[1].
For the asymptotics, [1] uses Cramér’s theorem on large deviations. A more

elementary approach, using Stirlings’s approximation for the factorial function,
was described in [2]. In [3] another (more) elementary approach, using recurrence
sequences, was given. Inspired by loc. cit., we work out yet another (even more
elementary) approach, as follows.

We start with the geometric sum.

Proposition 13.1. Let R be a ring, x ∈ R, and m ∈ Z≥0. Then

(x− 1)

m−1∑
j=0

xj = xm − 1.

Proof. Straightforward induction. (Note that for the case m = 0, the sum is empty,
which has value 0.) �

Corollary 13.2. Let m ∈ Z≥0 and x ∈ k. Then

m−1∑
j=0

xj =

{
xm−1
x−1 if x 6= 1;

m if x = 1.

A basic estimate for the reciprocal geometric sum.

Lemma 13.3. Let x ∈ R with 0 < x < 1 and M ∈ Z≥0. Then

M∑
j=0

1

xj
≤ 1

1− x
1

xM
.
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Proof.

M∑
j=0

1

xj
=

1

xM

M∑
j=0

xM

xj

=
1

xM

M∑
j=0

xM−j

=
1

xM

M∑
i=0

xi

=
1

xM
1− xM+1

1− x

<
1

xM
1

1− x
.

�

Definition 13.4. Let m ∈ Z≥1. An element of k is called a primitive m-th root of
unity if it has order m in the multiplicative group k∗.

Lemma 13.5. Let m ∈ Z≥1, ζ ∈ k a primitive m-th root of unity, and i ∈ Z. Then

m−1∑
j=0

ζij =

{
0 if m - i;
m if m | i.

Proof. Apply Corollary 13.2 with x = ζi, using that (ζi)m = (ζm)i = 1i = 1 and
that (by Lemma 4.1) ζi = 1 if and only if m | i. �

This lemma is the basis for the discrete analog of using Cauchy’s integral theorem
for picking out a coefficient of a (Laurent) polynomial. We start with the constant
coefficient.

Proposition 13.6. Let f ∈ k[x, x−1] be a Laurent polynomial. Then for any
positive integer m > max(degx(f),degx−1(f)), ζ ∈ k a primitive m-th root of
unity, and r ∈ k∗, the constant coefficient of mf is given by

m−1∑
j=0

f(rζj).

Proof. Write f =
∑m−1

i=−(m−1) aix
i for (unique) a−(m−1), . . . , am−1 ∈ k (any of

which could equal zero). So the constant coefficient of mf is ma0. Then

m−1∑
j=0

f(rζj) =

m−1∑
j=0

m−1∑
i=−(m−1)

ai(rζ
j)i (by substituting definitions)

=

m−1∑
i=−(m−1)

air
i
m−1∑
j=0

ζij (by changing order of summation, etc.)

= a0r
0m (by Lemma 13.5, using that for i = −(m− 1), . . . ,m− 1 : m | i⇔ i = 0)

= ma0 (by commutativity and since r0 = 1 by definition)

�
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As a quick corollary we have a handy formula for picking out any coefficient.
The proof of the previous proposition could of course also be adapted to prove the
theorem below directly (so that we do not have to introduce Laurent polynomials).

Theorem 13.7. Let f ∈ k[x] and i ∈ Z≥0. Then for any integer m > max(deg(f), i),
ζ ∈ k a primitive m-th root of unity, and r ∈ k∗, the i-th coefficient of mf is given
by

m−1∑
j=0

f(rζj)

riζij
.

Proof. Note that f/xi is a Laurent polynomial whose constant coefficient equals
the i-th coefficient of f . Now apply Proposition 13.6 with f/xi instead of f . �

Define for j ∈ Z≥0

c
(n)
j := |{ (a1, . . . , an) ∈ {0, 1, . . . , q − 1}n |

n∑
i=1

ai = j }|.

We have an obvious expression for md as sum of these values.

Lemma 13.8.

md =

bdc∑
j=0

c
(n)
j .

Proof. This follows immediately by noting, as in the proof of Lemma 12.5, that

md = |{ (a1, . . . , an) ∈ {0, 1, . . . , q − 1}n |
n∑

i=1

ai ≤ d }|.

�

In line with [3], we recognise the c
(n)
j ’s as certain polynomial coefficients.

Lemma 13.9. For all j ∈ Z≥0: c
(n)
j equals the j-th coefficient of the polynomial(

1 + x+ . . .+ xq−1
)n ∈ Z[x].

Proof. For ‘fixed ’ q, the statement follows by induction on n. The Lemma trivially
holds for n = 1. Now suppose the lemma holds for a certain n ∈ Z>0. Denote
f := 1 + x+ . . .+ xq−1 ∈ Z[x]. Now for all j ∈ Z≥0:

coefj(f
n+1) = coefj(f

nf) =

j∑
i=0

coefi(f
n) coefj−i(f) =

j∑
i=0

c
(n)
i c

(1)
j−i = c

(n+1)
j ,

where the last equality follows readily (on paper. . . ) from the definition of the

c
(N)
J ’s. �

Using our earlier theorem to pick out coefficient, we can easily estimate cj(n)
(and hence md).

Lemma 13.10. For any j ∈ Z≥0 and any r ∈ R>0:

c
(n)
j ≤ (1 + r + . . .+ rq−1)n

rj
.
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Proof. Choose m ∈ Z>0 with m > max(n(q− 1), j). Let ζ := exp(2π
√
−1/m) ∈ C.

Then ζ is a primitive m-th root of unity and |ζ| = 1. Now

c
(n)
j = coefj

(
(1 + x+ . . .+ xq−1)n

)
(by Lemma 13.9)

=
1

m

m−1∑
i=0

(1 + rζj + . . .+ (rζj)q−1)n

rjζij
(by Theorem 13.7)

=
1

m

∣∣∣∣∣
m−1∑
i=0

(1 + rζj + . . .+ (rζj)q−1)n

rjζij

∣∣∣∣∣ (since c
(n)
j ≥ 0)

≤ 1

m

m−1∑
i=0

(|1|+ |rζj |+ . . .+ |rζj |q−1)n

|rjζij |
(by the triangle inequality, etc.)

=
1

m

m−1∑
i=0

(1 + r + . . .+ rq−1)n

rj
(since |ζ| = 1 and r > 0)

=
(1 + r + . . .+ rq−1)n

rj
(since all m summands are independent of i).

�

For r ∈ R>0 and q ∈ Z>0 write

Cr,q :=
1 + r + . . .+ rq−1

r(q−1)/3
.

For simplicity we first estimate the relevant asymptotics for Theorem 12.1 in case
3|n (which is harmless.)

Lemma 13.11. Let n = 3N with N ∈ Z>0 and r ∈ R with 0 < r < 1. Then

m(q−1)n/3 = m(q−1)N ≤
1

1− r
Cn

r,q.

Proof.

m(q−1)N =

(q−1)N∑
j=0

c
(3N)
j (by Lemma 13.8)

≤
(q−1)N∑
j=0

(1 + r + . . .+ rq−1)3N

rj
(by Lemma 13.10)

= (1 + r + . . .+ rq−1)3N
(q−1)N∑
j=0

1

rj

≤ (1 + r + . . .+ rq−1)3N
1

r(q−1)N
1

1− r
(by Lemma 13.3)

=
1

1− r

(
1 + r + . . .+ rq−1

r(q−1)/3

)n

(since N = n/3)

=
1

1− r
Cn

r,q (by definition).

�

We want to consider all n ∈ Z>0 but do not care about the constant 1/(1− r).
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Remark 13.12. Below we do not use Landau’s big O notation since all multiplicative
constants can easily be made explicit.

Theorem 13.13. Let n ∈ Z>0 and r ∈ R with 0 < r < 1. Then

m(q−1)n/3 ≤
C2

r,q

1− r
Cn

r,q.

Proof. Let i ∈ {0, 1, 2} such that n′ := n+ i is divisible by 3. Then

m(q−1)n/3 ≤ m(q−1)n′/3 (since d1 ≤ d2 ⇒ md1 ≤ md2 ; similarly for increasing n)

≤ 1

1− r
Cn′

r,q (by Lemma 13.11 with n′ instead of n)

≤ 1

1− r
Cn+2

r,q (since n′ ≤ n+ 2 and Cr,q > 1)

=
C2

r,q

1− r
Cn

r,q (by rewrite).

�

Together with Theorem 12.1 we arrive at the following explicit asymptotic upper
bound for |A|.

Theorem 13.14. Let the notation and conditions be as in Theorem 12.1 and let
r ∈ R with 0 < r < 1. Then

|A| ≤
3C2

r,q

1− r
Cn

r,q.

Proof.

|A| = 3m(q−1)n/3 (by Theorem 12.1)

≤
3C2

r,q

1− r
Cn

r,q (by Theorem 13.13).

�

Lemma 13.15. For all q ∈ Z≥2 there exists an r ∈ R with 0 < r < 1 such that
Cr,q < q.

Proof. Note C1,q = q and d
drCr,q|r=1 > 0 . . .

OR show via elementary way that with r := (q−1)/(q+2) we have Cr,q < q . . . �

We get our main result.

Theorem 13.16. Let the notation and conditions be as in Theorem 12.1. There
exist B,C ∈ R>0 with C < q, such that for all n ∈ Z>0 : |A| ≤ B · Cn.

Proof. Choose r as in Lemma 13.15 such that C := Cr,q < q, and let B :=
3C2

r,q/(1− r). Now apply Theorem 13.14. �

For several values of q we can be very explicit about a value of c that works. (In
fact, the values of c below will be optimal (or a precise numerical approximation
thereof) given the proof method, but we shall not prove this.) We keep the notation
and conditions as in Theorem 12.1.

First the cap set problem.

Theorem 13.17. Let q = 3 and c := 3
8

3
√

207 + 33
√

33. Then |A| = O (cn).
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Proof. Let r := (−1 +
√

33)/8. Then 0 < r < 1 and

Cr,q =
1 + r + r2

r2/3
=

3

8

3

√
207 + 33

√
33.

Now apply Theorem 13.14. �

From now on we express results numerically for convenience. For 3 ≤ q < 50 a
prime power we define real (or even rational) numbers rq and Cq in the following
table. (Note that the case q = 2 is not very interesting.)

q rq Cq

3 0.59307033081725358248132643352736616477753305724785 2.7551046130236330002212765465336861952158754264635
4 0.65729810613837599082505552000480171164504768618926 3.6107186132760393498186490083840586274651085857365
5 0.70415268204813468689198669322132696343638075791281 4.4615777657025778114084821388476409029790387188305
7 0.76780677969242521445924402966336695842991975939993 6.1562048632167384164286449905468414662054058278776
8 0.79038872370790461105610875566178974381236959429548 7.0015547549940074581322473123914531371412908811578
9 0.80897722790523491111266988703268198209152068465472 7.8461205825858057125065843275612459307392375811229
11 0.83776747968601146197311784198457216654957997594351 9.533685392075550992755846001437429533000441168130
13 0.85902510166765698759178640475123322423462991338793 11.21990798911487743710354307874670920930982759504
16 0.88218894242913276503686171517072556839234842435080 13.74776213458745700186503241050408124151866114255
17 0.88830758043507257326234095105382783282727016343919 14.59011716296566909733292591731068890488059646602
19 0.89881856557451588672455240338174322453086526354899 16.27455106840026451533064402457870391069290751032
23 0.91484764548356435179270332283816978457151143428432 19.64263645872880846855649800712949925601009365863
25 0.92109805634831861028657723785713430394845587760601 21.32640831010467458504116449092661287095567773974
27 0.92649385906623403043220219721359816616215863083796 23.01005118248578718050749133276735336886865749163
29 0.93119907005099645802948397596620351689310355515557 24.69359086763659075194245991317129618483238935200
31 0.93533826774922682502465725097793299160275771076073 26.37704670973149142375844507925916831824336087591
32 0.93722658990392746349985428712960304612407039759198 27.21874795251220672602238447846984018710029446169
37 0.94522485380783942198322445203198854044829554690688 31.4270435376707332149753215376086486868022567564
41 0.95029187505308080110749234851246282509920205764457 34.7934874191255938965128570261124940396961589056
43 0.95248941722836481804826949752866830065974434752949 36.4766612098789974066551907920324679415365311333
47 0.95634899796299730225165301786027369278180052980541 39.8429325497588118635458901612103753347737254186
49 0.95805283290333388408037131751427604295954501076278 41.5260361969247677787332196251061200739686787636

Theorem 13.18. Let 3 ≤ q < 50 be a prime power. Then |A| = O
(
Cn

q

)
.

Proof. By Theorem 13.14 we have |A| = O
(
Cn

rq,q

)
. Now check that Crq,q ≤ Cq.

Not yet checked for round off errors, perhaps the last digit of some of the Cq’s has
to be raised by 1 . . . �

These values agree with those given in [3] (where 4 ≤ q ≤ 31).

Remark 13.19. Exact (optimal, for the method) values for C4 and C5 could be
given is terms of radicals, analogous to Theorem 13.17.

14. A Further simplification for the asymptotics

Thanks to a remark from Dion Gijswijt on our preprint we can significantly
simplify the asymptotics proof from the previous section.

Recall the following two definitions and two lemmas from the previous section.
For j ∈ Z≥0 let

c
(n)
j := |{ (a1, . . . , an) ∈ {0, 1, . . . , q − 1}n |

n∑
i=1

ai = j }|.

For r ∈ R>0 and q ∈ Z>0 write

Cr,q :=
1 + r + . . .+ rq−1

r(q−1)/3
.

Lemma (Lemma 13.8).

md =

bdc∑
j=0

c
(n)
j .



SOME DETAILS OF THE ELLENBERG-GIJSWIJT PROOF OF THE CAP SET PROBLEM 17

Lemma (Lemma 13.9). For all j ∈ Z≥0: c
(n)
j equals the j-th coefficient of the

polynomial (
1 + x+ . . .+ xq−1

)n ∈ Z[x].

We quickly obtain a slightly improved version of Theorem 13.13 (and Lemma 13.11).

Theorem 14.1. Let n ∈ Z>0 and r ∈ R with 0 < r < 1. Then

m(q−1)n/3 ≤ Cn
r,q.

Proof. Write e := b(q − 1)n/3c. Note that for integers 0 ≤ j ≤ e (using 0 < r < 1)

(17) re ≤ rj .
Now

m(q−1)n/3r
e =

e∑
j=0

c
(n)
j re (by Lemma 13.8 and distributivity)

≤
e∑

j=0

c
(n)
j rj (using (17) and that the c

(n)
j ≥ 0)

≤
(q−1)n∑
j=0

c
(n)
j rj (since e < (q − 1)n and all summands are ≥ 0)

=
(
1 + r + . . .+ rq−1

)n
(by Lemma 13.9).

Hence

m(q−1)n/3 ≤
(
1 + r + . . .+ rq−1

)n
rb(q−1)n/3c

≤
(
1 + r + . . .+ rq−1

)n
r(q−1)n/3

=

(
1 + r + . . .+ rq−1

r(q−1)/3

)n

= Cn
r,q.

�

Using Theorem 14.1 instead of Theorem 13.13 we can replace Theorems 13.14
and 13.16 by the following slightly cleaner versions.

Theorem 14.2. Let the notation and conditions be as in Theorem 12.1 and let
r ∈ R with 0 < r < 1. Then

|A| ≤ 3Cn
r,q.

Theorem 14.3. Let the notation and conditions be as in Theorem 12.1. There
exists C ∈ R>0 with C < q, such that for all n ∈ Z>0 : |A| ≤ 3 · Cn.
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