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Class imbalance distribution widely exists in real-world engineering. However, the mainstream optimiza-
tion algorithms that seek to minimize error will trap the deep learning model in sub-optimums when fac-
ing extreme class imbalance. It seriously harms the classification precision, especially in the minor
classes. The essential reason is that the gradients of the classifier weights are imbalanced among the com-
ponents from different classes. In this paper, we propose Attraction–Repulsion-Balanced Loss (ARB-Loss)
to balance the different components of the gradients. We perform experiments on large-scale classifica-
tion and segmentation datasets, and our ARB-Loss can achieve state-of-the-art performance via only one-
stage training instead of 2-stage learning like nowadays SOTA works.

� 2023 Elsevier B.V. All rights reserved.
1. Introduction

Class imbalance exists in almost all real-world scenes, and we
call it long-tailed distribution when the imbalance is very extreme.
Due to that standard gradient descent optimization algorithm
seeking the solution to make the loss as low as possible, the
learned algorithm tends to perform better on the major classes
while ignoring the learning on those minor classes. It will trap
the model in the sub-optimum.

Many works have recently emerged to mitigate the perfor-
mance drop under the long-tailed distribution. Some works [1,2]
re-sample the data to mitigate the class imbalance. However,
over-sampling might cause the model to overfit these classes,
while under-sampling might bring the risks of removing the
important samples. Another line of works [3–8] designs specific
loss function to weight different classes according to the class car-
dinality. However, for the large-scale dataset, the re-weighting cost
functions make deep models difficult to optimize. Additionally,
these methods rely on hyper-parameters, which must be adjusted
according to the specific data. Recently, many methods use two-
stage training to decouple the representation learning, and the
class-balanced training of the classifier [7,9–11]. They first use
instance-balanced sampling to learn discriminative features, and
then they fix the backbone network and train the classifier via
class-balanced sampling. The common belief behind these 2-
stage methods is that the instance-balanced sampling learns better
and more general representations, which has been demonstrated
via better experimental results. However, the 2-stage methods fail
to explain the essential reason for the poor performance in long-
tailed data distribution. Moreover, these methods involve many
tricks to obtain better results, which brings difficulties and com-
plexities for training and poor interpretability. Some work
attempts to solve the issue by balancing the gradients. [8] filters
out the gradients from major classes via an 0-1 mask when back-
propagating the gradients for samples of minor classes. However,
besides the heavy reliance on many hyper-parameters, they only
filter out gradients that are too large and still do not essentially
solve the imbalance of the remaining gradients. Therefore, the
key to solving the performance drop under the long-tailed distribu-
tion is to balance each gradient component from different classes.

A recent study [12] observes the Neural Collapse phenomenon.
When the model converges to optimum in an ideal state, i.e., a bal-
anced data distribution, four phenomenons can be observed:

1. The intra-class features will collapse to their class means.
2. The vectors of the class means will collapse to an ETF (Equian-

gular Tight Frame) geometric structure, i.e., the class mean vec-
tors will have consistent length and equal-sized angles between
any given pair, where the pairwise-distanced are maximized.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2023.01.023&domain=pdf
https://doi.org/10.1016/j.neucom.2023.01.023
https://doi.org/10.1016/j.neucom.2023.01.023
http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom
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3. The class means and the classifier weights will dually converge
to each other so that the dot product of the features and the
classifier weights will obtain the maximum for matched classes
while the minimum for unmatched classes.

4. The classifier decides the class according to the Euclidean dis-
tances among the feature vector and the classifier weights.

However, under an imbalanced data distribution, the law of Neural
Collapse is no longer satisfied, and another unexpected phe-
nomenon, Minority Collapse [13], occurs, i.e., some weight vectors
are close and even merged. The collapsed weights can no longer
effectively distinguish features of different classes, which explains
the deteriorated performance of classification on imbalanced data.
We illustrate these two observations in 1.

Inspired by the Neural Collapse phenomenon, in this paper, we
propose Attraction–Repulsion-Balanced Loss, abbreviated as ARB-
Loss, to balance the gradients from different classes. We first ana-
lyze that the essential reason of Minority Collapse is the imbalance
between the attractive and repulsive gradient components from dif-
ferent classes. The classifier weights of minority classes receive a
much stronger repulsion gradients from majority-class features
compared to the attractive gradients from intra-class features.
Therefore, to mitigate the Minority Collapse dilemma, ARB-Loss
adds coefficients on the denominator of the softmax function to
balance the gradients from different classes. Compared to the
state-of-the-art methods for imbalanced learning problems
[9,11], our ARB-Loss can achieve comparable or even better perfor-
mance without bells and whistles.

The contributions of this paper can be summarized as follows:

1. We analyze that the cause of Minority Collapse is the imbalance
between the attractive and repulsive gradient components from
different classes. Based on the analyses, we propose ARB-Loss to
balance the gradients from different classes to mitigate the
Minority Collapse dilemma under the imbalanced distribution.

2. We analyze the properties of ARB-Loss. Both the theoretical and
empirical results show that compared with the Cross-Entropy
loss, ARB-Loss can achieve more balanced gradients and lead
to a model closer to the neural collapse state.

3. We perform experiments on large-scale long-tailed image clas-
sification and segmentation tasks. The imperial results suggest
that our method can achieve comparable or even better perfor-
mance without bells and whistles.
Fig. 1. (a) Neural Collapse: when trained on the balanced data, the classifier weights and
depicts a 3D ETF structure, where the arrows are equal-length like the molecular struct
orange and purple classes) are much lower than others (the green and blue classes), the we
represents the classifier weights, the light-color spot represents the head of the feature
class.) (For interpretation of the references to colour in this figure legend, the reader is
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In the following sections, we first review the related works of long-
tailed learning and the studies of the Neural Collapse phenomenon
in Section 2. Then, in Section 3, we rethink the learning mechanism
under the traditional cross-entropy loss from the perspective of the
gradients and analyze the cause of the unexpectedMinority Collapse.
In Section 4, we elaborate on our ARB-Loss and provide relevant
analytical results. In Section 5, we perform experiments to show
the effectiveness of our method. Finally, in Section 6, we make a
conclusion for this paper and a prospective for future work.
2. Related works

2.1. Long-tailed learning

Re-sampling. Early works [1,14,15,2] re-sample the data (over-
sample the samples of minor classes or under-sample the samples
of major classes or both) to balance the data distribution. Over-
sampling repeats the sample of minor classes, which might make
the model overfit these classes and harm the generality. Under-
sampling removes some samples of major classes, which might
remove the key data for representation learning and bring the per-
formance drop.

Re-weighting. Another idea is to assign different weights for
different classes, even instances. [3,4,6,8] re-weight the loss
according to the class cardinalities. [16] introduce the prior proba-
bilities from a Bayesian view and balance the exponential logits via
the class cardinalities. Although [16] shares a similar formulation
of the loss function with ours, we derive from a completely new
perspective and offer in-depth analyses. Focal loss [17,18] re-
weight each instances according to their hard level, i.e., making
the model to pay attention to the wrong-recognized samples.

Two-stage Learning. An observation is that the representations
learned under the instance-balancing sampling are more general.
So many works try to split learning into two stages. [7] first trains
the model in a normal way in stage 1 and then uses deferred
resampling to fine-tune with class-balanced resampling or uses
deferred re-weighting to re-weight different classes in stage 2.
[10] spatially disentangles the regular feature learning and re-
balancing learning via two parallel branches.[9,11] decouple the
representation learning and classification. They concluded that
the instance-balanced sampling gives more general representa-
tions. They first used instance-balanced sampling to learn the rep-
features are dually collapsed into an ETF geometric structure (Note that the figure
ure of methane.); (b) Minority Collapse: when the cardinalities of some classes (the
ights corresponding to these rare classes collapsed into similar direction. (The arrow
vector the dark-color square represents the feature mean; each color represents a
referred to the web version of this article.).
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resentations at stage-1. Then, they freeze the feature and retrain
the classifier (cRT) via techniques such as label-aware smooth
(LAS) and learnable weight scaling (LWS).

2.2. Neural collapse

A recent study [12] discovers the classifier will converge to the
state called Neural Collapse when trained on the balanced data.
Especially, Neural Collapse is a phenomenon that the mean vectors
of the intra-class features and the classifier weight vectors dually
converge to an ETF (Equiangular Tight Frame) geometric structure,
and the decision is based on the Euclidian distance among the fea-
ture vectors and the classifier weights. In the 3.1, we give a detailed
description for the Neural Collapse phenomenon. Most of existing
theoretical methods [19–24] only analyse the reason of Neural Col-
lapse phenomenon when being trained under a balanced data dis-
tribution. However, for most real-world data, the class distribution
is usually imbalanced. In the imbalanced cases, an unexpected
phenomenon, Minority Collapse [13], occurs. The classifier weights
of minority classes will converge to similar directions. These theo-
retical works give an explainable view of the mechanism of the
classifier under balanced or imbalanced distribution. However,
there is no design inspired by Neural Collapse for the long-tailed
learning. Some recent work [25] tries to avoid the gradient imbal-
ance via fixing the classifier weights. However, it is not guaranteed
that a fixed length of classifier weight does not harm representa-
tion learning. In this paper, we reveal that the Minority Collapse
phenomenon trained under imbalanced data distribution is essen-
tially caused by the imbalanced gradient components. Inspired by
this idea, we propose ARB-Loss from the Neural-Collapse view to
balance the attrative and different repulsive components of the gra-
dients for the classifier weights, which are much more inter-
pretable compared to previous methods.

3. Rethinking the cross entropy loss

Notation & Problem Setup. For a c-class classification task, we
denote X ¼ xi; yif g; i 2 1; . . . ;nf g as the observed dataset, where n
is the number of samples, xi and yi 2 1; . . . ; cf g are the i-th sample
and its label respectively. We also use yi 2 Rc as the corresponding
vectorized label, e.g. the one-hot or smoothed one-hot label vector.
Suppose that class i has ni samples in the dataset X, we use p ið Þ to
represent the set of sample indices that belongs to the class i, i.e.,
p ið Þ ¼ j : yj ¼ i

� �
.

A vanilla L-layer deep neural network can be represented as:

UH xð Þ ¼ WLr WL�1r � � �r W1xþ b1ð Þ þ � � �ð Þ þ bL�1ð Þ; ð1Þ
where WL is the final classifier weight. We omit its bias for simplic-
ity because bias can be incorporated into the weights by adding a
dimension filled with 1 on the features. The optimization target is:

min
H

Xc
i¼1

X
j2p ið Þ

L UH xj
� �

; yj

� �þ k
2
jjHjj2; ð2Þ

where H ¼ W i;bif gLi¼1 are the learnable parameters, L is the loss
function, and k is the weight decay parameter.

We use W ¼ w1; . . . ;wc½ �T 2 Rd�c to represent the classifier
weights and H ¼ h1; . . . ;hn½ � 2 Rd�n to note the features of the
last layer, i.e., H ¼ hi ¼ r WL�1r � � �r W1xi þ b1ð Þ þ � � �ð Þþðf
bL�1Þ j i ¼ 1;2; . . . ;ng. Because the norms of the weights W if gLi¼1

and bias bif gL�1
i¼1 have supremums and the popular activation func-

tions also have finite supremums (e.g. Sigmoid, tanh etc.) or keep
linear mapping in the non-restraint part (e.g. ReLU), the norm of
H also have a supremum:
62
1
n
jjHjj2F ¼ 1

n

Xc
i¼1

X
j2p ið Þ

jjhjjj22 6 EH; ð3Þ

which also means that, for a certain class i, the features also have
supremum:
1
ni

X
j2p ið Þ

jjhjjj2 6 EH;i; i ¼ 1;2; . . . cf g; ð4Þ

where EH 2 R; EH;i 2 R; i 2 1; . . . ; nf g are constants.

3.1. Neural collapse

[12] observes that the feature and weight vectors of the classi-
fier will dually converge to a special geometric structure under the
balanced data distribution, and this phenomenon is called Neural
Collapse. Neural Collapse have four manifestations:

1. The features will converge to their class mean.
2. Under a balanced data distribution, the class mean vectors will

collapse to an ETF (Equiangular Tight Frame) geometric struc-
ture, which can be represented as:
W� ¼
ffiffiffiffiffiffiffiffiffiffiffi
c

c � 1

r
P Ic � 1

c
1c1

T
c

� �
; ð5Þ

where P 2 Rd�c; d P cð Þ is a partial orthogonal matrix such that
PTP ¼ Ic; Ic is the c � c identical matrix and 1c 2 Rc�1 is a vector
filled with 1. For the classifier weights which has collapsed to
the ETF structure, they meet:

w�T
i w�

j ¼
1; i ¼ j

� 1
c�1 ; i – j

(
; ð6Þ

wherew�
i is the i-the column ofW�, i.e., the weights correspond-

ing to class i.
3. The classifier weights will dually converge to the mean vectors

of the corresponding class, i.e., the classifier weight vectors will
collapse to the consistent ETF geometric structure.

4. The decision of the classifier is based on the Euclidean distances
of the feature vectors and each the classier weight, i.e., deciding
the class whose mean vector is nearest to the current features.

When the classifier weights and feature vectors obey these phe-
nomenons of Neural Collapse, the Fisher’s discriminant ratio [26] is
maximized, i.e., the optimal geometric structures for classification
problem.

However, for long-tailed learning, Neural Collapse no longer
emerges. Instead, Minority Collapse occurs [13], which describes
the phenomenon that the classifier weight vectors of minority
classes converge in a similar direction, i.e.,

lim
nm
ni
!1;nmni

!1
wi �wj ¼ 0d ð7Þ

where nm is the cardinality of one of the majority classes. Due to the
collapse of the minority-class weight vectors, the classifier fails to
discriminate these classes correctly, which explains the fundamen-
tal reason for the poor performance under the long-tailed data dis-
tribution. In the following, we analyze the gradients derived from
cross-entropy loss and reveal that the cause of Minority Collapse is
the imbalance among gradient components from different classes.

3.2. The gradients of cross-entropy loss

The cross-entropy loss can be defined as:

Lce ¼ �
Xb
j¼1

Xc
i¼1

yj;ir zj;i
� � ¼ �

Xb
j¼1

Xc
i¼1

yj;i log
exp wT

i
hjð ÞXc

k¼1

exp wT
k
hjð Þ

0BBB@
1CCCA; ð8Þ
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where b represents the batch size, r is the softmax function,
zj;i ¼ wT

i hj is the logit of the j-th sample for the class i. When the
label is a one-hot vector, we can derive the gradient for the classifier
weights as the following:

rwi
¼
X
j2p ið Þ

� 1� pj;i

� �
hj|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}r ið Þ

a
þ
Xc

k¼1k–i

X
j2p kð Þ

pj;ihj|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}r ið Þ
r
; ð9Þ

where pj;i ¼ r zj;i
� �

is the probability that sample j belongs to class
i;p ið Þ represents the set of sample indices that belongs to the class

i. We decouple the gradients rwi
as two parts: r ið Þ

a and r ið Þ
r . When

the classifier weightwi updates, it steps along the negative gradient

direction. As illustrated in 2, r ið Þ
a has the inverse direction of hj and

push wi and hj together, which acts like an attraction force from

hj;r ið Þ
r has the same direction of hj and push wi and hj away, which

acts like a repulsion force from hj.
Gradients-Imbalance. [12] observes the Neural Collapse phe-

nomenon that the classifier weights and the last-layer features col-
lapse to a c-simplex geometric structure, i.e., an equiangular tight
frame (ETF), when the training data are balanced. It is reasonable
and intuitive. However, for the class-imbalanced training set,
Minority Collapse phenomenon occurs [13], i.e., the ETF vertices of
Fig. 2. The attraction and repulsion components of the gradients. For class i, the
gradients from other classes (denoted as r ið Þ

b;j; j – i) act like repulsion force to push
the weights wi to their inverse directions, while the gradients from class i (denoted
as r ið Þ

a ) acts like a attraction force. The imbalance among different components of
r ið Þ

r will cause the direction of wi to incline to the inverse directions of major-class
features. The imbalance between r ið Þ

a and r ið Þ
r will cause the norm of wi to incline

towards the direction of attraction or repulsion. (The thick solid arrows represent the
classifier weights, the thin solid arrows represent the features, the thin dashed
arrows represent the gradients, and the thin dashed arrows with the solid head
represent the sum of gradients from each class. Each color represents a class, and
the thin red dashed arrow represents the sum of all gradients.).

Fig. 3. The cause of Minority Collapse is the imbalance of gradients. In this figure, we
(orange,purple) are minor classes. We describe the updating process of the classifier weig
decided by the inverse direction of features of major classes. It seems that the major co
minor classes to collapse together. (The color and arrow type have the same meaning a
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the minor classes collapse together. Minority Collapse limits the
performance of deep learning models, especially in the minor
classes. 9 reveals that the gradients are composed of the attraction
and repulsion parts. To see the gradient imbalance more clearly, we
perform further simplification as the following:

rwi
¼
X
j2p ið Þ

� qj;ihj þ
Xc

k¼1k–i

X
j2p kð Þ

qj;ihj

¼ �ni
�h ið Þ|fflfflffl{zfflfflffl}r ið Þ

a
þ
Xc

k¼1;k–i

nk
�h kð Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}r ið Þ

r
;

ð10Þ

where ni is the number of samples belonging to class i and

�h ið Þ ¼ 1
ni

X
qj;ij2p ið Þhj ð11Þ

is a weighted feature mean of class i and

qj;i ¼
1� pj;i; j 2 p ið Þ
pj;i; j R p ið Þ

(
ð12Þ

10 shows that the coefficients of the gradients from samples of
different classes depend on the class cardinalities. When there are
huge disparities among the cardinality of major classes and minor
classes, the gradient norms are imbalanced, and the classifier
weights are most affected by the major classes. It causes the
weights corresponding to minor classes to collapse due to the
strong repulsion effect from the features of major classes. For
minority classes, the repulsion forces that they receive have almost
the same direction. So, after training, their classifier weight vectors
will be pushed in a similar direction, even merging, which explains
the reason for Minority Collapse. We illustrate this issue in 3.

4. Methods

4.1. Balancing the gradients

Through the above analysis, the key to solving the performance
drop when facing imbalanced class distribution is to balance the
gradients from different class features. Our main idea to solve
the gradients imbalance is to add balancing coefficients on each
component of rwi

. We hope rwi
has the following format:

rwi
¼ �C 1� pið Þ�hi þ Cpi

�h1 þ � � � þ Cpi
�hc|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}c�1; ð13Þ

where C is a positive constant.

4.2. ARB-Loss

To make the gradients rwi
; i 2 1; . . . ; cf g satisfy the format of

13, we design a novel classification loss function. We name it
draw 4-class classification, where class 1;2 (blue,green) are major classes and 3;4
hts of minor classes, i.e., w3;w4. For those minor classes, their gradients are mainly
mponents of gradients have strong repulsion to push the weights corresponding to
s 2.).
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Attraction–Repulsion-Balanced Loss, abbreviated as ARB-Loss. ARB-
Loss is formulated as follows:

Larb ¼ �
Xb
j¼1

Xc
i¼1

yj;i log
exp wT

i hj
� �

Xc
k¼1

nk
ni
exp wT

khj
� �

0BBBB@
1CCCCA; ð14Þ

where ni is the number of samples belonging to class i. Note that ni

can represent the class cardinality in the whole training dataset or
the mini-batch. The difference between ARB-Loss and traditional
cross-entropy loss is that we add coefficients on the denominator
of the softmax function.

After simple derivation, we can obtain the gradients for the
classifier weights under our ARB-Loss.

~rwi ¼
X
j2p ið Þ

� 1� ~ri wT
i hj

� �� �
h jð Þ

þ
Xc

k¼1k–i

X
jRp kð Þ

ni
nk
� ~rk wT

i hj
� �

h jð Þ

¼
X
j2p ið Þ

� ~q ið Þ
j;i h

jð Þ þ
Xc

k¼1k–i

X
jRp kð Þ

ni
nk
~q kð Þ
j;i h

jð Þ

¼ �ni
�h ið Þ|ffl{zffl} ~r ið Þ

a
þ
Xc

k¼1;k–i

ni
�h kð Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl} ~r ið Þ

r
;

ð15Þ

where

~q að Þ
j;i ¼

1� ~p að Þ
j;i ; j 2 p ið Þ

~p að Þ
j;i ; j R p ið Þ

8<: ; ð16Þ

where ~p að Þ
j;i ¼ ~ra wT

i hj
� � ¼ exp wT

i
hjð ÞPc

k¼1

nk
na exp wT

k
hjð Þ is the corresponding soft-

max function in our case. Note that the subscript a of ~ra identifies
the ground-truth class of the sample j. From 15, we can see that the

attraction component ~r ið Þ
a and each parts of the repulsion compo-

nent ~r ið Þ
r have the same coefficients, i.e., attraction and repulsion

terms are balanced.

4.3. Analytical results

In this section, we further explore the properties of our ARB-
Loss to show its superiority over the Cross-Entropy loss when
training on imbalanced data.

We introduce two propositions to demonstrate that ARB-Loss
can efficiently reduce the imbalance of the gradients from different
classes.

Proposition 4.1. For gradient rwi in cross entropy and ~rwi in
ARB-Loss, the proportion of the supremums of different repulsion

terms’ norm, sup jjrb;k jj
sup jjrb;l jj and sup jj ~rb;k jj

sup jj ~rb;l jj
(where

k – l; k – i; l – i), obey:
CELoss : sup jjrb;k jj
sup jjrb;l jj 6 nk

nl
� Ckl �

ffiffiffiffiffiffi
EH;k
EH;l

q
;

ARB� Loss : sup jj ~rb;k jj
sup jj ~rb;l jj

6 eCkl �
ffiffiffiffiffiffi
EH;k
EH;l

q
;

ð17Þ

where Ckl; eCkl 2 R are constants.
Proposition 4.2. For gradientrwi
in cross entropy and ~rwi

in ARB-
Loss, the proportions of the supremums of the attraction and repul-

sion terms’ norm, sup jjr ið Þ
a jj

sup jjr ið Þ
b;k

jj and
sup jj ~r ið Þ

a jj
sup jj ~r ið Þ

b;k
jj (where k – i), obey:
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CELoss : sup jjr ið Þ
a jj

sup jjrb;k jj 6 ni
nk
� Cik �

ffiffiffiffiffiffi
EH;i
EH;k

q
;

ARB� Loss : sup jj ~r ið Þ
a jj

sup jj ~rb;k jj
6 eCik �

ffiffiffiffiffiffi
EH;i
EH;k

q
;

ð18Þ

where Cik; eCik 2 R are constants.

4.1 shows that ARB-Loss can reduce the imbalance of the supre-
mum of different repulsion gradient terms. The balanced repulsion
gradients can remedy the issue that the classifier weights of minor-
ity classes are pushed to the inverse of the majority class weights
and collapse together. 4.2 shows that ARB-Loss can reduce the
imbalance between the attraction and arbitrary repulsion terms. It
is important if the current class i is a minority class. If they are
imbalanced in this case, the attraction force is much less than the
repulsion force from majority classes and the attraction is not
enough to fight against the strong repulsion that pushes the minor-
ity class features together.

Besides balancing the attraction and repulsion components of
the gradients, compared to previous loss functions designed specif-
ically for long-tailed learning, our ARB-Loss has the following
advantages:

1. ARB-Loss can achieve comparable or even better results via only
one-stage training, compared to previous two-stage methods
[7,9,11];

2. ARB-Loss has no hyperparameters to adjust according to differ-
ent data sources like [17,6–8].

5. Experiments

In this section, we perform experiments on classification and
segmentation tasks to analyze our ARB-Loss. We put the descrip-
tion of datasets used in this section and the implementation details
in the B and C.

5.1. Empirical results

5.1.1. The geometric structure of the classifier weights
We propose three balance metrics to measure how balanced the

classifier weights are, i.e., how similar the classifier weights are with
the ideal ETF geometric structure described by the Neural Collapse
phenomenon.

B2
D Wð Þ ¼ 1

c�1ð Þ2
Xc
i¼1

Xc
j¼1;j–i

wT
i wj � 1

c�1ð Þ2
Xc
i¼1

Xc
j¼1;j–i

wT
i wj

 !2

B2
A Wð Þ ¼ 1

c�1ð Þ2
Xc
i¼1

Xc
j¼1;j–i

wi;wj

 �� 1

c�1ð Þ2
Xc
i¼1

Xc
j¼1;j–i

wi;wj

 � !2

B2
L Wð Þ ¼ 1

c

Xc
i¼1

jjwijj2 � 1
c

Xc
i¼1

jjwijj2
 !2

ð19Þ

where wi;wj

 � ¼ wT

i
wj

jjwi jj2 �jjwj jj2 is the cosine of the angle between wi and

wj. B2
A Wð Þ measures the balance degree of the angles of the weight

vector pairs, B2
L Wð Þ measures the variance of the norm of the

weight vectors, and B2
D Wð Þ measures the balance degree of the

dot-product of the weight vector pairs. In the ideal case, i.e., the
ETF geometric structure, the angles of all weight vector pairs, and
the norms of all weight vectors are equivalent.

For better understanding, we visualize the similarity of the clas-
sifier weights in 4. In the figure, each sub-figures represents a
matrix M 2 Rc�c whose i; j-th entry is:
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Mi;j ¼

wT
i
wjXc

j¼1;j–i

wT
i
wj

; i – j

0; i ¼ j

8>>><>>>: ; ð20Þ

Because the diagonal of matrix M is meaningless, we set them to
zero. Below each sub-figure, we also indicate the values of the three
balance metrics mentioned above. In the ideal state, we expect the
variance of each row (except for the diagonal) of M to be zeros:

Mi;j ¼ 1
c � 1

; i; j 2 1; . . . ; cf g; i – j; : ð21Þ

The ideal values of the balance metrics are:

B�2
D Wð Þ ¼ B�2

A Wð Þ ¼ B�2
L Wð Þ ¼ 0 ð22Þ

In the figure, we can see that the color variance of the left part (light
and dark colors) is larger than the right part (all dark colors), which
demonstrates that the classifier weights trained by ARB-Loss are
more dispersed than the ones trained by cross-entropy loss. ARB-
Loss can remarkably reduce the variance of each row of M, which
means that our ARB-Loss can mitigate the Minority Collapse
dilemma.

5.1.2. Different components of gradients
We show a visualization example in 5. Each point on the origi-

nal curves (the thin line in the figure) represents the mean lengths
of the gradients in one epoch, i.e.,

gk ¼
1

N=B

XN=B
n¼0

jjr 9ð Þ
b;kjj ¼

1
N=B

XN=B
n¼0

X
j2p kð Þ

@L jð Þ

wk

������
������; ð23Þ

where N is the total number of samples, B is the batch size, L jð Þ
wk

is the

gradients of the loss on j-th sample with respect to wk. From the
visualization, we can see that using cross-entropy loss on imbal-
anced data will introduce huge magnitude differences among differ-
ent gradient components, and using our proposed ARB-Loss can
balance each gradient component to make them have a similar
magnitude.
Fig. 4. The geometric structure of the classifier weights. In the (a), (b), (c), and (d) 4 su
the right part represents the classifier trained with ARB-Loss. The visualization details an
right part, which demonstrates that the classifier weights trained by ARB-Loss are more
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5.2. Results on image classification task

Experiment results are shown in 1 and 2. For previous methods,
we directly copy the results from the original papers, except for the
results noted with y.

CIFAR-10(-LT) & CIFAR-100(-LT). 1 shows the results on CIFAR-
10/100-LT. When performing experiments on CIFAR-10/100-LT,
the class cardinalities used in ARB-Loss, are collect in a batch, i.e.,
the ni; i 2 1; . . . ; cf g in 14 are dynamic for each different batches.
Therefore, when the dataset is balanced, ARB-Loss approximately
degrades as the cross-entropy loss. The reason why it is said ap-
proximate is that the samples are not balanced in a batch, although
the whole training set is balanced. Therefore, we compare ARB-
Loss with the plain model (using traditional cross-entropy) in the
Normal column. From the results, although the improvements
achieved by our ARB-Loss are slight, it is also significant, consider-
ing that our method only needs one-stage training while recent
state-of-the-art long-tailed works need 2-stage training. Moreover,
the results on Normal case suggest that our ARB-Loss is approxi-
mate to the traditional cross-entropy loss, although ARB-Loss is
dynamic for every mini-batch.

Large-scale Image Classification Datasets. We list the results
on the ImageNet-LT, Places-LT and iNaturalist2018 in 2. On the
large-scale datasets, we found that using the global class cardinal-
ities (i.e., the class cardinalities in the whole training set) can
obtain better performance than using dynamic class cardinalities
for each batch. Therefore, for the ARB-Loss experiments in 2, we
all use the global class cardinalities. The results suggest that our
ARB-Loss can achieve comparable results with current state-of-
the-art methods, e.g. MiSLAS [11]. It is worth noting that the
results of ARB-Loss are obtained from only one-stage training,
and the nowadays SOTA long-tail methods such as. BBN [10], MiS-
LAS [11], need training for 2 stages.
5.3. Results on segmentation task

We perform image segmentation experiments on two baseli-
nes: U-Net [33] and Deeplabv3+ [34]. The results are shown in 3.
b-figures, the left part represents the classifier trained with cross-entropy loss, and
d meanings are elaborated in 5.1. The color variance of the left part is larger than the
dispersed than the ones trained by cross-entropy loss.



Fig. 5. Visualzation example of the different components of the gradients. In the figure, we take the training on CIFAR-10-LT dataset as an example. We plot the curve of
magnitude (i.e., the vector length) of the different componentsr 9ð Þ

b;i ; i – 9 of the gradients rw9 , where w9 the classifier weights for class 9 whose cardinality is the least. The
thin and thick lines represent the original and smoothed curves, respectively. We show the results from the 40-th epoch to ignore the instability in the initial training.

Table 1
Top-1 accuracy (%) on CIFAR-10(-LT) and CIFAR-100(-LT). The experiments are performed on ResNet-32 [27]. In the table head, 100;50;10 represents IF ¼ 100;50;10.Normal
represents the original dataset without undersampling. y represents our reimplement results.

Methods stage CIFAR-10(-LT) CIFAR-100(-LT)

100 50 10 Normal 100 50 10 Normal

Plain Model [27] 1 70.4 74.8 86.4 92:8y 38.4 43.9 55.8 68:7y

mixup [28] 1 73.1 77.8 87.1 92:0y 39.6 45.0 58.2 68:7y

LDAM + DRW [7] 1 74.9 - 86.7 - 40.3 - 57.3 -
Remix + DRW [29] 2 79.8 - 89.1 - 46.8 - 61.3 -
BBN [10] 2 79.9 82.2 88.4 - 42.6 47.1 59.2 -
MiSLAS [11] 2 82.1 85.7 90.0 - 47.0 52.3 63.2 -

ARB-Loss 1 83.3 85.7 90.2 92.6 47.2 52.6 62.1 68.6

Table 2
Top-1 accuracy (%) on ImageNet-LT, Places-LT and iNaturalist2018. The experiments of ImageNet-LT and iNaturalist2018 are performed on ResNet-50, and the ones of Places-LT
are performed on ResNet-152. y represents our reimplement results.

Methods Stage ImageNet-LT Places-LT iNaturalist2018
Many Median Few Overall Many Median Few Overall Many Median Few Overall

Plain Model [27] 1 65:5y 40:3y 13:1y 45:6y - - - - 72:8y 63:7y 58:4y 62:3y

CB-Focal [6] 1 - - - - - - - - - - - 61.1
RangeLoss [30] 1 - - - - 41.1 35.4 23.2 35.1 - - - -
Focal + DRW [17] 1 - - - 47.9 - - - - - - - -
CE + DRW [7] 1 - - - 48.5 - - - - - - - -
LDAM + DRW [7] 1 - - - 48.8 - - - - - - - 68.0
OLTR [31] 1 43.2 35.1 18.5 35.6 44.7 37.0 25.3 35.9 - - - -
OTLR + LFME [32] 1 47.0 37.9 19.2 38.8 39.3 39.6 24.2 36.2 - - - -
Remix + DRW [29] 2 - - - - - - - - - - - 70.5
BBN [10] 2 - - - - - - - - - - - 69.6
cRT + mixup [11] 2 63.9 49.1 30.2 51.7 44.1 38.5 27.1 38.3 74.2 71.1 68.2 70.2
LWS + mixup [11] 2 62.9 49.8 31.6 52.0 41.7 41.3 33.1 39.7 72.8 71.6 69.8 70.9
MiSLAS[11] 2 61.7 51.3 35.8 52.7 39.6 43.3 36.1 40.4 73.2 72.4 70.4 71.6

ARB-Loss 1 60.2 51.8 38.3 52.8 41.9 41.5 32.1 39.7 71.9 72.1 71.7 71.7
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Our ARB-Loss can significantly improve pixel accuracy. The reason
why the improvements onmIoUmetric are slight might be that the
denominator of IoU involved FP (false positive), compared to the
Table 3
The Segmentation Results on CityScapes dataset. mAcc is the mean of per-class pixel
accuracy andmIoU is the mean of per-class IoU (Intersection over Union). y represents
our reimplement results.

Models U-Net Deeplabv3+

Metrics mIoU mAcc mIoU mAcc

baseline 67:6y 74:6y 79:3y 86:3y

ARB-Loss 67.9 79.7 79.5 89.0
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denominator of pixel accuracy. In 4, we show the per-class results.
We can see that the classes whose IoU gets improved while the
pixel accuracy is still a little lower are almost the minor classes.
If the FP item is relatively too large for the cardinality of a minor
class, the IoU value will drop. Meanwhile, if these FP belongs to
some major classes, it will have little effect on the value of pixel
accuracy.

6. Conclusion & future works

In this paper, we analyze that the reason for the performance
drop under long-tailed distributions is the imbalances of the gradi-
ents from different classes. Then, we propose Attraction–Repul
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sion-Balanced Loss (ARB-Loss) to balance the different gradient
components. Moreover, we analyze the properties of our ARB-
Loss to theoretically demonstrate the rationality of our design.
We also give some visualization examples to analyze the geometric
structure of the classifier weights and the magnitude proportions
of the gradient components. Moreover, we perform experiments
on large-scale classification and segmentation datasets to demon-
strate the effectiveness of ARB-Loss. ARB-Loss can achieve state-of-
the-art performance via only one-stage training.

For the future, the following topics are worth studying:

� The geometric structure described by Neural Collapse also has
great inspiration for the bottlenecks of other machine-learning
tasks, i.e., few-shot or online learning etc. How to design algo-
rithms inspired by Neural Collapse for the other tasks is a topic
worth future research.

� Besides the classifier, the optimization of the features extracted by
the backbone networks is also affected by the imbalanced distribu-
tion. How to solve this issue is still an open question.

In the future, we will continue the relevant research topics
along the line of Neural Collapse and explore the underlying princi-
ples behind it.
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Appendix A. Proofs

A.1. Proof of 4.1

Proof 1. For k-th(k – i) repulsion terms,

jjrb;kjj ¼ jj
X
j2p kð Þ

pj;ihjjj

6
X
j2p kð Þ

pj;ijjhjjj

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j2p kð Þ

p2
j;i

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j2p kð Þ

jjhjjj2
s

¼ Bk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nkjjh kð Þjj2

q
6 Bk

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nkEH;k

p
; ð24Þ

where

Bk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j2p kð Þ

p2
j;i

s
: ð25Þ

and
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jjh ið Þjj2 ¼

X
j2p ið Þ

jjhjjj2

ni
6 EH;i: ð26Þ

Note that we use the subscript with a bracket to represent the mean
of the squared norm of some certain class features. The brackets are
used to be distinguished from the feature indices.

For j 2 p kð Þ; k – i, there is a non-zero minimum for pj;i which

is denoted as p k;ið Þ
min and a maximum for pj;i which is less than 1 and

is denoted as p k;ið Þ
max. Then,ffiffiffiffiffi

nk
p

p k;ið Þ
min 6 Bk 6

ffiffiffiffiffi
nk

p
p k;ið Þ
max ð27Þ

Therefore,

sup jjrb;kjj
sup jjrb;ljj ¼

Bk

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nkEH;k

p
Bl

ffiffiffiffiffiffiffiffiffiffiffi
nlEH;l

p 6 nk

nl
� Ckl �

ffiffiffiffiffiffiffiffi
EH;k

EH;l

s
ð28Þ

where Ckl ¼ p k;ið Þ
max=p

k;ið Þ
min is a constant.

Similarly, for the ARB-Loss,

jj ~rb;kjj ¼ jj nink
X
j2p kð Þ

~pj;ihjjj

6 ni
nk

X
j2p kð Þ

~pj;ijjhjjj

6 ni
nk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j2p kð Þ

~p2
j;i

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j2p kð Þ

jjhjjj2
s

¼ ni
nk
� eBk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nkjjh kð Þjj2

q
6 ni

nk
� eBk

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nkEH;k

p
; ð29Þ

where,

~p k;ið Þ
min 6 eBk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j2p kð Þ

~p2
j;i

s
6 ~p k;ið Þ

max ð30Þ

where ~p k;ið Þ
max and ~p k;ið Þ

min are defined similarly with p k;ið Þ
max and p k;ið Þ

min, i.e.,

~p k;ið Þ
max ¼ max

j2p ið Þ
~pj;i; ~p

k;ið Þ
min ¼ min

j2p kð Þ
~pj;i. Then, we have,

sup jj ~rb;kjj
sup jj ~rb;ljj

¼
ni
nk
� eBk

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nkEH;k

p
ni
nl
� eBl

ffiffiffiffiffiffiffiffiffiffiffi
nlEH;l

p 6 eCkl �
ffiffiffiffiffiffiffiffi
EH;k

EH;l

s
ð31Þ

where eCkl ¼ ~p k;ið Þ
max=~p

k;ið Þ
min is a constant.
A.2. Proof of 4.2

Proof 2.

jjr ið Þ
a jj ¼ jj

X
j2p ið Þ

1� pj;i

� �
hjjj

6
X
j2p ið Þ

1� pj;i

� �jjhjjj

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j2p ið Þ

1� pj;i

� �2s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j2p ið Þ

jjhjjj2
s

¼ Ak

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q
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ffiffiffiffiffiffiffiffiffiffiffi
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p
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ð32Þ

where

Ak ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j2p ið Þ

1� pj;i

� �2s
: ð33Þ

Similar to the proof of 4.2,

jjr ið Þ
b;kjj ¼ jj

X
pj;ij2p kð Þhjjj 6 Bk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nkjjh kð Þjj2

q
6 Bk

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nkEH;k

q
; ð34Þ
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For j 2 p ið Þ, the maximum of pj;i is less than 1 and we denote this

maximum as p ið Þ
max. For j 2 p kð Þ; k – i, there is a non-zero minimum

for pj;i and we denote this minimum as p k;ið Þ
min. Then we have,

Ak P
ffiffiffiffi
ni

p
1� p ið Þ

max

� �
; Bk 6

ffiffiffiffiffi
nk

p
p k;ið Þ
min: ð35Þ

Therefore, the proportion of the supremum of the attraction and k-
th(k – i) repulsion terms’ norm obey:

sup jjr ið Þ
a jj

sup jjr ið Þ
b;kjj
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; ð36Þ

where Ck ¼ 1� p ið Þ
max
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min is a constant.

Similarly, for the ARB-Loss,
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where,
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 �
=~p k;ið Þ

min is a constant.
Appendix B. Datasets

B.1. Classification datasets

We perform experiments on CIFAR-10/100 [35] and three large-
scale image classification datasets: ImageNet [36], iNaturalist2018
[37] and Places [38].

CIFAR-10/100 are both composed of a training set of 50000
images and a validation set of 10000 images with 10 and 100
classes, respectively. The long-tail versions of CIFAR-10/100 are
generated by the same rule as [7], i.e., reducing the sample number
per class according to an exponential curve controlled by an imbal-
ance factor IF ¼ nmax

nmin
, where nmax and nmin are the sample numbers

of the most and the least frequent classes.
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ImageNet-LT and Places-LT were first proposed by [31]. Ima-
geNet is composed of 1;281;167 training images, 50;000 valida-
tion images and 100;000 test images and spans 1000 classes.
Places contains 10;624;928 images from 434 classes. ImageNet-
LT has 115:8K images from 1000 classes whose cardinalities rang-
ing from 5 to 1;280. Places-LT contains 184:5K images from 365
classes with class cardinality ranging from 5 to 4;980.

iNaturalist2018 is a dataset that originally suffers from an
extreme class imbalance, which consists of 437:5K images from
8;142 classes. Besides, we also face the fine-grained classification
in iNaturalist2018 dataset.

B.2. Segmentation datasets

Essentially, the segmentation is a pixel-wise classification. And
it usually suffers from extremely imbalanced distributions, e.g. the
sky and ground usually occupy much more pixels than foreground
objects on the image captured by the car-equipped camera.

CityScapes [39] contains 5000 annotated images of the street
scenes of 50 different cities and 19 semantic labels are used for
evaluation. The training, validation, and test sets contain 2975,
500, and 1525 images, respectively.
Appendix C. Implementation details

We use the PyTorch [40] framework to perform all the experi-
ments. For all experiments on the image classification task, we
use an SGD optimizer with a momentum of 0:9, and an initial
learning rate of 0:1. For experiments on CIFAR-10/100(-LT), we
train the model on a single GPU, and the learning rate decays as
its 0:1 at the 160-th and 180-th epochs. For ImageNet-LT, Places-
LT, and iNaturalist2018 datasets, we train the models on 8 GPUs
and use cosine learning rate schedule [41] gradually decaying from
0:2 to 0. For all experiments, we use mixup [28] data augmenta-
tion, and the batch size is 128 per GPU. For experiments on the
image segmentation task, we use an SGD optimizer with an initial
learning rate of 0:01, a momentum of 0:9, and a weight decay of
0:0005. And we update the learning rate by the poly policy with
a power of 0:9.
Appendix D. Detailed results of image segmentation task

From the per-class results in the above table, we can see that
the classes whose IoU gets improved while the pixel accuracy is
still a little lower are almost the minor classes. The reason might
be the differences in the definition of these two metrics. For a cer-
tain class i, IoU is defined as:

IoUi ¼ TPi

TPi þ FPi þ FNi
ð40Þ

And pixel accuracy is defined as:

Acci ¼ TPi

TPi þ FNi
ð41Þ

If the FPi item is relatively too large for the cardinality of a minor
class, i.e., FPi is too large compared to TPi þ FNi, the IoU value will
drop a lot. Meanwhile, if these FPi pixels belongs to some major
classes, it will have little effect on the pixel accuracy of these major
classes. So, it will cause that although pixel accuracy improves a lot,
the improvements in the metric of IoU are slight.
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