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Abstract 

Background  Family-based selective breeding programs typically employ both between-family and within-family 
selection in aquaculture. However, these programs may exhibit a reduced genetic gain in the presence of a genotype 
by environment interactions (G × E) when employing biosecurity-based breeding schemes (BS), compared to non-
biosecurity-based breeding schemes (NBS). Fortunately, genomic selection shows promise in improving genetic gain 
by taking within-family variance into account. Stochastic simulation was employed to evaluate genetic gain and G × E 
trends in BS for improving the body weight of L. vannamei, considering selective genotyping strategies for test 
group (TG) at a commercial farm environment (CE), the number individuals of the selection group (SG) genotyped 
at nucleus breeding center (NE), and varying levels of G × E.

Results  The loss of genetic gain in BS ranged from 9.4 to 38.9% in pedigree-based selection and was more pro-
nounced when G × E was stronger, as quantified by a lower genetic correlation for body weight between NE and CE. 
Genomic selection, particularly with selective genotyping of TG individuals with extreme performance, effectively 
offset the loss of genetic gain. With a genetic correlation of 0.8, genotyping 20 SG individuals in each candidate family 
achieved 93.2% of the genetic gain observed for NBS. However, when the genetic correlation fell below 0.5, the num-
ber of genotyped SG individuals per family had to be increased to 50 or more. Genetic gain improved by on average 
9.4% when the number of genotyped SG individuals rose from 20 to 50, but the increase in genetic gain averaged 
only 2.4% when expanding from 50 to 80 individuals genotyped. In addition, the genetic correlation decreased 
by on average 0.13 over 30 generations of selection when performing BS and the genetic correlation fluctuated 
across generations.

Conclusions  Genomic selection can effectively compensate for the loss of genetic gain in BS due to G × E. How-
ever, the number of genotyped SG individuals and the level of G × E significantly affected the extra genetic gain 
from genomic selection. A family-based BS selective breeding program should monitor the level of G × E and geno-
typing 50 SG individuals per candidate family to minimize the loss of genetic gain due to G × E, unless the level 
of G × E is confirmed to be low.

*Correspondence:
Sheng Luan
luansheng@ysfri.ac.cn
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12711-025-00949-3&domain=pdf
http://orcid.org/0000-0002-5220-1870


Page 2 of 15Kang et al. Genetics Selection Evolution            (2025) 57:2 

Background
Family-based selective breeding programs have achieved 
notable genetic gain, especially in growth-related traits in 
aquaculture [1, 2]. In traditional, non-biosecurity-based 
breeding schemes (NBS), individuals for the nucleus pop-
ulation (NP) are selected following rearing and testing 
at field-test stations [1]. However, these programs are at 
risk if the NP becomes infected with fatal pathogens. To 
mitigate this risk, a more adavanced, biosecurity-based 
breeding schemes (BS) have been implemented, wherein 
individuals from each NP family are segregated into a 
test group (TG) and a selection group (SG) [1], in which 
TG individuals are tested for target traits under diverse 
commercial farm environments (CE), including exten-
sive, semi-intensive, intensive ponds, and super-intensive 
raceway systems, each representing unique biosecurity 
conditions and population densities [1, 3, 4]. Simultane-
ously, SG individuals are reared separately as potential 
selection candidates under high biosecurity levels at a 
nucleus breeding center (NE), with a significantly lower 
population density compare to CE. During the rearing 
process of SG, it is of utmost importance to ensure their 
continual preservation in a specific pathogen-free state. 
For example, in Pacific white shrimp (Litopenaeus van-
namei), this involves maintaining an environment devoid 
of the presence of any of over ten pathogens, including 
white spot syndrome virus (WSSV), infectious hypoder-
mal and haematopoietic necrosis virus (IHHNV), Vibrio 
parahaemolyticus causing acute hepatopancreatic necro-
sis disease (VpAHPND), and others [5]. However, environ-
mental differences between CE and NE can contribute 
to genotype by environment interactions (G × E), which 
can substantially impact genetic gains achieved through 
selective breeding [3].

G × E presents a significant challenge in developing 
superior plants and animals as it often leads to the re-
ranking of genotypes across different environments, i.e., 
the genotype with the best phenotype within a given 
population in one setting may not perform as the best 
in another setting. This re-ranking means that the same 
trait measured in various environments may effectively 
behave like different traits [6], with the extent of re-
ranking quantifiable by the genetic correlation between 
the trait in different environments. This phenomenon 
is extensively documented for aquatic species and influ-
ences many traits [4, 7–9]. For instance, genetic cor-
relations for body weight in L. vannamei across various 
environmental conditions have been reported to ranging 
from 0.65 to 0.94 for different salinity levels [10], at 0.54 
for various rearing densities [11], around 0.48 for dif-
ferent temperatures [12], and ranging from 0.17 to 0.56 
for diverse culture systems [3]. Among the effects of G 
× E, re-ranking is particularly problematic for selective 

breeding programs because it can significantly hinder the 
desired genetic progress in CE [1, 8]. Selecting genotypes 
based on their phenotypes in NE may overlook those 
that would excel in CE. For Red tilapia (Oreochromis 
spp.), selection carried out in NE led to lower genetic 
gain in CE than in NE itself. Over three generations of 
selection, genetic gain in NE ranged from 0.01 to 1.56 
genetic standard deviation units, whereas in CE it ranged 
from − 0.03 to 0.57 [13]. Additionally, in rainbow trout, 
the genetic correlation between NE and CE ranged from 
0.15 to 0.48 between various environmental conditions, 
leading to the loss of genetic gains for body weight in CE 
when preselection occurred in NE [8]. Therefore, detect-
ing and understanding the re-ranking effects of G × E is 
essential for strategically designing and implementing 
selective breeding programs.

The BS within the family-based selective breeding 
program of L. vannamei allow for selection at the fam-
ily level, employing pedigree-based best linear unbiased 
prediction (PBLUP) for predicting estimated breed-
ing values (EBVs) in SG. However, selecting candidates 
within-family based on phenotypes observed in NE may 
not select the individuals with the best genetics for CE, 
especially when G × E is strong. The limitation stems 
from the inability of PBLUP to estimate Mendelian sam-
pling terms within families, which reduces the accuracy 
of within-family selection and genetic gain. The emer-
gence of genomic selection has mitigated this issue by 
enabling more accurate estimation of genetic relation-
ships among full-sibs and the prediction of Mendelian 
sampling terms [14, 15]. Critically, it provides genomic 
estimated breeding values (GEBVs) for genotyped SG 
individuals by aggregating marker effects calculated from 
the phenotypic and genotypic data of the genotyped TG 
individuals [16], thus mitigating the impact of G × E. This 
approach allows for more accurate selection of SG indi-
viduals, thereby enhancing the selection process in the 
presence of G × E.

However, genetic gain from genomic selection in BS 
is affected by the selective genotyping strategy (i.e., how 
individuals are chosen for genotyping), the number of 
genotyped individuals in TG and SG, and the level of 
G × E between NE and CE [17–23]. While much previ-
ous research has focused on biases in genomic predic-
tions and comparative accuracies of selection among 
breeding schemes, there needs to be more comprehen-
sive insight into how these factors translate into long-
term genetic gain. Differences in prediction accuracy 
may not always reflect differences in genetic gains due to 
factors such as selection intensity, prediction bias, and 
selection-induced changes in genetic variance [21]. For 
species with high fecundity, like L. vannamei, where TG 
and SG comprise extensive full-sib families, it is crucial 
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to include phenotypic data from ungenotyped individu-
als, employing methods such as single-step genomic 
BLUP (ssGBLUP) [24]. Furthermore, the optimal number 
of genotyped individuals within SG has not been suffi-
ciently explored, despite its significant influence on selec-
tion intensity and associated genotyping costs [25–27]. A 
comprehensive understanding of how genotyping num-
bers affect genetic gain under varying levels of G × E and 
of the dynamic changes in these levels over generations 
is needed in order to optimize family-based selective 
breeding of L. vannamei.

Stochastic simulation is a powerful tool for the design 
and optimization of breeding programs, providing a fast 
and cost-effective method for testing alternative breed-
ing program designs [28]. By simulating various breeding 
schemes, it allows breeders to identify potential chal-
lenges and optimize parameters for maximum genetic 
gain after long-term selection. This approach is particu-
larly useful in complex breeding programs, where tradi-
tional trial-and-error methods would be impractical and 
time-consuming. Simulations have been used to improve 
plant breeding programs [29–31], animal breeding pro-
grams [32–34], and aquatic animal breeding programs 
in the presence of G × E [21, 22], as well as to address 
theoretical concepts in quantitative genetics and breed-
ing [35]. In this study, we conducted simulations of a 
typical family-based selective breeding program for L. 
vannamei with 100 full-sib families per generation, span-
ning 30 generations of selection for body weight. The 
EBV for individuals in TG and SG were predicted using 
ssGBLUP and PBLUP under varying levels of G × E. Our 
research aimed to assess the loss of genetic gain in BS 
due to G × E, determine the optimal selective genotyp-
ing strategy within TG, investigate the optimum number 
of genotyped individuals in SG under different levels of 
G × E, and investigate the impact of selection on the level 
of G × E when environment conditions remain constant 
across generations.

Methods
Simulation overview
This study conducted simulations of a family-based selec-
tive breeding program aimed at enhancing the body 
weight of L. vannamei in CE, employing both pedigree-
based and genomic selection methods across 31 genera-
tions (G0 to G30) within BS and NBS. Each generation 
involved both between-family and within-family prese-
lection processes. Between-family preselection was 
conducted using EBVs of families calculated by PBLUP. 
With genomic selection, within-family preselection con-
sisted of a two-step process: initially, EBVs (for NBS) or 
phenotypes (for BS) were utilized to preselect individu-
als within each candidate family (preselected family) 

for genotyping. These genotyped individuals with high 
GEBVs, calculated using ssGBLUP, were chosen as selec-
tion candidates. In contrast, pedigree-based selection 
solely utilized pedigree-based EBVs and phenotypes for 
within-family preselection. Subsequently, optimum cross 
selection (OCS) was applied to optimize the mating plan 
[31], selecting parents from these selection candidates 
to generate the next generation. The breeding program 
design implemented in this simulation study was based 
on established methodologies commonly applied to L. 
vannamei [12, 36, 37]. Further details on the selection 
process can be found in the "Breeding Schemes" section 
and are illustrated in Fig.  1. Parameters for all breeding 
schemes are documented in Table 1.

In the BS with pedigree selection, individuals from NP 
families were randomly divided into SG and TG, located 
in NE and CE, respectively. SG individuals were potential 
selection candidates, while TG individuals were used for 
sib-testing. The NBS used only TG individuals in CE for 
both testing and selection. In the BS with genomic selec-
tion, three selective genotyping strategies were employed 
for TG individuals in each preselected candidate family: 
RAN, TOP, and T&B, which involved genotyping 50 TG 
individuals randomly (RAN), the 50 individuals with the 
most extreme EBV (top-rank 25 and bottom-rank 25) for 
T&B, and the 50 individuals with top-rank EBV for TOP. 
Additionally, the 20, 50, or 80 SG individuals with high-
est phenotypes were genotyped within each preselected 
candidate family to represent small, medium, and large 
family sizes in aquaculture breeding [16, 38]. Selective 
genotyping of SG individuals with highest phenotypes 
aimed to maximize selection intensity [21], and genotyp-
ing 50 TG individuals within each candidate family was 
deemed sufficient for accurate GEBVs [16, 38]. Only the 
50 individuals with the highest EBV in each preselected 
candidate family were genotyped for NBS. For the NP of 
G0, three levels of G × E were considered, as quantified 
by the genetic correlation (0.2, 0.5, and 0.8) between the 
body weight of NP measured in NE and CE, with lower 
correlations indicating stronger G × E. This range of cor-
relations reflects the range of genetic correlation esti-
mates for body weight of L. vannamei between NE and 
CE, which spans from 0.17 to 0.95 [3, 10–12]. Correla-
tions above 0.8 were considered to indicate weak G × E, 
while those below 0.5 suggested strong G × E [1]. A total 
of 36 breeding schemes were analyzed, 12 for each level 
of G × E. Ten replicates were simulated for each breeding 
scheme, assessing genetic gains and changes in the level 
of G × E for body weight over 30 generations. The simu-
lations were conducted using the R package AlphaSimR 
[28] and all procedures for GEBV and EBV calculation 
were performed using the BLUPF90 software [39]. OCS 
was performed using the AlphaMate software [40], with 
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the Pareto optimality targeted trigonometric degree set 
to 45, which results in desirable genetic gain and con-
trol of inbreeding in each generation [41–43]. The source 
code is available at https://​github.​com/​kzy599/​Biose​
curity-​based-​breed​ing-​schem​es.

Simulation of genotypes and phenotypes
To simulate the genome of 1000 founders of L. van-
namei, 44 chromosome pairs were generated, each with 
a genetic length of 43.41 Morgans (approximately 0.986 

Morgan per chromosome) and a physical length of 2.6e9 
base pairs. This was accomplished using a Markovian 
Coalescent Simulator based on mutation-drift equilib-
rium theory [44]. A recombination rate of 1.67e−8 per 
base pair (43.41 Morgans/2.6e9 base pairs) and a muta-
tion rate of 2.5e−7 per base pair were simulated [45]. 
The effective population size was set at 1000, with his-
torical increments to 1115 at 45 generations ago, 2651 at 
122 generations ago, and 8253 at 952 generations ago, in 
order to reflect demographic events [36].

Fig. 1  Simulation process across all breeding schemes. G × E (0.2, 0.5, 0.8): the level of genotype by environment interactions between the nucleus 
breeding center (NE) and the commercial farm environment (CE) in G0, quantified by the genetic correlation for body weight in the nucleus 
population (NP) measured in NE and CE; EBV: estimate breeding value; GEBV: genomic EBV; PBLUP: pedigree-based best linear unbiased prediction; 
ssGBLUP: single-step genomic BLUP; SG: selection group; RAN, TOP, and T&B: the selective genotyping strategies for individuals within each 
candidate family of test group (TG), involving genotyping individuals randomly, those with top-rank EBV, and those with extreme EBV, respectively; 
OCS: optimum contribution selection; A: pedigree-based relationship matrix; G: genomic relationship matrix; The blue lines denote the specific 
pathways for genomic selection, the red lines is specific to pedigree-based selection, and the black lines represent public pathways

Table 1  Factors for the different breeding schemes

G × E (0.2, 0.5, 0.8): the level of genotype by environment interactions between the nucleus breeding center (NE) and the commercial farm environment (CE) in 
G0, quantified by the genetic correlation for body weight in the nucleus population (NP) measured in NE and CE; −: excluding; + : including; BS: biosecurity-based 
breeding schemes; NBS: non-biosecurity-based breeding schemes; NE: nucleus breeding center; CE: commercial farm environment; SG: selection group; TG: test 
group; RAN, TOP, and T&B: the selective genotyping strategies for TG individuals within each candidate family, involving genotyping individuals randomly, those with 
top-rank EBVs, and those with extreme EBVs, respectively

Factors G × E (0.2, 0.5, 0.8)

Genomic selection Pedigree-based selection

BS NBS BS NBS

NE + − + −

CE + + + +

Selection index for between-family preselection EBV EBV EBV EBV

Selection index for genotyping SG indivdiuasl with top-rank Phenotype − − −

Number of genotyping SG individuals per candidate family 20, 50, 80 − 0 −

Selection index for genotyping TG individuals EBV EBV − −

Selective genotyping strategy for TG individuals RAN, TOP, T&B TOP − −

Number of genotyped TG individuals per candidate family 50 50 0 0

Selection index for selection candidates GEBV GEBV Phenotype EBV

https://github.com/kzy599/Biosecurity-based-breeding-schemes
https://github.com/kzy599/Biosecurity-based-breeding-schemes
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From the founder genomes, we randomly selected 
55,000 single nucleotide polymorphisms (SNPs), with 
1250 SNPs per chromosome, and an additional 4400 
quantitative trait loci (QTLs), at 100 QTLs per chro-
mosome, each with a minor allele frequency exceeding 
0.05. The number of SNPs aligns with our previously 
developed SNP panel [46, 47]. Because body weight of 
L. vannamei is a quantitative trait [1, 38], we assumed a 
large number of QTLs, each exerting a small effect, also 
to prevent overestimation of the information content of 
the genomic data [48]. There was no overlap between 
the SNPs and QTLs. The additive effects of QTL alleles 
on body weight in CE and NE were determined based on 
a multivariate normal distribution with a mean of zero 
and a variance of one, with a correlation or 0.2, 0.5, or 0.8 
to simulate three levels of G × E. The simulated additive 
QTL effects were scaled to achieve an additive genetic 
variance of 5.39 in the founders for each environment. 
Genetic values were computed as the sum of all QTL 
effects for an individual and phenotypes were generated 
by adding a residual effect drawn from a normal distribu-
tion with a mean of zero and a variance of 7.75 to achieve 
a heritability of 0.41. The choice of values for the additive 
variance and heritability were based on unpublished esti-
mates from a nucleus breeding population comprising 
416 full-sib families and 69,930 individuals under com-
mercial farming conditions. The large numbers of fami-
lies and individuals ensures reliable results, making them 
representative of the heritability of body weight in L. van-
namei. In order to simplify the simulation, the same vari-
ance components were applied to traits in both the NE 
and CE environments within the founder population, as 
this study primarily focuses on the re-ranking effect of 
G × E, which is not influenced by variance heterogene-
ity. Both NE and CE phenotypes were simulated for each 
individual. However, the phenotype used depended on 
the environment (NE or CE) where the individual was 
reared or tested. Environments were assumed constant 
across generations, with no simulated environmental 
variance, and only additive effects were considered in the 
simulation.

Breeding schemes
Breeding schemes were classified into BS, involving NE 
and CE, and NBS, which did not incorporate a specific 
NE. For all breeding schemes, the NP was established 
by mating 100 females with 50 males, where each male 
was paired with two females per generation. This mat-
ing involved either parents from the founders or those 
from the previous generation’s NP. The mating plan was 
optimized to balance genetic gain and inbreeding using 
OCS, except for the initial pairings from the founders, 
which were conducted randomly. The NP consisted of 

20,000 individuals, divided into 100 full-sib families, each 
comprising 200 individuals, which were equally divided 
between SG and TG by family. The phenotype of SG indi-
viduals was excluded from PBLUP or ssGBLUP, since the 
target trait was the body weight in the CE and to reflect 
scenarios encountered in practical breeding, where SG 
families are independently reared and are each subject 
to a pronounced common environment effect, which can 
introduce biases into the evaluation of the target trait 
body weight in the CE. Sex ratio was maintained at 1:1 
for each populations and groups. To ensure comparabil-
ity, the same populations and groups from G0 were con-
sistently used across all breeding schemes. Furthermore, 
the numbers of preselected families (50) and individuals 
(6 per preselected family) were constant across all gen-
erations and breeding schemes to maintain consistent 
selection intensity.

In the BS, the top 50 families based on EBVs calcu-
lated by PBLUP were preselected to be candidate fami-
lies (between-family preselection). In the pedigree-based 
selection, the 6 SG individuals (4 females and 2 males) 
with the highest phenotypes in each of the 50 candidate 
families were chosen as selection candidates. Genomic 
selection involved genotyping 50 TG individuals accord-
ing to three selective genotyping strategies (RAN, TOP, 
T&B), and genotyping 20, 50 or 80 SG individuals with 
the highest phenotypes within each of the 50 candi-
date families. Based on the GEBVs of these genotyped 
SG individuals, calculated using ssGBLUP, the top 6 SG 
individuals (4 females and 2 males) per candidate family 
were chosen as selection candidates. These selection can-
didates were further narrowed down to 150 individuals 
(100 females and 50 males) used for breeding using OCS, 
which utilized either the A matrix from pedigree data 
or the G matrix from genomic data, to produced the NP 
of the next generation. Each male was paired with two 
females, and each female was paired only once, generat-
ing 100 full-sibling families.

All the procedures in NBS were identical to those in BS, 
except that TG individuals were used as potential selec-
tion candidates instead of SG individuals. Within-family 
preselection in pedigree-based NBS was based on EBVs. 
In genomic selection, the 50 TG individuals with the 
highest pedigree-based EBVs from each of the 50 candi-
date families were genotyped, and the 6 TG individuals (4 
females and 2 males) with the highest GEBVs were cho-
sen as selection candidates.

Models for genetic evaluation
Considering the small effective population size of each 
family of L. vannamei, a moderate-sized training set was 
deemed adequate for predicting GEBVs or EBVs [16]. 
Moreover, a training set comprising individuals from the 
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recent four generations can provide sufficient information 
to accurately estimate GEBVs or EBVs for selection can-
didates in the current generation [49]. Therefore, all avail-
able data on TG individuals from the last 4 generations and 
their parents were used to perform PBLUP or ssGBLUP to 
estimate the GEBV or EBV of the SG individuals in the cur-
rent generation.

The GEBV or EBV of body weight of selection candi-
dates was calculated using ssGBLUP [24] or PBLUP using 
the following univariate animal model, since the pheno-
type of SG individuals was excluded from estimation:

where yi denotes the phenotype of body weight of the i th 
individual in CE; µ denotes the overall mean; and ai and ei 
correspond to the additive genetic effect and the random 
residual effect of the the i th individual at CE, respec-
tively. These vectors of the latter were assumed to follow 
a multi-variate normal distribution:

where σ2a and σ2e denote the additive genetic variance 
and residual variance, respectively; I denotes the iden-
tity matrix; A denotes the matrix of additive genetic 
relationships between individuals calculated using the 
pedigree information relevant for PBLUP; and H denotes 
the relationship matrix that combines the full pedigree 
and genomic information relevant for ssGBLUP and is 
expressed as [24, 39]:

In which A11 , A12 , A21 , and A22 denote the sub-matri-
ces of A, and subscripts 1 and 2 represent non-geno-
typed and genotyped individuals, respectively; Gw is the 
weighted and adjusted genomic relationship matrix to 
avoid singularity problems and the difference in scale and 
location between relationship coefficients in G and A22 
[39]:

with α was set to 0.05, and,

with a and b inferred from the following two equations 
[50]:

yi = µ+ ai + ei,

[

a

e

]

∼ N

([

0

0

]

,

[

Aσ
2
aorHσ

2
a 0

0 Iσ
2
e

])

,

H =

[

A11 + A12A−1
22 (Gw − A22)A−1

22 A21 A12A−1
22 Gw

GwA−1
22 A21 Gw

]

,

Gw= (1− α)G∗
+ αA22,

G
∗
= a+ b ∗G,

(Avg.diag(G) ∗ b)+ a = Avg.diag(A22),

(Avg.offdiag(G) ∗ b)+ a = Avg.offdiag(A22),

where Avg.diag is the average of the diagonal elements, 
and Avg.offdiag is the average of the off-diagonal ele-
ments. The matrix G was computed using the first 
method described in [51]. Variances σ2a and σ2e were calcu-
lated using the varA() and varP() functions of AlphaSimR 
[28] based on the NP of the current generation, rather 
than the genotyped individuals, to avoid potential bias.

Genetic gain
Each individual had two distinct genetic values, corre-
sponding to their respective performances in two envi-
ronments. For the purpose of this study, when calculating 
genetic gain, only the genetic values in CE were con-
sidered, which aligns with the primary objective of this 
selective breeding program, which was to enhance the 
body weight in CE. Cumulative genetic gain for each gen-
eration was computed as the difference between the aver-
age genetic value of the NP in that generation and that 
of the NP in G0. In this study, we focus exclusively on 
the genetic gain observed in G30, as it encapsulates the 
cumulative effects of all generations of selection. For all 
breeding schemes, the genetic gain in G30 is presented 
in the Results section, and the genetic gains for the other 
generations are shown in Additional file 1: Figures S1, S2. 
For both genomic and pedigree-based selection, the loss 
of genetic gain in BS compared to NBS was calculated as 
the difference in genetic gain between BS and NBS, divid-
ing by the genetic gain for NBS.

The level of G × E
The level of G × E, which is quantifiable as the genetic 
correlation between body weight evaluations in the NE 
and CE, plays a critical role in determining the genetic 
gain with BS. Given that the NP of G0 was randomly 
derived from the founders, it is reasonable to assume that 
the initial level of G × E in the NP of G0 mirrors that in 
the founders, with genetic correlations set at 0.2, 0.5, or 
0.8. However, the level of G × E may vary throughout the 
selection process, which underscores the need to closely 
monitor the genetic correlation between NE and CE over 
generations.

As two distinct genetic values are simulated for each 
individual, representing their body weight in NE and CE, 
the correlation of these genetic values is an estimate of 
the genetic correlation for the NP in each generation. 
This approach allows for a dynamic assessment of the 
level of G × E, offering insights into how selective breed-
ing program influences this interaction over generations.

Rate of inbreeding
The rate of inbreeding (∆F) per generation was calculated 
using the formula [52]:
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where Fg denotes the average inbreeding coefficient of all 
individuals within the NP in the gth generation. Inbreed-
ing coefficients were calculated based on pedigree analy-
sis [53].

Statistical analyses
Using the base R stats package [54], we conducted a 
three-way ANOVA and subsequent Tukey’s HSD (hon-
estly significant difference) test to assess differences in 
genetic gain and inbreeding rates between selective geno-
typing strategies, numbers of genotyped SG individuals, 
and initial level of G × E in BS. Differences were deemed 
statistically significant at a P-value less than 0.05, and 
significance was further indicated by confidence interval 
that did not encompass zero. Differences in genetic gain 
between BS and NBS for each initial level of G × E were 
tested using T-tests, with a P-value of less than 0.05 con-
sidered significant.

Results
The loss of genetic gain in biosecurity‑based breeding 
schemes
With pedigree-based selection (Fig.  2, Table  2), genetic 
gain loss for BS compared to NBS ranged from 9.4 to 
38.9%, averaging 24.8%. With genomic selection, the 
extent of this loss depended on the level of G × E in NP 
of G0. For genetic correlations of 0.2 and 0.5, the genetic 
gain loss fluctuated between 6.4 and 24.2% (average 
15.2%) and from 4.2 to 16.9% (average 10.2%), respec-
tively, depending on the number of genotyped SG indi-
viduals in each candidate family (20, 50, or 80). A genetic 

�F = [(Fg − Fg−1)/(1− Fg−1)] ∗ 100, correlation of 0.8 resulted in a narrower range of losses, 
from 2.1 to 8.9% (average 5.3%). Notably, when the 
genetic correlation was 0.8 and 20 SG individuals per 
candidate family were selected using T&B and geno-
typed in BS, 93.2% of the genetic gain observed in NBS 
was achieved. However, to attain similar gains when the 
genetic correlation was 0.2 or 0.5, it was necessary to 
genotype at least 50 SG individuals (Fig. 2, Table 2). The 
differences between BS and NBS (the loss of genetic gain) 
were all statistically significant.

Selective genotyping strategy within each candidate 
family of TG
The best selective genotyping strategy for TG in BS was 
T&B (Fig.  3, Table  2), which genotyped the top 25 and 
bottom 25 TG individuals within each candidate family. 
This strategy increased genetic gain by 1.5 to 3.1% (aver-
age 2.4%) compared to TOP and by 1.6 to 4.2% (average 
2.4%) compared to RAN, although these differences were 
not all statistically significant. Specifically, gain for T&B 
differed significantly from that of the other strategies 
(P < 0.01), whereas no significant difference in gains was 
observed between TOP and RAN (P > 0.8).

The number of genotyped individuals within each 
candidate family of SG
With genomic selection (Fig.  3, Table  2), BS exhibited 
a significant increase in genetic gain when the num-
ber of genotyped SG individuals per candidate fam-
ily was larger. Specifically, the increase of genetic gain 
ranged from 3.3 to 14.1% (average 9.4%) when the num-
ber of genotyped SG individuals per candidate family 
increased from 20 to 50. However, the increase was less 

Fig. 2  Loss of genetic gain in biosecurity-based breeding schemes(BS) when compared with non-BS (NBS). Y-axis: the percentage decrease 
in genetic gain relative to the NBS; PED: BS with pedigree-based selection; RAN, TOP, and T&B: the selective genotyping strategies for individuals 
within each candidate family of test group in BS with genomic selection, involving genotyping individuals randomly, those with top-rank EBVs, 
and those with extreme EBVs respectively. G × E (0.2, 0.5, 0.8): the level of genotype by environment interactions between the nucleus breeding 
center (NE) and the commercial farm environment (CE) in G0, quantified by the genetic correlation for body weight in the nucleus population (NP) 
measured in NE and CE
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pronounced, with a further increase from 50 to 80 SG 
individuals, ranging from − 0.3 to 6.5% (average 2.4%). 
Additionally, the benefits of genotyping more SG indi-
viduals became more pronounced when the level of G 
× E in the NP of G0 was greater. When the genetic cor-
relation between NE and CE was 0.2, the genetic gain 
increased by 13.2 to 14.1% (average 13.6%) when the 
number of genotyped SG individuals increased from 
20 to 50. Similarly, when the genetic correlation was 
0.5 and 0.8, the increases in genetic gains ranged from 

8.8 to 9.4% (average 9.4%) and from 3.3 to 4.7% (aver-
age 4.5%), respectively. When the number of genotyped 
SG individuals was raised from 50 to 80, the increases 
in genetic gain were more modest, ranging from 4.6 to 
6.5% (average 5.3%), from 1.9 to 2.7% (average 2.4%), 
and from − 0.3 to 0.7% (average 0.4%) for genetic cor-
relations of 0.2, 0.5, and 0.8, respectively. Pairwise 
comparisons of genetic gain for different numbers of 
genotyped SG individuals were all statistically signifi-
cant (P < 0.01).

Table 2  Genetic gain of biosecurity-based breeding schemes (BS) and non-BS (NBS) with genomic and pedigree-based selection

Genetic gain ± standard deviation; BS: biosecurity-based breeding scheme; NBS: non-biosecurity-based breeding scheme; G × E (0.2, 0.5, 0.8): the level of genotype by 
environment interactions between the nucleus breeding center (NE) and the commercial farm environment (CE) in G0, quantified by the genetic correlation for body 
weight in the nucleus population (NP) measured in NE and CE; SG: selection group; RAN, TOP, and T&B: the selective genotyping strategies for individuals within each 
candidate family of test group, involving genotyping individuals randomly, those with top-rank EBVs, and those with extreme EBVs, respectively

G × E Number of genotyoped 
SG individuals

Genomic selection Pedigree-based selection

BS NBS BS NBS

T&B TOP RAN

0.2 0 − − − 85.15 ± 2.59 45.36 ± 1.99 74.27 ± 3.12

0.2 20 65.60 ± 1.97 64.59 ± 2.02 64.57 ± 2.46 − − −

0.2 50 74.86 ±3.18 73.38 ± 2.06 73.09 ± 2.30 − − −

0.2 80 79.70 ± 2.79 77.27 ± 2.82 76.48 ± 2.71 − − −

0.5 0 − − − 86.59 ± 3.12 57.16 ± 1.98 76.03 ± 2.63

0.5 20 73.91 ± 2.18 71.93 ± 2.89 72.23 ± 2.06 − − −

0.5 50 80.82 ± 2.30 78.69 ± 2.41 78.55 ± 2.59 − − −

0.5 80 82.96 ± 2.45 80.59 ± 3.48 80.04 ± 2.52 − − −

0.8 0 − − − 85.69 ± 3.19 68.45 ± 2.74 75.52 ± 3.31

0.8 20 79.89 ± 3.73 78.69 ± 3.41 78.04 ± 3.21 − − −

0.8 50 83.52 ± 3.81 81.28 ± 3.83 81.74 ± 2.85 − − −

0.8 80 83.86 ± 2.81 81.87 ± 3.31 81.49 ± 3.53 − − −

Fig. 3  Tukey HSD test results: diferences in genetic gain by number of genotyped SG Individuals and selective genotyping strategies in TG. Black 
dot: the mean of the confidence interval; (20, 50, 80): the number of genotyped individuals within each candidate family of selection group (SG); 
RAN, TOP, and T&B: the selective genotyping strategies for individuals within each candidate family of test group (TG), involving genotyping 
individuals randomly, those with top-rank EBVs, and those with extreme EBVs, respectively
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Genomic selection vs pedigree‑based selection
In BS, genomic selection notably surpassed pedigree-
based selection in boosting genetic gain, while in NBS, 
the increment was more modest (Table 2). The increase 
of genetic gain by genomic selection over pedigree-based 
selection ranged from 14.0 to 75.7% (average 37.7%) for 
BS and from 13.5 to 14.7% (average 13.9%) for NBS. As 
the level of G × E increased, the benefits of genomic 
selection over pedigree-based selection in BS became 
more pronounced.

Changes in the level of G × E over generations
Notable changes in the level of G ×  E of the NP were 
observed over 30 generations in the BS. Specifically, the 
genetic correlation between NE and CE in NP of G30 
showed average reductions by 0.11, 0.15, and 0.12 for ini-
tial genetic correlations of 0.2, 0.5, and 0.8 in NP of G0, 
respectively, signifying an increase in the level of G × 
E over time (Fig.  4, Table  3). Additionally, the variation 
in genetic correlations at G30 within the NP increased 
across replicates of the breeding scheme as the initial 
level of G ×  E increased. This is demonstrated by coef-
ficients of variation of 62.5 and 75.0% under genomic 
selection and pedigree-based selection, respectively, for 
initial genetic correlation of 0.2, of 13.9 and 11.1% for 
0.5, and of 4.4 and 4.2% for 0.8. This indicating greater 

unpredictability in genetic correlation changes at higher 
levels of G × E.

Rate of inbreeding
The inbreeding rate for all breeding schemes were less 
than 1% per generation, conform the Food and Agricul-
ture Organization standards [55]. In BS with genomic 
selection, the inbreeding rate varied significantly depend-
ing on the number of genotyped SG individuals (Fig.  5, 
Table  4), with all pairwise comparisons demonstrating 
statistical significance (P < 0.01). The inbreeding rate 
was, on average, 0.59, 0.62, and 0.64% when the num-
ber of genotyped SG individuals per candidate family 
was 20, 50, and 80, respectively. Not all differences in 
the inbreeding rate between the three selective genotyp-
ing strategies were statistically significant, with signifi-
cant differences observed only between T&B and other 
two strategies (P < 0.01), but not between TOP and RAN 
(P > 0.98). The inbreeding rate was, on average, 0.60% for 
T&B and 0.62% for both TOP and RAN.

Discussion
Loss of genetic gain in biosecurity‑based breeding 
schemes
The loss of genetic gain when implementing BS with ped-
igree-based selection was mainly due to G × E between 

Fig. 4  Level of G × E in nucleus population across generations for biosecurity-based breeding schemes (BS). PED: BS with pedigree-based selection; 
RAN, TOP, and T&B: the selective genotyping strategies for individuals within each candidate family of test group in BS with genomic selection, 
involving genotyping individuals randomly, those with top-rank EBVs, and those with extreme EBVs respectively; G × E (0.2, 0.5, 0.8): the level 
of genotype by environment interactions between the nucleus breeding center (NE) and the commercial farm environment (CE) in G0, quantified 
by the genetic correlation for body weight in the nucleus population (NP) measured in NE and CE; (0, 20, 50, 80): the number of genotyped 
individuals within each candidate family of selection group; Error bar: standard deviation
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the NE and CE. In the simulated breeding schemes, the 
EBVs for SG individuals in the BS were calculated using 
between-family information. Although the within-family 
variance was captured through the phenotype of SG indi-
viduals, these phenotypes did not accurately represent 
their performance in CE [1, 8, 13, 56]. Indeed, the extent 
to which within-family variance was captured depended 
on the level of G × E between NE and CE. In contrast, in 
the NBS, the EBVs for TG individuals encompassed both 
between-family and within-family variance, as these indi-
viduals were tested in CE and also considered as potential 

selection candidates. With an increase in the level of G 
× E, the loss of genetic gain in BS due to G × E became 
more pronounced.

Previous research has highlighted the impact of rear-
ing environments on the ranking of selection candidates, 
reporting a mean genetic correlation between environ-
ments for growth of 0.46 for rainbow trout and rohu 
carp, and of 0.40 for common sole (Solea solea). In L. 
vannamei, reported estimates of the genetic correlation 
for body weight between NE and CE range from 0.17 to 
0.95 [3, 10–12].

Table 3  Level of G × E in the nucleus population of G30 for biosecurity-based breeding schemes

Genetic correlation ± standard deviation; G × E (0.2, 0.5, 0.8): the level of genotype by environment interactions between the nucleus breeding center (NE) and the 
commercial farm environment (CE) in G0, quantified by the genetic correlation for body weight in the nucleus population (NP) measured in NE and CE; (0, 20, 50, 80): 
the number of genotyped individuals within each candidate family of selection group; RAN, TOP, and T&B: the selective genotyping strategies for individuals within 
each candidate family of test group, involving genotyping individuals randomly, those with top-rank EBVs, and those with extreme EBVs, respectively

G × E Number of genotyped SG 
individuals

Genomic selection Pedigree-
based 
selection

T&B TOP RAN

0.2 0 – – – 0.08 ±0.06

0.2 20 0.05 ±0.06 0.10 ±0.05 0.09 ±0.05 –

0.2 50 0.10 ±0.05 0.11 ±0.06 0.09 ±0.06 –

0.2 80 0.11 ±0.07 0.11 ±0.08 0.08 ±0.05 –

0.5 0 – – – 0.36 ±0.04

0.5 20 0.34 ±0.04 0.32 ±0.04 0.37 ±0.04 –

0.5 50 0.34 ±0.06 0.36 ±0.06 0.33 ±0.06 –

0.5 80 0.37 ±0.04 0.36 ±0.05 0.36 ±0.05 –

0.8 0 – – – 0.71 ±0.03

0.8 20 0.68 ±0.02 0.70 ±0.03 0.69 ±0.02 –

0.8 50 0.68 ±0.03 0.69 ±0.02 0.68 ±0.03 –

0.8 80 0.67 ±0.03 0.69 ±0.03 0.68 ±0.04 –

Fig. 5  Tukey HSD test results: differences in inbreeding rate by number of genotyped SG individuals and selective genotyping strategies in TG. 
Black dot: the mean of the confidence interval; (20, 50, 80): the number of genotyped individuals within each candidate family of selection group 
(SG); RAN, TOP, and T&B: the selective genotyping strategies for individuals within each candidate family of test group (TG), involving genotyping 
individuals randomly, those with top-rank EBVs, and those with extreme EBVs, respectively
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Our findings indicate that genomic selection mitigated 
this loss of genetic gain due to G  ×  E markedly when 
the genetic correlation between NE and CE was below 
0.5. This advantage was likely because the GEBVs more 
closely represent individual performance in the CE [14, 
15, 22]. The accuracy of GEBVs for growth-related traits 
ranged from 0.15 to 0.83, reflecting a 24% increase over 
pedigree-based EBV [38]. This underscores the impor-
tance of genomic selection, particularly in breeding 
programs that employ specific pathogen-free breeding 
systems where G × E between the CE and the NE exists 
[1]. Furthermore, as the level of G  ×  E increased, the 
enhancement in genetic gain from genomic selection 
became more substantial, suggesting a greater return on 
genotyping investment with stronger level of G × E.

Selective genotyping within each candidate family of TG
The optimal selective genotyping strategy for TG was 
found to be the T&B strategy, which involves genotyp-
ing individuals at the extremes of performance within 
each candidate family. This finding aligns with previous 
studies [20, 21], in which the T&B strategy was shown 
to enhance the accuracy of GEBVs and increase genetic 
gain, despite potential biases in variance estimates and 
in GEBVs. With GBLUP, the increases in the accuracy of 
GEBVs for the T&B strategy compared to the TOP strat-
egy ranged from 15.3 to 81.0% in sheep [19], from 19.6 
to 38.0% in cattle [20], and from 37.1 to 118.0% in trout 
[21]. Additionally, ssGBLUP further enhanced prediction 
accuracy and reduced biases associated with the T&B 

strategy [20]. The efficacy of T&B likely stems from its 
selective genotyping of individuals with extreme pheno-
types, which greatly improves the power to detect and 
map QTL, as shown in various genetic association studies 
[57–59]. However, in our study, the differences in genetic 
gain between the selective genotyping strategies were not 
as pronounced as the differences in prediction accuracies 
reported in these previous studies. This may be due to 
the between- and within-family preselection procedures 
used in our study, which ensured relatively consistent 
selection intensity across all breeding schemes. Differ-
ences in the inbreeding rate between the selective geno-
typing strategies were also not as pronounced as reported 
in previous studies [21]. This may be because the prese-
lection procedures in our study resulted in selection can-
didates to belong to 50 families for all breeding schemes.

As reported in previous studies, selective genotyp-
ing strategies may influence variance estimations and 
introduce bias in GEBVs calculation [18, 60, 61]. How-
ever, such bias has been shown to be minimal and does 
not have a significant impact on practical application 
[61]. Therefore, this study utilized true genetic variance 
in GEBVs calculation to eliminate the risk of bias and 
improve computational efficiency.

The number of genotyped individuals per SG candidate 
family
It is not necessary to genotype all SG individuals within 
each candidate family. Previous studies in livestock spe-
cies [25–27] showed diminishing returns when 40–60% 

Table 4  Inbreeding rate of biosecurity-based breeding schemes (BS) and non-BS (NBS) with genomic and pedigree-based selection

Inbreeding rate ± standard deviation; BS: biosecurity-based breeding scheme; NBS: non-biosecurity-based breeding scheme; G × E (0.2, 0.5, 0.8): the level of genotype 
by environment interactions between the nucleus breeding center (NE) and the commercial farm environment (CE) in G0, quantified by the genetic correlation for 
body weight in the nucleus population (NP) measured in NE and CE; SG: selection group; RAN, TOP, and T&B: the selective genotyping strategies for individuals within 
each candidate family of test group, involving genotyping individuals randomly, those with top-rank EBVs, and those with extreme EBVs, respectively

G × E Number of genotyped 
SG individuals

Genomic selection Pedigree-based selection

BS NBS BS NBS

T&B TOP RAN

0.2 0 – – – 0.63 ± 0.03 0.69 ± 0.03 0.65 ± 0.03

0.2 20 0.58 ± 0.01 0.61 ± 0.02 0.60 ± 0.02 – – –

0.2 50 0.59 ±0.02 0.63 ± 0.02 0.62 ± 0.03 – – –

0.2 80 0.61 ± 0.01 0.65 ± 0.03 0.64 ± 0.04 – – –

0.5 0 – – – 0.63 ± 0.03 0.68 ± 0.03 0.64 ± 0.02

0.5 20 0.56 ±0.02 0.59 ± 0.02 0.59 ± 0.02 – – –

0.5 50 0.61 ±0.02 0.62 ± 0.03 0.62 ± 0.03 – – –

0.5 80 0.61 ±0.02 0.64 ± 0.02 0.64 ± 0.03 – – –

0.8 0 – – – 0.64 ± 0.03 0.67 ± 0.03 0.65 ± 0.02

0.8 20 0.57 ±0.02 0.61 ± 0.02 0.59 ± 0.02 – – –

0.8 50 0.60 ±0.02 0.62 ± 0.03 0.63 ± 0.03 – – –

0.8 80 0.62 ±0.02 0.63 ± 0.03 0.64 ± 0.02 – – –
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of top-performing selection candidates were genotyped, 
depending on the accuracy of preselection. However, in 
BS for L. vannamei, preselection is based on the phe-
notypes of SG individuals and the effectiveness of phe-
notypic preselection is moderated by the level of G × E. 
The study by Chu et  al. [21] on rainbow trout revealed 
that selecting SG individuals with the highest pheno-
types within each family, even under a stronger G ×  E 
(genetic correlation as low as 0.2), can include indi-
viduals with superior performance in CE. However, 
this becomes increasingly challenging with a smaller 
number of genotyped SG individuals, particularly when 
the genetic correlation falls below 0.5, as it significantly 
limits the likelihood of including the best genotypes for 
CE [8]. Our findings indicated that BS can achieve most 
of the genetic gain of NBS by genotyping around 20 SG 
individuals per candidate family when the genetic cor-
relation is 0.8. However, the required number increased 
to 50 SG individuals to decrease the loss of genetic gain 
due to G × E when the genetic correlation was below 0.5. 
With a genetic correlation of 0.2, genotyping more than 
50 SG individuals per candidate family did not signifi-
cantly improve genetic gain, since most superior geno-
types were already included. These insights suggest that 
breeders should carefully consider G × E when determin-
ing the scale of genotyping within SG families. Addition-
ally, increasing the number of genotyped SG individuals 
per family led to higher inbreeding rates because of the 
increase in selection intensity.

Impact of selection on the level of G × E
G × E typically manifests in two principal ways: by caus-
ing re-ranking of selection candidates and by contribut-
ing to variance heterogeneity between environments. 
Genetic values of an individual in the two environments 
can be divided into the mean genetic effects ( G ) and the 
genotype by environment interaction effects ( I ) [56]. For 
an individual in the NE, the genetic value ( GVN ) can be 
modeled as G+ I , and in the CE, the genetic value ( GVC ) 
can be modeled as G− I . Therefore, the genetic vari-
ance in NE is σ2GVN

, = σ2G + σ
2
I + 2 ∗ cov(G, I) , and in CE 

it is σ2GVC
 = σ2G + σ

2
I − 2 ∗ cov(G, I) . Thus, the covariance 

between G and I , cov(G, I) = (σ2GVN
− σ

2
GVC

)/4 , captures 
the heterogeneity of variance between the two environ-
ments. Over generations, both σ2GVN

 and σ2GVC
 decreased 

due to selection [62]. However, the decline in σ2GVC
 was 

greater (see Additional file  2: Figure S3) since selection 
primarily targeted genetic gain in CE. This resulted in an 
overall increase in cov(G, I) (see Additional file 3: Figure 
S4) and intensified variance heterogeneity. In scenarios of 
weak level of G × E or pedigree-based selection, cov(G, I)  
approached zero (see Additional file  3: Figure S4), 

indicating a reduced impact of selection on variance het-
erogeneity because the high genetic correlation between 
traits in NE and CE led to simultaneous selection for 
both traits. Within-family preselection with pedigree-
based selection based on phenotype in NE also contrib-
uted to selection for both traits. Furthermore, cov(G, I) 
rose with the number of genotyped SG individuals, due 
to increased selection intensity.

The interaction variance was greater when the initial 
level of G × E was greater (see Additional file  3: Figure 
S6), as quantified by the genetic correlation, as described 
in the methods section.With cov(GVN,GVC) 
= cov(G+ I, G− I) = σ

2
G − σ

2
I  , the genetic correlation is 

equal to (σ2G−σ
2
I )

σGVN σGVC
 , which, when dividing the numerator 

and denominator byσ2G , becomes 
1−

(

σ
2
I

σ
2
G

)

σGVN
σGVC

σ
2
G

 . Thus, if σ2I  

= σ2G , the genetic correlation is 0.
Over generations, σ2GVN

 and σ2GVC
 both trended down 

due to selection, reducing both σ2G and σ2I  (see Additional 
file  3: Figures  S5–S6). However, the decline in σ2G was 
faster than that in σ2I  , as the breeding program focused on 
enhancing genetic merit in CE rather than achieving bal-
anced improvement across both environments [63]. This 
led to an increase in the ratio of σ2I   and σ2G (see Addi-
tional file  3: Figure S7), indicating that the interaction 
variance constituted a growing proportion of the total 
genetic variance, subsequently leading to a decrease in 
the genetic correlation between NE and CE.

Throughout the selection process, the variability in the 
level of G × E was considerable, with high coefficients 
of variation observed by generation across replicates. A 
higher initial level of G × E, such as a genetic correla-
tion below 0.5, was associated with a higher coefficient 
of variation. This suggests that with within-family selec-
tion of SG individuals—whether based on phenotype or 
GEBVs—leads to a substantial disparity in performance 
rankings of these selected individuals between NE and 
CE when the genetic correlation was low. These perfor-
mance rankings between NE and CE were more likely 
to fluctuate significantly under low genetic correlation 
compared to high genetic correlation [1, 8, 13], resulting 
in a higher coefficient of variation in the level of G × E 
between replicates.

In practice, breeders can employ sib-testing in both 
environments to assess the level of G ×  E and deter-
mine the number of genotyped SG individuals required. 
However, the level of G × E also exhibited fluctuations 
within replicates across generations, indicating unpre-
dictability in the trajectory of change. Such unpredict-
ability stems from the breeding schemes prioritizing 
traits in CE, with the presence of G  ×  E introducing 
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an element of randomness into the selection of can-
didates. Given these observations, genotyping a large 
number of SG individuals (50 per candidate family) is 
recommended to minimize the loss of genetic gain due 
to G × E, unless the level of G × E is confirmed to be 
low. This analysis of the level of G × E in this study was 
purely statistical and focused solely on additive effects, 
suggesting that real-world complexities might pose 
additional challenges.

Model of analysis
In this study, the phenotypes of SG individuals were 
excluded from the estimation of EBV or GEBV, and a 
single-trait model was used for their estimation. This 
approach was taken because the families of SG are reared 
separately in practice to prevent pathogen infection and 
protect the broodstocks, which may cause strong com-
mon environmental effects among full-sibs [1]. Moreo-
ver, although in practice the breeding goal may involve 
multiple traits [38], using information from genetically 
correlated traits can improve the accuracy of estimation 
for each trait [64]. However, multi-trait models are more 
challenging to converge than single-trait models. Specifi-
cally, if the number of genotyped individuals within each 
family of TG exceeds 60, the single-trait model has been 
shown to have similar predictive ability as the multi-trait 
model [64]. In our study, 50 TG individuals were geno-
typed per family and data from the last four generations 
were used for estimation.This resulted in prediction accu-
racies ranging from 0.65 ± 0.01 to 0.73 ± 0.01 for the 
T&B strategy, from 0.61 ± 0.02 to 0.71 ± 0.01 for TOP, 
and from 0.64 ± 0.02 to 0.71 ± 0.02 for RAN, indicating 
that the amount of information provided by genotyping 
50 TG individuals per family was adequate to achieve 
reasonable prediction accuracy.

Conclusions
Applying BS with genomic selection can mitigate the loss 
of genetic gain due to G × E, particularly when using the 
T&B selective genotyping strategy for the TG, which fur-
ther enhances genetic gain. The number of genotyped SG 
individuals should be adjusted based on the level of G × 
E between NE and CE; the higher the level of G × E, the 
greater the number of genotyped individuals required. 
Moreover, the level of G × E tended to increase over gen-
erations of selection and its fluctuations across genera-
tions were notable. Therefore, it is advisable for breeding 
programs utilizing BS to monitor the level of G × E and 
to genotype a large number of SG individuals (50 per 
candidate family) to minimize the loss of genetic gain due 
to G × E, unless the level of G × E is confirmed to be low.
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