
Eiríksson et al. Genetics Selection Evolution           (2024) 56:77  
https://doi.org/10.1186/s12711-024-00947-x

RESEARCH ARTICLE Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Genetics Selection Evolution

Predicted breeding values for relative scrapie 
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Abstract 

Background Scrapie is an infectious prion disease in sheep. Selective breeding for resistant genotypes of the prion 
protein gene (PRNP) is an effective way to prevent scrapie outbreaks. Genotyping all selection candidates in a popula-
tion is expensive but existing pedigree records can help infer the probabilities of genotypes in relatives of genotyped 
animals.

Results We used linear models to predict allele content for the various PRNP alleles found in Icelandic sheep 
and compiled the available estimates of relative scrapie susceptibility (RSS) associated with PRNP genotypes 
from the literature. Using the predicted allele content and the genotypic RSS we calculated estimated breeding 
values (EBV) for RSS. We tested the predictions on simulated data under different scenarios that varied in the propor-
tion of genotyped sheep, genotyping strategy, pedigree recording accuracy, genotyping error rates and assumed 
heritability of allele content. Prediction of allele content for rare alleles was less successful than for alleles with mod-
erate frequencies. The accuracy of allele content and RSS EBV predictions was not affected by the assumed herit-
ability, but the dispersion of prediction was affected. In a scenario where 40% of rams were genotyped and no errors 
in genotyping or recorded pedigree, the accuracy of RSS EBV for ungenotyped selection candidates was 0.49. If 
only 20% of rams were genotyped, or rams and ewes were genotyped randomly, or there were 10% pedigree errors, 
or there were 2% genotyping errors, the accuracy decreased by 0.07, 0.08, 0.03 and 0.04, respectively. With empirical 
data, the accuracy of RSS EBV for ungenotyped sheep was 0.46–0.65.

Conclusions A linear model for predicting allele content for the PRNP gene, combined with estimates of relative 
susceptibility associated with PRNP genotypes, can provide RSS EBV for scrapie resistance for ungenotyped selection 
candidates with accuracy up to 0.65. These RSS EBV can complement selection strategies based on PRNP genotypes, 
especially in populations where resistant genotypes are rare.

Background
Scrapie is a fatal, infectious, degenerative prion disease 
affecting the nervous system of sheep and goats. The sus-
ceptibility of sheep to scrapie is largely dependent on the 
genotype of the prion protein gene (PRNP). In Europe, 
polymorphisms in codons 136, 154, and 171 of the read-
ing frame of the PRNP are common and lead to varying 
differences in susceptibility to scrapie [1]. Based on the 
amino acids coded at these three codons, the most com-
mon alleles of PRNP are denoted as ARR, AHQ, ARQ and 
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VRQ, in order from the least susceptible (most resistant) 
to the most susceptible (least resistant) to scrapie [1, 2].

Icelandic sheep are an example of a breed where the 
ARR allele, associated with scrapie resistance, appears 
in a very low frequency [3]. However, the AHQ allele, 
associated with partial scrapie resistance [2, 4], has a fre-
quency of around 8% [5]. Additionally, polymorphisms at 
codons 137, 138 and 151 of PRNP are present in the Ice-
landic population [3, 4]. Sheep carrying genotypes that 
codes for threonine (T) in codon 137 instead of the wild-
type methionine, here denoted T137, show scrapie resist-
ance in the Sarda sheep breed in Italy [6, 7]. Furthermore, 
results from Icelandic sheep suggest potential resistance 
linked to cysteine at codon 151, denoted herein as C151 
[4, 8].

Genetic selection for resistant genotypes is an effec-
tive method for scrapie control [9, 10]. While PRNP 
genotyping is widely available, genotyping every selec-
tion candidate is expensive. However, recorded pedigree 
allows genotype prediction for ungenotyped relatives of 
genotyped animals, thus reducing cost while selecting for 
PRNP genotypes. As an example, Sawalha et al. [11] used 
segregation analysis to predict the genotype at codon 
171 in PRNP, yielding probabilities for the three possible 
genotypes. However, when multiple alleles are consid-
ered, selection decisions based on such predictions could 
become very complicated.

For large livestock pedigrees, linear models that treat 
allele content (i.e. number of copies of an allele that an 
individual carries) as traits are a simple and efficient 
way for predicting genotypes in ungenotyped animals 
[12, 13]. Boareki et  al. [14] tried a linear model to pre-
dict scrapie resistance based on PRNP genotypes. How-
ever, their model considered the allele content for each 
allele independently in single trait models, ignoring that 
the presence of one allele indicates absence of another 
[15]. Further, Boareki et al. [14] assigned numerical val-
ues to PRNP genotypes for scrapie resistance based on 5 
risk groups. Each group consisted of multiple genotypes, 
some with differences in susceptibilities as shown in pre-
vious studies [2, 4]. Multiple studies have compared risk 
of scrapie in sheep carrying different PRNP genotypes 
[2, 4, 9], thus providing odds-ratios or other estimates 
for the relative susceptibility to scrapie (RSS) associated 
with the PRNP genotypes. The estimated RSS of geno-
types might offer more accurate numerical estimates of 
scrapie susceptibility associated with the different alleles 
of PRNP than risk groups.

Although, in theory, allele content is completely inher-
ited, linear model applications typically assume a herit-
ability of less than 1.0, e.g. 0.99 [12]. Further, errors in 
genotyping or pedigree recording introduce random 
discrepancies, which in turn result in a lower perceived 

heritability. Forneris et  al. [16] proposed using herit-
ability estimates as quality control metrics for individual 
single nucleotide polymorphisms (SNPs), with reduced 
heritability indicating frequent genotyping errors.

The objectives of this study were to (1) assess the accu-
racy of a multi-trait linear model in predicting the allele 
content of ungenotyped animals for the multi-allelic 
PRNP, (2) compile existing estimates of the RSS associ-
ated with different PRNP genotypes, and (3) present 
calculations of estimated breeding value (EBV) of RSS 
based on the predicted allele content. Both simulated and 
empirical data from the Icelandic sheep population were 
used to assess the methodologies.

Methods
In this section, first, we provide our definition of the 
breeding value for scrapie susceptibility, measured as 
RSS. Second, we outline the method for predicting the 
allele content for a single locus with multiple alleles. 
Third, we describe the methods employed to determine 
the level of RSS associated with each genotype. Fourth, 
we outline the assessment of the accuracy of the pre-
dicted allele content and EBV based on simulated and 
empirical data.

Breeding values for scrapie resistance
The prevalence of scrapie in affected flocks depends on 
multiple factors in addition to the genotype of the sheep, 
such as environmental factors, scrapie strains and time 
from the onset of the scrapie outbreak [17]. Therefore, 
direct scrapie risk estimates across studies are not con-
sistently meaningful. However, we made the simplifying 
assumption that the association of RSS with each geno-
type is constant across environments, scrapie strains 
and stages of scrapie outbreak. We quantified RSS as the 
odds-ratio of each genotype compared with the wildtype 
genotype ARQ/ARQ. We denote the RSS of the genotype 
consisting of alleles k and l as gk ,l . These assumptions 
enabled us to define breeding values for RSS and use 
results from multiple studies for evaluating RSS.

Breeding values of an individual are defined based on 
the mean allele effects ( αi ) of the individual’s alleles. In 
the presence of dominance effects, mean allele effects 
depend on the allele frequency in the population in addi-
tion to the additive and dominance effects of the allele 
[18]. In a multi-allelic locus, generalising the bi-allelic 
formulas of Falconer and Mackay [18], the mean allele 
effect of allele i within a population can be calculated as:
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where pk and pl are the frequency of the alleles k and l , 
respectively, and gi,l ( gk ,l ) is the genotypic RSS of the gen-
otype consisting of alleles i and l ( k and l ). The breeding 
value of RSS for an individual is given as:

where γi,j  is the number of copies of allele i in animal j.
It follows from Eq.  (1), that the estimated mean allele 

effects are:

where p̂k , p̂l , ĝi,l , and ĝk ,l are estimates of pk , pl , gi,l , and 
gk ,l , respectively. Having α̂i , the estimated breeding val-
ues (EBV) for RSS of individual j are calculated as:

where the summation is over all possible alleles and γ̂i,j is 
an estimate of γi,j.

Therefore, to compute EBV for RSS, we need γ̂i,j for the 
animals, p̂i for all PRNP alleles in the population, and ĝk ,l 
for every PRNP genotype in the population.

Predicting number of copies of PRNP alleles
We used a linear model for predicting the allele content 
[12, 15] for n− 1 out of n alleles of PRNP:

where yi is a vector of allele content for allele i for all gen-
otyped individuals, X is an incidence matrix that links the 
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assumed (co)variance structure for the breeding values 
was:

where ⊗ is the Kronecker product, A is the numerator 
relationship matrix and qi = 1− pi . For the method to 
work using BLUP, the residual ei cannot be equal to zero, 
despite the allele content theoretically having a heritabil-
ity of 1 [12]. Therefore, we assume that h2 < 1 and

where h2 is the assumed heritability. We applied the 
model assuming three values for h2 , 0.90, 0.95 and 0.99. 
By solving this model, we get estimates of ui , i.e., ûi, for 
n− 1 alleles. Subsequently, we get the estimated allele 
content as  γ̂i = ûi + µi1 where γ̂i is a vector of predic-
tions of allele content and 1 is a vector of ones. For the nth 
allele, we found the estimates using γ̂n = 2−

∑

n−1
i=1 γ̂i.

Relative resistance to scrapie of PRNP genotypes
Our estimation of the RSS values associated with differ-
ent genotypes (genotypic RSS) was based on published 
odds-ratio estimates of detected scrapie infection, using 
the wild type ARQ/ARQ genotype as reference. From 
that, we calculated the mean allele effects of the PRNP 
alleles using Eq. (3).

We compiled published estimates of genotypic RSS 
from 10 publications. To identify useful publications, 
we searched the PubMed database for the words “scra-
pie”, "sheep”, and “genotype”. After screening the titles 
of the 673 publications, and subsequently the abstracts 
and result sections of selected papers, we narrowed 
the selection down to the 10 publications present-
ing scrapie risk comparisons between different geno-
types. When individual flock results were provided, 
we treated each flock as a unique estimate. For stud-
ies presenting collective results without individual 
flock data, we used the pooled estimates. We excluded 
any comparisons with less than 4 scrapie cases. From 
these studies, we extracted the number of healthy and 
affected sheep for the genotypes present in at least 
three sheep for the group. The studies are listed in 
Table 1. We conducted a meta-analysis, combining the 
estimated odds-ratios for each genotype compared to 
the homozygous wildtype (ARQ/ARQ) genotype. For 
the meta-analysis, we used the meta package [25] in 
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the R [26] computing environment. We used the fixed 
effects model with the Mantel–Haenszel [27] method 
to calculate the common effect across studies.

For calculating the mean allele effects for RSS, we 
used the natural logarithm of the estimated odds-ratio 
from the meta-analysis as the genotypic RSS. Among 
known PRNP genotypes in Icelandic sheep, no esti-
mates existed for genotypes with the C151 and N138 
alleles. Further, the only genotype with the T137 allele 
with reported epidemical data was T137/ARQ. In 
cases lacking data, we assumed conservative values 
for genotypic RSS, i.e. more susceptibility to scrapie 
than expected from extrapolation, in  vitro results, or 
unpublished data. Thus, we assumed that T137/ARR, 
T137/T137, and T137/AHQ had the same genotypic 
RSS as T137/ARQ, and that T137/VRQ was equiva-
lent to VRQ/ARQ. Previous studies have suggested 
that sheep carrying the C151 allele are at least partially 
resistant to scrapie [4, 8, 28]. Thus, we assumed that 
the C151 allele is equivalent to the AHQ allele. Pre-
vious studies [4, 8] have not shown a clear difference 
between risk of scrapie infection in sheep carrying the 
N138 allele relative to the wild type allele ARQ. There-
fore, we assumed that N138 is equivalent to ARQ.

Simulation
For testing the models, we simulated a population with 
known genotypes. To create a realistic population struc-
ture, we based the simulation on a part of the registered 
pedigree of the Icelandic sheep population. We identified 
the breeding rams and ewes born in 2021 that had regis-
tered parents and all four grandparents in the pedigree. 
From these animals, we traced the pedigree for up to 10 
generations. This resulted in pedigree information on 
870,971 sheep for the simulation. The simulations were 
conducted 10 times (always using the same pedigree) and 
the presented results are averages of the 10 replicates.

We simulated genotypes for a single locus with 5 alleles, 
denoted A1, A2, A3, A4, and A5. The founder animals 
of the pedigree (72,727 animals) received alleles at ran-
dom with probabilities 0.15, 0.05, 0.01, 0.001 and 0.789 
for A1, A2, A3, A4, and A5, respectively. Subsequently, 
the remaining animals received their genotype based on 
pedigree information using the gene drop method. The 
simulations were done using custom-made software writ-
ten in Fortran.

We simulated seven scenarios, varying in assumed 
genotyping strategy, in the accuracy of the pedigree 
information, and in the rate of genotyping errors. The 
scenarios are summarized in Table 2. The rand, h20 and 

Table 1 Overview of the papers used in meta-analysis

Paper Country Genotypes tested Number 
of groups

Hunter et al. [19] UK ARR/ARR, ARR/AHQ, ARR/ARQ, ARR/VRQ, AHQ/AHQ, AHQ/ARQ, AHQ/VRQ, VRQ/ARQ, VRQ/VRQ 5

Billinis et al. [20] Greece ARR/ARQ, AHQ/ARQ, AHQ/VRQ, VRQ/VRQ 1

Hagenaars et al. [9] The Netherlands ARR/ARR, ARR/AHQ, ARR/ARQ, ARR/VRQ, AHQ/AHQ, AHQ/ARQ, AHQ/VRQ, VRQ/ARQ, VRQ/VRQ 1

Harrington et al. [21] Canada ARR/ARR, ARR/AHQ, ARR/ARQ, ARR/VRQ, AHQ/ARQ, VRQ/ARQ 1

Thorgeirsdottir et al. [4] Iceland AHQ/ARQ, VRQ/ARQ, VRQ/VRQ 1

Tranulis et al. [22] Norway ARR/ARR, ARR/AHQ, ARR/ARQ, ARR/VRQ, AHQ/ARQ, AHQ/VRQ, VRQ/ARQ, VRQ/VRQ 2

Belt et al. [23] The Netherlands ARR/ARR, ARR/ARQ, ARR/VRQ, VRQ/ARQ, VRQ/VRQ 1

Acín et al. [24] Spain ARR/ARR, ARR/ARQ, ARR/VRQ, VRQ/ARQ 1

Baylis et al. [2] UK ARR/ARR, ARR/AHQ, ARR/ARQ, ARR/VRQ, AHQ/AHQ, AHQ/ARQ, AHQ/VRQ, VRQ/ARQ, VRQ/VRQ 1

Vaccari et al. [6] Italy T137/ARQ 5

Table 2 Simulation scenarios tested

* Number of genotyped animals in each scenario, average over 10 replicates

Scenario Description N. of genotyped*

Rand 5% of all animals genotyped at random 40,440

hr20 20% of rams genotyped at random 23,278

hr40 40% of rams genotyped at random 46,437

hr40x1 40% of rams genotyped at random, 5% pedigree errors 46,437

hr40x2 40% of rams genotyped at random, 10% pedigree errors 46,437

hr40y1 40% of rams genotyped at random, 1% genotyping errors 46,437

hr40y2 40% of rams genotyped at random, 2% genotyping errors 46,437
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h40 scenarios all had no errors in pedigree records or 
genotyping but differed in the genotyping strategy. The 
rand scenario had randomly selected 5% of all animals 
genotyped, the h40 scenario had 40% of rams genotyped 
but no ewes, and the h20 scenario had 20% of rams geno-
typed but no ewes. Other scenarios had the same geno-
typing strategy as h40 but included errors; 5% errors in 
recorded pedigree (hr40x1), 10% errors in recorded pedi-
gree (hr40x2), 1% genotyping errors (hr40y1), and 2% 
genotyping errors (hr40y2). For simulating the pedigree 
recording errors, two types of errors were introduced. 
First, we made 80% of the pedigree errors by swapping 
the registered sire for another ram which had offspring in 
the same flock in the same year. Second, we made 20% of 
the errors by swapping parents between animals within 
flock and year. We simulated the genotyping errors by 
replacing the true genotype with another genotype, with 
chances of the other genotypes being equal to their geno-
typic frequencies. In all scenarios, no animals born in 
2021 (the last year included in the data) were assumed to 
be genotyped.

For each scenario in the simulated data, we predicted 
the allele content for ungenotyped animals for alleles 
A1, A2, A3 and A4 using Eq. (5). We calculated the vari-
ance components from the simulated allele frequencies 
using Eqs. (6 and 7). We tested three different values for 
assumed heritability, 0.90, 0.95 and 0.99. To get the BLUP 
allele content predictions we used the dmu5 program of 
the DMU package [29]. The predictions were evaluated 
separately for two validation groups, namely sheep born 
in 2021, i.e. selection candidates younger than any geno-
typed animal (63,633 animals), and ungenotyped animals 
born in 2016–2020, i.e. ungenotyped animals contempo-
rary to genotyped animals (approximately 290,000 indi-
viduals, exact number depended on scenario and varied 
between replicates). We tested the accuracy and disper-
sion of the prediction of allele content as correlation 
between true and predicted allele content and regression 
of true allele content on predicted, respectively.

We tested the ability of the methods to predict RSS 
breeding values by assigning genotypic effects of RSS to 
the simulated genotypes. We used the results from the 
meta-analysis described above. We assigned RSS values 
to the genotypes assuming that the A1 allele was AHQ, 
A2 was VRQ, A3 was T137, A4 was ARR and A5 was 
ARQ. We calculated the mean allele effects of the alleles 
using Eq. (3) with the estimated RSS of the genotypes and 
the allele frequencies used for the simulation. From these 
mean allele effects, we calculated the true breeding val-
ues for RSS for the simulated individuals using Eq. (2).

The RSS of the genotypes were estimated and were 
not known without error. Therefore, we tested three sce-
narios for predicting the breeding value for RSS. In one 

scenario, we assumed that the estimated genotypic RSS 
from the meta-analysis were both the true and the esti-
mated genotypic RSS. We name this scenario trueRSS. In 
the other two scenarios we assumed that the estimated 
genotypic RSS from the meta-analysis were the true 
genotypic RSS effects, but the estimated RSS for calcu-
lating EBV in each replicate were sampled from normal 
distributions for each replicate. We name these scenarios 
estRSS1 and estRSS2. For both estRSS1 and estRSS2, we 
assumed that the true genotypic RSS was the mean of 
the distribution for sampling the effects. For estRSS1, the 
standard error of the RSS estimates (on the logarithmic 
scale) was the standard deviation of the distribution. For 
the genotypes involving the A3 allele (set as T137), where 
the RSS estimate was not based on data but assumed 
to be the same as other genotypes, we set the standard 
error as 1.0, which was larger than the standard error for 
any of the RSS estimates. For the estRSS2 scenario, the 
standard deviation of the distribution was set to 1.5 for 
all genotypes.

For the trueRSS, estRSS1, and estRSS2 scenarios, we 
tested the results of the seven scenarios for predicting 
allele content. We tested the accuracy and dispersion of 
the predictions as the correlation between true breeding 
values and the EBV and the regression coefficient of true 
breeding value on the EBV, respectively.

Testing on empirical data
Genotypes of PRNP for 47,782 sheep born in the years 
1987 until 2023 were available for this study. Of these, 
around 7000 were genotyped only for the polymorphisms 
at codons 136 and 154 (i.e., distinguishing VRQ and 
AHQ, respectively, from ARQ), so the allele content for 
the other alleles was missing. We had access to pedigree 
records from the database of the Farmers Association of 
Iceland with pedigree records for 2.6 million ewes and 
breeding rams born in 1980 to 2022. We pruned the ped-
igree, only including genotyped sheep and their ancestors 
10 generations back. After pruning, the pedigree file con-
sisted of information on 221,569 sheep.

In an attempt to assess the accuracy of the genotyp-
ing and recorded pedigree, we estimated the heritability 
of the allele content for a single allele at a time using a 
single-trait model. The single trait model for allele i was

where the terms are as described for Eq. (5). We used AI-
REML with the DMUAI procedure of the DMU package 
[29] for estimating variance components.

For validating the predictions of allele content, we 
masked the genotypes of three alternative validation pop-
ulations. The first validation scenario tested predictions 
of animals contemporary to genotyped animals. Then, the 

yi = 1µi + Ziui + ei
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validation population consisted of females born in 2021 
and 2022, genotyped with methods that detect all alleles 
of PRNP known in Iceland, in total 8068 sheep. The train-
ing population consisted of 32,269 sheep born in 2020 
and earlier as well as rams born in 2021 and 2022. The 
second validation population consisted of sheep born in 
2022 genotyped with methods that detected all alleles of 
PRNP known in Iceland, in total 4816 sheep. The training 
population consisted of 35,798 sheep born in 2021 and 
earlier. The third validation population consisted of sheep 
born in 2023 genotyped with methods that detected all 
alleles of PRNP known in Iceland, in total 6677 sheep. 
The training population consisted of 40,623 sheep born 
in 2022 and earlier. At the time of data extraction, the 
available genotype data for sheep born in 2023 was pre-
dominantly from strategic genotyping of offspring from 
planned mating of sheep heterozygous for rare alleles, 
predominantly ARR and T137.

The variance components for the validation predic-
tion were based on allele frequencies and Eqs. (6) and 
(7) with varying assumed heritability of 0.99, 0.95 and 
0.90. Obtaining unbiased estimates of allele frequencies 
from the database was challenging because of strategic 
genotyping of offspring of heterozygous carriers of rare 
alleles. Therefore, we based the input allele frequencies 
to calculate the variance components on the genotype 
frequencies from a population wide genotyping initiative 
presented by Einarsson [5]. We used the dmu5 program 
from the DMU package [29] to solve the equations.

We tested the accuracy and dispersion of the prediction 
of allele content as correlation between the allele content 
based on the genotyping and the predicted allele con-
tent, and the regression coefficient of the allele content 
based on genotyping on predicted allele content, respec-
tively. We calculated standard deviations for the correla-
tions and regression coefficients from 10,000 bootstrap 
samples.

For predicting RSS EBV for the real data, we assumed 
that the RSS estimates for the genotypes were the true 
values. The allele frequency for calculating α̂i using 
Eq.  (3) should be from the current population and be 
unbiased. To avoid bias because of selective genotyping 
while having an estimate of the current allele frequencies, 
we used the predicted allele content in the last year of the 
training population ̂pi = 0.5× γ̂i , where γ̂i is the average 
of γ̂i.

Results
Relative susceptibility of PRNP genotypes
Table 3 presents the estimates of the natural logarithm of 
the odds-ratio of scrapie for various genotypes compared 
with the ARQ/ARQ genotype, from the meta-analysis. 
The homozygous ARR genotype had the lowest RSS, 

while the homozygous VRQ genotype had the highest 
RSS. With the AHQ/VRQ genotype as one exception, the 
heterozygous genotypes had estimated RSS values that 
fell between those of the homozygous genotypes.

Validation results from simulated data
Figure  1 shows the accuracy and dispersion for predic-
tions of allele content of the A1 allele. The accuracy 
was highest in the hr40 scenario, 0.49 for both the 2021 
and 2016–2020 groups. Lower genotyping proportion, 
errors in recorded pedigree, genotyping errors, and ran-
dom genotyping of ewes and rams all resulted in lower 
accuracy. For the 2016–2021 group, reduced genotyping 
(hr20) and 10% pedigree errors (hr40x2) resulted in the 
lowest accuracy, 0.43. For the 2021 group, pedigree errors 
had less impact on the accuracy than in the 2016–2020 
group. The prediction accuracy for A1 was not affected 
by the assumed heritability. However, the dispersion 
was affected by the heritability assumptions, as lower 
assumed heritability resulted in higher regression coeffi-
cient for all scenarios. For the scenarios where the pedi-
gree data were accurate, assuming a heritability of 0.99 
resulted in regression coefficients nearing 1.0.

Figure 2 shows the accuracy and dispersion of predic-
tion of the allele content of the rare A4 allele. The results 
for the A4 allele fluctuated notably across replicates, as 
reflected by the large standard error bars in Fig. 2. Accu-
racies for the A4 allele were universally lower than for the 
A1 allele across all scenarios and both groups, ranging 
from 0.28 to 0.40. Additionally, the regression coefficients 
which indicate dispersion deviated more from 1.0 for A4 
than for A1, but they followed the same trend with lower 
coefficients following higher assumed heritability.

Table 3 Estimated relative scrapie susceptibility of different 
genotypes from meta-analysis of results from published papers

*  Natural logarithm of the odds ratio indicating relative scrapie susceptibility 
compared with ARQ/ARQ genotype

Genotype RSS(SE)* Number of 
comparisons

ARR/ARR −4.74 (0.53) 11

ARR/AHQ −3.65 (0.56) 6

ARR/ARQ −3.53 (0.23) 12

ARR/VRQ −0.26 (0.14) 10

AHQ/AHQ −1.94 (0.40) 3

AHQ/ARQ −1.48 (0.16) 10

AHQ/VRQ −2.41 (0.35) 5

VRQ/ARQ 1.81 (0.07) 12

VRQ/VRQ 2.45 (0.11) 8

T137/VRQ −3.01 (0.64) 5
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Fig. 1 Accuracy and dispersion bias for predicting the number copies of the A1 allele. Error bars represent standard errors across 10 replicates. hr20: 
20% of rams genotyped; hr40: 40% of rams genotyped; hr40x1: 40% of rams genotyped and 5% incorrect pedigree; hr40x2: 40% of rams genotyped 
and 10% incorrect pedigree; hr40y1: 40% of rams genotyped and 1% incorrect genotype; hr40y2: 40% of rams genotyped and 2% incorrect 
genotype; rand: 5% breeding stock (male and female) genotyped

Fig. 2 Accuracy and dispersion bias for predicting the number of copies of the A4 allele (very rare) in ungenotyped sheep. Error bars represent 
standard errors across 10 replicates. hr20: 20% of rams genotyped; hr40: 40% of rams genotyped; hr40x1: 40% of rams genotyped and 5% incorrect 
pedigree; hr40x2: 40% of rams genotyped and 10% incorrect pedigree; hr40y1: 40% of rams genotyped and 1% incorrect genotype; hr40y2: 40% 
of rams genotyped and 2% incorrect genotype; rand: 5% breeding stock (male and female) genotyped
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The prediction accuracies and dispersion for the A2 
allele are available in Additional file  1, Figure S1. The 
accuracies for A2 were similar or slightly lower than 
that for the A1 allele, while the regression coefficients 
where notably lower for A2, particularly in the hr40y1 
and hr40y2 scenarios. The prediction accuracies and 
dispersion for the A3 allele are available in Additional 
file  2, Figure S2. The accuracies for the A3 allele fall in 
most instances between the numbers for the A1 and A4 
alleles. The prediction accuracies and dispersion for A5, 
the most common allele, are available in Additional file 3, 
Figure S3. The accuracy and dispersion results for the A5 
allele are similar to those for A1.

The prediction accuracy and dispersion of RSS EBV 
from the trueRSS scenarios are presented in Fig. 3. As for 
the allele content, the assumed heritability did not impact 
the accuracy. For the 2016–2020 group, the accuracy was 
lowest for the hr20 scenario (0.43), while the accuracy 
was highest for the hr40 scenario (0.49–0.50). For the 
2021 group, the accuracy was lowest for the rand sce-
nario (0.41) and the hr20 scenario (0.42). For the 2016 to 
2020 group, the regression coefficients indicating disper-
sion were close to 1.0 for the scenarios without errors in 
pedigree or genotype when the assumed heritability was 
0.99. Assuming lower heritability generated deflated EBV 

for this group. In other scenarios, lower assumed herit-
ability resulted in regression coefficients closer to 1.0. For 
the 2021 group, however, assuming heritability of 0.99 
resulted in regression coefficient closest to 1.0 for hr40x1, 
whereas assumed heritability of 0.95 resulted in the least 
dispersion for the hr40x2 scenario.

Figure  4 shows the accuracy and dispersion for RSS 
EBV in the estRSS1 scenarios. The prediction accu-
racy was only minimally lower compared to trueRSS for 
both groups and all scenarios. The accuracy of RSS EBV 
was 0.49 in the hr40 scenario. Reducing the number of 
genotyped rams by half, or genotyping rams and ewes 
randomly, both reduced the accuracy, with accuracies 
of 0.42 and 0.41 in the hr20 and rand scenarios, respec-
tively. Similarly, pedigree errors and genotyping errors 
decreased accuracy with accuracies of 0.46 and 0.45 in 
the hr40x2 and hr40y2 scenarios, respectively. For the 
dispersion, the standard error across the 10 replicates 
was considerably higher in estRSS1 compared to tru-
eRSS, indicating lack of stability.

Figure  5 shows the accuracy and dispersion for RSS 
EBV in the estRSS2 scenarios. The accuracies were lower 
than from the trueRSS and estRSS1 scenarios, lowest in 
the 2021 group in the hr20 and rand scenarios (0.39). The 
EBV were inflated for all scenarios, with the regression 

Fig. 3 Accuracy and dispersion bias for predicting the breeding value of susceptibility for scrapie in ungenotyped sheep, assuming that the relative 
susceptibility of the PRNP genotypes is known without error. Error bars represent standard errors across 10 replicates. hr20: 20% of rams genotyped; 
hr40: 40% of rams genotyped; hr40x1: 40% of rams genotyped and 5% incorrect pedigree; hr40x2: 40% of rams genotyped and 10% incorrect 
pedigree; hr40y1: 40% of rams genotyped and 1% incorrect genotype; hr40y2: 40% of rams genotyped and 2% incorrect genotype; rand: 5% 
breeding stock (male and female) genotyped
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coefficients in the range 0.79 (hr40x2 in the 2016–2020 
group assuming heritability of 0.99) to 0.96 (hr40 in the 
2021 validation group assuming heritability of 0.90).

Results from empirical data
Table 4 shows the estimated heritability of allele content 
for the PRNP alleles. The heritability estimates for the 
three rarest alleles were relatively low: 0.17 for ARR, 0.46 
for T137 and 0.73 for C151. Conversely, the estimates 
were higher for the more common alleles, highest for 
VRQ, (1.00).

Figure 6 shows the prediction accuracy and dispersion 
for allele content for empirical data. While the assumed 
heritability did not affect the accuracy, a lower assumed 
heritability resulted in larger regression coefficient for all 
alleles. The allele content for the T137, ARR and AHQ 
alleles was predicted with the highest accuracy for the 
female and 2022 validation groups, with accuracy exceed-
ing 0.65. However, standard deviations of accuracy and 
dispersion estimates derived from 10,000 bootstrap sam-
ples were substantial for the rare alleles, i.e. ARR, C151 
and T137. For the 2023 group, the accuracy was highest 
for the AHQ and T137 alleles, 0.64 and 0.66, respectively.

Table  4 shows the allele frequencies and mean 
allele effects for the PRNP alleles, based on the allele 

frequencies of sheep born in 2021. The alleles with the 
lowest mean RSS effect were very rare, allele frequency 
was 0.001 and 0.0001 for the T137 and ARR alleles, 
respectively.

Table 5 shows the accuracy and dispersion for the RSS 
EBV. The accuracy for the 2022 validation group was 
0.65 irrespective of the assumed heritability. For the 
female validation group, the accuracy ranged from 0.63 
to 0.64 across assumed heritability levels. However, for 
the 2023 group, the accuracy was lower, 0.46. The disper-
sion results suggested limited bias, the regression coeffi-
cients across assumed heritability and the two validation 
groups ranged from 0.97 to 1.09. The coefficient was clos-
est to 1.00 when the assumed heritability was 0.99 for the 
female and 2022 groups but for the 2023 the coefficients 
were closer when assuming a heritability of 0.90 or 0.95.

Discussion
We have presented a procedure for calculating EBV for 
scrapie resistance in sheep, both genotyped and ungeno-
typed for PRNP. Our approach makes use of estimates of 
genotypic RSS from multiple studies, combining avail-
able data for effects that are generally not accurately esti-
mated from single studies. Further, our method provides 
a single estimate of RSS EBV per animal, both genotyped 

Fig. 4 Accuracy and dispersion bias for predicting the breeding value of susceptibility for scrapie in ungenotyped sheep in the estRSS1 scenario, 
assuming small error in estimated genotypic relative scrapie susceptibility. Error bars represent standard errors across 10 replicates. hr20: 20% 
of rams genotyped; hr40: 40% of rams genotyped; hr40x1: 40% of rams genotyped and 5% incorrect pedigree; hr40x2: 40% of rams genotyped 
and 10% incorrect pedigree; hr40y1: 40% of rams genotyped and 1% incorrect genotype; hr40y2: 40% of rams genotyped and 2% incorrect 
genotype; rand: 5% breeding stock (male and female) genotyped
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and ungenotyped, facilitating straightforward implemen-
tation for breeding decisions.

Predicting allele content
In contrast with the single-trait model in Boareki et  al. 
[14], we used multi-trait models for predicting allele 
content. The multi-trait model could improve accuracy 

when some animals are only partially genotyped, i.e. not 
all known polymorphisms in the gene are checked. This 
was evident in our real data, where the older genotyping 
only checked for the common polymorphisms known to 
impact scrapie susceptibility.

The prediction accuracy was lower for the rare A4 
allele compared with the other alleles in the simulated 
data (Fig.  2) and the accuracy in general decreased 
slightly with lower allele frequency. Lower accuracy with 
lower allele frequency aligns with the findings of Gen-
gler et al. [12] and Boareki et al. [14]. The accuracy was 
more dependent on allele frequency in Boareki et al. [14], 
where accuracy of predicting the more common alleles 
was around 0.70, while for the rarest allele the accuracy 
was down to 0.41. However, the frequency of the rarest 
allele in their study [14] (0.05) was higher than for the A3 
allele ( pi = 0.01 ) and the A4 allele ( pi = 0.001 ) in our 
study. Further, the population structure present in the 
pedigree that the simulations were based on could have 
affected the relationship between allele frequency and 
accuracy.

For the real data, the prediction accuracy for the allele 
content for the rare ARR and T137 alleles was among 
the highest (Fig.  6), albeit with large standard devia-
tions across the bootstrap samples. The relatively high 

Fig. 5 Accuracy and dispersion bias for predicting the breeding value of susceptibility for scrapie in ungenotyped sheep in the estRSS2 scenario, 
assuming large error in estimated genotypic relative scrapie susceptibility. Error bars represent standard errors across 10 replicates. hr20: 20% 
of rams genotyped; hr40: 40% of rams genotyped; hr40x1: 40% of rams genotyped and 5% incorrect pedigree; hr40x2: 40% of rams genotyped 
and 10% incorrect pedigree; hr40y1: 40% of rams genotyped and 1% incorrect genotype; hr40y2: 40% of rams genotyped and 2% incorrect 
genotype; rand: 5% breeding stock (male and female) genotyped

Table 4 Estimated genetic variance and heritability for allele 
content for PRNP, allele frequency and mean allele effect for 
sheep born in 2021

* Mean allele effect for sheep born in 2021. Allele frequencies were calculated 
from predictions of the linear model for genotyped and ungenotyped sheep 
born that year

Alleles Genetic variance Heritability Allele 
frequency*

Mean 
allele 
effect*

VRQ 0.089 1.00 0.035 1.62

T137 0.005 0.46 0.001 −2.71

N138 0.103 0.93 0.054 0.07

C151 0.009 0.73 0.005 −1.42

AHQ 0.117 0.87 0.078 −1.42

ARR 0.004 0.17 0.0001 −3.29

ARQ 0.827 0.07
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accuracy for these alleles, despite very low frequency, 
could be explained by the high proportion of relatives of 
carriers being genotyped. These alleles are rare and asso-
ciated with low susceptibility for scrapie (Table 4), mak-
ing breeders very keen on knowing all carriers of these 
alleles. Consequently, carriers and potential carriers in 
the validation population are likely to have genotyped 
close relatives in the training population.

For both empirical and simulated data, the dispersion 
of predicted allele content for rare alleles had large stand-
ard deviation and, in some cases, deviated considerably 
from 1.0. Consequently, in general, the linear model is 
more appropriate for alleles with moderate frequency 
than for rare alleles. Additionally, since potential carri-
ers of rare alleles are few, anticipated cost reduction from 
selecting based on EBV rather than genotypes is limited. 
Therefore, using the linear model for prediction is of lim-
ited value in the case of rare alleles.

Assumptions about heritability did not affect the pre-
diction accuracy, regardless of scenario and whether 

using simulated or real data. However, higher assumed 
heritability consistently lowered the regression coeffi-
cient indicating dispersion. Which assumed heritability 
resulted in regression coefficients closest to 1.00 varied 
across scenarios, and between alleles within scenarios. 
Therefore, these results do not permit drawing conclu-
sions about the most suitable assumed heritability. The 
estimated heritability of allele content did not prove 
useful to use in the prediction models since the her-
itability estimates were highly variable across alleles 
(Table  4). The low heritability estimate for the ARR 
allele might be explained by the violation of assump-
tions of normality, which could have a more substantial 
impact for the rare allele than those with more moder-
ate allele frequency. Further, because the allele is very 
rare, individual errors in pedigree or genotyping can 
have a major effect on the estimate. The estimates for 
the more common alleles were more reasonable. Still, 
the heritability estimates do not look convincing as a 

Fig. 6 Accuracy and dispersion bias of prediction of number of copies of PRNP alleles in Icelandic sheep. Error bars show standard deviations 
from 10,000 bootstrap samples

Table 5 Accuracy and dispersion bias of estimated breeding values for relative scrapie susceptibility (standard deviations from 10,000 
bootstrap samples)

Assumed heritability Female 2021 to 2022 2022 2023

Accuracy Dispersion Accuracy Dispersion Accuracy Dispersion

0.90 0.64 (0.01) 1.09 (0.02) 0.65 (0.01) 1.06 (0.02) 0.46 (0.01) 1.01 (0.02)

0.95 0.64 (0.01) 1.06 (0.02) 0.65 (0.01) 1.03 (0.02) 0.46 (0.01) 0.99 (0.02)

0.99 0.63 (0.01) 1.03 (0.02) 0.65 (0.01) 1.00 (0.02) 0.46 (0.01) 0.97 (0.02)
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general quality control statistic for this data, as Forneris 
et al. [16] proposed for SNP data.

The proportion of genotyped sheep and the selection of 
which sheep were genotyped impacted the predictions. 
The accuracy of allele content predictions consistently 
proved lower for the hr20 scenario, where around 2.5% 
of the population was genotyped, compared to the hr40 
scenario with approximately 5% genotyped. The propor-
tion genotyped was higher for the empirical data, with 
15–17% of the sheep in the pedigree genotyped, explain-
ing the higher accuracy compared to the simulation. 
Boareki et al. [14] only assumed around 1.2% of the ani-
mals genotyped and still got reasonable accuracies, rang-
ing from 0.4 to 0.7. Gengler et al. [12] found accuracies of 
0.50 and 0.47 for allele frequencies of 0.4 and 0.2, respec-
tively, with 12% of the animals genotyped. Discrepancies 
between studies are likely because of the effect of allele 
frequencies, genotyping strategy, population structure, 
or the validation group. The lower accuracies for the rand 
scenario compared with hr40, despite similar number of 
genotyped sheep, demonstrated the impact of genotyp-
ing strategy. Genotyping breeding rams is more effective 
because rams yield more offspring per breeding animal 
than ewes. Selection of rams was the main method in 
successful breeding programs for scrapie resistance [9, 
10]. The validation groups differ between the studies. 
The 2021 group in the simulation study and the 2022 and 
2023 groups in the empirical study were forward predic-
tions of potential selection candidates, adhering to the 
standard for validation of genetic and genomic predic-
tions [30, 31]. In contrast, Boareki et al. [14] and Gengler 
et al. [12] calculated the accuracy of all ungenotyped ani-
mals, irrespective of relevance for selection.

Predicting breeding value for relative scrapie susceptibility
The mean allele effects (Table  4) of this study align 
somewhat with the additive effects of alleles assumed by 
Boareki et  al. [14] for alleles common for both studies, 
despite differences in methodology. Still, our approach 
was based directly on data as far as possible. Further-
more, our predictions were defined as EBV and the mean 
allele effects accounts for the current allele frequency of 
the population.

For the T137/ARQ genotype, our RSS estimate was 
solely based on data from a single study in one breed 
in Italy [6]. This raises the possibility that the genotypic 
RSS associated with T137/ARR might be breed or scra-
pie-strain specific. Nonetheless, scrapie has not been 
detected in carriers of the allele in Iceland, suggesting 
that the allele is also associated with resistance in Ice-
land. For other genotypes including T137 we lacked 

useful data. It is worth noting that genotypes contain-
ing two rare alleles minimally impact estimates of mean 
allele effects. For genotypes involving C151 and N138 we 
had less data to use. Future research might provide more 
comprehensive data, enabling more precise estimates of 
the genotypic RSS for these genotypes.

Importantly, we predicted the breeding value for RSS, 
not the genotypic RSS. For selective breeding, the EBV 
is more relevant than the genotypic value [18]. However, 
the genotypic value might be more relevant for evaluat-
ing the flock resistance against scrapie outbreaks [17, 32].

The prediction accuracy for RSS EBV for trueRSS, 
estRSS1, and estRSS2 in the simulated data (Figs.  3, 4, 
and 5) ranged from 0.39 to 0.50 for all simulated scenar-
ios. The limited range of the accuracies indicates that the 
methods retain moderate accuracy even with up to 10% 
pedigree errors, up to 2% genotyping errors, or without 
precise estimates of the genotypic RSS. Furthermore, in 
real data, which likely contains some pedigree and geno-
typing errors, the accuracy of RSS EBV was higher than 
for the simulations for two out of three validation groups 
(Table 5). However, the genotypic RSS was assumed to be 
known in the real data, but still the accuracy was higher 
than the simulated trueRSS scenario. Boareki et  al. [14] 
reported an accuracy of 0.60 and 0.54 for scrapie resist-
ance prediction, depending on the level of resistance in 
the simulated population, which is within the range of 
our results for empirical data but higher than the simula-
tion results.

Scrapie eradication
The focus of most scrapie eradication programs has been 
the ARR allele as the source of scrapie resistance [10]. 
The results of our meta-analysis support this strategy, 
the three genotypes associated with the lowest RSS were 
ARR/ARR, ARR/AHQ and ARR/ARQ (Table  3). How-
ever, ARR is rare or not present in some populations [3, 
33]. For such populations, increasing the frequency of 
partially resistant genotypes could be useful for reduc-
ing the risk of scrapie. Nonetheless, whether complete 
prevention of scrapie outbreaks is possible with partially 
resistant genotypes is unknown. Findings from Hage-
naars et  al. [9, 34] suggest eradication is possible with-
out universally resistant genotypes. Further, Hulst et  al. 
[35] and Bijma et  al. [36] showed that genetic selection 
for lower prevalence of infectious diseases with quanti-
tative genetic effects is more effective than heritability 
estimates for susceptibility indicate. This is because of 
indirect genetic effects; reduced risk of an animal catch-
ing infectious disease reduces the risk that the animal 
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spreads the disease in addition to reducing the risk of the 
animal itself to catch the disease.

A central assumption for determining RSS associated 
with genotypes is that scrapie strains do not affect the 
RSS associated with each genotype. However, different 
strains of scrapie exist and research results suggest their 
effect may be genotype dependent [32, 37, 38]. Nonethe-
less, results from different countries largely agree on the 
genotype ranking for RSS [2, 4, 9]. For the rarer alleles, 
RSS estimates either do not exist or were based on data 
from only one country which may reflect strain-specific 
RSS. Ideally, RSS estimates should originate from the 
same population where the RSS EBV are applied. How-
ever, single-population data is usually too limited for 
accurate genotypic RSS estimation.

The proposed RSS EBV can be presented the same 
way as EBV for production traits and thus potentially 
included in selection indices in addition to production 
traits. That would especially be relevant if unfavourable 
genetic correlations between RSS and production traits 
are present. The review of Sweeny and Hanrahan [39] 
did not find reports of strong correlations between PRNP 
genotypes and production traits, however, existence of 
such correlations has not been studied in the Icelandic 
populations.

Despite promising results of methods for predicting 
RSS EBV of ungenotyped animals, selection based on 
ram genotyping remains paramount for genetic selec-
tion for scrapie resistance [10]. Our results indicate that 
predictions from the linear model may be less accurate 
for rare alleles. Thus, genotyping resources should pri-
marily target rams and potential carriers of rare alleles. 
For selection of replacement ewes and identification of 
potential carriers of resistant genotypes among ewes, 
the EBV could be valuable. Comparing the accuracies 
for the hr40 and rand scenarios (Figs. 3, 4, and 5) shows 
that accuracy is enhanced by genotyping rams rather 
than ewes and rams. Therefore, selecting rams based on 
genotyping and females based on EBV complement each 
other well.

Conclusions
A linear model for predicting allele content in the PRNP 
gene, combined with estimates of relative susceptibil-
ity associated with PRNP genotypes can provide EBV 
for scrapie susceptibility for ungenotyped selection can-
didates with an accuracy of up to 0.65. This accuracy 
remains moderate, despite inaccurate pedigree, genotyp-
ing errors, or inaccurate genotypic RSS estimates. Pro-
viding RSS EBV can complement PRNP genotyping for 
gaining control of scrapie with genetic selection.
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