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Abstract 

Background  Accuracy of genomic prediction depends on the heritability of the trait, the size of the training set, 
the relationship of the candidates to the training set, and the Min(NQTL,Me) , where NQTL is the number of QTL and Me 
is the number of independently segregating chromosomal segments. Due to LD, the number Qe of independently 
segregating QTL (effective QTL) can be lower than Min(NQTL,Me) . In this paper, we show that Qe is inversely associ‑
ated with the trait-specific genomic relationship of a candidate to the training set. This provides an explanation 
for the inverse association between Qe and the accuracy of prediction.

Methods  To quantify the genomic relationship of a candidate to all members of the training set, we considered 
the k2 statistic that has been previously used for this purpose. It quantifies how well the marker covariate vector 
of a candidate can be represented as a linear combination of the rows of the marker covariate matrix of the train‑
ing set. In this paper, we used Bayesian regression to make this statistic trait specific and argue that the trait-specific 
genomic relationship of a candidate to the training set is inversely associated with Qe . Simulation was used to demon‑
strate the dependence of the trait-specific k2 statistic on Qe , which is related to NQTL.

Conclusions  The posterior distributions of the trait-specific k2 statistic showed that the trait-specific genomic rela‑
tionship between a candidate and the training set is inversely associated to Qe and NQTL . Further, we show that trait-
specific genomic relationship between a candidate and the training set is directly related to the size of the training 
set.

Background
Genomic prediction is widely used in plant and animal 
breeding for genetic improvement of populations by 
combining genotypic and phenotypic data to obtain more 
accurate predictions of breeding values at an earlier age 
than was possible when only phenotypic data and pedi-
gree were used for prediction [1, 2]. Genomic Best Linear 
Unbiased Prediction (GBLUP) and Bayesian “alphabet” 
methods are  widely used for genomic prediction [3–5]. 
These methods have been shown to be consistent and, 
thus, given sufficient data, would yield similar accuracies 
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[6–8]. It is well known that the accuracy of genomic pre-
diction depends on the heritability of the trait, the size of 
the training set, the relationship of the candidates to the 
training set, and the number of marker loci used for pre-
diction [9–12]. Early formulas for accuracy, e.g., formula 
(1) in [11], showed that accuracy of genomic prediction 
was inversely related to the number of marker loci used 
for prediction, where the markers were assumed to be 
independent. This inverse association follows from the 
fact that genomic prediction is based on estimated effects 
of the markers, leading to the accumulation of the errors 
of estimation in the predicted value. However, when large 
numbers of markers are used for prediction, they cannot 
be assumed to be independent, because of linkage dis-
equilibrium (LD) between the markers. To account for 
this, Goddard [10] introduced the concept of the effective 
number of markers used for prediction ( Me ). Now, accu-
racy is inversely related to Me and not to the actual num-
ber of markers as shown, for example, in formula (1) in 
[12]. When variable selection is used, Daetwyler et al. [12] 
showed that accuracy of prediction is inversely related to 
Min(NQTL,Me) , where NQTL is the number of QTL. Even 
when NQTL < Me , it is possible that, due to LD, not all 
QTL segregate independently. Thus, we define Qe to be 
the number of independently segregating chromosomal 
segments with at least one QTL, and from hereon, we 
will refer to Qe , which is ≤ NQTL , as the effective number 
of QTL. Suppose the positions of the Qe independently 
segregating chromosomal segments with at least one 
QTL are known and their effects are estimated. Then, as 
mentioned above, accuracy of prediction will be inversely 
related to Qe because of the accumulation of errors from 
estimation. When the positions of these Qe independently 
segregating chromosomal segments are not known, 
markers are used for prediction. Then, it is possible that 
the number s of trait-specific markers that are necessary 
to best explain the genetic variability is larger than Qe due 
to incomplete LD between the markers and the indepen-
dently segregating chromosomal segments with QTL. As 
the marker density increases, the value of s is expected 
to get closer to that of Qe , and thus for simplicity, we will 
not always distinguish between s and Qe.

In this paper, we will show that there is an additional 
contribution to the inverse association between the accu-
racy of prediction and Qe . Given genomic data, even 
candidates that are not related by pedigree, i.e., they do 
not share alleles identical by descent, can be genomi-
cally related through genetic similarity, i.e., they share 
alleles identical by state. We will show here that the 
genomic relationship between a candidate and a training 
set of a given size is also inversely associated with Qe . As 
genomic relationship is directly related to the accuracy 
of prediction, an inverse association between Qe and the 

genomic relationship will be an additional contribution 
to the inverse association between accuracy of prediction 
and Qe.

Several statistics have been proposed to summarize the 
relationships between a candidate and a set of individu-
als [8, 13, 14]. For example, the maximum value of the 
pedigree-based additive relationships between the candi-
date and the individuals in a training set was used in [13], 
while both the mean and maximum values of genomic 
relationships were used in [14]. In this paper we discuss 
how two of these statistics are inversely associated with 
Qe . A computer simulation was used to demonstrate this 
association in a maize-breeding context.

The inverse association mentioned above may seem 
counter intuitive for two reasons. First, it holds only 
for genomic relationships and is not true for pedigree-
based relationships. Second, it refers to the relationship 
between an individual and a set of individuals. We will 
show below that the relationship between a candidate 
and the individuals in the training set summarized by the 
maximum value of the genomic relationships is inversely 
associated with the number of markers used to compute 
these genomic relationships.

To see why this inverse association holds only for 
genomic relationships and is not true for pedigree-
based relationships, we need to understand how these 
two types of relationships differ from each other. The 
pedigree-based additive relationship coefficient between 
two individuals is twice the probability that randomly 
sampled homologous genes from the two individuals are 
identical by descent [15]. Thus, conditional on the pedi-
gree, this coefficient is fixed, i.e, given the pedigree, it is 
not a random variable. On the other hand, the genomic 
relationship between two individuals, conditional on 
the same pedigree relationship with each other, can be 
thought of as a random variable. Consider the ideal situa-
tion where genotypes are available at the QTL. Let zi and 
zj denote vectors of these genotypes for individuals i and 
j that have been centered and scaled to have means of 
zero and variances of one. It can be shown that the cross 
product of the genotypes from i and j at any locus k is 
a random quantity that has expected value equal to the 
pedigree-based additive relationship coefficient: aij [4, 9]. 
Thus, the genomic relationship, which can be computed 
as the mean of these cross products:

also has expectation equal to aij . Further, from equa-
tion  1, it can be seen that the variance of gij , which is 
trait-specific, is inversely associated with the number 
NQTL of QTL. But, the maximum value of the genomic 

(1)gij =

∑q
k=1 zikzjk

NQTL
,
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relationships of an individual with a set of individuals 
will be proportional to the variance of these relation-
ships, which now we can see has an inverse association 
to the number of genotypes used to compute the gij . This 
will not be true for the maximum value of aij , because it 
is not computed from genotypes and is a fixed quantity 
given the pedigree. Further, the inverse association with 
Qe will also not be true for the mean value of gij , because 
the mean does not have an inverse relationship to NQTL . 
In the Methods section of this paper, we will show that 
the k2 statistic proposed in [8] has an inverse association 
with Qe . In that section, we will also show mathematically 
how k2 is related to the accuracy of genomic prediction.

Kizilkaya et al. [16] have shown by computer simulation 
that genomic prediction under additive inheritance is more 
accurate for traits that are determined by a smaller num-
ber of QTL than for those determined by a larger number. 
In Table 1 of their paper, where the candidates were in the 
training set, the accuracy of prediction using 50k markers 
did not depend on the number of QTL underlying the trait. 
In their Table 2, however, when candidates were not in the 
training set, the accuracy using 50k markers did depend on 
the number of QTL. We will show how the inverse asso-
ciation of k2 with the number of QTL underlying the trait 
holds only when the candidate is not in the training set. If 
the candidate is in the training set, the maximum value of 
gij will be gii = 1.0 and will, therefore, not depend on the 
number of QTL. Thus, this explains why, in [16], the accu-
racy of genomic prediction did not depend on the number 
of QTL when the candidates were in the training set but 
did depend on the number of QTL when candidates were 
not in the training set. In this paper, we will use the simu-
lation results from [16] to disentangle the two factors that 
contribute to the inverse association between the accuracy 
of prediction and Qe , where one of these comes from the 
accumulation of errors of estimation and the other comes 
from the inverse association of Qe with the genomic rela-
tionship of the candidate to the training set.

Methods
k2 Statistic and Predictability
Several statistics have been considered to summarize the 
genomic relationships between a candidate and the indi-
viduals in the training set [8, 13, 14]. Here, we will focus 
on the k2 statistic proposed by [8] for this purpose. Their 
statistic is based upon the unique decomposition of the 
vector k of SNP covariates of the candidate into two vec-
tors, kp and kr:

where kp is a linear combination of the SNP covari-
ate vectors of the individuals in the training set, and 
kr = k − kp , which can be shown to be orthogonal to the 

k = kp + kr ,

SNP covariate vectors of the individuals in the training 
set. Analogous to the decomposition of k , the genomic 
breeding value u = k′α can be decomposed as

where α is the vector of unknown substitution effects of 
the SNPs. As will be shown later, because kr is orthogonal 
to the SNP vectors of the training individuals, the com-
ponent ur of u cannot be predicted, using the phenotypes 
of the individuals in the training set, and only the com-
ponent up of u can be predicted, using these phenotypes. 
We define the predictability of u to be the squared cor-
relation between u and up , where up is the component of 
u that can be predicted using the phenotypes in the train-
ing set. Assuming that Var(α) = Iσ 2

α , the predictability of 
u is:

and it is identical to the statistic proposed in [8]. Here, 
k′pkpσ

2
α is the variance of up and k′kσ 2

α is the variance of 
u, and thus, k2 gives the proportion of the variance of u 
that is due to the component up , which is the only com-
ponent of u that is correlated to the phenotypes in the 
training set.

Thus, the ratio k2 quantifies the relationship between 
the candidate and the training set in three ways: 1) it 
is the squared correlation between u, which is what we 
want to predict, and up , which is the only component of 
u that we can predict using the phenotypes in the train-
ing set; 2) it is the proportion of the variance of u that is 
due to the component up ; and 3) it quantifies how well 
the vector k of marker covariates can be expressed as a 
linear combination of the SNP covariate vectors of the 
individuals in the training set.

Inverse association of k2 to the effective number Qe of QTL
In their paper [8], it was assumed that all m available 
markers are used for prediction, and therefore, their 
measure was not trait specific. However, we have already 
recognized that accuracy of prediction is not inversely 
related to m but to the effective number Qe of QTL, which 
is trait-specific. Suppose, for some trait, s trait-specific 

u = k′α

= k′pα + k′rα

= up + ur ,

(2)

Cor2(u,up) =
Cov2(u,up)

Var(u)Var(up)

=
(k′pkpσ

2
α )

2

(k′kσ 2
α )(k

′
pkpσ

2
α )

=
k′pkp

k′k

= k2,
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markers are available that best explain the variabil-
ity due to the QTL for this trait. When the number s of 
these trait-specific markers is smaller than the number 
n of training individuals, it is possible that the row rank 
of the n× s trait-specific matrix of marker covariates of 
the training set is also s. In that case, for any k , the s ele-
ments that correspond to the s trait-specific markers can 
be written as a linear combination of the n× s trait-spe-
cific marker covariate matrix of the training individuals, 
and thus the trait-specific k2s  will be 1.0 for any candidate. 
However, when s > n , k2s  may be smaller than 1.0. Even in 
this situation, k2s  can be 1.0, for example when the candi-
date is in the training set. The number s of trait-specific 
markers is expected to be greater than or equal to Qe , and 
thus, k2s  is expected to be higher for traits with a smaller 
value of Qe . It follows that k2 , which is computed using all 
m markers, would be less than or equal to k2s  computed 
from the set of s trait-specific markers.

Note that in variable-selection methods, such as 
BayesCπ [5], inferences are based on Markov Chain 
Monte-Carlo (MCMC) samples of all unknowns, includ-
ing the proportion (1− π) = s

m of trait-specific mark-
ers and the actual set of the s trait-specific markers that 
capture the variablity due to the QTL. Thus, trait-specific 
values of k2s  can be calculated without knowing π nor 
the set of s trait-specific markers. These samples can be 
used to draw inferences about k2s  from its posterior dis-
tribution. This is similar to [17], where Bayesian multiple 
regression models were used to draw inferences about 
genomic-relationship matrices from MCMC samples. 
The differences between this paper and [17] are as fol-
lows. In this paper, the genomic relationship quantified 
by k2s  , is between one candidate and an entire set of indi-
viduals (e.g. the training set). Thus, as shown here, this 
genomic relationship is inversely associated with Qe and 
directly with n, the number of individuals in the set. In 
[17], however, the genomic relationships were quantified 
by a trait-specific, genomic-relationship matrix, i.e., they 
were the traditional genomic relationships between pairs 
of individuals. The genomic relationship between a pair 
of individuals is not related to n, nor is it expected to be 
associated with Qe.

We hypothesize that two traits with the same heritabil-
ity can have different accuracies due to one of them hav-
ing a smaller value for Qe , resulting in higher values for 
k2s  . As described later, a computer simulation was used to 
test this hypothesis.

Accuracy of BLP and k2

Here we will show in detail how the accuracy of best 
linear prediction (BLP) is related to k2 . The BLP of the 
genomic breeding value, u = k′α , can be written as 

û = k′α̂ , where α̂ is the BLP of α . This BLP is obtained by 
modeling phenotypes, as

where, for simplicity, we have ignored all other non-
genetic effects on y , X is an n×m matrix of centered 
marker covariates, and e is the vector of environmen-
tal effects. In most current practical situations, the 
matrix X has many more columns than rows ( m > n ). 
Thus, it is customary to treat α as a random vec-
tor with null means and covariance matrix Iσ 2

α . Then, 
Var(y|X) = V = Gσ 2

α + Iσ 2
e  , where G = XX′ , and BLP of 

α is

This BLP of α can be used to get the BLP of the breeding 
value of the candidate with the centered genotype covari-
ate vector k as

where k′X′ = c′ is a vector with elements that are pro-
portional to the genomic relationships between the can-
didate and the training set. Using properties of BLP (e.g. 
[18]), the reliability of this predictor can be written as

It is easy to see that if the candidate is genomically unre-
lated to the training set, i.e., c′ = 0′ , then the reliability of 
prediction is null. Recall that we previously decomposed 
u as u = up + ur and claimed that ur cannot be predicted. 
This result follows from the decomposition of k into kp 
and kr in [8], where kp was defined as

which is the projection of k on to the row space of X , and 
kr as

which can be seen to be orthogonal to the rows of X . Fur-
ther, from equation (4) we can see that α̂ is in the column 

(3)y =Xα + e,

(4)
α̂ =Cov(α, y)V−1y

=σ 2
αX

′V−1y.

û =k′α̂

=σ 2
αk

′X′V−1y

=σ 2
αc

′V−1y,

Cor2(u, û) =
Var(û)

Var(u)

=
σ 2
αc

′V−1VV−1′cσ 2
α

k′σ 2
αk

=
σ 2
αc

′V−1c

k′k
.

(5)kp = X′(XX′)−Xk,

kr
′ = k′ − kp

′,
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space of X′ , which is the row space of X . Thus, the BLP of 
u becomes

because k′r is orthogonal to the rows of X , which leads to 
k′r α̂ = 0 . Alternatively, we see below that ur is uncorre-
lated with y:

because α is uncorrelated with the vector e of residuals, 
and k′r is orthogonal to the rows of X . Thus, y is not use-
ful to predict ur.

What we see from the above result is that although 
we would like to predict u, the information in y is use-
ful only to predict up . This justifies our definition of 
predictability as the square of the correlation between 
u and up . We show below how the predictability, which 
from equation (2) equals k2 , is related to the reliability 
of û , which is the square of the correlation between u 
and û.

Now, because û = k′pα̂ = ûp , the reliability of û can be 
written as

Suppose the size of the training set is increased without 
changing the row rank of X . Then, the predictability will 
not change because the row space of X is the same and 
the values of kp and kr will remain unchanged. But, the 
reliability of û will increase, because the error of esti-
mating up , the component of u that is correlated with 
the phenotypes, decreases as the number of phenotypes 
increases. Thus, at some point, the reliability of û will 
reach its upper bound.

To understand what this upper bound is, consider the 
reliability of ûp:

(6)

û = k′α̂

= (k′p + k′r)α̂

= k′pα̂ + k′r α̂

= ûp + ûr

= ûp,

(7)

Cov(ur , y) = Cov(k′rα,Xα + e)

= k′rVar(α)X
′

= k′rX
′σ 2

α

= 0′,

(8)

Cor2(u, û) =
Var(û)

Var(u)

=
Var(ûp)

Var(u)

=
kp

′Var(α̂)kp

k′Var(α)k

=
kp

′Var(α̂)kp

σ 2
αk

′k
.

the maximum value of which is 1.0. This implies that the 
upper bound of kp′Var(α̂)kp is σ 2

αkp
′kp . Thus it follows 

that the upper bound for the reliability in (8) is:

This is identical to the predictability in equation (2), 
which we defined as the squared correlation between 
what we want to predict and what we can predict: 
Cor2(u,up).

The predictability or upper bound of reliability in (10) 
can be computed based on a candidate’s marker covari-
ate vector and its projection onto the row space of X , the 
marker covariate matrix used to obtain α̂ . Note that if the 
vector of marker covariates k′ for our candidate is in the 
row space of X , kp will be equal to k and k2 = 1 . On the 
other hand, if k′ is not in the row space of X , k2 < 1.0.

Simulation
In a study involving Maize hybrids (Chris Schoen, pers. 
comm.), the accuracy of prediction obtained with the 
same training set was different for two traits that had the 
same heritability in the same set of candidates. An expla-
nation for this could be the inverse association between 
Qe and the genomic relationship of a candidate with the 
individuals in the training set. To determine whether this 
explanation is valid, marker data from a plant-breeding 
experiment were used to simulate a mating scheme rel-
evant to plant breeding, as described below.

Pedigree structure
Genotypic and phenotypic values were simulated using 
the XSim2 software package [19], according to the mat-
ing scheme in Fig. 1. 393 doubled haploid lines from the 
German maize landrace Petkuser as detailed by [20] were 
used as generation 0 and referred to as Syn-0. Generation 
Syn-1 was obtained by mating a random sample of 100 
DH lines from Syn-0, with 50 lines serving as females and 
50 as males in a factorial mating design with one prog-
eny per cross, to produce a total of 2,500 S0 plants. From 
this set, 70 S0 plants were randomly selected (35 females 
and 35 males) to generate again one progeny per cross, 
resulting in a total of 1,225 S0 plants in Syn-2. This pro-
cedure was repeated to generate another 1,225 S0 plants 
in generation Syn-3. The 2,450 DH lines in generation 
Syn-1-DH and the 1,225 DH lines in generation Syn-
2-DH were obtained by doubling one randomly produced 

(9)
Cor2(up, ûp) =

kp
′Var(α̂)kp

kp
′Var(α)kp

=
kp

′Var(α̂)kp

σ 2
αkp

′kp
,

(10)k2 =
kp

′kp

k′k
.
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gamete from each of the S0 plants in generation Syn-1 
and Syn-2, respectively. The lines for the training set (col-
oured in green in Fig.  1) were randomly selected from 
Syn-1-DH. In parallel, we sampled 70 DH lines from 
Syn-1-DH to produce generation Syn-2* using the same 
procedure as applied for generating generation Syn-2 
and Syn-3. Note that the training set was drawn indepen-
dently of whether an individual was a parent of a candi-
date in Syn-2*. Only the phenotypes and genotypes of the 
training lines in Syn-1-DH were used to identify the set 
of markers with non-null effects.

Genotypes and phenotypes
Three scenarios, with 10, 100, and 1,000 QTL underlying 
a quantitative trait with the same heritability (see below), 
were simulated. Each scenario was repeated five times. 
To reduce the computational burden, only the first two 
maize chromosomes were considered, i.e. 47,265 loci 
on the first chromosome of length 3.07 Morgans and 
35,329 loci on the second chromosome of 2.24 Morgans, 

resulting in a total of 82,593 loci. Either 10, 100, or 1,000 
loci were randomly selected from these 82,593 loci as 
QTL. Their effects were sampled from a standard normal 
distribution and were assumed to be additive. Random 
residual effects were sampled from a normal distribution 
with variance equal to the genetic variance in the base 
population, resulting in a heritability of 0.5.

Inference about k2s  using BayesCπ
The Bayesian Regression model BayesCπ [5] was used to 
sample the trait-specific markers that best captured the 
variability due to the QTL. The phenotypic values were 
modeled as

where y is the n x 1 vector of trait phenotypes, µ is the 
intercept, X is an n×m matrix of marker genotype 
covariates, with n being the number of individuals, m the 
number of markers, and α is an m× 1 vector of unknown 
random marker effects. In BayesCπ , the prior for the 
m× 1 marker effects is assumed to be identically and 
independently distributed as a mixture between a point 
mass at zero with probability π and a normal distribution 
with null mean and variance σ 2

α , i.e.

The prior for σ 2
α was a scaled inverse chi-square 

with να = 4.2 degrees of freedom and scale param-
eter S2α =

σ 2
α (να−2)

να
 . The variance of marker effects, σ 2

α , is 
related to the additive genetic variance explained by the 
markers, σ 2

g  , as

where pj is the allele frequency at marker j, which was 
assumed to be 0.5 for all markers. The probability π was 
assumed to have a uniform(0,1) prior, the residual effects 
a N (0, σ 2

e ) prior, and the prior for σ 2
e  was scaled inverse 

chi-square with νe = 4.2 degrees of freedom and scale 
parameter S2e =

σ 2
e (νe−2)

νe
.

The software package JWAS [21] was used to apply 
BayesCπ [5] to the 1,225 lines coloured green in Fig.  1. 
In BayesCπ , MCMC samples are drawn for all the 
unknowns in the model, including the marker effects. 
To make inferences on k2s  , markers with non-null effects 
were identified in each sample. The genetic variance in 
generation 0 was used as the initial value for the genetic 
as well as for the residual variance. The initial value for 
π was taken as 1 minus the number of QTL divided by 

(11)y = 1µ+ Xα + e,

(12)

αj|π , σ
2
α =

{

0 with probability π

∼ N (0, σ 2
α ) with probability (1− π)

σ 2
g = σ 2

α (1− π)

k
∑

j=1

2pj(1− pj),

Fig. 1  Pedigree structure for the simulated three-generational data. 
Actual genotypes of 393 Petkuser doubled haploid (DH) maize lines 
were used as generation 0 (Syn-0). Syn-1 in generation 1, Syn-2 
in generation 2 and Syn-3 and Syn-2* in generation 3 were produced 
by random mating without selfing indicated by solid arrows leading 
from parental to offspring generations. Syn-1-DH in generation 2 
and Syn-2-DH in generation 3 were produced as DH lines originating 
from a gamete of a randomly selected parent. The simulation of DH 
lines is indicated by dotted arrows. 250 candidates were randomly 
sampled from each of the generations coloured in blue. 1,225 DH 
lines were randomly chosen for training from Syn-1-DH (coloured 
in green), these lines were used to identify markers with non-null 
effects
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the total number of loci. MCMC sampling with a chain 
length of 510,000 samples was used, with the first 10,000 
samples discarded as burn-in. The set of marker covari-
ates with non-zero effects was stored for every 500th 
sample.

Estimating predictability in the simulated data
To examine the dependence between the number n of 
rows in the n× s trait-specific matrix Xs of marker covar-
iates and the number s of trait-specific markers on k2s  , 
n = 10, 100, 1, 000 covariate vectors were randomly 
drawn without replacement from Syn-1-DH, coloured in 
green in Fig.  1. This was repeated for each of the three 
traits determined by 10, 100, or 1,000 QTL. The number 
of linearly independent rows in Xs determines its row 
space. Thus, increasing the number n of rows in Xs 
increases the probability that the vector of trait-specific 
marker covariates for a candidate is in the row space of 
Xs . From each of the candidate sets coloured in blue in 
Fig. 1, 250 marker covariate vectors were sampled with-
out replacement to serve as candidates. Recall that for 
each of the three traits, 1,000 MCMC samples of marker 
covariates with non-null effects were available. For each 
of these samples, the mean of k2s  was calculated across all 
250 candidates as k̄2s = 1

250

∑250
j=1 k

2
sj
 , using the trait-spe-

cific Xs and the sample-specific marker covariate vector 
with non-null effects for candidate j. These 1,000 k̄2s  val-
ues were used to estimate the posterior distribution of k̄2s  
for each of the three traits and n = 10, 100, or 1, 000 . 
These distributions were computed for each candidate 
sets in Fig. 1.

Results and discussion
The objective of this paper was to show that the effective 
number Qe of QTL for a trait is inversely associated with 
the trait-specific genomic relationship between a candi-
date and the training set. This relationship explains how 
the number of QTL underlying a trait can affect the accu-
racy of prediction, for example, as observed in [16], when 
the candidates were not in the training set.

Inverse association of Qe with accuracy of genomic 
prediction
The genomic relationship between the candidate and the 
training set has been recognized as an important factor 
that determines the accuracy of genomic prediction [9, 
13]. In this paper we showed that the breeding value of 
a candidate can be decomposed into two components, 
up and ur , where up is correlated with the phenotypes of 
the training individuals and ur is uncorrelated to these 
phenotypes. Further, we showed that the k2 statistic pro-
posed by [8] is equal to the squared correlation between 

u and up , which we defined as predictability. We also 
extended predictability to be trait specific.

Candidate is in the training set
From equations (2) and (5), we can see that when the can-
didate’s k is in the row space of X , kp = k and k2 = k′pkp

k′k  
becomes 1.0. Recall that the results in Table  1 of [16] 
were for the situation where all candidates were from the 
training set and k2 for all candidates would have been 1.0. 
Thus, in this case, the genomic relationship between the 
candidate and the training set, as quantified by k2 , will 
not depend on the number of QTL underlying the trait. 
This agrees with the results in Table 1 of [16], where the 
accuracy of prediction did not depend on the number of 
QTL.

Candidate is not in the training set
On the other hand, results presented in Table  2 of [16] 
were for candidates that were not in the training set, but 
where most of them were even from different breeds. 
Thus, most of the candidates were very distantly related 
to the training set. Recall that we used s to denote the 
number of trait-specific markers that capture the vari-
ability due to the QTL for the trait, where the number 
of such markers is associated with the effective number 
Qe of QTL. Regardless of the number of markers used 
for training and prediction, predictability depends only 
on the set of s trait-specific markers. Equivalently, even 
when X is used for prediction, predictability depends 
only on Xs ,   which has the set of s trait-specific mark-
ers. So, if s ≤ n , where n is the number of rows in Xs , it 
is possible that Xs has row rank s. Given that Xs has row 
rank s, any candidate vector ks of covariates will be in the 
row space of Xs and thus, will have k2s = 1.0 . However, if 
s > n , it is impossible for Xs to have row rank s. In this 
case, the s elements that correspond to the trait-specific 
markers in the k vector of a candidate may not be a linear 
combination of the n× s trait-specific marker covariate 
matrix, Xs . Even in this situation, the s elements that cor-
respond to the trait-specific marker effects in the k vector 
of a candidate may be in the row space of Xs , especially if 
the candidate is closely related to or included in the train-
ing set. Even when the s trait-specific elements of k are 
not in the row space of Xs , k2s  is likely to be close to 1.0 
for a candidate that is closely related to the training set, 
but the value of k2s  is expected to be lower for individuals 
that are distantly related to the training set. As s increases 
in size relative to n, it becomes less likely that the s trait-
specific elements of k of a candidate will be in the row 
space of Xs , and thus the expectation for the value of k2s  
becomes smaller. As the results in Table  2 of [16] were 
mostly for distantly related candidates, we expect that 
k2s  would be inversely associated with s, which is directly 
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associated with the effective number Qe of QTL. Thus, 
this inverse association of k2s  with Qe explains the result in 
[16] that accuracy of prediction was higher for traits with 
lower numbers of QTL.

Disentangling the two contributions to the inverse 
association between the accuracy of prediction and Qe

Another possible explanation for the inverse association 
between the number of QTL and accuracy of prediction 
is that effects of markers (or QTL) are better estimated 
when there are a few QTL with large effects than when 
there are many QTL with small effects. Below, we will 
compare the results in Tables 1 and 2 of [16] to disentan-
gle the contributions from these two explanations for this 
inverse association.

The implicit assumption in the second explanation 
given above is that the QTL are known, and then, the 
signal to noise ratio is more favorable when few markers 
(or QTL) are fitted in the model compared to when many 
are fitted. In Table 1 of [16], where the candidates were in 
the training set, k2 would be 1.0 for all candidates regard-
less of the number of QTL. So, in this table, differences in 
accuracy associated with the number of QTL are entirely 
due to the second explanation. First, consider the case 
where the QTL positions are known and QTL genotypes 
are fitted in the model. In the multibreed population con-
sidered by [16], the accuracy was 0.965 with 50 QTL and 
dropped to 0.810 with 500 QTL. Similarly, in the pure-
bred population, the accuracy dropped from 0.978 to 
0.877. In Table  2 of [16] the candidates were not in the 
training set and k2 depends  on the number of QTL. In 
this case, in Table  2, the corresponding accuracies con-
sidered above in Table  1 were all lower. This is because 
k2 is not expected to be 1.0 between the candidates and 
the training set. Further, in Table  1 of [16], the average 
drop in accuracy was 0.13 compared to an average drop 
of 0.2 in Table 2. Here, the inverse association of the trait-
specific genomic relationship of a candidate to the train-
ing set (as quantified by k2 ) contributed to the drop in 
accuracy, in addition to the less favorable signal to noise 
ratio when the number of QTL increased from 50 to 500. 
Next, consider the case where the QTL are not known 
and all 50k makers are included in the model, regardless 
of the number of QTL. Here, regardless of the number 
of QTL underlying the trait, the signal to noise ratio is 
expected to be the same: 1) because the simulated signal 
(genetic variance) from 50 or 500 QTL was the same; and 
2) because all 50k markers contribute to the noise in the 
predictions, regardless of the number of QTL. Thus, as 
expected, in Table  1 of [16], the average drop in accu-
racy when going from 50 to 500 QTL was close to zero, 
because neither of the two possible explanations for the 
inverse association between the number of QTL and 

accuracy of predictions are expected to come into play in 
this setting. In contrast, in Table 2 of [16], when all 50k 
markers were included in the model, the average drop in 
accuracy when going from 50 to 500 QTL was 0.15. Here, 
this entire drop can be attributed to the inverse associa-
tion between the number of QTL and the trait-specific 
genomic relationship between the candidates and the 
training set, because the signal to noise ratio is expected 
to be the same for all analyses with the same number of 
markers in the model. In most practical situations, the 
QTL are not known, and in this case, the inverse associa-
tion between the number of QTL and accuracy of predic-
tion is entirely due to the inverse association between the 
number of QTL and the genomic relationship of candi-
dates to the training set.

Constructing training set to maximize k2 or genetic 
diversity
Recall that the genomic relationship quantified by k2s  is 
not between two individuals but between a candidate 
and the entire training set. This is equally true for k2 , and 
thus, without loss of generality, we will consider how the 
genomic relationship quantified by k2 can be changed 
by changing the training set. For example, the relation-
ship to the training set of any candidate, even one from 
a distant breed that is not represented in the training set, 
can be increased by increasing the number of linearly 
independent rows in X , i.e., by increasing its rank. This 
can be done by sequentially adding one individual at a 
time to the training set. Suppose nc additional individu-
als can be phenotyped, and we need to choose those nc 
individuals from among nt individuals that have already 
been genotyped. This can be done as follows. Using the 
current value of X , k2 is calculated for all nt individuals 
and the individual with the lowest value of k2 is added 
to the training set. Then, X is updated for the individual 
that was just added to the training set. This process is 
repeated until nc candidates have been added to the train-
ing set. This procedure can also be used to select from a 
population a subset of individuals with maximum genetic 
diversity.

Simulation results on the assocations of k2s  with Qe and size 
of training set
In this paper, a simulation was used to demonstrate the 
dependence of k2s  on s relative to n, where s is the num-
ber of trait-specific markers, which is closely associated 
to Qe and the number of QTL. In contrast to the situa-
tion in [16], as shown in Fig.  1, the candidates in our 
maize-breeding simulation, colored in green, were closely 
related to the training set, colored in blue. Further, to 
reduce computing time for the simulation, only two 
maize chromosomes were simulated, the first with length 
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3.07 Morgans and the second with length 2.24 Morgans. 
Given that only one crossover is expected per Morgan, 
many of the related individuals among the 1,225  train-
ing individuals, which originated from 393 Petkuser lines 
(Fig. 1), are expected to share large independently segre-
gating chromosomal segments. As a result, although we 
simulated up to 1,000 QTL, the number Qe was much 
lower ( < 100 ). This is due the high linkage disequilibrium 
(LD) that was present in the commercial maize line used 
to simulate the data. The effective number Qe of QTL has 
an upper bound equal to the number of independently 
segregating chromosomal segments, which is related to 
the level of LD. So, even when we attempted to simulate 
a 1,000 QTL, we ended up simulating less than 100 effec-
tive QTL. Thus, to examine the dependence of k2s  on s, 
very low values for n ( < 100 ) had to be considered.

Three traits, with 10, 100 or 1,000 QTL underlying the 
trait, were simulated, and training set sizes of 10, 100 or 
1,000 observations were considered. The posterior distri-
butions for the mean value of k2s  for the different candi-
date sets, colored in green in Fig. 1, were very similar due 
to their close genomic relationships to the training set. 
Further, because the effective number of QTL was less 
than 100, k2s  was 1.0 when n ≥ 100 . This shows the posi-
tive association between k2s  and n. Thus, results are pre-
sented in Fig. 2 for candidate set Syn-3, which is set that 
is most distantly related to the training set, for n = 10 
only. Results for all candidate sets are presented in Addi-
tional file 1: Fig. S1.

The distribution for k2s  colored in green in Fig. 2 is for 
the trait with 10 simulated QTL and n = 10 . The average 
of the number s of trait-specific markers from the 1,000 
saved MCMC samples from BayesCπ was 12.9, which 
may indicate that more than one marker was needed to 
track some QTL. In samples where s was smaller than 
n = 10 , it is possible that Xs had row rank equal to s. 
Whenever this is the case, k2s  will be 1.0 for all candi-
dates. In samples where s was larger than n = 10 , Xs can-
not have row rank of s, but k2s  can still be 1.0, for example 
for a candidate that is in the training set. In this case, 
when s > n , however, it is possible for k2s  to take on val-
ues lower than 1.0. Here, where the mean value of s was 
only slightly larger than n, the mean value of k2s  was 0.9, 
which indicates that the vector of trait-specific marker 
covariates for a candidate was well represented as a linear 
combination of the rows of Xs for most of the candidates 
considered. This implies that most candidates had a close 
trait-specific genomic relationship to the training set.

The distribution for k2s  colored in blue in Fig.  2 is for 
the trait with 100 simulated QTL and n = 10 . In this case, 
contrary to the situation with 10 QTL, the number s of 
trait-specific markers was on average smaller (51.2) than 
the number of simulated QTL. The minimum value for s 

from the 1,000 MCMC samples was 18. Thus, there were 
no samples with s smaller than n = 10 , indicating that in 
none of the samples Xs could have had a row rank of s. 
In this distribution, the mean value of k2s  was 0.37, indi-
cating that the vector of trait-specific marker covariates 
for a candidate could not be represented well as a linear 
combination of the rows of Xs for most of the candidates 
considered here. This implies that most candidates had a 
distant trait-specific genomic relationship to the training 
set with n = 10.

The distribution for k2s  colored in red in Fig. 2 is for the 
trait with 1,000 simulated QTL and n = 10 . The number 
s of trait-specific markers was on average 91.8, which is 
much smaller than the number of simulated QTL, and 
the minimum number for s was 35. Thus, with n = 10 , as 
in the case with 100 QTL (blue distribution), in none of 
the samples could Xs have had a row rank equal to s. In 
this distribution, the mean value of k2s  was 0.25, indicat-
ing that the vector of trait-specific marker covariates for 
a candidate was not well represented as a linear combina-
tion of the rows of Xs for most of the candidates. As in 
the case with 100 QTL, this implies that most candidates 
had a distant trait-specific genomic relationship to the 
training set with n = 10.

This simulation was able to demonstrate the inverse 
association between Qe and k2 , which quantifies the 
genomic relationship of a candidate with the individu-
als in the training set. To demonstrate this inverse asso-
ciation, however, we had to limit the training set size to 
an unrealistically low value of n = 10 . This was due the 
close relationship of the candidates with the training set. 
When the candidates are closely related to the individuals 
in training set, the accuracy of prediction is expected to 

Fig. 2  Distribution of the mean predictability for candidates 
in Syn-3 across 5 repetitions of the simulation, where 10 QTL 
(green graph), 100 QTL (blue graph) or 1,000 QTL (red graph) were 
underlying the trait. In all these situations, the training set size was 10. 
Predictability shows an inverse association with the number of QTL 
underlying a trait
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be high, and thus, k2 , which is the upper bound of accu-
racy, is also expected to be high. It then follows that Qe 
is going to be low, as in our simulation, because of its 
inverse association with k2 . In contrast to our simulation, 
in Table 2 of [16] the candidates were distantly related to 
the training set, and the results presented in that table 
show the inverse association of Qe with k2 for more realis-
tic values of n of about 1,000. This demonstrates that the 
inverse association between Qe and the genomic relation-
ship of a candidate with individuals in the training set, as 
quantified by k2 , is true in general and is not limited to 
low values of n.

Conclusions
The main conclusion of this paper is that the trait-specific 
genomic relationship between a candidate and the train-
ing set, as quantified by k2s  , is inversely associated with 
the effective number Qe of QTL. Thus, k2s  is also inversely 
associated indirectly with the actual number NQTL of 
QTL, although the inverse association of k2s  with NQTL is 
observed only when NQTL < Me . Further, there is a posi-
tive association of the trait-specific genomic relationship 
of a candidate with the size of the training set. In general, 
these associations of the number of QTL and the size of 
the training set with the trait-specific genomic relation-
ship are only observed when 1) the candidate is not in the 
training set, and 2) the size of the training set is smaller 
than the number s of trait-specific markers, which is an 
upper bound for the effective number Qe of QTL.
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Additional file 1: Figure S1. Distribution of the mean predictability for 
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similar genomicrelationship to the training set. 
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