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Abstract 

Background  Hoof structure and health are essential for the welfare and productivity of beef cattle. Therefore, we 
assessed the genetic and genomic background of foot score traits in American (US) and Australian (AU) Angus cattle 
and investigated the feasibility of performing genomic evaluations combining data for foot score traits recorded in US 
and AU Angus cattle. The traits evaluated were foot angle (FA) and claw set (CS). In total, 109,294 and ~ 1.12 million 
animals had phenotypic and genomic information, respectively. Four sets of analyses were performed: (1) genomic 
connectedness between US and AU Angus cattle populations and population structure, (2) estimation of genetic 
parameters, (3) single-step genomic prediction of breeding values, and (4) single-step genome-wide association stud-
ies for FA and CS.

Results  There was no clear genetic differentiation between US and AU Angus populations. Similar heritability esti-
mates (FA: 0.22–0.24 and CS: 0.22–0.27) and moderate-to-high genetic correlations between US and AU foot scores 
(FA: 0.61 and CS: 0.76) were obtained. A joint-genomic prediction using data from both populations outperformed 
within-country genomic evaluations. A genomic prediction model considering US and AU datasets as a single 
population performed similarly to the scenario accounting for genotype-by-environment interactions (i.e., multiple-
trait model considering US and AU records as different traits), even though the genetic correlations between coun-
tries were lower than 0.80. Common significant genomic regions were observed between US and AU for FA and CS. 
Significant single nucleotide polymorphisms were identified on the Bos taurus (BTA) chromosomes BTA1, BTA5, BTA11, 
BTA13, BTA19, BTA20, and BTA23. The candidate genes identified were primarily from growth factor gene families, 
including FGF12 and GDF5, which were previously associated with bone structure and repair.

Conclusions  This study presents comprehensive population structure and genetic and genomic analyses of foot 
scores in US and AU Angus cattle populations, which are essential for optimizing the implementation of genomic 
selection for improved foot scores in Angus cattle breeding programs. We have also identified candidate genes asso-
ciated with foot scores in the largest Angus cattle populations in the world and made recommendations for genomic 
evaluations for improved foot score traits in the US and AU.
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Background
Lowly-to-moderately heritable traits (e.g., structural 
problems and functional traits) in livestock are substan-
tially affected by environmental factors. Structural prob-
lems have been a concern in both beef and dairy cattle 
breeding schemes due to their impact on animal wel-
fare, increased complexity in daily management (e.g., 
lame animals can take longer to go through the chute), 
and economic losses due to costs of treatments and 
negative impact on production and fertility [1, 2]. Struc-
tural problems can also be known as “structural sound-
ness” or “conformation”, which assess the body structure 
of an animal, e.g., feet and leg conformation. In North 
American Angus, it has been estimated that 6% of the 
cows are culled due to structural problems by having a 
direct impact on cow’s longevity [3]. Furthermore, North 
American and Australian Angus producers have ranked 
structural problems (e.g., feet conformation) within their 
top-three breeding goals [4, 5]. Foot angle (FA) and claw 
set (CS) are two key indicators of structural problems 
used in beef cattle breeding [6, 7].

Over the past decades, advancements in reproductive 
technologies (e.g., artificial insemination, sexed semen, 
and embryo transfer) have enabled higher-genetic-merit 
animals to produce more offspring under vastly differ-
ent management systems and geographical regions [8]. In 
this context, the evaluation of genotype-by-environment 
interactions (GxE; [9]) becomes essential considering 
the existing exchange of genetic material across coun-
tries, in which the animal’s offspring performance is not 
necessarily similar across environments. Consequently, 
the welfare of animals that are poorly adapted to certain 
environments or management systems could be com-
promised, which results in losses of revenue. GxE have 
been acknowledged in breeding programs even prior to 
the implementation of genomic selection [10, 11]. Stud-
ies in beef cattle populations have reported different lev-
els of GxE and changes in ranking of breeding animals 
across regions within a country [12, 13], in which the 
GxE can be explained by several environmental param-
eters. Characterization of GxE can be done, for instance, 
by using the temperature–humidity index (THI; e.g., 
using the American Angus dataset [12]) or by model-
ling broader environmental gradients such as macro-
environments (i.e., Victoria versus Queensland using the 
Australian Angus dataset [13]). The magnitude of GxE 
can vary within the same population, depending on the 
trait being analyzed [13]. If an GxE is present, it can be 
accounted for by fitting multiple-trait models (categorical 
environmental levels, e.g., countries) or random regres-
sion models—reaction norms (continuous environmen-
tal gradients, e.g., THI [14]). In this context, Hayes et al. 
[14] indicated that incorporating GxE into the genomic 

prediction of breeding values could result in more accu-
rate rankings of breeding candidates for specific environ-
mental conditions, and therefore, faster genetic progress 
for the traits of interest.

Across-country genetic evaluations in beef cattle 
have been implemented or are under investigation in 
various regions around the world [15–20]. An interna-
tional genetic evaluation could contribute to increasing 
genetic progress of smaller populations in single coun-
tries [17], as it might result in higher selection intensity 
and more accurate genomic estimated breeding values 
(GEBV) when larger training populations are available for 
genomic prediction of breeding values. The pedigree link 
and the performance of animals’ progeny across environ-
ments (e.g., countries) are key limitations for joint genetic 
evaluations [17–21]. Strong across-environment genetic 
connections are paramount for a proper estimation of the 
genetic correlation across environments, which is also 
needed for genomic evaluations [18, 21]. However, with 
the implementation of genomic selection, when pedigree 
information is not available (or limited), GEBV can be 
calculated for individuals across environments by mul-
tiplying the gene content (allele genotype information) 
by the specific-environment single nucleotide polymor-
phism (SNP) effect (when non-additive genetic effects are 
disregarded [14]).

Joint genomic evaluations can be beneficial to beef cat-
tle breeding programs as they provide an opportunity to 
increase the size of reference populations, especially for 
novel or lowly-heritable traits, and consequently increase 
the accuracy of GEBV without significant additional 
costs to producers [18–23]. Considering the importance 
of foot score traits for Angus cattle populations, the pri-
mary objectives of this study were to assess the genetic 
and genomic background of foot scores in American 
(US) and Australian (AU) Angus cattle and investigate 
the feasibility of performing a joint genomic evaluation 
for FA and CS based on alternative genomic prediction 
scenarios. The specific objectives were to: (1) assess pop-
ulation structure and genomic connectedness between 
the US and AU Angus cattle populations using consist-
ency of gametic phase, linkage disequilibrium, principal 
component analysis, and admixture, (2) estimate genetic 
parameters, (3) perform single-step genomic prediction 
of breeding values based on alternative scenarios, and 
(4) conduct single-step genome-wide association studies 
(ssGWAS) and post-ssGWAS analyses for FA and CS.

Methods
Datasets
Foot scoring system
Both the American Angus Association (AAA; Saint 
Joseph, MO, USA) and Angus Australia (AAU; 
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Armidale, NSW, Australia) use similar scoring systems: 
FA (on a one-to-nine scale) and CS (on a one-to-nine 
scale). Both FA and CS are subjective measurements, 
and the scoring system is presented in Fig. 1, in which 5 
is the optimal score for FA and CS [7]. For FA, a 5-score 
animal would have a 45-degree set to its pastern with 
acceptable heal depth. For CS, a score of 5 indicates a 
straight and symmetrical claw. Phenotypic recording 
is done on animals at yearling (1-year old) age and/or 
older animals. Collecting repeated measurements is 
encouraged (but still limited) and should be performed 
prior to hoof trimming.

The AAA recommends that the handlers record FA 
and CS on the worst foot of each animal when contem-
porary animals are being handled with a single handler 
recording all scores within a contemporary group (CG). 
Foot scores from AAU animals are mainly recorded 
by trained technicians and two scores are available for 
each animal and metric: one for the front and on for 
the rear leg. However, only the worst scored leg in the 
AAU was used for this study to mimic the AAA data-
set. More details about the recording performed by the 
AAA and AAU can be found at the AAA website [7] 
and www.​angus​austr​alia.​com.​au/​educa​tion/​breed​ing-​
and-​genet​ics/​colle​ction-​guide​lines-​for-​angus-​resea​rch/​
colle​cting-​mature-​cow-​struc​tural-​sound​ness-​scores/ 
(accessed 27 July 2022). Foot score CG were formed 
by concatenating management factors, which dif-
fered between AAA and AAU. The CG from AAA was 
defined by the concatenation of sex, weaning and year-
ling information [herd, measurement date, and man-
agement code (e.g., creep feeding system)]; diet type 
(i.e., pasture, low concentrate diet < 50%, and high con-
centrate diet > 50%), and herd and date when the foot 
scores were collected. The CG for AAU was formed by 
concatenating sex, weaning and yearling management 
groups, management group defined at the time of scor-
ing the traits, and in which leg the score was collected 
(i.e., front or rear; [24]).

Phenotypic datasets
The phenotypic datasets included data from purebred 
Angus cattle registered in the AAA (referred to as the 
US Angus population) and AAU (referred to as the AU 
Angus population). In total, 85,549 records (75,020 ani-
mals; recorded from April 2014 to July 2021) from the US 
population and 85,439 records (74,240 animals; recorded 
from March 1996 to August 2021) from the AU popu-
lation were available for the analyses. The description 
of the phenotypic datasets prior to quality control is in 
Additional file  1: Table  S1. The datasets were edited to 
maintain enough variation within each level of CG (i.e., 
20 records and at least two-foot score categories). Fur-
thermore, phenotypes recorded on animals younger 
than 320 and older than 5475 days were removed from 
the analyses. Only scores from 5 to 9 were evaluated 
in this study because there were 52 records for FA and 
383 records for CS for scores from 1 to 4 in the raw AU 
Angus dataset (see Additional file 1: Table S1). Further-
more, other studies have observed a decrease in the her-
itability estimates when scores from 1 to 4 were included 
and, consequently, previous researchers have applied 
similar filtering criteria [25, 26]. After the quality con-
trol, 44,421 FA and 46,408 CS US Angus records (from 
November 2014 to June 2021) and 70,464 FA and 70,909 
CS AU Angus records (recorded from March 1996 to 
August 2021) remained for further analyses. The average 
(±SD) number of records per animal was 1.1 (0.30) and 
1.2 (0.53), and 3814 and 7409 animals had more than one 
measurement for US and AU, respectively. Figure  2a, b 
show the distribution of FA and CS scores, respectively. 
Figure 2c shows the distribution of repeated records and 
Table 1 presents an additional description of the dataset 
after data quality control. The distribution of the animals’ 
age at recording is presented in Additional file 2: Fig. S1.

Genomic datasets
The genomic dataset contained animals from multiple 
countries and various genotyping platforms or SNP panel 

Fig. 1  Foot score guidelines by the American Angus Association and Angus Australia (Picture source: American Angus Association [7])

http://www.angusaustralia.com.au/education/breeding-and-genetics/collection-guidelines-for-angus-research/collecting-mature-cow-structural-soundness-scores/
http://www.angusaustralia.com.au/education/breeding-and-genetics/collection-guidelines-for-angus-research/collecting-mature-cow-structural-soundness-scores/
http://www.angusaustralia.com.au/education/breeding-and-genetics/collection-guidelines-for-angus-research/collecting-mature-cow-structural-soundness-scores/
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densities. The genotypes were mapped to the bovine 
genome assembly UMD3.1. Genotype imputation was 
performed to a common 50K SNP panel, as implemented 
in the analytical pipeline of the AAA. Genotype imputa-
tion and quality control were done within each country. 
A quality control of the genomic data was performed at 

the SNP and animal levels, in which SNPs with a minor 
allele frequency higher than 0.05 and a call rate higher 
than 0.90 were kept for further analyses. Animals with 
a sample call rate higher than 0.80 were also kept. In 
total, 39,595 SNPs remained after quality control, and 
1,145,751 genotyped animals remained for the genomic 
prediction analyses, containing 996,329 US, 131,951 AU, 
17,403 Canadian, and 68 from other countries. Finally, 
the genomic coordinates were converted to the ARS-
UCD1.2 bovine genome assembly [27, 28] using the 
biomaRt R package [29].

Only a subset of the genotyped population was used 
to obtain p-values for SNPs in the ssGWAS analyses 
because p-values depend on the prediction error variance 
of the SNP effect from the ssGBLUP results, and the full 
coefficient matrix needs to be inverted [30]. To overcome 
this limitation, 12,500 genotyped animals with pheno-
typic records from each country (25,000 genotyped ani-
mals in total) were randomly sampled.

Pedigree datasets
The pedigree of US and AU were merged based on a 
common identification number across countries, which 
was provided by both the AAA and AAU breeders’ 

Fig. 2  Distribution of foot scores. a Foot angle; b claw set in Angus cattle per country (AU = Australia and US = United States) based on the number 
of records per animal (c)

Table 1  Descriptive statistics of the phenotypic datasets (after 
quality control) of foot scores in American and Australian Angus 
cattle

US American Angus registered animals, AU Australian Angus registered animals, 
reference population number of animals with both genomic and phenotypic 
information

Foot angle Claw set

US AU US AU

Number of records 44,421 70,464 46,408 70,909

Number of animals 40,466 60,158 42,621 60,561

Age (days)

 x̄ (SD) 761 (678) 701 (432) 716 (624) 699 (430)

 Min 320 320 320 320

 Max 4987 4821 4957 4821

Reference population 29,444 21,434 31,799 21,612
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associations. For the estimation of genetic parameters 
and ssGWAS, 122,471 and 119,160 animals for US and 
AU, respectively, were included in the pedigree. The 
pedigree file included up to four generations of ancestors 
from the animals with phenotypic information, includ-
ing 10,945 sires in the US and 8885 in the AU pedigree 
dataset. In total, 973 sires had progeny in both US and 
AU datasets, accounting for 41% (50,205 animals) and 
25% (30,220 animals) of animals in the US and AU pedi-
gree files, respectively. Furthermore, 1383 dams with 
progeny shared between both countries were available, 
accounting for 4115 US and 2069 AU animals in the 
pedigree. Regarding the phenotypic data, 215 sires with 
progeny with phenotypic information in both countries 
were available, accounting for 27% of the animals with 
phenotypic records in the US dataset (14,121 pheno-
types, which is equivalent to 12,798 animals) and 13% 
of animals with phenotypic records in the AU dataset 
(8792 phenotypes, equivalent to 7978 animals). For the 
genomic prediction analyses, the pedigree file was cre-
ated by including up to four generations of ancestors 
from phenotyped animals (with and without genomic 
information) and relatives of genotyped animals without 
phenotypes, resulting in a total of 1,902,478 animals.

Population characterization and admixture analyses
Linkage disequilibrium and consistency of gametic phase
The level of linkage disequilibrium (LD) was measured 
based on the squared correlation (r2) between two alleles 
at different loci [31], and the LD analyses were done 
within country. The LD decay was represented by the 
average of the SNP-pairwise LD sorted into SNP bins of 
100 kbp. All genotyped animals for both countries were 
included in the analyses (1.12 million animals). The con-
sistency of gametic phase was calculated as the Pearson 
correlation coefficient between the average of a signed LD 
by bins of US and AU populations. The signed-LD was 
calculated as the square root of the r2 values with the sign 
of the disequilibrium metric  [D = f (AB)− f (A)f (B)] , 
considering two loci on a chromosome with alleles A, a 
and B, b; f (A) is the allele frequency of A at one locus, 
f (B) is the allele frequency of B at a different locus, and 
f (AB) is the frequency of the AB haplotype. Both metrics 
were calculated using the snp1101 software [32].

Principal components analysis
Principal component (PC) analysis (PCA) was performed 
to investigate the genomic similarities between the US 
and AU Angus populations. The PC were estimated 
based on the genomic relationship matrix ( G , calculated 
as in the first method proposed by VanRaden [33]) and 
using the snp1101 software [32]. The software snp1101 

implements an approach called fast PCA, which is less 
memory-intensive given a large-scale dataset compared 
to the traditional PCA. The fast PCA randomizes the 
top N PC, and for this study, we considered the top 10 
PC. The subset of animals used to create the G matrix 
and to obtain the eigen value decomposition for the PCA 
included: (i) all genotyped animals from the US and AU 
datasets (~ 1.2 million animals); (ii) only the animals with 
phenotypic and genomic information (Tables 1 and 59K 
animals); (iii) 100,000 animals randomly sampled from 
each US and AU dataset; and (iv) 10,000 animals ran-
domly sampled from each US and AU dataset. The sce-
narios (iii) and (iv) were performed as supplementary 
analyses to verify the pattern in the PCA when a balanced 
number of genotyped individuals from both countries 
and a random selection from the large genomic dataset 
were used.

Admixture analyses
The population structure for each country was assessed 
using the ADMIXTURE software [34, 35]. The total num-
ber of genotyped animals included in these analyses was 
20,000 with 50% from the US and 50% from the AU data-
sets. LD pruning was performed, i.e. SNPs from pairs 
with r2 higher than 0.20 in a genomic window of 10 SNPs 
were filtered out. In total, 13,566 SNPs remained for the 
admixture analyses. The optimal K value was defined 
based on a fivefold cross-validation procedure and prior 
knowledge about the populations, in which the K values 
evaluated ranged from 1 to 10 (see Additional file 2: Fig. 
S2). The K value with the lowest slope-decay of cross-val-
idation (CV) error was assumed as the optimal number 
of ADMIXTURE clusters (K = 3).

Estimates of genetic parameters between countries
In total, three main groups of genetic parameter analy-
ses were performed. First, we evaluated a within-country 
two-trait model (WC), in which the datasets from each 
country were analyzed separately (e.g., US or AU popula-
tions) and a covariance structure was considered between 
FA and CS [Eq.  (1) description (a)]. The AAA currently 
runs a two-trait (FA and CS) model for genetically evalu-
ating foot scores. Equation (1) is:

Description (a) of Eq. (1) for a within country two-trait 
(WC-TT) model: y is a two-trait vector with phenotypic 
records for FA and CS, β is a vector of fixed effects for 
both traits, including age (in days) as a linear covari-
ate and contemporary group, a is a vector of the ani-
mal random effect with a ∼ N (0,� ⊗ A) , pe is a vector 
of the random permanent environmental effect with 

(1)y = Xβ+ Za +Wpe+ e.
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pe ∼ N (0,Q ⊗ I) , and e is a vector of the random resid-
ual with e ∼ N (0,R ⊗ I) . X , Z , and W are the incidence 
matrices for β , a , and pe , respectively. ⊗ is the Kronecker 
product, A is a pedigree-based relationship matrix, 
I is an identity matrix, � is a covariance matrix for a as 
described in Eq.  (2), R is the residual covariance matrix 
as in Eq. (3), and Q is the permanent environment covari-
ance matrix as in Eq. (4).

where a , pe and e correspond to the additive genetic, 
permanent environment, and residual components, 
respectively.

Second, a multi-country two-trait model (MC-TT) was 
analyzed [Eq. (1) description (b)], in which data from US 
and AU were analyzed jointly with a covariance struc-
ture of FA and CS. Description (b) of Eq. (1) for a MC-TT 
model: y is a four-trait vector (i.e., concatenation of two 
countries and two foot score traits), β is a vector of fixed 
effects, including age (in days) as a linear covariate and 
contemporary group. � is a covariance matrix for a as 
described in Eq. (5), R is the residual covariance matrix as 
in Eq. (6), and Q is the permanent environment covariance 
matrix as in Eq. (7). The other terms are as defined above.
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Third, a joint-country two-trait model was analyzed 
(JC-TT), in which the data for both FA and CS from the 
US and AU populations were combined as if they were a 
single population [Eq. (1) Description (c)]. Description (c) 
of Eq. (1) for JC-TT: y is a two-trait vector (e.g., FA and 
CS), β is a vector of fixed effects for both traits, including 
age (in days) as a linear covariate nested within country 
and CG (no CG overlapped between US and AU). � is a 
covariance matrix for a as described in Eq.  (2), R is the 
residual covariance matrix as in Eq. (3), and Q is the per-
manent environment covariance matrix as in Eq. (4). Age 
was nested within country due to differences in the age 
at recording between US and AU (see Additional file  2: 
Fig. S1), which could be a consequence of differences in 
the production systems. For the estimation of the (co)
variance components, the airemlf90 (AIREML analyses 
using the default settings) package from the blupf90+ 
program family was used [36, 37]. Finally, within-country 
single-trait (WC-ST), multi-country single-trait (MC-
ST), and joint-country single-trait (JC-ST) models were 
also fitted, where a null covariance between FA or CS was 
considered.

Genomic prediction of breeding values
Identifying the optimal scenarios for performing genomic 
prediction of breeding values for FA and CS in the US 
and AU Angus populations was a key goal of this study. 
The datasets used mimic the current genetic evaluation 
performed by AAA. A single-step GBLUP (ssGBLUP) 
approach was used for genomic predictions. A forward 
genomic evaluation was performed, in which animals 
born in 2020 for the US and 2019–2020 for AU were con-
sidered as the target (or validation) population. A sim-
plification of the linear regression method [38] was used 
to assess the predictive ability of the scenarios evaluated 
based on bias (Eq.  8), dispersion (Eq.  9), and accuracy 
(Eq.  10) of the GEBV. In the original method [38], the 
denominator of Eq.  (10) is 

(

1+ F̄ − 2f
)

Vg , in which 2f  
is the average relationship between individuals and Vg is 
the additive genetic variance obtained based on the par-
tial dataset. First, a common and unchangeable genomic 
dataset was considered across all genomic prediction sce-
narios evaluated. Inversion of the genomic relationship 
matrix (G) with 1,145,751 genotyped animals would not 
be feasible. Therefore, the algorithm of proven and young 
animals (APY; [39]) was used and 22,000 randomly sam-
pled animals out of the whole pool of genotyped animals 
available were attributed to the core group. The core ani-
mals were the same across all scenarios.

(8)bias = GEBVpartial − GEBVwhole,
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where GEBVpartial  is the average of the GEBV of valida-
tion animals using the partial dataset (i.e., with the phe-
notypes from the validation group masked), GEBVwhole is 
the average of the GEBV of validation animals using the 
whole dataset (i.e., the phenotypes from the validation 
group were also included in the analyses), F̄  is the average 

(9)dispersion =
cov(GEBVpartial ,GEBVwhole)

var
(

GEBVpartial

) ,

(10)acc =

√

cov(GEBVpartial ,GEBVwhole)
(

1− F̄
)

σ 2
u

,

inbreeding of the validation group, and σ 2
u is the additive 

genetic variance calculated using the whole dataset.
The genomic prediction scenarios changed depend-

ing on the phenotypic datasets included in the training 
population, statistical models, and estimates of genetic 
parameters. The scenarios tested are described in Table 2. 
In brief, the main groups of analyses were: (1) within-
country genomic evaluations (WC) based on single-trait 
(WC-ST) or two-trait (WC-TT) models, in which the 
analyses are done separately for each country; (2) multi-
country genomic evaluations (MC) based on single-trait 
(MC-ST) or two-trait (MC-TT) models, in which the 
analyses are done combining the datasets from both 

Table 2  Description of the genomic prediction scenarios evaluated for foot angle (FA) and claw set (CS) in Australian (AU) and United 
States (US) Angus cattle

For the target population numbers presented in this table, all the target animals had both phenotypic and genotypic information. Furthermore, for the purpose of the 
forward validation, the remaining animals born in 2020 for US or in 2019–20 for AU with phenotype and no genotype were removed from the partial-dataset analyses 
to avoid biasing the results

NTOT : number of animals included in the whole-dataset analyses; Target: animals in the target population, in which their phenotypic records were masked in the 
partial-dataset analyses
a Year of birth of the target animals

Abbreviation Description Scenarios NTOT Target

WC-TT Within-country two-trait model FAUS.WC 44,421 2020a:4142

Single-country analysis (no correlation between US and AU traits) for FA and CS (FA and CS 
are correlated traits)

CSUS.WC 46,408 2020:4429

FAAU.WC 70,464 2020:325

2019:3678

CSAU.WC 70,909 2020:339

2019:3675

MC-TT Multi-country two-trait model FAUS.MC 44,421 20203:4142

Two-country and two traits (FA and CS from US and AU are correlated) model CSUS.MC 46,408 2020:4429

FAAU.MC 70,464 2020:325

2019:3678

CSAU.MC 70,909 2020:339

2019:3675

JC-TT Joint countries two-trait model FAJC 114,885 2020:4467

Single-trait analysis in which the phenotypic records for each trait (FA and CS) 
from both countries were combined as if the US and AU were the same population (FA 
and CS are correlated)

2019:3678

CSJC 117,317 2020:4768

2019:3675

AC Across-country two-trait model FAAC-EsetUS.TargetAU 44,421 2020:325

Across-country analysis for FA and CS (FA and CS are correlated traits). In this case, two 
scenarios:

2019:3678

(1) Genomic model predicting AU and Canadian Angus (CA) (AU and CA are the predic-
tion target—Target) based on genomic and phenotypic information from US animals (US 
is the Training estimation set—Eset)

FAAC-EsetUS.TargetCA 44,421 700

(2) Genomic model predicting US and CA (US and CA are the Target) based on a genomic 
and phenotypic information from AU animals (AU is the Eset)

FAAC-EsetAU.TargetUS 70,464 2020:4142

FAAC-EsetAU.TargetCA 70,464 700

CSAC-EsetUS.TargetAU 46,408 2020:339

2019:3675

CSAC-EsetUS.TargetCA 46,408 700

CSAC-EsetAU.TargetUS 70,909 2020:4429

CSAC-EsetAU.TargetCA 70,909 700
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countries and considering them as potentially correlated 
traits (covariance structure among traits); (3) joint-coun-
try genomic evaluations (JC), based on single-trait (JC-
ST) or two-trait (JC-TT) models, in which the analyses 
are done combining the phenotypic records from both 
countries for each trait as if AU and US were a single 
Angus population; and, (4) across-country genomic eval-
uations (AC), based on two-trait (AC) models, in which 
the records from one country are considered in the train-
ing population to predict the GEBV of animals from a 
different country.

For these analyses, the blup90iod2OMP1 package [36, 
37] was used to obtain the GEBV from the whole and 
partial datasets as described by Legarra and Reverter 
[38]. During the genomic prediction analyses using the 
blup90iod2OMP1 package, the following flags were 
used: (1) no direct inversion of the pedigree relationship 
matrix containing the genotyped animals (i.e., A22 ); (2) G 
(genomic relationship matrix) was blended with A22 as 
0.90G+ 0.10A22 before matrix inversion (i.e., alpha equal 
to 0.90 and beta equal to 0.10); (3) use of a sparse matrix 
package (YAMS) for approximation of the inversion of 
the left hand side of the mixed model equations; and (4) 
the threshold for inversion was the default value (10−11). 
The approximated theoretical (or individual) accuracies 
(by inversion of the coefficient matrix of the mixed model 
equations) were obtained from the accf90GS package [36, 
37], and the approximation was based on the diagonal 
elements in the left-hand-side of the mixed model equa-
tions after absorbing the non-genetic effects (methodol-
ogy described in detail by Misztal and Wiggans [40]).

In the AC scenario (AC), data from Canadian Angus 
(part of the AAA database) were included for valida-
tion purposes. The whole dataset analyses based on the 
Legarra and Reverter [38] approach was performed for 
the scenarios including phenotypic and genotypic infor-
mation from all three countries (full dataset; best approx-
imation of the true breeding values), followed by a partial 
analysis containing only the phenotypic records from the 
estimation set country (either US or AU).

Single‑step genome‑wide association studies
Single-step genome-wide association studies (ssGWAS) 
were performed based on multi-country single-trait 
models (MC-ST). First, pedigree-based genetic param-
eters were obtained for the MC-ST model, and then the 
GEBV were estimated using those parameters. Subse-
quently in the ssGWAS step, SNP effects and p-values 
were calculated using the postGSf90 package from the 
blupf90+ family of programs [30, 37, 41, 42]. All animals 
with phenotypic records were included in the analyses 
(see Table 1) and the pedigree traced back up to four gen-
erations from the animals with phenotypic information. 

A Bonferroni correction was used to account for mul-
tiple testing, in which two thresholds were defined to 
determine SNP significance, including 10−6 and 10−4 for 
strong and moderate associations, respectively.

A genomic window of 100 kb on both sides of the sig-
nificant SNPs was considered for identifying associated 
genes and performing functional analyses. Gene symbols 
were retrieved from Ensembl using the biomaRt R pack-
age [29, 43]. Functional annotation was performed in 
terms of gene ontology (GO) biological processes (GO_
BP; [44]) and metabolic pathways of the Kyoto encyclo-
pedia of genes and genomes (KEGG; [45]) available in 
the DAVID database (david.ncifcrf.gov/tools.jsp [46]; 
accessed 16 August 2022). Genome coordinates were 
based on the ARS-UCD1.2 bovine genome assembly [27, 
28].

Results
Population characterization, clustering, and admixture 
analyses
The LD decay for the US and AU Angus populations is 
shown in Fig.  3, and in general, it had a similar pattern 
in both populations. The average LD (±SD) at an aver-
age distance between adjacent SNPs of 65 kb in the SNP 
panel used was 0.23 (0.27) and 0.23 (0.26) for the US and 
AU Angus populations, respectively.

Figure  4 presents the consistency of gametic phase 
between both populations, which is a correlation metric 
accounting for the magnitude of the LD and the similarity 
of linkage phase between genomic markers across popu-
lations. Higher values indicate that the SNP effects are 
likely to be more similar across the populations. Based on 
the results obtained (Fig. 4), the US and AU Angus pop-
ulations seem to share similar gametic phase patterns. 
Even markers separated by 5  Mb have a consistency of 
gametic phase greater than 0.80. In general, the first 10 
PC were not sufficient to separate (if there was any strati-
fication) the US and AU populations (data not shown). 
The top 10 PC together explained a maximum of 6% of 
the total variation of G (see Additional file 1: Table S2).

Figure 5 shows the admixture analysis for the US and 
AU Angus cattle populations. Three common genetic 
groups were identified for both populations. For the US 
animals, one genetic group (green color; Fig.  5) largely 
contributed to the recent US population compared to a 
small contribution from the other two populations (red 
and yellow colors). Two genetic groups (green and red 
colors; Fig.  5) explained similar amount of variation of 
the AU recent population, and a small contribution com-
ing from the third genetic group (yellow color; Fig. 5). For 
completeness, Additional file 2: Fig. S3 presents the plots 
of admixture analyses considering two (K = 2) and six 
(K = 6) ancestral population clusters.
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Estimates of genetic parameters
Within‑country models
Table 3 presents the estimates of heritability, repeatabil-
ity, and genetic correlation between FA and CS using the 
WC-TT model. Moderate heritability and repeatability 
estimates were observed for both foot score traits ranging 
from 0.22 to 0.26 and from 0.30 to 0.35 (Table 3), respec-
tively. In each country, favorable, positive, and moderate 
genetic correlations were observed between FA and CS 
(i.e., 0.50 for US and 0.46 for AU; Table  3). The genetic 
parameters for FA and CS obtained with the WC-TT or 
WC-ST models were similar (Table 3 and see Additional 
file 1: Table S3).

Multi‑country models
The genetic parameters for the MC analyses are in Addi-
tional file  1:  Table  S4. The heritability estimates for FA 
and CS were similar to those reported in Table 3 (WC-TT 

Fig. 3  Linkage disequilibrium decay for the United States (US) and Australian (AU) Angus populations considering all genotyped animals available 
from both countries (~ 1.2 million genotyped animals)

Fig. 4  Consistency of gametic phase between US and AU Angus 
populations

Fig. 5  Admixture analysis for US and AU Angus populations (K = 3)

Table 3  Estimates of heritability  (h2) , repeatability  (rep) , and 
genetic correlation  (rg) between foot angle (FA) and claw set 
(CS) scores in the Australian (AU) and American (US) Angus 
populations based on within-country two-trait (WC-TT) models

a Values within parentheses represent the standard error estimates

Trait h2   rep   rg  

FAUS 0.22 (0.01)a 0.32 (0.01) 0.50 (0.04)

CSUS 0.21 (0.01) 0.30 (0.01)

FAAU 0.24 (0.01) 0.30 (0.01) 0.46 (0.03)

CSAU 0.26 (0.01) 0.35 (0.01)
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model). The genetic correlation between the US and AU 
traits was 0.61 (0.10) for FA and 0.76 (0.07) for CS (see 
Additional file 1: Table S4). Adding genomic information 
into the MC-ST model did result in a reduction in the 
heritability estimates for the US traits (from 0.22 to 0.18 
for FA and from 0.22 to 0.18 to CS) and for CS from AU 
(from 0.26 to 0.25; Additional file 1: Table S5). However, 
the genomic-based genetic correlations between the US 
and AU traits increased for both FA (0.76) and CS (0.78) 
(see Additional file 1: Table S5) compared to the MC-TT 
analyses (see Additional file 1: Table S4).

Joint countries models
The heritability estimates of FA and CS when considering 
the JC-ST model were 0.24 (0.01) and 0.25 (0.01), respec-
tively. The heritability estimates for the JC-TT analyses 
were 0.24 for both FA and CS and the genetic correla-
tion between both traits was 0.46 (see Additional file 1: 
Table  S6), which were similar to the estimates obtained 
using the WC (Table  3) and MC (see Additional file  1: 
Table  S4) models. Furthermore, similar heritability esti-
mates were obtained for FA and CS when both traits 
were analyzed separately (see Additional file 1: Table S4).

Genomic prediction of breeding values
For both FA and CS, joint US and AU genomic predic-
tions (either MC or JC analyses) yielded higher accura-
cies than WC (Figs. 6 and 7 for FA and CS, respectively, 
and Additional file 1: Tables S7–S10). The AC for Cana-
dian Angus is presented in Additional file 1: Tables S7–
S10. The US estimation set resulted in a higher prediction 
accuracy for Canadian Angus (FA: 0.80 and CS: 0.85) 
than the AU estimation set (FA: 0.77 and CS: 0.76), which 
was expected due to the greater connectedness between 
US and Canadian Angus populations. The MC-TT and 
JC-TT models resulted in similar accuracies for AU or US 
as validation sets (Additional file 1: Tables S9 and S10).

Similar patterns were observed when MC, JC, and WC 
were analyzed in the context of single-trait analyses (FA 
or CS, see Additional file  1: Tables S11 and S12). Fur-
thermore, on average, a joint US and AU analysis also 
resulted in greater individual GEBV accuracy (theoretical 
accuracy) compared to WC evaluations (see Additional 
file 1: Tables S13 and S14).

The Pearson and Spearman correlations of proven sires’ 
GEBV (sires with more than 50 progeny with records that 
were raised in either one of the countries or in both of 
them) were calculated, with high correlations (> 0.75) 
being observed across all scenarios (see Additional file 1: 
Tables S15 and S16). The Spearman correlations ranged 
from 0.94 to 0.99 between a model accounting for GxE 
(MC analyses) and a model considering both US and 
AU as a single population (JC analyses). These results 

indicate that there is lower re-ranking of top breeding 
animals when the data from both countries are combined 
either through MC or JC analyses.

Single‑step genome‑wide association studies
Figure 8 presents the Manhattan plots of FA and CS for 
both US and AU populations based on the MC-ST mod-
els. Therefore, SNP effects and p-values were obtained 
for each trait-population. Five and 12 SNPs were sig-
nificantly associated with FA in US and AU popula-
tions, respectively (see Additional file 1: Table S17). For 
both the US and AU populations, the SNPs were located 
on Bos taurus (BTA) chromosomes BTA1, 5, 13, and 20 
(see Additional file  1: Table  S17). Sixteen and 35 genes 
were annotated within the regions spanning 100 kb up- 
and downstream of the position of the significant SNPs 
(Table  4 and Additional file  1: Table  S17). Among the 
genes annotated for FA for the US and AU populations, 
none were enriched in GO terms and pathways. The GO 
biological terms and pathways in which those genes are 
involved are listed in Additional file 1: Table S18.

Six and nine SNPs were significantly associated with 
CS in the US and AU populations (see Additional file 1: 
Table S19), respectively. The SNPs were located on BTA1, 
5, 19, and 23 for both the US and AU populations, and 

Fig. 6  Foot score: predictive ability of a two-trait model of foot angle 
(FA) and claw set (CS) considering the target population as the US (a, 
c, and e) and AU (b, d, and f) Angus cattle populations.  “US target” 
represents American Angus target animals (born in 2020), and “AU 
target” are Australian Angus target animals born in 2019 and 2020. 
WC-US within country two-trait model using US phenotypic 
data, AC-AU across country two-trait model using AU to predict 
US, MC multi-country two-trait model, JC joint-country two-trait, 
WC-AU within country two-trait model using AU phenotypic data, 
AC-US across country two-trait model using US to predict AU
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for the AU populations SNPs on BTA11 were also found 
(Fig. 8 and see Additional file 1: Table S19). There were 
seven and 14 genes annotated for those SNPs ( ± 100 kb) 
for the US and AU populations (Table  5), respectively. 
None of the genes annotated for CS were enriched in GO 

terms and pathways (see Additional file  1: Table  S20). 
The Q–Q plots for the p-values of SNPs are in Additional 
file 2: Fig. S4.

Discussion
Population structure
The success of an across-population (e.g., across-country, 
across-breed) genomic prediction depends on the levels 
of LD and genetic links between the populations [47]. 
The US and AU Angus populations are closely genetically 
related based on all the genetic analyses performed. For 
instance, the first 10 PC together explained less than 6% 
of the total variation and were not able to separate the 
US and AU populations into different clusters. Further-
more, 41% (50,205 animals) and 25% (30,220 animals) 
of the animals in the US and AU pedigree, respectively, 
had common sires. In addition, 27% of the US and 13% 
of the AU animals in the phenotypic dataset were sired 
from common sires across countries. Moreover, the US 
and AU Angus populations seem to have similar patterns 
of gametic phase and common ADMIXTURE genetic 
groups (Figs. 4 and 5).

The first record of the Angus breed in Australia was in 
1824, when animals were directly imported from Scot-
land (www.​angus​austr​alia.​com.​au/​about/​our-​cattle/​
histo​ry-​of-​angus/; accessed 7 August 2022). Similarly, 
the first Angus animals were brought to the US in 1873, 
also directly from Scotland (www.​angus.​org/​pub/​anghi​
st; accessed 7 August 2022). In Fig.  5, both the US and 
AU populations have up to three clustered genetic groups 
(also known as ancestral populations), in which two were 
predominant (in red and green). The differences in pro-
portion of genetic grouping from ADMIXTURE between 
the US and AU populations could be explained by 

Fig. 7  Claw set: predictive ability of a two-trait model of foot angle 
(FA) and claw set (CS) considering the target population as the US (a, 
c, and e), and as AU (b, d, and f) Angus cattle populations.  “US target” 
represents American Angus target animals (born in 2020), and “AU 
target” are Australian Angus target animals born in 2019 and 2020. 
WC-US within country two-trait model using US phenotypic 
data, AC-AU across country two-trait model using AU to predict 
US, MC multi-country two-trait model, JC joint-country two-trait, 
WC-AU within country two-trait model using AU phenotypic data, 
AC-US across country two-trait model using US to predict AU

Fig. 8  Manhattan plot for foot angle and claw set considering a two-trait model for US and AU Angus cattle populations

http://www.angusaustralia.com.au/about/our-cattle/history-of-angus/
http://www.angusaustralia.com.au/about/our-cattle/history-of-angus/
http://www.angus.org/pub/anghist
http://www.angus.org/pub/anghist


Page 12 of 19Alvarenga et al. Genetics Selection Evolution           (2023) 55:76 

geographical and time differences of selection from the 
breeds, since there is a gap of 49 years between the breed 
introduction in the US and AU. Furthermore, the ori-
gin of the first animals introduced in the country could 
also be different, with slightly different genetic selection 
histories. The US Angus shared similar family structure 
patterns with the AU Angus (i.e., animals on the right 
side vertical black line, Fig.  5) because similar genetic 
groups (represented by the colors) are observed in both 
countries.

Consistency of gametic phase measures the magnitude 
and the direction of the potential association between an 
SNP and a quantitative trait locus and is similar across 
populations. The consistency of gametic phase estimated 

between the US and AU populations was high (Fig.  4), 
indicating a potential benefit of performing joint genomic 
evaluations [48, 49].

Genetic parameters
Heritability estimates for FA and CS across all models 
were similar and ranged from 0.21 to 0.27, regardless 
of the model and scenario used (Table 3 and Additional 
file  1: Tables S3–S6). In general, FA and CS for the AU 
population always presented slightly higher heritabil-
ity estimates compared to the US population estimates. 
Furthermore, the majority of the scores from AU come 
from independent technicians (97% of records) rather 
than directly recorded by farmers as in the US, which as 

Table 4  Candidate genes identified for foot angle in the American and Australian Angus populations based on a multi-country single-
trait (MC-ST) model

BTA: Bos taurus chromosome
a These genomic positions are based on the ARS-UCD1.2 bovine genome assembly

Chromosome Gene symbol Gene start:end position (bp)a Population

BTA1 ATP13A5 74,043,235:74,159,562 AU

HRASLS 74,163,666:74,183,456 AU

ENSBTAG00000055130 74,829,775:74,829,854 US and AU

FGF12 74,876,548:75,283,017 US and AU

BTA13 NCOA6 64,051,984:64,148,363 AU

GGT7 64,158,906:64,183,221 AU

ACSS2 64,186,743:64,233,568 AU

GSS 64,234,188:64,259,465 AU

MYH7B 64,280,737:64,309,631 AU

bta-mir-499 64,292,583:64,292,680 AU

TRPC4AP 64,304,949:64,374,165 AU

EDEM2 64,392,791:64,420,836 AU

PROCR 64,444,427:64,449,124 AU

MMP24 64,512,071:64,543,097 AU

EIF6 64,544,773:64,553,147 AU

FAM83C 64,554,623:64,561,144 AU

UQCC1 64,573,005:64,669,659 AU

GDF5 64,681,475:64,685,560 US and AU

CEP250 64,699,831:64,746,870 US and AU

C13H20orf173 64,765,618:64,768,195 US and AU

ERGIC3 64,776,869:64,791,647 US and AU

SPAG4 64,841,049:64,845,754 US and AU

CPNE1 64,848,971:64,884,882 US and AU

RBM12 64,873,751:64,884,908 US and AU

NFS1 64,887,674:64,904,921 AU

ROMO1 64,904,969:64,906,500 AU

RBM39 64,908,243:64,934,850 AU

BTA20 ERGIC1 4,596,395:4,709,455 US and AU

RPL26L1 4,716,985:4,723,653 US and AU

ATP6V0E1 4,732,524:4,762,537 US and AU

CREBRF 4,776,513:4,831,767 US and AU
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consequence, could have reduced the scoring bias and 
increased the variability of the scores. In spite of the 
small differences in dataset truncation and models, simi-
lar heritability estimates were observed for foot scores in 
our study and previously published studies in beef cattle 
(e.g., heritability estimates for FA range from 0.19 to 0.34, 
and for CS from 0.09 to 0.33 [2, 24–26]).

Wang et  al. [25] used a subset (scores collected up to 
2016) of the US dataset that was used in this study and 
they also truncated their data for single records collected 
on animals ranging in age from 320 to 460 days [25]. They 
reported heritability estimates of 0.37 for FA and 0.25 for 
CS in the US population [25]. Jeyaryban et al. [24] ana-
lyzed a subset (records up to 2008) of the AU dataset that 
was used in this study, but only included single records 
on animals younger than 750 days. The authors reported 
heritability estimates ranging from 0.29 to 0.32 for FA and 
from 0.29 to 0.33 for CS [24]. Jeyaryban et al. [24] consid-
ered the front and rear leg measurements of foot scores 
as different traits, and the genetic correlation between 
them was positive, favorable, and of moderate-to-high 
magnitude (0.87 for FA and 0.69 for CS in the AU popu-
lation [18]). Considering that foot scores recorded on the 
front and rear legs are moderately to highly genetically 
correlated, both traits (front and rear foot scores) could 
be analyzed together, and one record (either front or rear 
leg) would be enough to capture the genetic variation and 
to select for improvements in foot score. Similar genetic 
correlations between front and rear leg foot scores were 
observed in North American Red Angus (0.88 for FA and 
0.75 for CS; [2]). To optimize the data collection of foot 

scores, and as a consequence of the high genetic correla-
tion between the front and rear leg foot scores, the AAA 
opted for using one record (front or rear leg) from each 
animal instead of two records [6, 7].

Foot scores (i.e., FAUS and CSUS or FAAU and CSAU) are 
positive, favorable, and moderately-to-highly genetically 
correlated (from 0.46 to 0.50, Table 3). The genetic cor-
relations between FA and CS reported in previous studies 
are of moderate-to-high magnitude and always favorable: 
ranging from 0.22 to 0.79 [2, 24–26]. As a consequence 
of the favorable genetic correlation within each country 
between FA and CS, a two-trait model could be beneficial 
for a possible increase in individual accuracy.

The fact that the genetic correlation for foot scores 
between US and AU differs from 1 could be due to poten-
tial GxE, differential data collection protocols, or to arti-
facts of the data. A possible justification for the artifacts 
of the data are the differences in scoring and magnitude 
of genetic linkage between the two countries based on 
pedigree. Moreover, there are historical differences in 
the generation of foot score data for genetic evaluation 
purposes in both populations. The AU Angus farmers 
started to select for foot score based on official genetic 
evaluations earlier than the US Angus farmers, which 
may have resulted in differences in genetic trends. How-
ever, the genetic trends for sires that are grouped based 
on birth year were similar for CS and FA between both 
countries (see Additional file 2: Figs. S5 and S6).

There are key differences in the scoring systems across 
countries, as indicated in “Methods” section. First, the 
AU system has two measurements of foot score, on the 

Table 5  Annotated candidate genes for claw set in the American (US) and Australian (AU) Angus populations based on a multi-
country single-trait (MC-ST) model

BTA: Bos taurus chromosome
a These genomic positions are based on the ARS-UCD1.2 bovine genome assembly

Chromosome Gene symbol Start:end position (bp)a Population

BTA1 ATP13A5 74,043,235:74,159,562 US and AU

HRASLS 74,163,666:74,183,456 US and AU

MB21D2 74,489,024:74,609,955 US and AU

ENSBTAG00000053503 74,675,757:74,698,158 US and AU

ENSBTAG00000055130 74,829,775:74,829,854 US and AU

FGF12 74,876,548:75,283,017 US and AU

BTA5 KITLG 18,250,809:18,353,485 AU

BTA11 ASS1 100,770,166:100,822,252 AU

FUBP3 100,882,266:100,931,850 AU

U6 100,937,424:100,937,524 AU

PRDM12 100,951,292:100,966,190 AU

EXOSC2 100,975,458:100,985,125 AU

ABL1 100,988,747:101,131,037 AU

BTA23 SUPT3H 18,239,634:18,641,106 US and AU
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front and rear legs, while in the US foot score is assessed 
on the worst feet. However, in our analyses, an additional 
filtering was performed for the AU data, which provided 
information for the foot score on the worst feet, thus 
mimicking the US dataset. Second, the majority of the 
foot scores for the AU population are collected by trained 
and independent technicians, while in the US, farmers 
record foot score themselves. Only 3% of all AU records 
were collected by farmers (2047 records). High genetic 
correlations were observed between data collected by 
farmers and technicians for FAAU (0.91) and CSAU (0.85; 
see Additional file  1: Table  S21). Van Vleck and Cun-
diff [50] who evaluated the genetic relationship between 
traits measured in males and females, concluded that a 
genetic correlation higher than 0.85 would be sufficient 
to assume a non-significant interaction between the two 
subsets of data. Furthermore, the trait distribution for 
the AU population is right-skewed compared to the US 
population. Thus, we performed an additional analysis of 
the genetic parameters by transforming the phenotypes 
to a Z-score within country. However, the genetic param-
eters obtained were the same as when using the data on 
the original scale.

The distribution of age differences of the animals scored 
(see Additional file 2: Fig. S1) could be another source of 
noise in the genetic correlation between the US and AU 
traits. Older animals are more likely to express extreme 
foot scores than younger animals. Therefore, a larger var-
iation of the phenotypes was observed in the AU dataset. 
For instance, age does not have a significant impact on 
foot score for the AU population [best linear unbiased 
estimate (BLUE) for the covariable age equal to 0.000 for 
both FA and CS], while it has a considerable impact on 
that for the US population (coefficient equal to 0.001 and 
0.002 for FA and CS, respectively). These findings high-
light the importance of accounting for the distribution of 
age differences between the US and AU populations, e.g. 
including age nested within country when a single popu-
lation is considered.

Genetic parameters were estimated using the pedigree-
based relationship matrix. As aforementioned, 25 to 41% 
of the animals in the pedigree overlapped between the US 
and AU Angus populations. Based on pedigree, expected 
relationships can be calculated, which ignore Mendelian 
sampling—another source of genetic variation [51, 52]. 
In fact, full siblings have a theoretical relatedness equal 
to 0.50, while their genomic relationship can range from 
~ 0.35 to ~ 0.65 for example [52]. To estimate the genetic 
parameters including genomic information, we randomly 
sampled 12,500 genotyped animals with phenotypic 
information from each country (similar to the ssGWAS). 
The genomic-relationship matrix from 25,000 genotyped 
animals was blended with the pedigree-based matrix to 

create the H matrix. The genetic parameters based on 
genomic information are presented in Additional file  1: 
Table S5, and were found to be within the same range as 
those based on the pedigree-based relationship matrix 
(see Additional file 1: Table S4).

Finally, deviations from 1 for the genetic correlation 
between two distinct environments can be explained by 
GxE. Some differences between the US and AU popu-
lations could be due to the magnitude of temperature, 
humidity, altitude, and management conditions (e.g., pas-
tures versus feedlot). However, those differences could 
also be observed within each country. In a study con-
ducted using the AU Angus dataset, depending on the 
trait being evaluated, reranking of sires was observed 
across states, such as, between Victoria and Queensland 
[13]. A genetic correlation equal to 0.65 was reported 
for intramuscular fat, a carcass ultrasound scan trait, 
between Angus bulls raised in Victoria and Queensland 
[13], which the authors explained as resulting from a pos-
sible age difference at measurement [13]. Similarly, GxE 
have been reported within the US for some beef cattle 
breeds. In US Angus cattle, a genetic correlation of 0.74 
was observed when contrasting cattle raised in high and 
low altitudes [8]. Furthermore, other studies in Hereford 
[10] and Angus [12] cattle reported genetic correlations 
as low as 0.50 between environments within a coun-
try, although the authors concluded that in a traditional 
national evaluation, the rankings of the sires are, overall, 
likely acceptable given the challenges of providing mul-
tiple breeding values for multiple environments. There-
fore, the magnitudes of the GxE across-country estimates 
found in this study are similar to those observed within 
country in other studies [10, 12].

Genomic prediction of breeding values
The ultimate goal of this study was to identify the optimal 
statistical model to perform a multi-country genomic 
evaluation for foot score traits. A joint genomic evalua-
tion across countries has many benefits, such as increas-
ing the size of the genomic reference population, and 
making the published breeding values directly compa-
rable across the countries involved, which facilitates 
the exchange of genetic material. Scenarios mimicking 
a within-country genomic evaluation were considered 
as a control and baseline comparison (i.e., WC-ST or 
WC-TT). Furthermore, two scenarios for a joint genomic 
prediction were tested including US and AU as two dif-
ferent populations (i.e., accounting for GxE; MC-ST 
or MC-TT) and US and AU as a single population (JC-
ST or JC-TT). The last scenario could be more optimal 
because a single-scale breeding value would be available 
for both countries, more computationally feasible, and an 
additional encouragement to the standardization of the 
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scoring protocols across countries. In national genomic 
evaluations for foot scores, FA and CS are currently fitted 
in two-trait models. If each country needs to be treated 
as a different population, a four-trait model (two coun-
tries and two traits considering their potential correla-
tion—MC analyses) would be required.

In summary, FA and CS benefited from a joint genomic 
evaluation. Including information from another country 
improved the accuracy of genomic breeding values from 
0.34 (WC-US evaluation) to 0.58 (MC or JC) and from 
0.35 (WC-AU evaluation) to 0.56 (MC or JC) for FA and 
0.44 (US) to 0.56 (MC) and from 0.48 (AU) to 0.58 (MC; 
Figs.  6 and 7) for CS. Furthermore, the joint genomic 
evaluation scenarios, multiple-country (MC) or joint-
country (JC) analyses, provided breeding values with 
lower level and dispersion bias.

For FA, the joint genomic evaluation considering either 
US and AU as two distinct populations (MC) or as a sin-
gle population (JC) provided lowly biased results, less 
over/underestimated GEBV, and more accurate estimates 
(Fig. 6) for both US and AU target animals compared to a 
WC evaluation. For CS, the JC analyses provided higher 
accuracies than the MC scenario. Considering CS in the 
AU target population, the MC model provided numeri-
cally better bias and dispersion outcomes (Fig. 7b and d). 
Factors influencing the predictivity ability of a genomic 
model include the heritability of the trait [47, 53], pop-
ulation parameters [47], the size of the reference popu-
lation [47, 54, 55], and the link between reference and 
target population [56, 57].

As predicted by formulas, traits with a lower herit-
ability require larger reference populations to estimate 
the accuracy as a function of the previously mentioned 
factors (e.g., formulae implemented in [58]). The accu-
racy relies heavily on the size of the reference population. 
Foot scores are in the low-to-moderate range of herit-
ability estimates, therefore, the greater gain in accuracy 
in a joint genomic evaluation can be justified due to the 
two-fold increase in the reference population size. Fur-
thermore, the impact of adding information from other 
countries depends on the magnitude of the correlation 
between countries: the higher is the correlation between 
countries, the greater would be the contribution in the 
genomic predictions [59]. US and AU are highly linked at 
the pedigree and genomic level (Figs. 3, 4 and 5), and the 
genetic correlations between the populations were mod-
erate-to-high (0.61 for FA and 0.74 for CS).

Hayes et  al. [14] reviewed many GxE studies in live-
stock and reported that there was a consensus that a 
genetic correlation lower than 0.80 between environ-
ments results in considerable re-ranking, and therefore, 
that modelling GxE was recommended [14]. However, 
the implementation of GxE models using a large national 

and international dataset can be time-consuming and 
computationally-intensive, and the availability of mul-
tiple environment-dependent (e.g., country-dependent) 
breeding values can create an additional challenge for 
breeders when selecting breeding bulls. With that said 
and considering the similar performance of both mod-
elling or not GxE, a joint genomic evaluation for foot 
scores disregarding GxE could be a practical option (i.e., 
JC-ST or JC-TT analyses). Furthermore, having a single 
(G)EBV estimate per animal from both countries would 
be more practical and likely facilitates the exchange 
of genetic material across countries. Consequently, 
increased genetic gain within country and greater genetic 
diversity would be expected. As the size of the datasets 
for FA and CS in both countries increases, these analyses 
should be revisited. For instance, there might be greater 
benefits in fitting MC models.

In general, within-country genomic evaluation when 
analyzing both FA and CS together outperformed the 
predictability of a model fitting FA and CS, separately 
(Figs. 6 and 7), as expected due to the moderate-to-high 
genetic correlation between both traits. For FA, there was 
a gain in accuracy from 0.34 (single FA model) to 0.55 
(two-trait model for FA and CS) for US and from 0.35 
(single FA model) to 0.49 (two-trait model for FA and CS) 
for AU. However, when the US and AU populations were 
analyzed jointly (either MC or JC analyses), a small or no 
gain was observed compared to an independent analysis 
for foot score traits or when exploring the genetic cor-
relation between FA and CS in a multiple-trait genomic 
evaluation. The latest can be explained by the sample size: 
the within-country dataset is limited for FA and CS, how-
ever, given the common structure of the US and AU pop-
ulations, when the datasets are combined, the sample size 
adds up and increases the power of prediction. In other 
words, if the US and AU datasets are analyzed together, 
the two trait-model for FA and CS does not result in as 
much additional predictive power as when each dataset 
is analyzed individually. Similarly to a single-trait model 
for either FA or CS, JC (FAUS = 0.58, FAAU = 0.55, CSUS 
= 0.59, and CSAU = 0.61) resulted in similar results com-
pared to the analyses taking GxE into account (MC; FAUS 
= 0.58, FAAU = 0.57, CSUS = 0.62, CSAU =0 0.61), thus 
holding the same conclusions as those presented for an 
independent trait analysis for foot score.

Finally, we also performed an across-country genomic 
evaluation (Figs. 6 and 7). As expected, due to the simi-
lar population structure and the shared history between 
US and AU, considerable predictability was observed 
when using data from one country to predict the breed-
ing values of animals from another country, even given 
the GxE, and the differences in recording and produc-
tion system. For instance, for FA, AU alone predicted US 
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animals (across-country evaluation) with an accuracy of 
0.44 compared to an accuracy of 0.55 obtained by the US 
predicting its own animals (within-country evaluation) 
while, US alone predicted AU animals with an accuracy 
of 0.46 compared to an accuracy of 0.49 obtained by 
AU predicting its own animals. In summary, the ability 
of using data from one country to predict relatively well 
the breeding values of animals from another country sup-
ports the moderate-to-high genetic correlations between 
US and AU and the common population structure. How-
ever, a combined analysis of both countries provides 
more accurate results. As previously indicated, these 
analyses should be revisited as the datasets from both 
countries become larger.

Single‑step genome‑wide association analyses
Few SNPs were significantly associated with foot scores, 
and they overlapped between the US and AU popula-
tions. In general, more significant regions were identi-
fied for the AU population, which may be justified by a 
slightly larger reference population (see Additional file 1: 
Tables 17 and 19). However, all additional SNPs that were 
significantly associated with foot scores in the AU popu-
lation but not significantly associated with foot scores in 
the US population had a relevant effect on the US foot 
score traits (Fig.  8). In other words, even though those 
SNPs did not achieve the “arbitrary boundary” of signifi-
cance in the US population, the region had a significant 
impact on the trait because at least one marker within 
the region was significant and the remaining ones almost 
reached the significance threshold (Fig. 8).

Relevant candidate genes that could be involved in the 
biological mechanisms underlying FA and CS were found 
on BTA1 (Fig.  8). Four and six genes are located in the 
region of significant SNPs for FA and CS, respectively 
(Tables  4 and 5). Four common genes were identified 
for both FA and CS, including FGF12 (fibroblast growth 
factor 12), ATP13A5 (ATPase 13A5), HRASLS (HRAS 
like suppressor), and ENSBTAG00000055130. The fibro-
blast growth factor gene family is known to be linked to 
the biological regulation of, for example, articular car-
tilage [60, 61], and FGF-18 is an anabolic growth factor 
involved in articular cartilage repair [62].

In dairy cattle, BTA1 has been highlighted to harbor 
regions that are significantly associated with other hoof 
disorders [1, 63]. Suchocki et al. [1] analyzed three sub-
jective pathological measurements of hoof disorders in 
two Austrian dairy cattle breeds and detected genomic 
regions on five chromosomes that have a role in hoof dis-
orders, including BTA1 and BTA13 (e.g., C13H20orf194 
gene on BTA13 [1]). In our study, we also found BTA13 

to be an important region for FA, in which a gene from 
a similar family was identified: C13H20orf173 (Table 4).

On BTA13, the GDF5 gene (growth differentiation fac-
tor 5) was identified as a candidate for both FATT.US and 
FATT.AU. GDF5 is also known as cartilage-derived mor-
phogenetic protein-1, and studies in mice and humans 
have highlighted its importance for skeletal develop-
ment and repair [64–66]. Knockout experiments have 
shown that GDF5-deficient mice have a decreased bone 
mineral content and an abnormal bone structure (Inter-
national Mouse Phenotyping Consortium, www.​mouse​
pheno​type.​org; accessed 18 August 2022). Therefore, the 
regions identified in our study are relevant candidates 
to better understand the mechanisms underlying foot 
scores in both the US and AU Angus populations.

Conclusions
American (US) and Australian (AU) Angus cattle popu-
lations have similar genetic backgrounds and popula-
tion structures. A joint genomic evaluation across both 
countries provided better predictivity ability compared 
to within-country evaluations. Although a genotype-by-
environment interaction (GxE) was observed based on 
the genetic correlations between the US and AU foot 
scores, a single-trait model considering the US and AU 
populations as a single-population provided similar pre-
dictivity ability in comparison to modeling GxE. Con-
sidering these two populations as a single population for 
genomic evaluation provides advantages, such as easier 
implementation and a potential encouragement for the 
adoption of consistent measurement protocols across 
countries. Analyzing foot angle and claw set, separately 
or jointly (two-trait model), in a within-country evalu-
ation had a significant impact on the performance of 
the genomic predictions. However, when both the US 
and AU datasets are analyzed together, no clear benefit 
was observed for the analysis of foot angle and claw set, 
separately or jointly. An across-country evaluation also 
indicated that the reference populations from one coun-
try can be used to predict breeding values in the other 
population but combining the data from both countries 
resulted in more accurate GEBV. Finally, foot scores have 
a polygenic genetic architecture and several important 
candidate genes were identified in this study. For both 
foot angle and claw set, BTA1 showed shared genomic 
regions, including a gene from the fibroblast growth fac-
tor gene family, which has been widely reported to affect 
cartilage repair. Another growth factor gene was identi-
fied on BTA13 (i.e., GDF5), which has been validated, in 
animal models, as having a role in skeletal development.

http://www.mousephenotype.org
http://www.mousephenotype.org
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Additional file 1: Table S1. Descriptive analyses of the raw dataset of 
foot scores for American (US) and Australian (AU) Angus populations. 
The dataset provided presents the number of records, frequency of foot 
angle and claw set scores, number of animals, number of herds, number 
of contemporary groups, and date of birth of the animals. Table S2. 
Variance explained by the first ten principal components using different 
datasets to create the genomic relationship matrix. Variance explained 
by the 10 principal components using the four data subsets. Table S3. 
Estimates of the heritability for foot angle (FA) and claw set (CS) using the 
American (AU) and Australian (AU) Angus datasets analyzed with a single-
trait model within each country dataset. Table S4. Genetic parameters 
(heritability, repeatability, and genetic correlation) for foot angle (FA) and 
claw set (CS) based on multi-country two-trait models (MC-TT) between 
the American (AU) and Australian (AU) Angus populations. Table S5. 
Genetic parameters (heritability, repeatability, and genetic correlation) 
for foot angle (FA) or claw set (CS) using genomic information based 
on a multi-country single-trait model (MC-ST) between American (US) 
and Australian (AU) Angus populations. Table S6. Genetic parameters 
for foot angle (FA) and claw set (CS) based on joint-country two-trait 
model (JC-TT). Table S7. Accuracy, bias, and dispersion of the genomic 
prediction: within-country two-trait (WC) and across-country two-trait 
(AC) model using Australian Angus (AU) as the estimation set. Predic-
tive ability from a forward validation using the linear regression method, 
including bias, dispersion, and accuracy for a forward validation in the AU 
animals (2019–2020) and across-country evaluation.Table S8. Accuracy, 
bias, and dispersion of the genomic prediction: within-country two-trait 
(JC) and across-country two-trait (AC) model using American Angus (US) 
as the estimation set. Predictive ability from a forward validation using 
the linear regression method, including bias, dispersion, and accuracy for 
a forward validation in the US animals (2020) and across-country evalua-
tion. Table S9. Accuracy, bias, and dispersion of the genomic prediction 
based on multi-country two-trait models (MC-TT). Predictive ability from 
a forward validation using the linear regression method, including bias, 
dispersion, and accuracy for a forward validation. Table S10. Accuracy, 
bias, and dispersion of the genomic prediction based on joint-country 
two-trait models (JC-TT). Predictive ability from a forward validation using 
the linear regression method, including bias, dispersion, and accuracy 
for a forward validation. Table S11. Accuracy, bias, and dispersion of the 
single-trait (ST) genomic prediction scenarios within-country (WC-ST), 
multi-country (MC-ST), and joint countries (JC-ST). Predictive ability from a 
forward validation using the linear regression method, including bias, dis-
persion, and accuracy in scenarios using genomic (ssGBLUP) or not (BLUP). 
Table S12. Predictive ability for all genomic prediction scenarios for the 
Australian Angus target population (AU) presented by validation year: 
for single-trait within-country (WC-ST), multi-country (MC-ST), and joint-
country (JC-ST) models. Predictive ability from a forward validation using 
the linear regression method, including bias, dispersion, and accuracy in 
scenarios using genomic (ssGBLUP). Results are presented for each birth 
year validation group in the AU population. Table S13. Average individual 
accuracy for the genomic prediction scenarios for foot angle based on 
single-trait models (-ST). Table S14. Average individual accuracy for the 
genomic prediction scenarios for claw set based on single-trait models 
(-ST). Table S15. Pearson and Spearman correlations of genomic esti-
mated breeding values (GEBV) of proven sires (with more than 50 progeny 
with phenotypic records and raised in either one of the countries) across 
scenarios for foot angle based on single-trait within-country (WC-ST), 
multi-country (MC-ST), and joint countries (JC-ST) models. Table S16. 
Pearson and Spearman correlations of genomic estimated breeding val-
ues (GEBV) of proven sires (with more than 50 progeny with phenotypic 
records and raised in either one of the countries) across scenarios for claw 
set based on single-trait within-country (WC-ST), multi-country (MC-ST), 
and joint countries (JC-ST) models. Table S17. Significant SNPs associated 
with foot angle, and the genes located within a 100-kb genomic region 
down- and up-stream based on multi-country single-trait models (MC-
ST). The list of genes name, gene Ensembl identification, gene position, 

the identification of the significant SNP, the population in which the SNPs 
were identified (US or AU), and the log (p-value). Table S18. Gene ontol-
ogy terms and pathways in which the annotated genes for foot angle are 
involved based on multi-country single-trait models (MC-ST). Table S19. 
Significant SNPs associated with claw set, and the genes located within 
a 100-kb genomic region down- and up-stream based on multi-country 
single-trait models (MC-ST). The list of genes name, gene Ensembl identifi-
cation, gene position, the identification of the significant SNP, the popula-
tion in which the SNP were identified (US or AU), and the log (p-value). 
Table S20. Gene ontology terms and pathways in which the annotated 
genes for claw set are involved based on a multi-country single-trait 
model (MC-ST). Table S21. Genetic parameters (heritability, repeatability, 
and genetic correlations) between dataset collected by technicians and 
farmers in the Australian Angus dataset: two-recorder-trait considering the 
covariance between FA and CS equal to zero (-ST). 

Additional file 2: Figure S1. Age distribution of the US (green) and AU 
(red) Angus populations. Each dot represents an animal. Figure S2. Cross-
validation error for different K values in the admixture analyses. Figure S3. 
Admixture analysis for the US and AU populations (K = 2 and K = 6). Figure 
S4. QQ-plot of p-values for the genome-wide association for foot angle 
and claw set. Four sets of plots. A. Foot angle for American (US) Angus 
population; B. Foot angle for Australian (AU) Angus population; C. Claw set 
for American (US) Angus population; D. Claw set for Australian (AU) Angus 
population. Lambda is an inflation metric; lambda statistic should be close 
to 1 if the SNPs fall within the expected range of significance or greater 
than one if the observed p-values are more significant than expected. 
Figure S5. Genetic trends of foot angle and claw set for US and AU as an 
independent country. The results come from a single-trait single-country 
analysis. Furthermore, in this plot only sires were used (males with at least 
one progeny), and years with at least 100 individuals. Figure S6. Genetic 
trend of foot angle (FA) and claw set (CS) for the US and AU, separately. 
The results come from a single-trait single-country analysis, in which 
51,146 genotyped animals were used for the US and 27,041 for the AU 
dataset (only genotyped animals with a direct impact on the solution of 
mixed model equations: phenotyped-genotyped animals and genotyped 
animals in the pedigree tracing back four generations). Furthermore, in 
this plot only sires were used (males with at least one progeny), and years 
with at least 100 individuals.
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