
Maugan et al. Genetics Selection Evolution           (2023) 55:75  
https://doi.org/10.1186/s12711-023-00839-6

RESEARCH ARTICLE Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Genetics Selection Evolution

Combined single‑step evaluation 
of functional longevity of dairy cows 
including correlated traits
Laure‑Hélène Maugan1*   , Roberta Rostellato2, Thierry Tribout1, Sophie Mattalia3,1 and Vincent Ducrocq1 

Abstract 

Background  For years, multiple trait genetic evaluations have been used to increase the accuracy of estimated 
breeding values (EBV) using information from correlated traits. In France, accurate approximations of multiple trait 
evaluations were implemented for traits that are described by different models by combining the results of univari‑
ate best linear unbiased prediction (BLUP) evaluations. Functional longevity (FL) is the trait that has most benefited 
from this approach. Currently, with many single-step (SS) evaluations, only univariate FL evaluations can be run. The 
aim of this study was to implement a “combined” SS (CSS) evaluation that extends the “combined” BLUP evaluation 
to obtain more accurate genomic (G) EBV for FL when information from five correlated traits (somatic cell score, clini‑
cal mastitis, conception rate for heifers and cows, and udder depth) is added.

Results  GEBV obtained from univariate SS (USS) evaluations and from a CSS evaluation were compared. The correla‑
tions between these GEBV showed the benefits of including information from correlated traits. Indeed, a CSS evalu‑
ation run without any performances on FL showed that the indirect information from correlated traits to evaluate 
FL was substantial. USS and CSS evaluations that mimic SS evaluations with data available in 2016 were compared. 
For each evaluation separately, the GEBV were sorted and then split into 10 consecutive groups (deciles). Survival 
curves were calculated for each group, based on the observed productive life of these cows as known in 2021. 
Regardless of their genotyping status, the worst group of heifers based on their GEBV in 2016 was well identified 
in the CSS evaluation and they had a substantially shorter herd life, while those in the best heifer group had a longer 
herd life. The gaps between groups were more important for the genotyped than the ungenotyped heifers, which 
indicates better prediction of future survival.

Conclusions  A CSS evaluation is an efficient tool to improve FL. It allows a proper combination of information 
on functional traits that influence culling. In contrast, because of the strong selection intensity on young bulls 
for functional traits, the benefit of such a “combined” evaluation of functional traits is more modest for these males.

Background
Genetic evaluations using pedigree and phenotypic infor-
mation have been used for decades to estimate the breed-
ing values of animals. However, low-heritability traits are 
difficult to evaluate accurately. Moreover, in some cases, 
phenotypes that are recorded late in life delay the time 
when the estimated breeding values (EBV) are accu-
rate enough. One way to increase the accuracy of EBV 
for these traits is to develop a multiple trait evaluation, 
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which consists in taking advantage of the information 
from traits that can be recorded early in life and are cor-
related to the trait of interest. The information brought 
by the correlated traits enhances the accuracy of the 
evaluation of all the traits of interest. However, in some 
cases, simple multiple trait evaluations are not possible. 
Indeed, different correlated traits can be described by 
very different models: for instance, it is often important 
to consider the known sources of the heterogeneity of 
genetic and/or residual variances for some traits—e.g. for 
production traits [1, 2] or type traits [3]—or a permanent 
environmental effect for some other traits (e.g. mastitis 
occurrence or somatic cells count), or even a maternal 
effect. Software that deal with all of these more complex 
models together in a unique multiple trait analysis do not 
exist or may lead to a large increase in overall computing 
time. To overcome this problem, so-called “combined” 
best linear unbiased prediction (BLUP) evaluations have 
been developed [4], which consist of two steps and can 
be considered as an approximate multiple trait BLUP. 
First, corrected phenotypes are calculated for the traits 
of interest and their correlated traits by running univari-
ate evaluations. The main purpose of this first step is to 
accurately estimate non-genetic effects by using models 
that are specifically adapted to the characteristics of each 
trait. The estimates of these non-genetic effects are then 
subtracted from the phenotypes and these corrected phe-
notypes are adjusted to a homogenous residual variance. 
In a second step, a multiple trait evaluation of the cor-
rected phenotypes is run assuming a same simple model 
for all the traits. This approach results in more accurate 
EBV and a higher genetic gain in total merit [5, 6], espe-
cially for low-heritability traits.

Functional longevity (FL) is an important trait, which 
is receiving more and more attention as a relevant breed-
ing objective to increase both the productive life and wel-
fare of dairy cows [7]. However, FL has a low heritability 
and is difficult to predict because information for this 
trait on cows that are still alive is not complete. Genetic 
evaluation models for FL are also complicated by the 
need to include time-dependent explanatory variables, 
in a strongly nonlinear sire or sire-grand-sire model that 
is characterized by a non-normal residual distribution. 
This is why “combined” BLUP evaluations have been rou-
tinely used in France to improve the accuracy of genetic 
evaluations for FL, by adding information on traits that 
are correlated to FL and are considered as its early pre-
dictors [4]. In the French approach, breeding values of 
bulls for FL were first estimated using a survival analysis 
model that considers the length of the productive life of 
dairy cows adjusted for milk production [8, 9]. A pseudo-
longevity record and its associated weight are derived 
for each cow in such a way that a standard BLUP animal 

model evaluation of these (weighted) pseudo-records 
approximately leads to the same EBV for the bulls [10]. 
This transformation can be seen as the basis of the exten-
sion of an animal model for sire longevity evaluations. 
In parallel, univariate genetic evaluations are performed 
for each trait that is correlated to FL, and the phenotypes 
corrected for non-genetic effects are estimated for each 
cow. Then, the pseudo-records for FL and the corrected 
performances of the traits considered as predictors of FL 
are used as phenotypes in a multiple trait genetic evalu-
ation. This multiple trait genetic evaluation was imple-
mented in 2010 [11] and provided EBV for FL, both for 
males and females, which were included in their total 
merit indices.

The inclusion of genomic information in genetic evalu-
ations has led to an increase in genetic trend because own 
animal performances were no longer required to obtain 
accurate genomic (G) EBV [12]. Genomic evaluations are 
based on reference populations that consist of genotyped 
animals with own performance(s) or performance(s) 
of their relatives. As a result, genotyped cows can be 
selected or culled earlier based on their GEBV, often 
much before their own phenotype is collected. However, 
when early genomic selection is not accounted for, indi-
vidual EBV as well as the genetic trends have been shown 
to be biased [13]. There is a strong competition in dairy 
cattle breeding programs to have accurate and unbiased 
GEBV of young males and females in order to reduce 
generation intervals and to obtain balanced genetic 
trends.

In recent years, single-step (SS) approaches, which 
consider simultaneously all the information available for 
all animals (pedigree, phenotypes, genotypes), have been 
developed to estimate GEBV. They reduce the bias in 
genetic trends and thus in GEBV and they increase the 
accuracy of GEBV by including information from ungen-
otyped animals [14–17]. However, computing require-
ments for large (e.g., national) applications may be quite 
substantial because of the slow convergence with some 
models, e.g., complex multiple trait models. As a conse-
quence, only univariate SS evaluations (or multiple trait 
SS evaluations with traits described by a same model) are 
often implemented in practice, because the level of com-
plexity and the computing time required when consider-
ing simultaneously several correlated traits described by 
different models are too great [17].

The aim of this study was to illustrate the benefits of a 
“combined” single-step (CSS) evaluation that can aggre-
gate information from correlated traits [4–6]. These 
traits may be available for only a subset of the animals or 
described by different and more complicated models than 
a basic linear animal model (e.g., including heterogene-
ous residual variances). The benefits from the inclusion 
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of correlated traits are essentially due to an increased 
accuracy without a major increase in computing time and 
even, in some cases, with a decrease in computing time 
[5, 6]. This study also investigates whether the prediction 
accuracy of a CSS evaluation is increased compared to 
that of a univariate SS (USS) evaluation. To illustrate the 
approach, we consider a joint evaluation combining six 
very different correlated traits in the Montbéliarde breed: 
FL, somatic cell score in milk (SCS), conception rate for 
heifers (CRH) and for lactating cows (CRC), clinical mas-
titis (CM) and udder depth (UD). A special attention is 
given to the accuracy of the evaluation of FL because 
improving FL meets both farmers’ and societal expecta-
tions ([18–20], and more generally those regarding ani-
mal welfare [21]).

Methods
Choice of traits
Functional longevity is difficult to predict with high accu-
racy because the true phenotype (length of productive 
life) is known only when the animal is dead. Many studies 
have shown that other routinely recorded traits are sig-
nificantly correlated with FL, e.g. udder type traits [22, 
23], fertility traits [4, 7], somatic cell score [4] and mas-
titis incidence [24]. These different traits are also corre-
lated to each other and they can be considered as early 
predictors of FL [25–27]. Unlike the true FL, they are 
known from the first lactation (and even earlier in the 
case of heifer fertility), and thus they are good candidates 
to be included in a multiple trait evaluation to improve 
the accuracy of GEBV for FL, especially for animals that 
are still alive. In this study, we considered FL and five 
traits that are correlated to FL: somatic cell score (SCS), 
clinical mastitis (CM), conception rate for heifers (CRH) 
and cows (CRC) and udder depth (UD).

Data
Records for the six traits mentioned above and pedigree 
information for the Montbéliarde cows used in this study 
were obtained from the French bovine national database 
[11, 28]. The dataset included all the cows born in 1998 
and after, with a first phenotypic record for any of the 
six traits between 2000 and July 2021. In total, 2,837,644 
cows had at least one record for one of the six traits stud-
ied. On average, a cow had performances for 3.7 traits. 
The pedigree file included 3,562,155 animals (with 
3,520,038 females) among which 239,935 animals (3983 
sires and 235,952 dams) had been genotyped with the 
BovineSNP50 BeadChip (Illumina Inc., San Diego, CA), 
and 15 groups of unknown parents.

Udder depth scores, ranging from 1 (very deep udder) to 
9 (shallow udder), were collected by Montbéliarde breed 

technicians. Conception rate for heifers and CRC were 
based on the dates of artificial insemination (AI) and of the 
next calving of each cow. These are repeated traits repre-
senting the success (1) or failure (0) at each AI. Somatic cell 
score and CM were collected during monthly milk record-
ing. Somatic cell score was expressed as the logarithm of 
the number of somatic cells per mL of milk as measured 
at each milk sampling test. Clinical mastitis indicated the 
presence/absence (1/0) of at least one mastitis event of a 
cow during lactation. Pseudo-records for FL were obtained 
after a routine genetic evaluation in France [11], which 
uses a Weibull model. The Weibull distribution [8, 9, 29] 
is a popular generalization of the exponential distribution 
which describes the hazard function with only two param-
eters (i.e., in our context, the probability for an animal to 
be culled at time t among those that are still alive at t − 1). 
In practice, standardized lactation productions are com-
puted for each animal and compared to the average herd 
production, separately for first and later lactations. Then, 
the hazard function is corrected within herd and year for 
this average level of production. The cumulative hazard 
function during the productive life of the cow represents an 
aggregate measure of its risk of being culled, which is con-
sidered as a proxy of FL [10]. The genetic evaluation of FL is 
based on a sire-maternal grand sire model which allows to 
define FL “pseudo records” for cows to be included in the 
SS evaluation.

To contrast the accuracy of univariate and combined SS 
evaluations, an evaluation at the beginning of 2016 (with-
out records for animals born in 2014 and 2015) was com-
pared to the evaluation with all the data available in 2021. 
The elementary statistics of records for each trait are in 
Table 1.

The performances in Table 1 were used in the first step of 
a combined SS evaluation which consisted in six univari-
ate SS evaluations, one for each trait. For each evaluation, 
records corrected for all non-genetic effects were obtained. 
For the traits with permanent environmental effects, pre-
corrected records were grouped by animal and a weight 
based on the number of performances and the size of the 
contemporary group for each performance was associated 
to each corrected record. These records are called “pseudo-
records”. For instance, for an animal i with x records for 
a same trait, the following formula was applied (here for 
Pseudo− recordi):

where cgysizez is the size of the contemporary group z.
(1)

Pseudo− recordi =
record1 ∗ cgysize1 + · · · + recordx ∗ cgysizex

cgysize1 + · · · + cgysizex
,
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Estimation of the genetic correlations between traits 
by incorporating genomic information
Recent studies have included genomic information to 
re-estimate the genetic parameters and in particular the 
genetic correlations between traits, and it has been rec-
ommended to use all available genomic information 
for the genomic evaluations [30, 31]. For this reason, 
genomic correlations and heritabilities of the six investi-
gated traits were computed by incorporating the genomic 
information obtained from the BovineSNP50 BeadChip 
(Illumina Inc., San Diego, CA, USA).

Covariance components were estimated using the fol-
lowing multiple trait sire model (with 6 traits):

where y∗ is the vector of pre-adjusted performances cor-
rected for the dam’s EBV (derived from a standard uni-
variate animal model), b is the vector of the fixed effect 
of birth year of the cow (in order to correct for genetic 
trends due to selection on correlated traits not accounted 
for in univariate evaluations), s is the vector of the sire 
effects, e∗ is the vector of random residuals, and X and Z 
are incidence matrices. To consider the different weights 
of pre-adjusted performances, a specific variance was 
attached to the residuals of each pre-adjusted record. 
The G matrix was constructed based on VanRaden’s first 
method [32]. Allele counts were centered by two times 
the observed frequencies and a small constant value 

(2)y∗ = Xb+ Zs+ e∗,

of 0.01 was added to the diagonal elements to ensure a 
positive definite matrix. Variance and covariance compo-
nents were estimated using the WOMBAT software [33].

Genetic correlations were calculated as:

where rg1,2 is the genetic correlation between trait 1 and 
trait 2, 4σs1,s2 is the genetic covariance between trait 1 
and trait 2, 4σ 2

s1 is the genetic variance of trait 1 and 4σ 2
s2 

is the genetic variance of trait 2.
The heritability of each trait was computed as the ratio 

between the genetic and phenotypic variance. Genomic 
correlations and heritabilities obtained for the six consid-
ered traits are in Table 2. Residual variances were inferred 
considering these heritabilities and genetic variances.

As expected, some correlations between traits are rela-
tively high (absolute value > 0.4). In Table 2, FL is defined as 
the risk for a cow to be culled. This explains that the traits 
which are linked to diseases (UD, CM, SCS) are positively 
correlated with FL and fertility traits are negatively corre-
lated with FL.

Genomic evaluation models used with the hybrid 
single‑step genomic BLUP software
The hybrid single-step (HSS)GBLUP software [34] 
is based on the model of [35] and has been used to 

(3)rg1,2 =
4σs1,s2√

4σ 2
s1 ∗ 4σ

2
s2

,

Table 1  Distribution of performances by trait in 2016 and in 2021

FL functional longevity, CRH conception rate for heifer, CRC​ conception rate for cow, SCS somatic cell score, CM clinical mastitis, UD udder depth

Traits 2016

Number of 
performances

Number of animals Mean number of 
performances per animal

Mean number of performances of dams 
of animals without performances in 2016

FL 1,409,428 1,409,428 1.00 1.55

CRH 2,232,913 1,506,695 1.48 2.33

CRC​ 4,016,853 1,267,628 3.17 4.73

SCS 3,550,513 1,637,909 2.17 3.59

CM 1,355,848 772,740 1.75 2.53

UD 918,654 918,654 1.00 1.45

Traits 2021

Number of 
performances

Number of animals Mean number of 
performances by 
animal

Mean number of performances of 
animals without performances in 
2016

Mean number of performances 
of dams of animals without 
performances in 2016

FL 1,963,384 1,963,384 1.00 1.00 1.58

CRH 3,027,361 2,050,240 1.48 1.45 2.36

CRC​ 5,472,488 1,746,630 3.13 2.52 4.74

SCS 5,101,670 2,316,890 2.20 1.94 3.69

CM 2,036,972 1,129,766 1.80 1.65 2.66

UD 1,319,119 1,319,119 1.00 1.00 1.49
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compute the GEBV for all traits of animals from all 
French breeds.

The model used to describe the phenotypes for an 
ungenotyped animal is:

For a genotyped animal, the model is:

where yij is the phenotype of animal i for trait j , fp is the 
effect of the p th level of the environmental effect where 
the i th animal expresses its phenotype, GGkj is the effect 
of the k th genetic group for trait j, nG is the number of 
genetic groups (15 in this study), Cik is the raw contribu-
tion of the k th genetic group to the i th animal 
( 
∑nG

k=1Cik = 1 ), Jik is the entry for animal i in vector 

Jk =

[
Jk_u
Jk_g

]
 , which contains the adjustment terms for 

the contribution of the k th genetic group to animals 
(where Jk_u = AngA

−1
gg Ck_g

= −(Ann)−1AngCk_g for 
ungenotyped animals, Ck_g is the vector of contributions 
to the genetic groups of genotyped animals, and Jk_g = 
Ck_g for genotyped animals), aij is the additive genetic 
effect of ungenotyped animal i for trait j, nSNP is the 
number of single nucleotide polymorphisms (SNPs), gil is 
the centered genotype of individual i at the l th SNP, ∝lj is 
the effect of allele 2 of the l th SNP for trait j, eij is the 
residual of the model.

At convergence, the GEBV were calculated as 
follows:

for the ungenotyped animals, where Cik, Jik and GGkj are 
the same as (4) above, and

for the genotyped animals.

(4)yij = fp +
∑nG

k=1
((Cik − Jik) ∗ GGkj)+ aij + eij.

(5)yij = fp +
∑nSNP

l=1

(
gil ∗ ∝lj

)
+ eij,

(6)GEBVij =

∑nG

k=1
((Cik − Jik) ∗ ĜGkj)+ âij,

(7)GEBVij =

∑nSNP

l=1

(
gil ∗ ∝̂lj

)
,

Combined single‑step evaluation
The underlying principle of a “combined” genetic 
evaluation [4] was adapted to the SS evaluation. In a 
first step, univariate SS evaluations were run—each 
one with its specific model—to calculate the pseudo-
records for each of the six traits considered in the study 
and their corresponding weights. Indeed, the traits 
considered here are described by different models. 
For instance, UD had three fixed effects (visit, age, and 
stage of lactation at the visit of the technician), three 
effects related to three sources of heterogeneity of vari-
ances (age at lactation stage, technicians year, visit) and 
the additive animal and residual effects, while CRH had 
seven fixed effects and no heterogeneity of variances 
(for more details on the different univariate models, see 
[36] but note that, in their study, the CRC, CRH, FL and 
CM traits used here are named CC1, HCO, LGF and 
MACL, respectively).

After the univariate evaluations step, for repeated 
traits, pseudo-records were computed as described 
above. Pseudo-records for each trait were used in the 
second step of the CSS evaluation with the following 
multiple trait model for all animals:

for ungenotyped animals.
where y∗ij is the pseudo-record of animal i for trait j , ye 

is a year effect (which in this case is equal to the effect 
of the birth year of animal i ), a∗ij is the additive genetic 
effect for trait j and Cik, Jik and GGkj are as described 
above for Eq. (4) and e∗ij is the residual effect and:

for genotyped animals where gil is the genotype at SNP l 
and ∝∗

lj is the effect of SNP l on trait j.
The objective of adding a year effect (ye) was to cor-

rect for potential selection bias that exists in the first step 
of the CSS evaluation where correlations between traits 
were ignored [6, 37, 38].

(8)y∗ij = ye+ a∗ij +
∑nG

k=1

(
(Cik − Jik) ∗ GGkj

)
+ e∗ij,

(9)y∗ij = ye+
∑nSNP

l=1

(
gil ∗ ∝

∗

ij

)
+ e∗ij,

Table 2  Heritabilities (italics on the diagonal) and genomic correlations (off diagonal) between the traits considered

FL functional longevity, CRH conception rate for heifer, CRC​ conception rate for cow, SCS somatic cell score, CM clinical mastitis, UD udder depth

FL CRH CRC​ SCS CM UD

FL 0.034

CRH − 0.120 0.022

CRC​ − 0.446 0.548 0.021

SCS 0.605 − 0.048 − 0.216 0.393

CM 0.629 − 0.013 − 0.225 0.761 0.022

UD 0.598 0.098 − 0.170 0.319 0.437 0.630



Page 6 of 15Maugan et al. Genetics Selection Evolution           (2023) 55:75 

Prediction assessment
With the objective to illustrate the benefits of a CSS eval-
uation, it was performed including all the information 
available for all the animals (columns with year 2021 in 
Table  1). The correlations between GEBV at the end of 
the univariate step and GEBV at the end of the multiple 
trait step were calculated for each trait.

In addition, another CSS evaluation was run without 
including any performance for FL in the dataset of year 
2021. In such a scenario, GEBV for FL were predicted 
only from information coming from the other traits 
that are correlated to FL. To illustrate the impact of this 
source of information, correlations between GEBV for FL 
with the complete run and the run without records for 
FL—i.e., only relying on traits correlated to FL—were 
calculated.

Finally, in order to evaluate the quality of the genomic 
evaluations for FL on young animals, a USS evaluation 
and a CSS evaluation that mimic the situation at the 
beginning of 2016 were performed. For the animals born 
in 2014 and 2015, since they had no phenotype informa-
tion, only genotype information was considered for the 
evaluation mimicked in 2016. The assumption was that 
these animals were genotyped soon after birth. For both 
SS evaluations in 2016, 118,714 genotyped animals were 
considered (Table 1).

Based on the information available at the beginning of 
2016, GEBV of females born in 2014 and in 2015 were 
ranked from the best to the worst females and divided 
into deciles, separately for the two subpopulations 
(genotyped vs ungenotyped). For example, the first 
group of genotyped cows included the top 10% geno-
typed cows based on their GEBV for FL in 2016. Four 
separate cases were considered: GEBV from the USS 
and CSS evaluations in 2016 and for genotyped and 
ungenotyped heifers. These different cases were used to 
better visualize the quality of the different evaluations 
for FL, depending on the evaluation strategy used (with 
a univariate vs a combined single-step evaluation, for 
genotyped vs ungenotyped young females). For each of 
these four combinations, an average survival curve was 
calculated for each decile, using the Cox model of the 
Survival Kit software (v6.12) [39]. The Cox model is a 
non-parametric model that ensures a proper treatment 
of censored records (e.g., animals still alive or sold to 
another farm) without making any particular assump-
tion about the shape of the survival curves. These 
survival curves for groups of cows born in 2014 or in 
2015 were derived based on their status known in July 
2021: they were either still alive—their length of pro-
ductive life was treated as a censored record—or they 
were culled at a known date. To better quantify the 
difference in FL between groups, the observed mean 

differences between groups in number of productive 
days were calculated at different stages (see Additional 
file  1: Table  S1). The reference group (for which the 
observed mean was globally set to 0) was the union of 
groups 5 and 6 of the ungenotyped heifers evaluated 
with the USS evaluation. All the other groups and types 
of population were compared to this reference group.

Moreover, in order to check the quality and impact of 
the within-herd standardization of FL for milk produc-
tion with the current genetic evaluation using a Weibull 
sire model, the average milk records in first lactation 
after correction for lactation length were calculated for 
the cows grouped by GEBV deciles for FL separately for 
univariate and “combined” SS evaluations in 2016. By 
construction, it was expected that breeding values for 
FL were not influenced by the level of production.

In France, genomic evaluations have been used 
since 2009 in the three major dairy breeds (including 
the Montbéliarde breed) [40]. An intense selection on 
genomic breeding values has been applied on sires and 
bull dams, with a strong impact on the genetic trends 
for sires and candidate bull dams. This selection was 
based on a combination of the major economic traits 
[40, 41]. However, a large proportion of the young 
heifers has not been genotyped in most of the herds. 
Among the bulls born in 2011, the quality of the GEBV 
for FL of sires based on the CSS evaluation was com-
pared to that based on the USS evaluation. For this 
comparison, four classes of bulls were created based 
on their GEBV obtained either from their USS or CSS 
evaluation in 2016. This year of evaluation was chosen 
because it corresponded to the year when daughters 
started to have records on at least one trait and because 
the aim was to assess the impact of the evaluation 
method (USS vs CSS) on the prediction of the bulls’ 
daughters. The best class was composed of sires with 
a GEBV for FL superior or equal to 1 genetic standard 
deviation ( 1σg ) on the 2016 genetic base, while the next 
three sire groups included those with GEBV, respec-
tively, between 0.5 and 1 σg , between 0 and 0.5 σg , and 
below 0 σg . The number of daughters per sire ranged 
from 101 to 4866 (with a mean of 737 ± 782 daughters 
per sire) for 114 sires. The length of the functional life 
of all the daughters (genotyped or not) which had a 
known or censored length of life was considered until 
July 2021. For each sire with at least 100 daughters, a 
survival curve based on their daughter’s information 
was constructed. Finally, an average survival curve 
of daughters was computed for each of the four sire 
groups. For this last step, the number of daughters of 
each sire was not considered to avoid an undue influ-
ence of the most popular sires. The comparison of the 
survival curves for the four groups of highly selected 
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bulls should indicate the contribution of the correlated 
traits to identify the best bulls in terms of FL.

Results
Univariate vs multiple trait (= “combined”) evaluations
For each trait and for each of the three subpopulations 
(genotyped or ungenotyped cows, and genotyped sires), 
Table  3 shows the correlations between the GEBV 
obtained with the 2021 evaluations using the USS or 
the CSS approaches. For SCS, UD, CRH and CRC, in 
all three subpopulations, the correlations between 
GEBV are higher than 0.96. For FL and CM, these cor-
relations depend on the subpopulation considered, 
i.e. for the ungenotyped females, the correlations are 
lower than 0.80 while for the genotyped animals (sires 
and cows), they are higher than 0.90. These results 
suggest that the inclusion of phenotypic information 
from the correlated traits had a much stronger impact 
on the two traits with the lowest heritability (FL and 

CM), especially for the ungenotyped females. This was 
expected and agreed with the theory of multiple trait 
linear models.

Yearly correlations between the GEBV for FL 
obtained with the univariate evaluation and those 
obtained with a combined evaluation without per-
formances for FL were also calculated for the females 
born between 2010 and 2019 (Fig. 1). For the genotyped 
females, the correlations ranged from 0.54 to 0.57 while 
for the ungenotyped females, they ranged from 0.37 to 
0.45, except for the most recent year of birth (0.58 in 
2019). These results show the substantial contribution 
of the traits that are correlated to FL to the estima-
tion of the GEBV for FL with the CSS evaluation. The 
correlations between the GEBV obtained by including 
the information of all traits (including FL) in 2021 and 
those without performances for FL ranged from 0.80 to 
0.87, with slightly higher values for the ungenotyped 
subpopulation (Fig. 2).

Table 3  Correlations between GEBV obtained from the USS and CSS evaluations in 2021 for each subpopulation and trait

FL functional longevity, CRH conception rate for heifer, CRC​ conception rate for cow, SCS somatic cell score, CM clinical mastitis, UD udder depth

Subpopulation Traits

FL CM CRH CRC​ SCS UD

Genotyped cows 0.91 0.91 0.98 0.98 1.00 1.00

Ungenotyped cows 0.77 0.71 0.98 0.96 0.98 0.98

Genotyped sires 0.94 0.93 0.98 0.99 1.00 1.00

Fig. 1  Correlations between GEBV for FL obtained with the CSS evaluation in 2021 without any performances for FL and those with a USS 
evaluation in 2021 for each population per year of birth



Page 8 of 15Maugan et al. Genetics Selection Evolution           (2023) 55:75 

Validation of early prediction of functional longevity
Figures  3 and 4 show two graphs with survival curves 
calculated based on the GEBV for FL obtained with the 
USS evaluation (Fig. 3) or the CSS evaluation (Fig. 4) in 
2016. For clarity, only the curves corresponding to the 
worst and best deciles are shown. These survival curves 
were calculated using all the information during the lifes-
pan of these females, as known in July 2021 (but they are 
only shown up to a maximum of 1700 days because the 
end of the curves was not accurate). In fact, the 10 curves 
were distinct from each other, in the expected order 
(not shown) but the gap between curves was reduced for 
the best groups of females, and particularly for the best 
females that were evaluated with the CSS evaluation 
(curves in grey in Figs.  3 and 4). The two curves corre-
sponding to the group of the best females are clearly dis-
tinct from each other: this reflects a difference between 
genotyped and ungenotyped females, regardless of the 
type of evaluation. This observation is also true for the 
group of the worst females. The gap in days between the 
USS and CSS curves increases with culling rate: for all 
groups and regardless of the genotyping status, the CSS 
evaluation leads to larger gaps between deciles than the 
USS evaluation. For instance, for the genotyped females, 
the 50% survival probability was reached 402 days earlier 
by the worst group than by the best group when these 
groups were defined using the USS evaluation, but it was 
reached 501 days earlier using the CSS evaluation.

Figure  5 shows the observed mean difference up to 
1600  days of productive life for heifers born in 2014 
and in 2015 and ranked from the best (decile 1) to the 
worst GEBV (decile 10) obtained with the USS evalua-
tion or CSS evaluation in 2016. Similar results for other 
periods of the productive life are shown in Additional 
file  1: Table  S1. It was decided to show the results up 
to 1600  days of productive life because it corresponds 
to almost the maximum end of the productive life of 
Montbéliarde cows considered in the FL genetic evalu-
ation in France. Figure  5 shows that the gaps between 
the worst deciles based on a univariate or “combined” 
analysis using genotypic information or not, are larger 
than for the best deciles. More generally, the difference 
between the average productive life of the best and the 
worst decile increased when using the CSS approach, 
regardless of the genotyping status of the female. The 
difference in average productive life between the best 
and the worst decile was even wider for the genotyped 
heifers (171 and 206 productive days with the USS and 
the CSS approach, respectively) than for the ungeno-
typed females (71 and 100 days). Furthermore, the dif-
ference in the gap between the extreme deciles appears 
to be almost the same (35 vs 29 days) between the USS 
and CSS evaluations for the genotyped and ungeno-
typed animals but, when expressed in %, the benefit 
from the CSS evaluation is more marked for the ungen-
otyped than for the genotyped subpopulation (29% vs 
17%).

Fig. 2  Correlations between GEBV for FL obtained with the complete CSS evaluation in 2021 and those with a CSS evaluation in 2021 without any 
performances for FL for each population per year of birth
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Figures  6 and 7 compare the average standardized 
(305d) milk production in first lactation of genotyped 
and ungenotyped heifers according to their ranking 
(deciles) based on the results of the single-step evalua-
tion for FL in 2016. Genotyped heifers have on average 
a higher milk production level in first lactation than the 
ungenotyped ones. This may be due either to the deci-
sion to genotype the daughters of the better cows, or to 
an early culling of the worst genotyped young females 
that are not kept in the herd as replacement heifers. 
When the classification is based on the results of the 
USS evaluation (Fig. 6), there is no apparent association 

between average production and class of functional 
longevity, as expected. In contrast, for the best deciles 
(1–3), the CSS evaluation reveals a slightly higher aver-
age milk production in first lactation for the ungeno-
typed cows and a slightly lower production for the 
genotyped ones (Fig. 7).

Figures 8 and 9 show two graphs with survival curves 
of daughters based on the rank of the GEBV of their sire, 
born in 2011. The class to which each sire belongs was 
calculated based on the USS evaluation (Fig.  8) or the 
CSS evaluation (Fig.  9) in 2016. As above, only the sur-
vival curves of the daughters from the best sires group 

Fig. 3  Survival curves of females born in 2014 and 2015 ranked according to their GEBV based on the USS evaluation in 2016

Fig. 4  Survival curves of females born in 2014 and 2015 ranked according to their GEBV based on the CSS evaluation in 2016
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and the worst sires group are shown. In both Fig. 8 and 
9, a modest difference between curves can be observed. 
The gap between the USS and CSS curves increases with 
culling rate: at 50% survival, the difference in days of pro-
ductive life between the two curves is 85 days for the USS 
evaluation but only 59 days for the CSS evaluation. How-
ever, within the CSS evaluation, the two curves separate 
from each other much earlier, possibly through the con-
tribution of the correlated traits to the evaluation for FL.

Discussion
Multiple trait evaluations have been developed to 
improve the accuracy of EBV in genetic evaluations 
through the inclusion of information on correlated traits, 
and to account for selection on these correlated traits [4, 

5, 7]. Indeed, as long as the genetic parameters includ-
ing correlations between traits are relatively well known, 
multiple trait evaluations are always more accurate than 
a linear combination of results from univariate analy-
ses when records on animals are not available for all the 
traits and/or when the traits are described by different 
models [42].

Combined genetic evaluations have been proposed 
in order to alleviate the complexity of developing soft-
ware that can handle joint evaluations of traits described 
by very different models. For example, Ducrocq et  al. 
[4] developed a “combined” evaluation of dairy cows 
for production traits, somatic cell scores, female fertil-
ity, length of productive life and six type traits which 
are not described by the same model. Lassen et  al. [5, 

Fig. 5  Observed mean difference in days of productive life between deciles of heifers based on USS or CSS evaluations

Fig. 6  Average standardized milk production per GEBV deciles for functional longevity obtained with the USS evaluation in 2016 (decile 1 = the 
best animals for functional longevity)
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6] simulated different dairy cattle breeding goals that 
include a large list of traits and showed that a “combined” 
approach leads to higher genetic trends than univariate 
evaluations. Besbes et  al. [43] proposed a “combined” 
evaluation of linear and nonlinear traits in laying hens 
that deals with a variety of traits (precocity, persistency, 
feed conversion ratio, longevity and a feather score).

With the development of genomic evaluation, “com-
bined” genomic evaluations were not yet considered, 
probably because of the extra complexity involved. 
In addition, selection of young promising sires led to 

the emergence of biases in genetic evaluations [13]. 
The development of SS evaluations in the recent years 
decreased these biases due to pre-selection because they 
rely on all sources of information (pedigree and genomic 
information) [15, 44, 45]. Software that are able to han-
dle multiple trait SS evaluations exist but mainly for 
traits that are described by the same model, or by mod-
els differing only for environmental effects, and for traits 
assumed to be continuous and normally distributed 
under a homoskedasticity hypothesis. Similarly to multi-
ple trait genetic evaluation, a multiple trait SS approach 

Fig. 7  Average standardized milk production per GEBV deciles for functional longevity obtained with the CSS evaluation in 2016 (decile 1 = best 
animals for functional longevity)

Fig. 8  Survival curves of daughters of sires born in 2011 according to their GEBV based on the USS evaluation in 2016
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improves the accuracy of GEBV for the traits evaluated 
together [46, 47].

A main limitation of the univariate genetic evaluations 
for FL is that they are inaccurate until a significant pro-
portion of the daughters of a bull has been culled. When 
such a proportion is reached, the decision to select the 
bull for AI had already been taken much before. The joint 
analysis of FL and its correlated traits strongly improved 
the accuracy of the genetic breeding values for FL. It also 
increased their stability over time. A similar improve-
ment was expected with a CSS evaluation. This was envi-
sioned as an extension to SS of the “combined” genetic 
evaluation in order to benefit from the inclusion of infor-
mation from correlated traits. As a result, CSS breed-
ing values differed substantially from the USS values for 
FL and CM (Table  3). This was also the case for GEBV 
obtained with information on predictor traits but with 
and without any performances on FL (Figs. 1, 2). Indeed, 
the latter results showed that traits that are genetically 
correlated with FL contribute to the genetic/genomic 
evaluation for FL, much earlier when the true FL is still 
unknown. These observations illustrate the benefit of 
including information from correlated traits.

The survival curves (Figs. 3, 4) and the observed mean 
difference in days of productive life between groups 
(Fig.  5) showed that the best groups, and even more 
the worst groups of females, were distinct from each 
other, regardless of the type of evaluations. This dem-
onstrates that SS evaluations are more accurate to esti-
mate GEBV for FL. Moreover, genomic information was 

very important to better discriminate the worst and best 
groups of animals from each other, regardless of the type 
of evaluation. Thus, the output of the CSS evaluation 
appeared to be a better predictor to identify the best and 
the worst groups of females, regardless of their genotyp-
ing status. With a CSS evaluation, it is possible to better 
identify at birth the less robust heifers and to cull them, 
which may lead to interesting economic returns.

Our results show that, on average, the genotyped first 
lactation cows produced more milk on average than the 
ungenotyped cows, regardless of the type of evaluation. 
There are at least two interesting interpretations of this 
observation: either farmers decide to genotype only the 
heifers that they consider better than average or the heif-
ers with the best GEBV for production traits receive 
some kind of preferential treatment. Indeed, the female 
cohort considered in 2014 and in 2015 corresponds in 
France to the beginning of a genotyping service to the 
farmers, in parallel to the genotyping proposed by the 
AI cooperatives which started a few years earlier, focus-
ing on heifers with high genetic merit. Nevertheless, we 
found that the average milk production in first lactation 
was about the same, regardless of the functional longev-
ity decile considered and their genotyping status. This is 
consistent with the model used for the underlying sur-
vival analysis which disentangles functional longevity 
from milk production [9]. However, the CSS evaluation 
(Fig.  7) shows a slightly different picture. The best gen-
otyped cows (deciles 1 and 2 for survival GEBV) had a 
lower average milk production (about 200 kg less) in first 

Fig. 9  Survival curves of daughters of sires born in 2011 according to their GEBV based on the CSS evaluation in 2016
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lactation than for the other deciles. In contrast, the same 
deciles for the ungenotyped cows indicate a higher aver-
age milk production (about 200 kg more) than the other 
deciles. In other words, it seems that the CSS evaluation 
accounts better for the fact that elite genotyped heifers 
with the highest production may have more fertility or 
udder health problems [19, 48, 49], which can lead to the 
decision to cull them earlier [24]. Conversely, ungeno-
typed cows with a good fertility or udder are less suscep-
tible to be culled. Overall, the inclusion of information on 
these correlated traits through the pedigree or genotypes 
improves the accuracy of the evaluations.

Regarding the results on genotyped bulls born in 2011, 
the benefit of the CSS evaluation was more limited than 
for the heifers, which may be explained by the fact that 
the bulls with progeny have been highly selected on a 
combination of all the important economic traits. This is 
a clear difference with the cows on any regular farm.

The joint analysis of correlated traits has a drawback, 
i.e. in general, the computing time of a CSS evaluation 
considering n traits is significantly larger than that of n 
USS evaluations. Each evaluation was parallelized on 
five compute nodes (computer server SuperMicro SYS-
6028R-TRT, Intel Xeon 16 core processors) and with a 
very strict convergence criterion (correlation between 
iteration n and iteration n − 100 above 0.99 for USS eval-
uation and 0.999 for CSS evaluation). The USS evalua-
tions took about 2–7 h to reach this criterion, depending 
on the traits. The corresponding time for the CSS evalu-
ation was about 15 h. CSS evaluations (as well as multi-
ple trait SS evaluations) improve the accuracy of GEBV 
and particularly for FL. This study considered the Mont-
béliarde breed which is the second largest dairy breed 
in France [28]. The computing time necessary for CSS 
evaluations for the Holstein breed is likely to be higher 
than for the Montbéliarde breed since it includes about 4 
times more cows in milk recording. This may require to 
find compromises between computing time and gain in 
prediction accuracy resulting from the number of corre-
lated traits considered. Other strategies such as deleting 
old genotypes and/or phenotypes can also be considered 
[50, 51], or less stringent convergence criteria.

In spite of these limitations, it appears that the pro-
posed CSS evaluation provides a clear improvement of 
the predictability of FL, for both genotyped and ungen-
otyped cows. This would benefit to both the breed-
ing schemes, which could improve the selection of bull 
dams on this trait, and the farmers for the choice of their 
replacement heifers. A similar approach could be applied 
in other similar situations. For example, this is the case 
for carcass traits (for calves, young bulls or cows) in 
dual-purpose breeds that could be combined altogether 

and with some conformation traits, such as the height of 
sacrum or chest width of cows, for example [52].

One of the anonymous reviewers indicated that extra 
validation of level and dispersion biases would have been 
possible by considering the correlations between GEBV 
for FL obtained with and without performances as dis-
played in Figs.  1 and 2. From these same sets of GEBV, 
the dispersion bias (measured as a regression coefficient) 
and the level bias can be computed similarly to the linear 
regression (LR) statistics proposed by [53].

Conclusions
The proposed strategy to implement a “combined” sin-
gle-step evaluation for functional longevity and cor-
related predictor traits showed very promising results 
in the case of the Montbéliarde breed. In particular, we 
showed that more accurate (G)EBV of both genotyped 
and ungenotyped heifers facilitate the selection of more 
robust cows, with a longer predicted productive life. The 
impact of such an approach is less visible on the selec-
tion of bulls, because the selection intensity of males for 
functional traits is already strong. The combined single-
step approach can be extended to any complex pheno-
type resulting from elementary traits that are described 
by models that are too different to be considered directly 
in a multiple trait analysis.
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