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Abstract 

Background  Genomic prediction has become widespread as a valuable tool to estimate genetic merit in animal 
and plant breeding. Here we develop a novel genomic prediction algorithm, called deepGBLUP, which integrates 
deep learning networks and a genomic best linear unbiased prediction (GBLUP) framework. The deep learning net‑
works assign marker effects using locally-connected layers and subsequently use them to estimate an initial genomic 
value through fully-connected layers. The GBLUP framework estimates three genomic values (additive, dominance, 
and epistasis) by leveraging respective genetic relationship matrices. Finally, deepGBLUP predicts a final genomic 
value by summing all the estimated genomic values.

Results  We compared the proposed deepGBLUP with the conventional GBLUP and Bayesian methods. Extensive 
experiments demonstrate that the proposed deepGBLUP yields state-of-the-art performance on Korean native cattle 
data across diverse traits, marker densities, and training sizes. In addition, they show that the proposed deepGBLUP 
can outperform the previous methods on simulated data across various heritabilities and quantitative trait loci (QTL) 
effects.

Conclusions  We introduced a novel genomic prediction algorithm, deepGBLUP, which successfully integrates deep 
learning networks and GBLUP framework. Through comprehensive evaluations on the Korean native cattle data 
and simulated data, deepGBLUP consistently achieved superior performance across various traits, marker densities, 
training sizes, heritabilities, and QTL effects. Therefore, deepGBLUP is an efficient method to estimate an accurate 
genomic value. The source code and manual for deepGBLUP are available at https://​github.​com/​gywns​6287/​deepG​
BLUP.
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Background
The use of DNA marker information for the prediction 
of genetic merit in animal and plant breeding and sus-
ceptibility to disease in human medicine has become 
widespread. Genomic prediction has primarily utilized 
many thousands of DNA markers, most commonly single 
nucleotide polymorphisms (SNPs), that cover the entire 
genome to predict the genetic merit and phenotypes of 
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individuals. In humans, genomic prediction has been 
widely used to predict disease risk and highly polygenic 
complex human traits [1, 2]. In agriculture, genomic pre-
diction is used to estimate a genomic value (GV), which 
is then used to make selection decisions in a breeding 
population.

Genomic best linear unbiased prediction (GBLUP) 
is one of the most commonly used statistical mod-
els for genomic prediction [3]. It adopts a mixed model 
approach that uses a genomic relationship matrix (GRM) 
built from genotypes instead of a traditional pedigree-
based relationship matrix. Even though this method 
showed state-of-the-art performance in many popula-
tions, it still has some limitations. First, it approximates 
a traditional infinitesimal model, which assumes an equal 
genetic variance for all SNPs. To resolve this limitation, 
Bayesian models [4, 5] assume that some SNPs have zero 
effects, whereas others have small to moderate effects. 
However, these methods require unknown parameters to 
be calculated by multiple iterations, which is time-con-
suming. Fragomeni et al. [6] and Wang et al. [7] derived 
the optimal weights of SNPs to allow unequal variances 
for each SNP in the GBLUP equation, but they only 
brought a negligible improvement in simulation data. 
Ren et al. [8] developed a weighting method to construct 
a weighted GRM, but it required additional priorities 
to estimate SNP effects. Furthermore, the conventional 
GBLUP method only accounts for additive marker effects 
due to its reliance on a linear model. To interfuse non-
linearity effects into GBLUP, some studies focused on 
deriving GRM with dominance effects [9, 10] and epi-
static interactions [11, 12]. However, the line of research 
that directly leverages the non-linearity to GV estimation 
was less studied.

Deep learning is a good alternative method to 
solve these problems. Recent advances in deep neu-
ral networks have outperformed the state-of-the-art 
in various fields, such as computer vision, machine 
translation, autonomous driving, and audio recogni-
tion [13–17]. In particular, the use of local informa-
tion has led to these successes. Convolutional neural 
network (CNN), which is the most common structure 
for computer vision, constitutes a weights-shared fil-
ter operation for the adjacent region of an input image 
[18]. Recurrent neural network (RNN) has been com-
monly used in sequence-to-sequence problems, such 
as speech recognition or natural language process-
ing [14]. It takes information from previous sequence 
positions to extract information from a current 
sequence position. These two networks hypothesize 
that adjacent regions with similar patterns could pro-
vide shared features between them. More recently, the 
transformer [16], an advanced deep learning method, 

has achieved superior performance in the computer 
vision [17] and the natural language processing [19]. It 
also exploits a relative position to extract informative 
features from input data.

The local information can also be exploited in 
genomic prediction. The general concept of genomic 
prediction relies on the linkage disequilibrium (LD) 
between genetic markers and the unknown quantita-
tive trait loci (QTL). With high-density SNP panels, 
the markers co-segregate with the causal mutations, 
allowing the effects of causal variants to be indirectly 
estimated through adjacent markers [5, 20]. Therefore, 
it is essential to carefully use the information of adja-
cent markers for accurate genomic prediction. How-
ever, previous deep learning networks, such as CNN 
or RNN, are not suitable to estimate adjacent marker 
effects, since they assign marker effects based primar-
ily on sequence patterns. In SNP array data, adjacent 
markers often lose a functional relation (e.g. protein 
coding) due to varying distances between them. In 
other words, adjacent SNPs with the same pattern but 
located in different loci can have different functional 
effects from each other. Practically, simple fully-con-
nected networks that do not use local information usu-
ally perform better than other local-based networks 
in genomic prediction [21, 22]. In this regard, a new 
local-based network is needed to capture the effects of 
adjacent markers considering their distinct loci.

There have been many attempts to leverage deep 
learning networks for genomic prediction. Zinga-
retti et al. [23] explored CNN for genomic prediction 
of polyploid outcrossing species. Montesinos-López 
et al. [24] used various deep learning architectures for 
multi-environment genomic predictions of complex 
traits in plants. Pook et  al. [25] applied locally-con-
nected layers on simulated maize and real Arabidopsis 
data. However, as these methods cannot achieve a suf-
ficient accuracy even with more complex parameters 
than conventional methods, they quickly reach the 
limit to their uses in real-world applications.

To this end, we propose a novel algorithm, which is 
a joint deep learning networks and GBLUP framework 
(deepGBLUP) for accurate genomic prediction. Given 
the SNP sequence data, the proposed deepGBLUP 
first extracts the effects of adjacent markers using a 
locally connected layer (LCL). Figure 1 compares LCL 
with the common CNN. LCL works similarly to CNN, 
except that weights in each filter are unshared. There-
fore, distinct weight sets are used for adjacent markers 
located at different loci. Then, deepGBLUP estimates 
an initial GV from the effects of adjacent markers 
through a fully-connected layer. However, this initial 
GV lacks a concrete genetic relationship, which may 
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generate un-reliable results as in the previous stud-
ies [23–25]. The genetic relationship between training 
and test individuals is crucial for genomic prediction. 
To address this, we leveraged a well-modified GBLUP 
framework that can utilize genomic relationships (i.e. 
GRM) for a GV estimation. The proposed GBLUP 
framework estimates additive, dominance, and epi-
static GV using three types of GRM. The implementa-
tion details about the GBLUP framework are available 

in the Methods section. Then, the proposed deep-
GBLUP estimates a final GV by summing the initial, 
additive, dominance, and epistatic GV. We evaluated 
deepGBLUP using a Korean native cattle dataset that 
covers diverse marker densities, training sizes, and 
traits. In addition, we validated its performance on 
simulated data involving various ranges of heritabili-
ties and QTL effects.

Fig. 1  Example of a convolution neural network and a locally connected layer. a Convolution neural networks (CNN); b Locally-connected layer 
(LCL). Different colors mean different weight sets
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Methods
Korean native cattle dataset
The Korean native cattle population used in this study 
included 10,000 individuals (animals were born between 
2010 and 2017, and samples were collected between 
2013 and 2019) with phenotypic measurements for car-
cass weight (CWT/kg), eye-muscle area (EMA/cm2 ), 
backfat thickness (BF/mm), and marbling score (MS). 
CWT was measured by scales on beef production rails 
in the slaughterhouse. BF, EMA, and MS at the junction 
between the 12th and 13th ribs were manually measured 
by human experts after a 24-h chill.

Genomic DNA of the animals was extracted from lon-
gissimus-thoracis muscle samples using a DNeasy Blood 
and Tissue Kit (Qiagen, Valencia, CA). In total, 10,000 
samples were genotyped using the Illumina Bovine 
SNP50 BeadChip. SNP quality control was performed 
using the PLINK1.9 software [26] based on the follow-
ing filtering criteria: SNPs with a minor allele frequency < 
0.001, a call rate < 0.1 and those located on the sex chro-
mosomes were removed, i.e. 1853 SNPs, and the post-fil-
ter missing rate was 0.6% of the genotypes. These missing 
SNPs were then imputed with Eagle v2.4 [27]. Finally, 
44,314 SNPs were used in the study, which are defined as 
the 50K set. Furthermore, we selected 10K, 5K, and 1K 
evenly distributed markers from the 50K set to evaluate 
deepGBLUP performance across marker densities.

All experimental procedures were approved by the 
National Institute of Animal Science (NIAS) in the Rural 
Development Administration (RDA) of South Korea, and 
all samples were taken under public animal health and 
welfare guidelines.

Simulated dataset
We used the Qmsim1.10 [28] software to simulate 10,000 
individual genotypes. In the simulated data, 49,980 SNPs 
were uniformly distributed across the 29 chromosomes. 
According to the Korean breeding program [29], the 
Korean cattle population has been established, starting 
with a few outstanding individuals. To imitate the muta-
tions and LD structures of the Korean native cattle, a 
historical population was simulated with 200 individu-
als (100 males and 100 females) for 1000 generations and 
maintaining constant population size by random mat-
ing. Then the population size was gradually increased to 
10,000 individuals (5000 males and 5000 females) for 20 
additional generations (1001th–1020th). We used these 
simulated genotypes as a basis and modeled 21 pheno-
types with three heritabilities h2 (0.5, 0.3, and 0.1) and 
seven QTL effect combinations, including additive (a), 
dominance (d), epistasis (e), additive + dominance (a+d), 
additive + epistasis (a + e), dominance + epistasis (d + e), 
and additive + dominance + epistasis (a + d + e).

To model each phenotype, we first drew the poly-
genic effects of all SNPs from a N (0, 1) distribution. 
The weighted sum of the SNPs by their polygenic effects 
was used as an individual’s polygenic effect, where SNPs 
were coded as 0, 1, and 2 for the reference homozy-
gote, heterozygote, and alternate homozygote genotype, 
respectively.

To simulate QTL effects, we randomly selected 1000 
additive, 1000 dominance, and 1000 epistasis QTL from 
the 49,980 SNP set. It should be noted that each QTL was 
selected from loci that were free from any other QTL. 
The additive effects (a) were computed by the weighted 
sum of 1000 additive QTL by their effects from a N (0, 1) 
distribution. For the dominance effects (d), we re-coded 
the genotypes of 1000 dominance QTL to 0, 1, and 1, 
resulting in an additive and a dominance effect of equal 
size. As with the additive effects, individual dominance 
was calculated by the weighted sum of dominance geno-
types by their effects drawn from a N (0, 1) distribution. 
To model the epistatic effects (e), we followed the simula-
tion scheme in [11]. Specifically, one of the nine possible 
configurations of the 499,500 QTL pairs was randomly 
chosen to have a N (0, 1) distributed effect. For instance, 
when the marker pair xc, xl is drawn, only the configura-
tion (xc = 0, xl = 2) has an effect. We calculated the indi-
vidual epistasis (e) by summing the total epistasis effect 
of QTL pairs.

We standardized the variance of each effect to restrain 
them into the target heritabilities (0.5, 0.3, and 0.1). Let 
σ 2
p  be a phenotype variance, which was set to 100 in this 

study. We first drew the residuals of the individuals from 
N (0,

√

(1− h2)σ 2
p ) . Then the variances of the polygenic 

effects were standardized to 710h
2σ 2

p  , while the variances 
of the additive (a), dominance (d), and epistatic (e) effects 
were each standardized to 1

10h
2σ 2

p  . Note also that all 21 
phenotypes included polygenic effects and residuals with 
different heritabilities and different combinations of a, d, 
and e.

Joint deep learning networks and GBLUP framework 
(deepGBLUP)
In this study, we propose a novel genomic prediction 
method, which integrates deep learning networks and 
a GBLUP framework (deepGBLUP). The deep learning 
networks extract the effects of adjacent markers using 
locally-connected layers and subsequently use them 
to estimate an initial GV through fully-connected lay-
ers. The GBLUP framework estimates three types of GV 
(additive, dominance, and epistasis) by leveraging the 
respective genomic relationship matrices. We addressed 
individuals with known and unknown phenotypes as 
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training and test individuals, respectively. Then the goal 
of deepGBLUP is to predict phenotypes of the test indi-
viduals from an input SNP sequence and known phe-
notypes of training individuals. Figure  2 illustrates an 
overview of the proposed deepGBLUP.

As in Fig.  2, we decomposed n individuals’ pheno-
type y ∈ R

n into five components: mean term µ , initial 
GV bdeep ∈ R

n , additive GV ba ∈ R
n , dominance GV 

bd ∈ R
n , epistatic GV be ∈ R

n , and a residual vector 
r ∈ R

n:

As the mean term µ can be calculated from the train-
ing individuals’ known phenotypes, the genomic predic-
tion of deepGBLUP can be summarized to estimate the 
four different GV, bdeep , ba , bd , and be . Specifically, the 
proposed deepGBLUP estimates b̂a , b̂d and b̂e using the 
GBLUP framework, while b̂deep is estimated using the 
deep learning networks as shown in Fig. 2.

(1)y = µ+ bdeep + ba + bd + be + r.

GBLUP framework
The commonly used GBLUP equation [3] to predict a 
genomic value b̂ is defined as:

where G ∈ R
n×n is a genomic relationship matrix 

between all n individuals, ytrain ∈ R
ntrain is a known phe-

notype vector of the ntrain train individuals, and ȳ is a 
mean of ytrain . Z ∈ {0, 1}ntrain×n is an incidence matrix 
for which the diagonals are set to 1 for the training 
individual columns and the others are 0. � is a normal-
izing scalar, which is commonly set to (1− h2)/h2 in the 
regular GBLUP. Note that the regular GBLUP can be 
classified into additive [3], dominance [9], and epista-
sis [30]-GBLUP depending on which matrix is used to 
replace G.

The proposed deepGBLUP estimates additive GV b̂a , 
dominance GV b̂d , and epistatic GV b̂e , using Eq. (2) with 
an additive relationship matrix Ga ∈ R

n×n , a dominance 

(2)
GBLUP(G, ytrain) = b̂T = [ZTZ+ �G−1]−1ZT (ytrain − ȳtrain)

T ,

Fig. 2  Overview of the proposed deepGBLUP
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relationship matrix Gd ∈ R
n×n , and an epistasis rela-

tionship matrix Ge ∈ R
n×n , respectively. The geno-

type data of all n individuals can be written as a matrix 
X ∈ {0, 1, 2}n×p , for which the column dimension p is the 
number of SNPs. Each element 0, 1, and 2 in X refers to 
the reference homozygote, heterozygote, and alternate 
homozygote genotype, respectively. We calculated the 
additive relationship matrix Ga following [3]:

where pi is the allele frequency of the ith marker and 
P ∈ R

n×p is an extended matrix, in which the rows are an 
allele frequency vector p ∈ R

p.
We constructed the dominance relationship matrix 

Gd by [9]. Under the assumption of Hardy-Weinberg 
equilibrium, a dominance value of the ith marker can 
be expressed as −2p2i  , 2pi(1− pi) , and −2(1− pi)

2 for 
the reference homozygote, heterozygote, and alternate 
homozygote, respectively. Then the dominance values of 
all individuals can be written as a matrix D ∈ R

n×p . We 
computed the dominance relationship matrix Gd by:

(3)X̃ = X − 2P,

(4)Ga =
X̃X̃T

2
∑

pi(1− pi)
,

(5)Gd =
DDT

4
∑

p2i (1− pi)2
.

With a definition of the multivariate Gaussian distribu-
tion, the epistasis relationship matrix Ge can be derived 
by [30]:

where M ∈ {−1, 0, 1}n×p is a centered genotype X − 1 , ◦ 
is the Hadamard product, and Tr(·) is the trace operation 
that is a sum of matrix diagonals. For the detailed deriva-
tion of this equation, please see [30].

Deep learning networks
Figure 3 illustrates the proposed locally connected layer 
(LCL). It recursively aggregates k adjacent SNPs across 
the whole sequence with one stride. Let t ∈ R

p and 
o ∈ R

p be the input and output sequence of LCL. The 
proposed LCL calculates the mth value om of the output 
sequence o as follow:

where k is the kernel size and wm,j is the jth kernel weight 
for the mth output in trainable weight matrix W ∈ R

p×k . 
Then, the LCL operation with the kernel size k can be 
written as:

(6)
G̃e = 0.5(MMT ◦MMT )− 0.5(M ◦M)(M ◦M)T ,

(7)Ge =
G̃e

Tr(G̃e)/n
,

(8)om =

k−1
∑

j=0

wm,(j+1)t(m−j),

(9)

LCLk(t,W) = o

=





k−1
�

j=0

w1(j+1)t(1−j), · · · ,

k−1
�

j=0

wm(j+1)t(m−j), · · · ,

k−1
�

j=0

wp(j+1)i(p−j)



.

Fig. 3  Detailed description of the proposed locally-connected layer. LCLk  is a locally connected layer with k kernel size
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Note that LCL cannot be performed when m ≤ j , since 
there must be no value t(m−j) at a negative position. Thus, 
LCL replaces t(m−j) as zero value when m ≤ j . To extract 
high-level features of input SNPs, deepGBLUP adopts 
sequential LCL as shown in Fig. 2. Let xi be the ith indi-
vidual’s SNP sequence. The proposed deepGBLUP first 
extracts the temporal marker effects of the ith individual 
ẽi ∈ R

p through LCL5(·):

where LN(· ) is a layer normalization [31], GeLU(· ) is a 
GELU non-linearity [32], and Wẽ ∈ R

p×k is a trainable 
weight of LCL5 . Then, the final marker effects ei ∈ R

p are 
calculated by:

where We ∈ R
p×k is a trainable weight of LCL3 . To 

ensure the reusability of input sequences, deepGBLUP 
adds marker effects ei to input SNPs x̃i = xi + ei . Then, 
the effect-interfused SNPs of all n individuals can be 
presented by a matrix X̃ ∈ R

n×p . Finally, deepGBLUP 
estimates an initial GV b̂deep from X̃ through a fully-con-
nected layer (FCL):

where Wb ∈ R
p×1 is a trainable weight of FCL. Then, it 

computes the predicted phenotype ŷ ∈ R
n of all n indi-

viduals by ŷ = ȳtrain + b̂deep + b̂a + b̂d + b̂e.

Loss function and implementation details
For training deepGBLUP, we employed L1-loss between 
observed and predicted phenotypes of training 
individuals:

(10)ẽi = GeLU(LN(LCL5(xi,Wẽ))),

(11)ei = LCL3(ẽi,We),

(12)b̂Tdeep = FCL(X̃,Wb) = X̃Wb,

(13)L =
1

ntrain

ntrain
∑

i=1

|y
(i)
train − ŷ

(i)
train|,

where y(i)train and ŷ(i)train are the ith value of ytrain and ŷtrain , 
respectively. Thus, the proposed deepGBLUP iteratively 
optimized the trainable weights set W = {Wẽ,We,Wb} 
to minimize L during the training process. We used 
AdamW [33] for the parameter optimization.

To evaluate deepGBLUP performance, we meas-
ured the Pearson correlation coefficient between ŷtest 
and ytest , divided by the square root of heritability, i.e. 
cor(ŷtest, ytest)/h . We defined this as predictive ability in 
this study. We estimated the heritability using an average 
information-restricted maximum likelihood [34] in the 
AIREMLF90 software [35]. By this method, the heritabil-
ities of each trait were estimated to 0.392, 0.378, 0.366, 
and 0.479 for CWT, BF, EMA, and MS, respectively.

We conducted comparative analyses for the pro-
posed deepGBLUP with state-of-the-art genomic pre-
diction algorithms, including GBLUP [3], dominance 
GBLUP (DGBLUP [9]) and epistasis GBLUP (EGBLUP 
[30]), BayesA [4], BayesB [4], and BayesC [4]. GBLUP 
yields an additive GV as an output, while DGBLUP and 
EGBLUP incorporate dominance+additive GV and 
epistatic+additive GV, respectively. We implemented all 
Bayesian models using the BGLR [36] package in R pro-
gram language. We also used a 10-fold cross-validation 
scheme to evaluate model performance. All individu-
als were divided into 10 groups of equal size. Nine of 
these groups were used as the training individuals and 
the other group was used as the test individuals in each 
cross-validation. The means and standard errors of pre-
dictive abilities, aggregated over the 10-fold tests, are 
reported in this study as performance metrics.

Results
Model performance on the Korean native cattle data
We determined a learning rate and an epoch using a 
validation stage. Specifically, we selected 10% of the 
training individuals as validation individuals. Then, we 
trained deepGBLUP using the other 90% of the training 

Table 1  Determined epochs and learning rates (lr) to train deepGBLUP

Density Train size CWT​ BF EMA MS

lr epoch lr epoch lr epoch lr epoch

50K 9000 0.001 7 0.0001 9 0.001 3 0.0001 8

10K 9000 0.001 9 0.0001 12 0.001 4 0.0001 12

5K 9000 0.001 9 0.0001 13 0.001 5 0.001 2

1K 9000 0.001 23 0.0001 30 0.001 10 0.001 11

50K 5000 0.001 8 0.0001 15 0.001 4 0.0001 10

50K 2500 0.001 10 0.0001 9 0.001 5 0.0001 10

50K 1000 0.001 11 0.0001 4 0.001 6 0.0001 11
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individuals and evaluated its performance using the vali-
dation individuals. Finally, we selected a learning rate and 
an epoch, which achieved the best performance on the 
validation individuals. The determined learning rates and 

epochs for each trait across marker densities and train-
ing sizes are in Table 1. The training and test of deepG-
BLUP were conducted on an RTX A6000 GPU. With an 
efficient GPU device, deepGBLUP is able to predict the 
phenotypes of the individuals with a reasonable comput-
ing time as shown in Table 2.

Across marker density
Table  3 compares the proposed deepGBLUP with the 
other genomic prediction methods on the Korean native 
cattle dataset across various traits and marker densi-
ties. Notably, deepGBLUP demonstrates superior per-
formance in all settings without exception. Even though 
Bayesian methods outperform the GBLUP methods, 
deepGBLUP exhibits a higher accuracy than Bayesian 
methods in all scenarios. These findings suggest that the 
deep learning networks can effectively complement the 
estimation results of the GBLUP methods.

Table 2  Required times for training and test of deepGBLUP 
across marker densities and train sizes

We recorded the average time of four traits (CWT, BF, EMA, and MS). Training 
time means a processing time for 1 epoch

Density Train size Training time (s) Test time (s)

50K 9000 3.24 1.36

10K 9000 1.07 1.14

5K 9000 0.94 1.13

1K 9000 0.85 1.12

50K 5000 1.81 0.53

50K 2500 0.9 0.24

50K 1000 0.36 0.17

Table 3  Performance comparison of deepGBLUP with the other genomic prediction methods on the Korean native cattle dataset 
across different traits and marker densities

Each value in the cells are means and standard errors of the predictive abilities for 10-fold tests. We highlight the best results in italic

Density Method CWT​ BF EMA MS

50K GBLUP 0.729 ± 0.015 0.647 ± 0.009 0.726 ± 0.017 0.670 ± 0.014

DGBLUP 0.731 ± 0.016 0.639 ± 0.01 0.729 ± 0.017 0.668 ± 0.013

EGBLUP 0.724 ± 0.016 0.641 ± 0.01 0.721 ± 0.019 0.664 ± 0.014

BayesA 0.730 ± 0.015 0.658 ± 0.009 0.720 ± 0.016 0.667 ± 0.014

BayesB 0.746 ± 0.015 0.667 ± 0.009 0.723 ± 0.019 0.670 ± 0.013

BayesC 0.737 ± 0.015 0.662 ± 0.01 0.726 ± 0.018 0.668 ± 0.014

deepGBLUP 0.752 ± 0.016 0.673 ± 0.009 0.746 ± 0.017 0.672 ± 0.012

10K GBLUP 0.676 ± 0.015 0.577 ± 0.008 0.678 ± 0.018 0.613 ± 0.011

DGBLUP 0.675 ± 0.015 0.571 ± 0.009 0.678 ± 0.018 0.607 ± 0.01

EGBLUP 0.684 ± 0.016 0.585 ± 0.009 0.684 ± 0.019 0.619 ± 0.012

BayesA 0.700 ± 0.015 0.59 ± 0.008 0.682 ± 0.019 0.620 ± 0.011

BayesB 0.695 ± 0.015 0.585 ± 0.007 0.675 ± 0.018 0.612 ± 0.012

BayesC 0.689 ± 0.016 0.589 ± 0.008 0.681 ± 0.018 0.616 ± 0.012

deepGBLUP 0.713 ± 0.017 0.612 ± 0.008 0.705 ± 0.018 0.626 ± 0.012

5K GBLUP 0.638 ± 0.015 0.543 ± 0.01 0.631 ± 0.019 0.548 ± 0.011

DGBLUP 0.632 ± 0.016 0.533 ± 0.011 0.633 ± 0.019 0.544 ± 0.011

EGBLUP 0.653 ± 0.016 0.556 ± 0.011 0.646 ± 0.02 0.564 ± 0.012

BayesA 0.668 ± 0.016 0.557 ± 0.009 0.650 ± 0.019 0.568 ± 0.013

BayesB 0.658 ± 0.016 0.543 ± 0.008 0.643 ± 0.018 0.562 ± 0.013

BayesC 0.655 ± 0.017 0.555 ± 0.008 0.647 ± 0.019 0.567 ± 0.013

deepGBLUP 0.681 ± 0.016 0.58 ± 0.01 0.672 ± 0.019 0.582 ± 0.011

1K GBLUP 0.535 ± 0.017 0.429 ± 0.014 0.537 ± 0.021 0.424 ± 0.013

DGBLUP 0.519 ± 0.015 0.401 ± 0.012 0.529 ± 0.023 0.405 ± 0.014

EGBLUP 0.552 ± 0.017 0.444 ± 0.014 0.555 ± 0.022 0.443 ± 0.014

BayesA 0.568 ± 0.016 0.442 ± 0.014 0.557 ± 0.022 0.443 ± 0.014

BayesB 0.564 ± 0.016 0.437 ± 0.012 0.556 ± 0.021 0.441 ± 0.013

BayesC 0.551 ± 0.017 0.440 ± 0.013 0.552 ± 0.021 0.441 ± 0.014

deepGBLUP 0.581 ± 0.016 0.467 ± 0.014 0.584 ± 0.022 0.466 ± 0.013
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Across training size
Deep learning methods typically require a large amount 
of data to operate effectively [15, 17, 19]. To identify the 
amount of data necessary for deepGBLUP, we evaluated 
its performances with varying training sizes of 5000, 
2500, and 1000. The training individuals were randomly 
sampled in each 10-fold to obtain the corresponding 
training size. Table 4 presents a comparison of the pro-
posed deepGBLUP with the other genomic prediction 
methods on the Korean native cattle dataset across vari-
ous traits and training sizes. Our findings indicate that 
GBLUP-based methods outperform Bayesian methods 
for smaller training sizes (2500 and 1000). On the other 
hand, the proposed deepGBLUP consistently achieves 
the best predictive ability across all training sizes. These 
results demonstrate that deepGLBUP can yield stable 
performance even with less training data.

Impact of each component
We studied the contribution of four components: (1) 
deep learning networks b̂deep , (2) additive GBLUP b̂a , 
(3) dominance GBLUP b̂d , (4) epistasis GBLUP b̂e , by 
designing various models with different combinations 
of these components. Table 5 reports the results on the 
Korean native cattle with 50K and a 9000 training size. 
The absence of a checkmark indicates that the corre-
sponding component was excluded from the phenotype 
prediction.

In Table 5, the best result for each trait consistently con-
tains the b̂deep component. However, exclusion of b̂deep led 
to the worst result with only one exception. These results 
validate that the deep learning networks based on LCL 
can estimate more accurate marker effects and increase 
model performance compared to the regular GBLUP.

Table 4  Performance comparison of deepGBLUP with the other genomic prediction methods on the Korean native cattle dataset 
across different traits and training sizes

Each value in the cells are means and standard errors of the predictive abilities for 10-fold tests. We highlight the best results in italic

Train size Method CWT​ BF EMA MS

9000 GBLUP 0.729 ± 0.015 0.647 ± 0.009 0.726 ± 0.017 0.670 ± 0.014

DGBLUP 0.731 ± 0.016 0.639 ± 0.01 0.729 ± 0.017 0.668 ± 0.013

EGBLUP 0.724 ± 0.016 0.641 ± 0.01 0.721 ± 0.019 0.664 ± 0.014

BayesA 0.730 ± 0.015 0.658 ± 0.009 0.720 ± 0.016 0.667 ± 0.014

BayesB 0.746 ± 0.015 0.667 ± 0.009 0.723 ± 0.019 0.670 ± 0.013

BayesC 0.737 ± 0.015 0.662 ± 0.01 0.726 ± 0.018 0.668 ± 0.014

deepGBLUP 0.752 ± 0.016 0.673 ± 0.009 0.746 ± 0.017 0.672 ± 0.012

5000 GBLUP 0.682 ± 0.018 0.581 ± 0.009 0.679 ± 0.018 0.609 ± 0.012

DGBLUP 0.684 ± 0.018 0.576 ± 0.009 0.683 ± 0.019 0.610 ± 0.012

EGBLUP 0.678 ± 0.017 0.578 ± 0.01 0.676 ± 0.019 0.606 ± 0.013

BayesA 0.678 ± 0.018 0.581 ± 0.008 0.664 ± 0.017 0.602 ± 0.012

BayesB 0.697 ± 0.017 0.593 ± 0.009 0.677 ± 0.019 0.606 ± 0.012

BayesC 0.684 ± 0.018 0.586 ± 0.009 0.673 ± 0.019 0.607 ± 0.012

deepGBLUP 0.712 ± 0.018 0.607 ± 0.009 0.702 ± 0.018 0.619 ± 0.011

2500 GBLUP 0.631 ± 0.016 0.515 ± 0.011 0.627 ± 0.025 0.539 ± 0.01

DGBLUP 0.634 ± 0.016 0.514 ± 0.012 0.628 ± 0.024 0.539 ± 0.01

EGBLUP 0.629 ± 0.016 0.514 ± 0.012 0.625 ± 0.025 0.538 ± 0.01

BayesA 0.612 ± 0.016 0.500 ± 0.012 0.600 ± 0.022 0.525 ± 0.01

BayesB 0.635 ± 0.015 0.515 ± 0.012 0.615 ± 0.025 0.531 ± 0.009

BayesC 0.622 ± 0.016 0.508 ± 0.011 0.615 ± 0.025 0.534 ± 0.009

deepGBLUP 0.660 ± 0.016 0.544 ± 0.013 0.650 ± 0.023 0.552 ± 0.01

1000 GBLUP 0.532 ± 0.017 0.384 ± 0.02 0.528 ± 0.018 0.424 ± 0.014

DGBLUP 0.532 ± 0.017 0.381 ± 0.021 0.527 ± 0.018 0.424 ± 0.014

EGBLUP 0.532 ± 0.017 0.384 ± 0.02 0.527 ± 0.018 0.423 ± 0.014

BayesA 0.487 ± 0.018 0.361 ± 0.022 0.479 ± 0.018 0.404 ± 0.016

BayesB 0.502 ± 0.015 0.365 ± 0.019 0.496 ± 0.019 0.405 ± 0.014

BayesC 0.505 ± 0.015 0.365 ± 0.02 0.510 ± 0.018 0.402 ± 0.016

deepGBLUP 0.557 ± 0.018 0.432 ± 0.018 0.564 ± 0.019 0.438 ± 0.013
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Furthermore, excluding the GBLUP framework from 
deepGBLUP results in substantial decreases in predic-
tive abilities (Table  5). Even though the deep learning 
networks improve the performance of deepGBLUP, the 

integration of the GBLUP method is still critical to the 
overall model performance.

Model performance on the simulated data
The simulated dataset was used to evaluate the perfor-
mance of deepGBLUP across various heritabilities and 
QTL effects. As in the Korean native cattle data, we also 
used the validation stage for model training and the pre-
dictive ability for performance measurement. Tables  6 
and 7 compare deepGBLUP with the other methods for 
single and multiple QTL effects. We observed that the 
proposed deepGBLUP achieves superior performance 
compared to both GBLUP and Bayesian methods for all 
heritabilities and QTL effects. In particular, deepGBLUP 
markedly outperforms the other methods in lower herit-
ability scenarios. These results demonstrate that deepG-
BLUP can implement accurate genomic predictions even 
when the genetic variance is relatively small compared to 
the phenotypic variance.

Discussion
Deep learning for genomic prediction
Many existing studies, which use deep learning networks 
for genomic prediction, have relied on previous local 
based architectures, such as CNN or RNN [22, 23, 37]. 
These methods assign variant effects based on the pat-
terns of adjacent markers. Although adjacent markers can 
be useful information in whole genome sequence data, 
they often lack inherent functional context (e.g. protein 
coding) in SNP array data. In other words, the adjacent 
SNPs with the same sequence but located in different loci 
should have different functional effects from each other. 
Therefore, these approaches are not appropriate from a 
genetics perspective and have shown lower prediction 
accuracy than the other state-of-the-art methods such as 

Table 5  Results on the Korean native cattle data with different combinations of deepGBLUP components: (1) Deep learning networks 
b̂deep , (2) additive GBLUP b̂a , (3) dominance GBLUP b̂d , (4) epistasis GBLUP b̂e

The absence of a checkmark indicates that the corresponding component is excluded from the phenotype prediction. We highlight the best results in italic and the 
worst results in underline

Component CWT​ BF EMA MS

b̂deep b̂a b̂d b̂e

✓ 0.746 ± 0.017 0.661 ± 0.009 0.722 ± 0.014 0.622 ± 0.011

✓ ✓ 0.753 ± 0.015 0.673 ± 0.009 0.744 ± 0.016 0.666 ± 0.012

✓ ✓ 0.748 ± 0.017 0.659 ± 0.01 0.725 ± 0.014 0.623 ± 0.011

✓ ✓ 0.747 ± 0.016 0.671 ± 0.009 0.734 ± 0.016 0.646 ± 0.012

✓ ✓ ✓ 0.755 ± 0.016 0.672 ± 0.009 0.746 ± 0.016 0.666 ± 0.012

✓ ✓ ✓ 0.751 ± 0.015 0.673 ± 0.009 0.744 ± 0.017 0.672 ± 0.012

✓ ✓ ✓ 0.748 ± 0.016 0.669 ± 0.009 0.736 ± 0.016 0.647± 0.011

✓ ✓ ✓ 0.725± 0.016 0.639± 0.01 0.722± 0.019 0.665 ± 0.014

✓ ✓ ✓ ✓ 0.752 ± 0.016 0.673 ± 0.009 0.746 ± 0.017 0.672 ± 0.012

Table 6  Performance comparison of deepGBLUP with the other 
genomic prediction methods on the simulated data across 
different heritabilities and single QTL effects

Each value in the cells are means and standard errors of the predictive abilities 
for 10-fold tests. We highlight the best results in italic

Heritability Method QTL effect

a d e

0.5 GBLUP 0.633 ± 0.008 0.629 ± 0.008 0.613 ± 0.005

DGBLUP 0.627 ± 0.008 0.624 ± 0.007 0.608 ± 0.005

EGBLUP 0.630 ± 0.009 0.626 ± 0.008 0.611 ± 0.006

BayesA 0.628 ± 0.01 0.622 ± 0.007 0.606 ± 0.006

BayesB 0.626 ± 0.009 0.621 ± 0.008 0.602 ± 0.005

BayesC 0.628 ± 0.009 0.625 ± 0.008 0.608 ± 0.005

deepGBLUP 0.641 ± 0.007 0.635 ± 0.007 0.620 ± 0.006

0.3 GBLUP 0.588 ± 0.028 0.571 ± 0.026 0.566 ± 0.027

DGBLUP 0.587 ± 0.029 0.571 ± 0.027 0.567 ± 0.027

EGBLUP 0.587 ± 0.028 0.571 ± 0.026 0.565 ± 0.027

BayesA 0.569 ± 0.027 0.552 ± 0.025 0.546 ± 0.026

BayesB 0.583 ± 0.028 0.568 ± 0.026 0.564 ± 0.026

BayesC 0.581 ± 0.028 0.567 ± 0.027 0.564 ± 0.027

deepGBLUP 0.608 ± 0.028 0.594 ± 0.026 0.589 ± 0.026

0.1 GBLUP 0.457 ± 0.028 0.443 ± 0.023 0.433 ± 0.026

DGBLUP 0.454 ± 0.028 0.441 ± 0.023 0.431 ± 0.026

EGBLUP 0.462 ± 0.028 0.450 ± 0.023 0.439 ± 0.026

BayesA 0.413 ± 0.031 0.388 ± 0.029 0.394 ± 0.033

BayesB 0.446 ± 0.025 0.438 ± 0.025 0.415 ± 0.024

BayesC 0.443 ± 0.029 0.439 ± 0.025 0.421 ± 0.029

deepGBLUP 0.542 ± 0.023 0.532 ± 0.019 0.518 ± 0.022
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GBLUP and Bayesian methods [22, 23, 37]. In contrast, 
we used a locally-connected layer that can estimate dis-
tinct weight sets for adjacent SNPs located in different 
loci. Our results show that the LCL-based deep learning 
networks improved model performance from the previ-
ous methods.

In [25], Pook et al. also used an LCL-based model for 
genomic prediction, but their approach predicts GV 
directly through a sequential deep learning network, 
and this simplistic structure did not achieve higher per-
formance compared to the other prediction methods. 
As in Tables  3 and 5, the proposed deepGBLUP also 
underperformed compared to the other methods, if the 
GBLUP framework was excluded. These results suggest 
that the combined use of both GBLUP and deep learning 
networks is crucial for improving prediction accuracy. 
Furthermore, Pook et al. required large-scale datasets in 
order to achieve comparable performance to the other 
methods [25]. On the contrary, the proposed deepGB-
LUP yielded stable performance with relatively few train-
ing data (1K).

Transformer [16] is another alternative to estimate 
marker effects from SNP data. It can effectively assign 
the effects of adjacent markers by considering their loci 

and patterns. However, this method demands a larger 
training dataset compared to the other deep learning 
architectures in order to achieve similar performance. 
For instance, in the computer vision task [17], the trans-
former required more than 300  M training images to 
outperform previous methods. This is not practical for 
genomic prediction due to the high cost and time con-
sumption for animal genotyping.

Limitations
Even though deepGBLUP has demonstrated reliable GV 
predictions for the Korean native cattle, there are still 
limitations in its flexibility for its use across various pop-
ulations. In this study, we evaluated the performance of 
deepGBLUP using the test individuals that were in the 
same generation as the training individuals. Since the 
Korean native cattle is a relatively long-established breed, 
individuals in the same generation share similar genetic 
patterns. In other words, the training population in this 
study may include primitive features of the test popula-
tion. To validate deepGBLUP more precisely, it needs to 
be evaluated by an across-breed or multi-generation test. 
Specifically, the performance of deepGBLUP should be 

Table 7  Performance comparison of deepGBLUP with the other genomic prediction methods on the simulated data across different 
heritabilities and multiple QTL effects

Each value in the cells are means and standard errors of the predictive abilities for 10-fold tests. We highlight the best results in italic

Heritability Method QTL effect

 a + d a + e d + e a + d + e

0.5 GBLUP 0.628 ± 0.009 0.614 ± 0.007 0.610 ± 0.007 0.610 ± 0.008

DGBLUP 0.622 ± 0.009 0.609 ± 0.007 0.606 ± 0.007 0.606 ± 0.008

EGBLUP 0.626 ± 0.01 0.612 ± 0.008 0.609 ± 0.007 0.610 ± 0.009

BayesA 0.622 ± 0.01 0.608 ± 0.008 0.604 ± 0.007 0.606 ± 0.009

BayesB 0.622 ± 0.009 0.607 ± 0.008 0.601 ± 0.006 0.603 ± 0.008

BayesC 0.627 ± 0.009 0.608 ± 0.007 0.606 ± 0.007 0.607 ± 0.008

deepGBLUP 0.636 ± 0.009 0.623 ± 0.006 0.618 ± 0.006 0.620 ± 0.007

0.3 GBLUP 0.579 ± 0.025 0.572 ± 0.026 0.557 ± 0.026 0.565 ± 0.025

DGBLUP 0.578 ± 0.026 0.573 ± 0.027 0.559 ± 0.026 0.566 ± 0.025

EGBLUP 0.579 ± 0.026 0.571 ± 0.026 0.558 ± 0.026 0.565 ± 0.025

BayesA 0.563 ± 0.025 0.552 ± 0.027 0.542 ± 0.025 0.549 ± 0.024

BayesB 0.574 ± 0.026 0.563 ± 0.026 0.553 ± 0.027 0.559 ± 0.025

BayesC 0.574 ± 0.026 0.570 ± 0.027 0.553 ± 0.026 0.562 ± 0.025

deepGBLUP 0.601 ± 0.026 0.593 ± 0.026 0.583 ± 0.026 0.585 ± 0.025

0.1 GBLUP 0.453 ± 0.024 0.441 ± 0.027 0.427 ± 0.022 0.438 ± 0.023

DGBLUP 0.450 ± 0.024 0.438 ± 0.027 0.425 ± 0.022 0.435 ± 0.023

EGBLUP 0.459 ± 0.024 0.446 ± 0.026 0.435 ± 0.022 0.444 ± 0.022

BayesA 0.408 ± 0.028 0.390 ± 0.03 0.377 ± 0.028 0.399 ± 0.027

BayesB 0.436 ± 0.024 0.435 ± 0.028 0.417 ± 0.023 0.433 ± 0.021

BayesC 0.446 ± 0.026 0.439 ± 0.03 0.421 ± 0.025 0.431 ± 0.023

deepGBLUP 0.528 ± 0.018 0.524 ± 0.026 0.513 ± 0.017 0.507 ± 0.018
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measured using test individuals that belong to different 
breeds or generations with the training individuals.

To challenge these experimental limitations, we imple-
mented a forward-in-time evaluation on the Korean 
native cattle dataset. Specifically, we constructed a valida-
tion population with 1154 individuals born in 2017, and 
a training population of 8846 individuals born between 
2010 ∼ 2016 . Table 8 shows that the proposed deepGB-
LUP consistently outperformed the other methods for all 
traits, as demonstrated by the cross-validation approach.

In addition, deepGBLUP needs the genotypes of all 
the animals to estimate their GV. However, the common 
practice in animal breeding is to perform a joint GV esti-
mation for both genotyped and non-genotyped animals. 
To enable more extensive applications, deepGBLUP 
needs to be further developed to estimate GV simulta-
neously for genotyped and non-genotyped animals. As 
a potential solution, deepGBLUP will provide an option 
to use a pedigree module, which approximates GV from 
pedigree information for non-genotyped animals.

In this study, we integrated deep learning networks 
with GBLUP methods and markedly increased predictive 
abilities from the regular GBLUP. However, deepGBLUP 
can also replace the GBLUP framework with other prior 
methods to estimate auxiliary GV as illustrated in Fig. 2. 
Therefore, possible future developments include inte-
grating deepGBLUP with other existing models, such as 
Bayesian methods, for more accurate genomic prediction.

Conclusions
In this paper, we introduce deepGBLUP, a novel genomic 
prediction algorithm for complex traits in the Korean 
native cattle. The main contribution of deepGBLUP is 
the combination of deep learning networks and a GBLUP 
framework in a single model. Given an input SNP data, 
the deep learning networks extract the effects of adjacent 
SNPs using locally-connected layers and subsequently 

use them to estimate an initial GV through fully-con-
nected layers. The GBLUP framework estimates three 
types of GV (additive, dominance, and epistasis) by lev-
eraging respective genetic relationship matrices. The pro-
posed deepGBLUP calculates a final GV by summing all 
the estimated genomic values. The experimental results 
on the Korean native cattle data and simulated data dem-
onstrate that the proposed deepGBLUP outperforms the 
previous methods, providing a reliable prediction for var-
ious traits, marker densities, training sizes, heritabilities, 
and QTL effects.
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Additional file 1: Figure S1. QTL mapping with deepGBLUP for a single 
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two QTL effects. We simulated heritability 0.5 across QTL effects including 
additive, dominance, and epistasis. (a) for additive+dominance QTL, (b) for 
additive+epistasis QTL, and (c) for dominance+epistasis QTL. Figure S3. 
QTL mapping with deepGBLUP for three QTL effects. We simulated herit‑
ability 0.5 across QTL effects including additive, dominance, and epistasis. 
(a) for additive+dominance+epistasis QTL.
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Table 8  Performance comparison of deepGBLUP with the other 
genomic prediction methods using forward-in-time evaluation 
on the Korean native cattle dataset

 Each value in the cells is the predictive ability. We highlight the best results in 
italic

Method CWT​ BF EMA MS
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