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and applications
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Abstract 

Livestock and poultry play a significant role in human nutrition by converting agricultural by-products into high-
quality proteins. To meet the growing demand for safe animal protein, genetic improvement of livestock must be 
done sustainably while minimizing negative environmental impacts. Transposable elements (TE) are important 
components of livestock and poultry genomes, contributing to their genetic diversity, chromatin states, gene regula-
tory networks, and complex traits of economic value. However, compared to other species, research on TE in livestock 
and poultry is still in its early stages. In this review, we analyze 72 studies published in the past 20 years, summarize 
the TE composition in livestock and poultry genomes, and focus on their potential roles in functional genomics. We 
also discuss bioinformatic tools and strategies for integrating multi-omics data with TE, and explore future directions, 
feasibility, and challenges of TE research in livestock and poultry. In addition, we suggest strategies to apply TE in basic 
biological research and animal breeding. Our goal is to provide a new perspective on the importance of TE in livestock 
and poultry genomes.

Background
Livestock and poultry play a crucial role in human sur-
vival and development. They are capable of converting 
low-quality feed into high-quality protein and essential 
minerals with high bioavailability, which can be easily 
incorporated into human diets. Currently, a significant 

amount of research on livestock and poultry focuses on 
genetic resources, cis-regulatory elements, gene regula-
tory networks, and epigenetics [1–5]. A comprehensive 
understanding of the genomic structure is especially 
important, as it lays the foundation for investigating 
important economic traits in livestock and poultry using 
biological approaches and mechanisms.

Compared to well-studied single nucleotide polymor-
phisms (SNPs), TE are mobile, repetitive, and diverse 
genomic elements that occupy a larger portion of eukary-
otic genomes [6]. Transposable elements were initially 
viewed as “selfish” DNA or “parasitic” elements because 
of their deleterious effects on host genomes [7]. How-
ever, recent studies have demonstrated that TE play 
important roles in driving the evolution of genomes [8]. 
Transposable elements can promote genetic diversity 
through insertion [9] and regulate other factors such as 
genome size expansion [10], 3D organization [11], chro-
matin modifications [12], gene regulatory networks [13], 
and DNA methylation [14]. Transposable elements can 

*Correspondence:
Lingzhao Fang
lingzhao.fang@qgg.au.dk
Zhengguang Wang
wzhguang68@zju.edu.cn
George E. Liu
george.liu@usda.gov
1 Hainan Institute of Zhejiang University, Hainan Sanya 572000, China
2 College of Animal Sciences, Zhejiang University, Zhejiang, Hangzhou, 
People’s Republic of China
3 Center for Quantitative Genetics and Genomics, Aarhus University, 
8000 Aarhus, Denmark
4 Animal Genomics and Improvement Laboratory, Beltsville Agricultural 
Research Center, Agricultural Research Service, USDA, Beltsville, MD 
20705, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12711-023-00821-2&domain=pdf
http://orcid.org/0000-0001-6990-1147


Page 2 of 18Zhao et al. Genetics Selection Evolution           (2023) 55:50 

be considered as a source of raw material for primitive 
genomes, tools of genetic innovation, and ancestors of 
modern genes (e.g., ncRNA) [15]. Transposable elements 
are able to affect conserved and divergent chromatin 
looping and contribute to cell- and species-specific gene 
regulation [11]. Moreover, TE can be regulated by con-
text-specific patterns of chromatin marks in embryonic 
stem cells [16], and TE-driven DNA methylation allows 
genome expansion [17].

In spite of the abundance of research on the roles of 
TE on the genome biology in humans, model organ-
isms (e.g., mice and Drosophila), and plants (especially 
crop species), few studies on TE have been conducted 
in livestock and poultry. Since 2000, there are only 72 
studies on TE in livestock and poultry genomes, com-
pared to nearly 1700 studies in humans (PubMed data-
base). Nearly 60,000 polymorphic TE have been found in 
humans. Some of them are related to expression quan-
titative trait loci (eQTL) and genome-wide association 
studies (GWAS) [18]. In plants, some researchers have 
successfully used TE to improve the economic proper-
ties and stress resistance of crops. For example, at least 
40 TE insertion polymorphisms have been found to be 
robustly associated with extreme variations in the major 
agronomic traits of tomatoes. In addition, a Copia long 
terminal repeat (LTR)-retrotransposon insertion was 
reported to be associated with high levels of 2-phenyle-
thanol, which gives a pleasant flowery aroma to tomatoes 
[19]. In maize, a miniature inverted-repeat transposable 
element (MITE) inserted into the promoter of the NAC 
gene (ZmNAC111) has been found to enhance drought 
tolerance at the seedling stage [20]. In rice, the inser-
tion of an LTR-retrotransposon into the promoter of the 
OsFRDL4 gene (Os01g0919100) was reported to enhance 
its expression level and promote tolerance to aluminum 
toxicity [21].

The genomes of livestock and poultry contain active 
and functional TE. For example, the insertion of short 
interspersed nuclear elements (SINE) into the intron 
of the porcine growth hormone receptor (GHR) gene 
can reduce its expression by acting as a repressor [22]. 
Moreover, the insertion of a long interspersed nuclear 
element (LINE) into the 5′UTR of the agouti signaling 
protein (ASIP) gene promotes a nearly 10-fold increase 
in its expression and leads to white coat color in buffalo 
[23]. However, there is a general lack of a comprehen-
sive understanding of TE in livestock and poultry, and 
researchers have limited knowledge regarding the bioin-
formatics strategies and methods of analyzing TE. There-
fore, there has been little research on associating TE with 
economic traits in livestock and poultry.

In this review, we highlight the roles and potential 
applications of TE in livestock and poultry research as 

below: (1) we provide an integrated perspective on TE 
composition and polymorphism in 16 livestock and 
poultry species; (2) we summarize the potential roles of 
TE in livestock and poultry species in the past 20 years 
and discuss the shortcomings of current research, (3) we 
provide bioinformatic strategies for analyzing TE and 
list resources suitable for the application of TE in live-
stock and poultry species, and (4) we discuss ideas and 
prospects related to the applications of TE in biological 
research and animal breeding.

Mobile genetic elements in livestock and poultry
In this section, we summarize the TE that are annotated 
in 16 livestock and poultry species using species-specific 
TE libraries retrieved from the Repbase Update data-
base [24] and compare their uniqueness and dynamics 
(Fig.  1a). Transposable elements can be broadly divided 
into two classes according to their mechanism of trans-
position (retrotransposons or transposons). Class I 
includes LTR and non-LTR retrotransposons (LINE and 
SINE), and Class II comprises DNA transposons (hAT 
and Tc1/Mariner) [25]. LINE and SINE typically make up 
the majority of the mammalian genome and have been 
shown to be closely associated with genome rearrange-
ments, epigenetic regulation, and human structural var-
iation-related diseases [26]. These classes can be further 
divided into distinct families and superfamilies based on 
their DNA sequence, structural characteristics, and phy-
logenetic analysis.

Our summary of genomic TE content is based on the 
available representative genomes (retrieved from NCBI) 
of 16 livestock and poultry species. The TE that we found 
belong to 13 TE superfamilies, including almost all major 
TE superfamilies (top 10 in genome coverage) that exist 
in livestock and poultry (Fig.  1b). The TE landscapes of 
livestock and poultry genomes showed large differences 
in abundance and composition. They were dominated by 
LINE and SINE in terms of genome coverage. In addi-
tion to non-LTR elements, LTR elements, although less 
abundant, are shared across all livestock species and have 
been shown to be significantly functionalized. In accord-
ance with their size, poultry genomes (genome coverage: 
4.3 to 8.9%) have a much lower proportion of TE abun-
dance than livestock genomes (genome coverage: 26.1 
to 42.9%). Poultry genomes are mainly dominated by 
the LINE/chicken repeat 1 (CR1) superfamily, whereas 
livestock genomes share multiple key TE superfamilies 
(e.g., LINE/L1). The TE composition shared across Bovi-
dae genomes is unique in many respects compared with 
those of other livestock species (e.g., LINE/RTE-BovB).

Transposable elements contribute highly to the genetic 
diversity of species, but their contribution to livestock 
and poultry genomes may have been underestimated 
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in previous studies. Transposable elements with poly-
morphisms represent the youngest and most active TE, 
and deserve more attention. The composition and pro-
portions of polymorphic TE superfamilies vary widely 
among species (Fig.  2a). For example, LINE contribute 
major genetic polymorphisms to the genomes of live-
stock and poultry. This is mainly manifested in LINE/
L1 in livestock genomes, LINE/CR1 in poultry genomes, 
and LINE/RTE-BovB in Bovidae genomes. Although 
LTR/endogenous retrovirus (ERV) group L members 
(ERVL) have a lower genome coverage relative to LINE/
L1 in poultry genomes, ERVL contribute to a large num-
ber of polymorphisms. The proportion of the LTR/ERV 
group K members (ERVK) superfamilies is higher in 
the chicken genome than in the genomes of other poul-
try species. Moreover, this LTR superfamily contributes 
more to the genomic diversity in chickens than the LINE/
L1 superfamily, indicating that these ERV have potential 
biological functions that deserve more attention in future 
studies on the chicken genome.

The diversity of polymorphic TE families varies widely 
among organisms. This is true even for shared TE super-
families, such as LINE/L1 and LINE/CR1. The active 
mobile elements in most livestock genomes are domi-
nated by one or two types of non-LTR families (Fig. 2b): 
L1-BT and BovB in Bovidae, L1-1-EC and ERE1 in the 
horse and donkey, L1-SS and PRE1_SS in Pig, L1-1-Vpa 
and L1-2-Vpa in the alpaca and camel, and CSINE3A 
and L1A-Oc in rabbits. The family classes of LINE/CR1 

also vary among poultry species, and the mobile ele-
ments in these genomes are partly due to the differential 
amplification of LTR retrotransposons. GGERV elements 
constitute a major proportion of the polymorphic TE in 
chicken and turkey, whereas TE in duck and geese are 
dominated by polymorphic CR1-J2-Pass and CR1-X1-
Pass. Targeted research on these active transposons will 
help elucidate the important role of TE in the functional 
genomes of livestock and poultry.

Established knowledge regarding TE in livestock 
and poultry genomes
With the emergence of large-scale multi-omics data 
analysis, studies have gradually revealed the roles of TE 
in various biological functions in livestock and poultry 
species. However, these TE have received little atten-
tion compared to the TE in humans. In this paper, we 
reviewed 72 studies on TE in 16 species of livestock and 
poultry (Fig. 3). These studies mainly focused on TE in 
three major farm animal species (chicken, pig and cat-
tle) and one companion animal (horse), with little or no 
research on TE in the remaining species. At the current 
stage of research in livestock and poultry, the studies 
have primarily covered investigations of TE composi-
tion (21% of the studies) and comparative genomics 
(24% of the studies). In particular, studies on chickens 
have involved research on avian evolution and com-
parative genomics from the perspective of TE. Nearly 

Fig. 1  Transposable elements classification and annotation in the livestock and poultry genome: a main TE types and classification basis for TE 
classes, superfamilies, families, and subfamilies; and b genomic TE content and genome coverage of representative genomes in 16 livestock 
and poultry species. The cladogram of the species is based on the clustering of the TE distribution pattern. The heat map shows the level 
of enrichment, with darker shades of red indicating greater significance
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one-third of the studies are related to gene regulation, 
and exons, promoters, or intron regions of 13 genes 
are found to be affected by TE (Table 1). Interestingly, 
studies on different livestock and poultry species have 
reported that TE primarily affect genes by altering the 
first intron region. This may reflect the ascertainment 
bias introduced by our better understanding of the 
functions of the promoter regions.

Roles of TE in the pig functional genome
The impacts of TE on gene regulation have received 
more research attention in pigs than in other livestock 
and poultry, especially through the contributions of 
Song et  al. [39–41]. The first draft genome assembly of 
pigs provided new insights into TE composition of pig 
genomes and revealed 87 novel TE families, including 
five LINE, six SINE, and 76  LTR families. The LINE1 
and porcine repetitive element (PRE, a glutamic acid 

Fig. 2  Genomic content of TE superfamilies and families: a percentage of different TE superfamilies/families per species; and b percentage rankings 
of various TE subfamilies in 16 livestock and poultry species
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transfer RNA-derived SINE) families are considered to 
have expanded in the first half of the tertiary period and 
are still active in the most recent period [42]. With the 
assembly of an increasing number of genomes, the TE 
compositions of different pig breeds have been further 
identified and compared, which has revealed that TE are 
the main source of large insertions and deletions in these 
breeds [43, 44].

Some novel TE families have been discovered to be 
functional. For example, LTR class I ERV element-
mediated chimeric transcripts have been identified 

and characterized in the porcine RefSeq and EST data-
bases [45]. Song et al. reported that most protein-coding 
genes and long non-coding RNAs (lncRNAs) contain TE 
retrotransposon insertions. The same research group 
also showed that young L1 5′UTR and LTR-ERV pos-
sess sense and antisense promoter activities and can 
be expressed in multiple tissues and cell lines [39]. TE-
mediated lncRNA are also found in the skeletal muscles 
of Bama Xiang pigs, and their transcription start sites 
are remarkably enriched by LINE and SINE [46]. The 
effects of TE on gene regulation are also reflected in the 
3D chromatin structure, chromatin accessibility, his-
tone modification, and transcription factor binding site 
(TFBS) [47]. It is worth noting that the age of TE is a key 
factor that affects their activity and tolerance in the pig 
genome [48].

Gametogenesis and the embryonic stage are important 
stages for TE activity due to the occurrence of repro-
gramming, and pigs are no exception to this. Kong et al. 
[49, 50] have found that the endogenous small interfer-
ing RNA pathway provides a sophisticated balance of 
regulatory mechanisms for TE (e.g., SINE1B and LTR) 
activity during pig epigenetic reprogramming. Moreover, 
a large number of TE families were identified in persis-
tently methylated regions during the reprogramming of 
germ cells in male and female pigs, suggesting the poten-
tial role of TE in intergenerational epigenetic inheritance 
[51].

At present, pigs are the most explored livestock that 
have TE polymorphisms identified across the whole 
genome. However, research has been primarily focused 
on SINE due to their short sequence length, high integ-
rity, and high density. For instance, Song et al. [40] used 
comparative genomics to identify large-scale structural 
variations among pig breeds and found that some vari-
ations were mediated by SINE insertions. In addition, 
they selected 30 SINE retrotransposon insertion poly-
morphism markers to identify the genetic diversity, dif-
ferentiation, and population structure of seven Chinese 
miniature pig populations [41]. In a previous study, we 
successfully used TE polymorphisms on the X chromo-
some to infer introgression events between Asian and 
European pigs [52]. We first detected 211,067 polymor-
phic SINE at the population level using 374 next-genera-
tion sequencing (NGS) data. Based on this, we found that 
TE can clearly recapitulate known patterns of population 
admixture in pigs [48].

Currently, four genes associated with economically 
important traits have been found to be similarly affected 
by SINE in pigs. Of these, the most well-known is PRE-1 
in the first intron of vertnin (VRTN) gene, which is sig-
nificantly associated with the number of thoracic verte-
brae [36, 37] (Fig.  4a). The follicle stimulating hormone 

Fig. 3  Statistics of 70 studies on 16 species of livestock and poultry 
TE. There are five major research areas related to TE for the study 
of livestock and poultry: comparative genomics, DNA methylation, 
regulatory networks, small RNA, and TE composition

Table 1  Summary of the effects of TE on livestock and poultry 
genes

Species Superfamily Gene Targets Trait Ref.

Buffalo LINE ASIP First intron Coat color [23]

Cattle LTR APOB Exon Cholesterol 
deficiency

[27]

Cattle SINE TP53 Promoter Milk persistency [28]

Cattle LTR IFNAR2 Enhancer IFN immunity [29]

Cattle SINE IL2RB Enhancer IFN immunity [29]

Horse LTR TRPM1 First intron Complex spot-
ting

[30]

Horse SINE/LINE PYGM Exon/intron Exercise capa-
bility

[31]

Horse SINE/LINE BMAL1 Exon Circadian 
rhythm

[32]

Horse SINE MSTN Promoter Speed 
and stamina

[33]

Pig SINE GHR First intron Skeletal accre-
tion

[22]

Pig SINE PDIA4 First intron Litter size [34]

Pig SINE FSHb First intron Litter size [35]

Pig SINE VRTN First intron Vertebral 
number

[36, 37]

Sheep LINE BMP2 Upstream Fat tails [38]
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subunit beta (FSHb) and protein disulfide isomerase fam-
ily a member 4 (PDIA4) genes that are related to the litter 
size, also have a SINE insertion in their first intron [34, 
35]. Moreover, a polymorphic SINE insertion in the first 
intron of GHR serves as a candidate regulator of GHR 
expression by acting as a repressor [22]. These findings 
help elucidate the role and mechanism of TE in altering 
genetic variation, as well as their indirect effects on swine 
phenotypes.

Roles of TE in the chicken functional genome
The chicken is an important model organism for study-
ing avian genome structure, function, and evolution. 
Accordingly, research on TE in the chicken genome has 
mainly focused on avian genome evolution and epige-
netics. Unlike the livestock genome, only approximately 
10% of the chicken genome contains TE, which may be 
the main reason for the small size of the chicken genome 
[53]. LINE and ERV comprise a major proportion of the 
TE landscape, and DNA and SINE families exhibit very 
low activity during the evolutionary history of avian 
genomes [54–57]. Notably, the chicken repeat 1 (CR1; 

Fig. 4  Four examples of the impacts of TE on protein-coding genes: a A PRE-1 polymorphism located in the first intron of the VRTN gene was found 
to be significantly associated with the number of thoracic vertebrae in pigs; b a 1.3-kb LTR-mediated deleterious mutation in exon 5 of the APOB 
gene was found to cause cholesterol deficiency in Holstein cattle; c a SINE polymorphism was found in the promoter region of the MSTN gene 
in thoroughbred horses, which can affect the expression of this gene and d the ASIP gene in white buffalo lacks pigment in the skin and hair due 
to a 165-bp insertion of the LINE-1 into its first intron. Red boxes represent exons, green triangles represent TE, and yellow ovals represent promoter
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LINE) retrotransposon is the most active and currently 
attracts more attention in avian TE research [58]. In fact, 
CR1 remains active for a long period of time in most 
orders of neognaths. Its activity level varies significantly 
between and within avian orders, contributing to line-
age-specific changes in genome structure [59]. The CR1 
element has been successfully used to clarify the relation-
ships between closely-related galliform species whose 
radiation and speciation have occurred very recently, 
indicating that the CR1-based methodology can be used 
as a powerful tool for phylogenetic research [60, 61]. In 
addition, there is a small body of research that discusses 
the functionality of LTR and ERV in chickens; for exam-
ple, the breed-specific GGERV10B (ERV) insertion site 
can be used as a specific marker for Korean chickens [62, 
63].

The epigenetic silencing of TE is another major compo-
nent of functional genomics in chickens, and DNA meth-
ylation is a key epigenetic mechanism in TE stabilization. 
Studies have found that changes in DNA methylation 
in the chicken genome can indirectly affect embryonic 
muscle development and the body’s immunity to viruses 
through TE activity [64, 65]. However, unlike the silenc-
ing function of the dicer-mediated RNA interference 
pathway for human L1 retrotransposons, the PIWI-
interacting RNA pathway is a key silencing factor for CR1 
element repression in chickens [66–68]. Moreover, this 
pathway exhibits stage-dependent changes in modulating 
TE for male germ cell development [69].

Roles of TE in the cattle functional genome
The cattle genome contains typical eutherian mamma-
lian repeats (e.g., LINE1, MIR, and ERV), and some stud-
ies suggest that several BovB (LINE/RTE) elements have 
been transferred horizontally from Squamata [70, 71]. 
Both L1_BT and BovB elements have high (~ 10%) cov-
erage in the bovine genome; however, L1 is a younger 
repeat family than the BovB elements and is likely more 
active [72].

TE polymorphisms are a major focus of studies on the 
cattle genome. However, unlike studies on pigs, stud-
ies on cattle genomes focus mainly on the detection of 
low-density transposons at the experimental level. For 
example, the L1_BT sequence is used as a primer in 
polymerase chain reactions (PCR) for multi-site geno-
typing, and is a convenient marker for genetic differen-
tiation between breeds [73]. The Heligloria family of 
DNA transposons was genotyped using the ISSR-PCR-
like method to study the co-localization of DNA trans-
posons (Helitron) and retrotransposons in the genomes 
of three cattle breeds [74]. Han et al. used NGS data and 
the droplet digital PCR platform to quantitatively detect 
Hanwoo-specific structural variations (SV) generated by 

TE-associated deletion events, and then used these TE to 
distinguish different cattle breeds (e.g., Hanwoo vs. Hol-
stein) [75, 76].

There are significant differences in the frequency of 
LINE and SINE in the 100-kb upstream region of female- 
and male-imprinted genes in cattle [77]. Bov-A2 (SINE) 
was found to be inserted into the promoter region of the 
tumor protein P53 (TP53) gene in Antilopinae and Trage-
laphini (bovine subfamily and tribe, respectively), but 
was absent in the TP53 promoter of the domestic cow 
and buffalo genomes. This discrepancy may help explain 
the genetic networks that regulate mammary involution 
(e.g., cow milk persistency) and lead to phenotypic dif-
ferences across Bovidae [28]. Importantly, genes related 
to the type II interferon (IFN) response in bovine cells 
have TE-derived enhancers [e.g., interferon-alpha/beta 
receptor beta chain (IFNAR2) and interleukin 2 recep-
tor subunit beta (IL2RB)], and the corresponding TE are 
polymorphic in modern cattle [29]. In addition, a 1.3-
kb LTR-mediated (ERV2-1) deleterious mutation was 
detected in the coding region of the apolipoprotein b 
(APOB) gene (Fig. 4b). This mutation causes transcripts 
to be truncated and abnormally spliced, leading to cho-
lesterol deficiency in Holstein cattle. These findings indi-
cate that TE contribute to gene regulation and evolution 
and play important roles in maintaining immunity in cat-
tle [27].

Roles of TE in the horse functional genome
Similar to the cattle genome, the horse genome also has 
a large number of hybrid repetitive sequences in addition 
to the typical repetitive sequences of eutherian mam-
mals. In particular, the Equus caballus clade-specific 
LINE 1 (L1) repetitive sequence can be classified into 
five subfamilies, three of which have undergone recent 
rapid expansion [78]. In total, 1310 TE were reported 
to have been integrated into horse mRNA genes, and a 
small proportion of them have been exonized into cod-
ing sequences. The TE inserted into the coding sequence 
show a preference for antisense orientation, approxi-
mately 40% of which are represented by LINE [79]. This 
feature is also supported by findings from the exercise 
transcriptomes of equine athletes, indicating that anti-
sense transcription may be one of the main mechanisms 
of TE regulation in horses under stress conditions [80]. 
One family of ERV elements (LTR) accounts for the 
highest proportion of TE insertions into horse coding 
sequences, and is known to be a donor for miRNA pro-
duction [81]. They can induce congenital quiescent night 
blindness and complex spots in horses by affecting the 
transient receptor potential cation channel subfamily M 
member 1 (TRPM1) gene [30].
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Exercise-related phenotypic characteristics are the 
most important aspect of the horse functional genome, 
and TE have been found to play an important role in this 
regard. For example, LINE-derived sequences are highly 
and differentially expressed during physical activity by 
horses [82]. LINE show a high abundance of differen-
tially-methylated regions in the pre- and post-exercise 
blood samples of superior and inferior horses [83]. In 
particular, three TE-mediated genes have been found 
to be related to the athletic ability of horses. The basic 
helix-loop-helix ARNT like 1 (BMAL1) gene is a key reg-
ulator of the circadian rhythm, and its first exon under-
goes horse-specific exonization of CR1 (LINE) and MIR 
(SINE) [32]. The glycogen  phosphorylase muscle associ-
ated  (PYGM) gene is involved in providing energy for 
the body by disassembling glycogen in the muscles, and 
is highly conserved in mammalian genomes. A study 
reported TE insertions in the exons and introns of this 
gene, including an L2 (LINE) exonization event in exon 
15 [31]. The myostatin (MSTN) gene is a significant 
inhibitor of skeletal muscle growth, and has been shown 
to account for gene-based race distance aptitude in race-
horses. A SINE polymorphism was found in the promoter 
of this “speed gene” in thoroughbred horses (Fig. 4c). This 
TE is specifically responsible for adversely affecting tran-
scription initiation and gene expression, thereby limiting 
the production of the MSTN protein [33].

Roles of TE in the functional genomes of other animals
In addition to the four species above, research on TE 
in other livestock and poultry species—including goat 
[84], sheep [38], rabbit [85], buffalo [86], and camel [87, 
88]—mainly involves the composition and evolution of 
TE. There may be fewer functional genome and epige-
netic annotations available for these species compared 
to the previously mentioned ones. Undoubtedly, there 
are probably many functional elements and gene regula-
tion events mediated by TE beyond those that have been 
reported. These all offer future prospects for understand-
ing species evolution and biological functions from the 
perspective of TE.

It is worth noting that the conservation of TE inser-
tions is crucial for understanding the impact of TE on 
functional roles among livestock and poultry. In a pre-
vious study, we discovered the insertion of a full-length 
PRE0-SS (sus-specific SINE) into the 3′UTR of the por-
cine pyruvate dehydrogenase kinase 1 (PDK1) gene. This 
was consistent with a previous report showing that Alu 
and B1 (primate-specific and rodent-specific SINE, 
respectively) regulate the human and mouse orthologs 
of PDK1 through Staufen-mediated decay, respectively 
[89]. In addition, we previously reported that the 165-
bp 5’UTR transcribed from LINE-1 was inserted into 

the first intron of ASIP, leading to a lack of pigment in 
the skin and hair of white buffalo [23] (Fig. 4d). A similar 
LINE-1 insertion is also found in the ASIP gene of cattle, 
indicating the convergent and universal insertion of TE 
in different livestock and poultry species. Therefore, it is 
necessary to construct a global view of TE composition 
and evolutionary conservation to improve our compre-
hensive understanding of TE dynamics and their roles in 
livestock and poultry genomes.

Bioinformatics strategies and methods for studying TE 
in livestock and poultry
In recent years, a growing number of standardized meth-
ods and tools have been developed to meet the applica-
tion requirements of TE in various fields of genetics, 
genomics, and systems biology [90]. Here, we review the 
representative strategies and methods (including 2 to 3 
tools for each strategy) that have been used to answer key 
questions on the biology of TE (Fig. 5). We also discuss 
how these derivative tools can help elucidate the func-
tions of TE in livestock and poultry genomes.

Transposable element composition
The knowledge of TE composition is the foundation of 
TE research, and relies mainly on TE annotation and clas-
sification systems. Existing approaches to TE annotation 
can be roughly classified into three categories: similarity-
based, structure-based, and de novo-based strategies 
[91]. In similarity-based methods, genomic sequences are 
queried against the TE consensus sequences from known 
TE repositories, such as Repbase Update [24], Dfam [92], 
and msRepDB [93]. RepeatMasker is currently the best 
tool for similarity-based genome-wide TE masking [94]. 
Structure-based methods use the structural features (e.g., 
motif query) of different TE families to annotate specific 
TE families. For example, LTRharvest [95] and LTR-
Finder [96] can be used for LTR annotation using features 
such as target site replication, and MUSTv2 [97] is used 
to identify MITE copies (DNA TEs) based on their termi-
nal inverted repeats and direct repeats.

De novo-based methods provide consensus sequences 
and structural features for the first two methods, and can 
be used to detect unknown TE families. De novo-based 
strategies can also be divided according to their sequence 
sources, and many popular and representative tools have 
been developed for this method. For example, Repeat-
Modeler2 [98] and RECON [99] use pairwise similarity 
or consensus seeds to cluster repetitive sequences from 
the assembled genomes, whereas RepeatExplorer2 [100] 
and dnaPipeTE [101] perform TE annotation by directly 
assembling and clustering (e.g., k-mer and self-compari-
son) the raw reads. Recently, LongRepMarker [102] was 
developed to simultaneously use genome sequences, 
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paired-end reads, and barcode-linked reads or long reads 
for the comprehensive identification of TE sequences. 
The performance of LongRepMarker is comparable to 
those of traditional methods. As such, it has been used 
to construct the msRepDB database that covers 80,000 
species and contains more complete TE families than the 
Repbase Update and Dfam databases [93]. Furthermore, 
the TransposonUltimate [103], EDTA [104], and APTE 
[105] pipelines have been developed to combine multi-
ple software across the three strategies with the neces-
sary merging and filtering steps for high-performance TE 
annotation.

TE consensus sequences constructed from de novo-
based annotations also require further TE classification. 
Using search engines (e.g., RM-BLAST and cross-match) 

to find homologies with known TE libraries (e.g., Rep-
base Update) is the most common strategy for TE clas-
sification, and RepeatMasker and RepeatClassifier [98] 
are representative tools for this method. Another strategy 
to classify unknown TE consensus sequences is based 
on the mechanism of TE transposition, and is embodied 
in the TEclass tool. This tool combines support vector 
machines, random forests, and learning vector quanti-
zation to predict open reading frames [106]. It is worth 
noting that the outputs of TE annotation and classifica-
tion are not ready for subsequent analysis, and the nest-
ing structure between TE needs to be considered to avoid 
inaccurate understanding of transposons. A useful col-
lection of Perl scripts (https://​github.​com/​4urel​iek) pro-
vided by Aurelie et al. can be used for the identification of 

Fig. 5  Schematic illustration of available TE research areas, strategy, method, and tools. The pie chart represents research areas, strategies, methods, 
and tools from the inside out. TE research areas include three aspects: TE composition (red), comparative genomics (green), and functional 
genomics (blue)

https://github.com/4ureliek
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nested and nesting TE. In general, TE with clear genome 
annotations, family classifications, structural integrity, 
and complexity can be used for further evolutionary and 
functional studies.

Comparative genomics
The mobility of TE is mainly reflected in comparative 
genome analysis within and between species. The com-
parison of TE composition among species reflects the 
different evolutionary trajectories of species. This is 
accompanied by the de novo origination, expansion, 
and reduction of TE superfamilies/families and a very 
small number of TE horizontal transfer events [107]. 
Generally, lineage-specific expansion and reduction 
of a TE superfamily/family can be directly identified 
by comparing the relationship between the changes in 
TE composition and speciation events [108]. In addi-
tion, Ricci et  al. [109] designed two parameters—den-
sity of insertion (DI) and the relative rate of speciation 
(RRS)—to prove the correlation between bursts of TE 
activity and speciation events. In particular, the expan-
sion of specific TE subfamilies in closely-related species 
(e.g., the Alu subfamilies in primate genomes [110]) can 
be identified using the COSEG pipeline, which uses the 
orthologous sequence alignment of the subfamily con-
sensus sequence to classify the TE subfamily and con-
struct its phylogeny.

The recent evolutionary dynamics of TE within a spe-
cies are reflected in TE polymorphisms between popu-
lations or breeds and play an important role in shaping 
their architecture, diversity, and regulation [111]. With 
the increasing demand for analyzing TE polymor-
phisms in various studies, several software programs 
have been developed to detect the genotypes of poly-
morphic TE at the population level, even from short 
reads at relatively low sequencing depths. To the best 
of our knowledge, the MELT tool [112] performs well 
in detecting polymorphic TE for multiple species, and 
the results accurately recapitulate their known popula-
tion mixing patterns. However, sequencing depth has a 
large impact on the detection of polymorphic TE when 
using short reads, and a high and uniform sequencing 
depth is important for unbiased population genetic 
analysis. Fortunately, the detection of polymorphic TE 
can be significantly improved with tools designed for 
long-read sequencing technology, which can capture 
the full sequence and flanking regions of inserted TE. 
For example, the TELR tool (https://​github.​com/​bergm​
anlab/​telr) can estimate the allele frequencies of TE 
from long-read sequence data based on local assembly 
methods, and the PALMER tool [113] can detect nearly 
twice as many L1Hs insertions as detected in previous 
studies using short-read sequences. Furthermore, the 

recently developed xTea tool [114] can use both short-
read and long-read data, and has superior performance 
in terms of sensitivity and specificity compared to 
existing methods.

Functional genomics
Transposable elements play direct and indirect roles via 
various regulatory modes, making widespread contribu-
tions to gene regulatory networks associated with crucial 
cellular functions. The direct mode indicates instances 
where TE are directly involved in the formation of cod-
ing or non-coding transcripts (chimeric transcripts), and 
can be identified by RNA-seq and isoform sequencing 
(Iso-Seq). Due to their repetitive nature, TE-derived tran-
scripts are difficult to measure using short reads from 
RNA-seq, and their quantification is usually limited to 
the subfamily level. SalmonTE (high-performance [115]), 
TEtranscripts [116], and TeXP [117] are representative 
tools for this kind of task.

More recently, several methods and tools have been 
developed to address the need for locus-specific quanti-
fication of TE-derived transcripts. These methods adapt 
different redistribution strategies for short reads and 
statistical methods (e.g., the EM algorithm). The typi-
cal tools include Telescope (high-performance [115]), 
SQUIRE [118], and TEcandidates [119]. In addition, CLI-
Finder [120] and LIONS [121] are specifically designed 
to identify fusion events or chimeric transcripts (as TE 
are typically used as alternative promoters) by combin-
ing split reading and paired-end algorithms. The TEf-
fectR tool [122] was developed to directly identify the 
cis-regulatory effects of TE, and it statistically associ-
ates TE transcription and nearby gene expression based 
on a linear regression model. Compared with the short 
reads obtained from RNA-seq, the long reads obtained 
from Iso-Seq can dramatically reduce the proportion of 
ambiguously mapped reads. It helps capture complete 
transcripts and ensures the accurate structure of TE in 
chimeric transcripts, but it also poses certain limitations 
in terms of accurate quantification (including relatively 
small sample size and library size). Therefore, a combi-
nation of Iso-Seq and RNA-seq is a better strategy that 
greatly improves TE expression at locus-specific levels.

The indirect mode by which TE affect gene regula-
tory networks is mainly through contributing cis-regula-
tory sequences and generating various chromatin states 
(active/inactive). In addition to their above-mentioned 
role as cis-regulatory elements as part of lncRNA (via chi-
meric transcripts), TE can also be involved in the forma-
tion of small RNA (sRNA) and circular RNA (circRNA). 
sRNA can be derived from TE-expressed chimeric tran-
scripts (i.e., TE-derived sRNA, including piRNA, siRNA, 
and miRNA). And they play a crucial role in promoting 

https://github.com/bergmanlab/telr
https://github.com/bergmanlab/telr
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TE silencing (piRNA and siRNA). The formation of 
exonic circRNA (exon circularization) relies on the com-
plementary sequences from the flanking introns, for 
which TE can be a potential source [123]. To the best of 
our knowledge, there are no specific computational tools 
that can directly combine sRNA/circRNA and TE. How-
ever, it is possible to obtain TE annotations (e.g., using 
RepeatMasker) and sRNA/CircRNA sets (e.g., using miR-
Deep2 [124]/CIRCexplorer2 [125]) separately and then 
establish their co-locations or overlapping relationships 
(e.g., using Bedtools [126]).

Chromatin states of the TE-derived regulatory ele-
ments—including enhancers, promoters, silencers, 
repressive elements, and transcription factors—are typi-
cally derived from chromatin immunoprecipitation fol-
lowed by high-throughput sequencing (ChIP-seq) assays 
of histone modifications. As in other cases, ambiguously 
mapped reads caused by repetitive sequences are the 
main analytical challenge. The current strategy is to use 
unique reads or to apply various tools (e.g., Perm-seq 
[127], LONUT [128], and MapRRCon [129]) to redistrib-
ute the multi-mapped reads, which helps achieve higher 
specificity and resolution for ChIP-seq assays. Recently, 
a novel strategy was proposed through the combina-
tion of Hi-C/HiChIP (3D folding of chromatin) and the 
PAtChER tool, which can accurately measure TE-derived 
gene regulatory elements at a locus-specific level [130].

Transposable element activities result in diverse epi-
genetic modifications, and induced changes in the 
epigenetic landscape also affect nearby functional 
elements that can be epigenetically regulated. The 
sequences from most TE families are methylated in 
most tissues and organs over the long term, except at 
the embryonic stage. Enrichment-based methods (e.g., 
MeDIP-seq and MRE-seq) and bisulfite-based sequenc-
ing [e.g., whole genome bisulfite sequencing (WGBS), 
reduced representation bisulfite sequencing (RRBS), 
and methylated-DNA immunoprecipitation sequencing 
(MethylC-seq)] are the most commonly used strategies 
for estimating DNA methylation levels and any subset 
of the genome occupied by TE can be directly assessed 
for DNA methylation by them. Several tools, such as 
TEPID [111] and EPITEOME [131], also consider the 
probability of multi-mapping reads. This improves the 
detection of TE methylation levels by analyzing split 
reads that span connections between TE and uniquely 
mappable genomic regions.

Transposable elements in the context of complex traits 
and animal breeding
In view of the current lack of knowledge regarding the 
role of TE in complex traits and the breeding in live-
stock and poultry, we summarize the major aspects and 

Fig. 6  Potential applications whereby TE contribute to complex traits and animal breeding. Animal breeding can be improved through the use 
of TE by combining multiple omics data resources, animal TE databases, robust methods, and tools. This can be achieved through three application 
aspects of TE: TE-based markers, TE-derived transcriptomics, and TE-related epigenetics
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feasible strategies for TE applications in humans and 
plants. We provide a potential reference for the applica-
tions of TE in the field of livestock and poultry in the 
future (Fig. 6).

Development and application of TE‑based molecular markers
Genetic diversity is a key basis for analyzing the eco-
nomic traits of livestock and poultry and is an important 
premise for promoting the development of the livestock 
and poultry breeding industries. Therefore, it is critical 
to develop a comprehensive understanding of livestock 
population structures and lineages of genetic diversity 
in order to effectively use them for animal farming prac-
tices. Molecular markers are primarily based on DNA 
sequence variability and play an important role in basic 
genetic research (e.g., for constructing genetic maps and 
mapping quantitative trait loci) and breeding applica-
tions (e.g., marker-assisted selection and genomic selec-
tion). Transposable elements occupy nearly one-third 
of the livestock genome and approximately one-tenth of 
the poultry genome. Moreover, parts of the TE families 
are currently active and polymorphic, resulting in a large 
number of intraspecific SV. These TE-derived SV have 
been used to elucidate or refine the genetic relationships 
between breeds within a species [132].

At present, molecular markers (represented by SNPs 
mainly) have been widely used to study population 
genetic structures, germplasm resources, and DNA fin-
gerprinting. However, there are still some limitations in 
the interpretation of phenotypic variance through SNPs. 
Studies have shown that although subsets of SV are unre-
lated to SNPs (i.e., no significant linkage disequilibrium) 
[133], SV can cause larger changes in genome structure 
than SNPs, may have greater functional impacts, and are 
more likely to be true causal variants [134]. In particular, 
TE-derived SV are more likely to be formed as a result 
of TE insertions than deletions [135]. These findings indi-
cate that TE are informative, traceable, and can be used 
as reliable genetic markers.

In recent years, TE-based molecular markers have been 
applied in humans and in the agricultural industry with 
promising results. Several studies have reported a sig-
nificant association between TE-associated SV and the 
underlying causes of cancer and genetic disorders [136, 
137]. Molecular markers based on highly polymorphic 
TE have been used to study genetic diversity and create 
genetic linkage maps, making them suitable for cultivar 
identification and marker-assisted selection (MAS)-
based breeding programs in wild and cultivated barley 
[138]. Genome-wide association studies in tomatoes have 
identified at least 40 polymorphic TE associated with 
extreme variations in major agronomic traits or second-
ary metabolites [19]. Specific agronomic traits, such as 

plant height and ear length traits, have been associated 
with allelic TE-based markers in rice [139]. Thus, the 
construction of TE-based molecular markers is feasible 
and can compensate for the limitations of other molec-
ular markers to a certain extent. With the development 
of genomics, genome assembly, and sequencing tech-
nologies, it is possible to ensure the accuracy, sensitiv-
ity, and comprehensiveness of polymorphic TE detection 
across livestock and poultry breeds by integrating reliable 
tools (e.g., MELT) and newly developed algorithms (e.g., 
PALMER and xTea). Therefore, taking cues from the cur-
rent applications of TE in humans, it is possible for the 
agricultural sector to construct TE-based genotyping 
chips to detect polymorphic TE in livestock and poultry 
at the population level.

In general, three main steps are required to perform 
large-scale population screening for TE polymorphisms, 
rapidly and efficiently. The first step involves producing 
polymorphic TE datasets for each species, which can 
be obtained using multiple assembled genomes, long-
read sequencing (PacBio and Nanopore), and short-read 
sequencing [140]. Short-read sequencing only shows 
good performance for detecting deletion-type TE (rela-
tive to the reference genome) because of its limitations 
in obtaining inserted TE sequences [141]. In contrast, 
assembled genomes and long sequences are the best 
options for capturing the precise sequence composi-
tion of polymorphic TE [142, 143]. The next step is to 
design specific locus-flanking sequences for all or candi-
date polymorphic TE; these unique sequence tags serve 
as the basis for identifying the location of polymorphic 
TE in the genome. Finally, population-level genotyp-
ing can be accomplished based on these sequence tags 
using sequence-based assays. For example, high-inten-
sity unique sequence tags can be designed to probe TE 
using the microarray method (TIP-chip) [144], or TE can 
be PCR-amplified and detected using high-throughput 
sequencing (TIP-seq) [145]. At present, this step has only 
been accomplished in a few livestock and poultry breeds, 
and most of these studies have been limited to detect-
ing polymorphic TE based on short-read sequencing 
[41]. Therefore, we believe that more attention needs to 
be paid to TE polymorphisms and that it is necessary to 
develop and apply TE-based molecular markers to live-
stock and poultry genomes.

TE‑derived transcriptomes and their roles in regulatory 
networks
Transposable elements can affect the transcriptome in 
different ways [135]. The most direct way is through TE-
induced changes in the sequence of the protein-coding 
gene. For example, the insertion of human TE into the 
exon of a coding gene can disrupt the original sequence 
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structure and generate “exonization” events that are one 
of the main causes of human diseases [146]. Most TE 
exonizations result in alternate splicing of internal exons, 
eventually leading to new alternative splicing events 
[147]. However, because of the limited number of exist-
ing studies on livestock and poultry genomes, only a few 
exonization events (e.g., LINE2 exonization in the horse 
MSTN gene) have been reported to date, and most TE 
insertions occur in the untranslated region of the cod-
ing gene (e.g., the first exon). Therefore, it is worthwhile 
to consider the effect of TE on exonization and alterna-
tive splicing events following conventional RNA-seq 
analysis of livestock and poultry. In this regard, Iso-Seq 
is a good option for improving the identification of novel 
TE-derived transcripts and providing locus-specific TE 
expression levels [148].

Transposable elements can also serve as an important 
source of functional lncRNA and small non-coding RNA 
(miRNA and siRNA) [149, 150]. These TE-derived non-
coding RNA are closely associated with specific stress 
conditions [151] or developmental stages [152], and are 
currently less studied in livestock and poultry. However, 
these offer enormous research potential owing to their 
roles in functional genomics. TE-derived small RNA can 
influence the trans-regulation of protein-coding gene 
activity at the transcriptional and post-transcriptional 
levels through sequence complementarity [152]. Based 
on the association of small RNA with specific TE fami-
lies, the evolutionary history and conservation of TE 
families can be effectively used to better understand the 
evolutionary and functional properties of small RNA 
in livestock and poultry. In the past five years, tran-
scriptomic analysis has greatly expanded the catalog of 
lncRNA in livestock and poultry [153]. Thus, it has been 
adopted as a routine approach for profiling global tran-
scriptome changes across tissues, developmental stages, 
breeds, and environmental stresses [154]. However, the 
role of TE in lncRNA has not been fully investigated, and 
the biological functions of TE-derived lncRNA have been 
underestimated.

In addition to forming transcripts, TE can indirectly 
influence gene regulatory networks as cis-regulatory ele-
ments [155]. Studies have shown that chromatin acces-
sibility and histone modification patterns are highly 
correlated with the presence and family of TE. Even spe-
cific TE families can introduce new enhancers or pro-
moters that comprise functional TFBS, which can spread 
throughout the genome with TE amplification [7, 156, 
157]. The expansion of TE-derived TFBS can help eluci-
date the species-specific functions of transcription fac-
tors [155, 158], which may be an important driving force 
for shaping the regulatory networks of livestock and 
poultry.

TE‑associated epigenetics
Because TE mobilization can lead to genomic instabil-
ity, it is strongly inhibited by epigenetic silencing mecha-
nisms [159]. This TE silencing mechanism may affect the 
transcriptional activity of adjacent genes by modulating 
the epigenomic profile of their close regions or by alter-
ing the activity of their neighboring regulatory elements 
[160]. In general, the epigenetic silencing of TE is rela-
tively stable in most somatic cells, but highly active in 
specific biological processes (e.g., during reprogramming 
in germ cells and pre-implantation embryos) and envi-
ronmental stresses [161]. The activation of epigenetically 
silenced TE has been found to be a novel mechanism 
of oncogene activation known as TE onco-exaptation 
events [162]. The LINE1 element—which controls leaf 
senescence and allows plants to adapt to a local climate 
by regulating the expression of the pheophytinase (PPH) 
gene [163]—was found to be differentially methylated in 
Arabidopsis accessions. Therefore, changes in TE-related 
epigenetic signatures are functional and are worthy of 
attention in studies on livestock and poultry.

At present, there are some limitations in evaluating the 
methylation level of TE using the unique mapping reads 
obtained from NGS-based sequencing (e.g., WGBS and 
RRBS). In this regard, the Oxford Nanopore long-read 
sequencing technology offers an excellent system for the 
simultaneous identification of TE polymorphisms and 
methylation levels in the TE body [164, 165]. Standard 
DNA methylation-calling tools and workflows for nano-
pore sequencing have been designed for modified base 
detection at the genome scale, and can serve as the basis 
for relevant studies in livestock and poultry species [166]. 
Using these techniques, we can compare the methylation 
of different animal breeds across geographical distribu-
tions or explore how TE affect the changes in methyla-
tion at different developmental stages.

Another point that deserves special attention relates to 
“coevolution” or “arms races” between TE and their live-
stock and poultry hosts. Although silencing mechanisms 
can prevent TE amplification, TE can evade this host 
machinery through recurrent evolutionary innovations 
[167]. This complex relationship facilitates not only the 
expansion of TE families but also the functional evolu-
tion of the host organism. In particular, ERV are a typi-
cal example that has been shown to be indispensable in 
livestock and poultry, as described above. However, it is 
necessary to perform a series of studies that integrate the 
domestication and epigenetic components of livestock 
and poultry and compare their transcriptional activities 
for lineage-specific ERV.
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Conclusions
Transposable elements are important components of 
livestock and poultry genomes, representing approxi-
mately 26.1 to 42.9% of the entire genome. The mobi-
lization, transcriptional regulation, and silencing 
mechanisms of TE have substantial impacts on the vari-
ability of the genome, transcriptome, and epigenome in 
livestock and poultry. Furthermore, TE have the poten-
tial to contribute to phenotypic variation in complex 
traits. By investigating the effects of TE activity on host 
fitness in livestock and poultry, researchers could iden-
tify areas where research is needed to improve animal 
health and productivity. However, current research on 
TE in livestock and poultry is still in its infancy and not 
as extensive as that conducted on humans and other 
model animals, such as mice and fruit flies. Although 
studies on TE in livestock, such as pigs and chickens, 
have been gradually increasing, they are limited to spe-
cific research directions, and the number of studies on 
these species is very small (less than 20). Specifically, 
research on TE silencing mechanisms and epigenetic 
regulation, as well as the relationship between poly-
morphic TE and actual/molecular phenotypes, is lim-
ited. This is in stark contrast to the rapid development 
of livestock functional genomics and the accumulation 
of multi-omics data. To improve research on TE in ani-
mal breeding and research, it is important to establish 
standardized bioinformatic tools/methods for data 
collection, analysis, and reporting. In addition, data 
sharing between researchers and institutions can help 
accelerate progress in TE studies. Exactly as the recent 
developments in the farm animal pan-genomes, func-
tional annotation of animal genomes (FAANG), and 
farm animal genotype-tissue expression (FarmGTEx) 
projects provide excellent opportunities for studying 
TE. Although various challenges still exist, we believe 
that with the accumulation of multi-omics data in 
recent years, it is a good time for researchers to start 
using transposons as a routine analytical tool in live-
stock and poultry research.
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