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Segregation between breeds and local 
breed proportions in genetic and genomic 
models for crossbreds
Jón H. Eiríksson1,2*   , Guosheng Su1, Ismo Strandén3 and Ole F. Christensen1 

Abstract 

Background  The breeding value of a crossbred individual can be expressed as the sum of the contributions from 
each of the contributing pure breeds. In theory, the breeding value should account for segregation between breeds, 
which results from the difference in the mean contribution of loci between breeds, which in turn is caused by differ-
ences in allele frequencies between breeds. However, with multiple generations of crossbreeding, how to account 
for breed segregation in genomic models that split the breeding value of crossbreds based on breed origin of alleles 
(BOA) is not known. Furthermore, local breed proportions (LBP) have been modelled based on BOA and is a concept 
related to breed segregation. The objectives of this study were to explore the theoretical background of the effect of 
LBP and how it relates to breed segregation and to investigate how to incorporate breed segregation (co)variance in 
genomic BOA models.

Results  We showed that LBP effects result from the difference in the mean contribution of loci between breeds in 
an additive genetic model, i.e. breed segregation effects. We found that the (co)variance structure for BS effects in 
genomic BOA models does not lead to relationship matrices that are positive semi-definite in all cases. However, by 
setting one breed as a reference breed, a valid (co)variance structure can be constructed by including LBP effects for 
all other breeds and assuming them to be correlated. We successfully estimated variance components for a genomic 
BOA model with LBP effects in a simulated example.

Conclusions  Breed segregation effects and LBP effects are two alternative ways to account for the contribution of 
differences in the mean effects of loci between breeds. When the covariance between LBP effects across breeds is 
included in the model, a valid (co)variance structure for LBP effects can be constructed by setting one breed as refer-
ence breed and fitting an LBP effect for each of the other breeds.

Background
Estimation of breeding values relies on additive genetic 
(co)variances between individuals. These (co)variances 
are usually derived from two types of information, i.e. 
pedigree or genotypes, where the latter are typically 
based on genotypes for genome-wide single nucleotide 
polymorphisms (SNPs) [1]. These two sources of informa-
tion can also be combined in single-step genomic models 
[2, 3]. The general methods for estimating these (co)vari-
ances have been developed for purebred populations and 
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thus modifications are needed for genetic evaluation of 
crossbred populations [4, 5].

For crossbred populations, other than the first gen-
eration of crossbreeding (F1), the additive genetic (co)
variances include both contributions from each of the 
contributing pure breeds and contributions from seg-
regation between breeds (breed segregation, BS) [4]. 
García-Cortés and Toro [6] presented a pedigree-based 
model for the genetic evaluation of crossbred popula-
tions in which the additive genetic (co)variances for 
crossbreds of any breed combination were partitioned 
into breed-specific terms and BS terms. In their model 
[6], each breed-specific and BS variance–covariance term 
is the product of a partial genetic variance component 
and a partial genetic relationship matrix. However, the 
inclusion of genomic information in that model is not 
straightforward because of the separate BS terms for each 
pair of breeds.

For genomic relationships, Strandén and Mäntysaari 
[7] presented a random regression approximation of the 
García-Cortés and Toro [6] model by partitioning the 
breeding value by breed proportions. Other studies sug-
gested that the breed origin of alleles (BOA) should be 
accounted for in genomic evaluations for crossbreds [5, 
8–10]. For genomic BOA models, the breed origins of the 
marker alleles are traced and their effects are allowed to 
depend on breed origin to account for breed differences 
in marker allele effects, e.g. due to differences in the 
linkage disequilibrium between markers and quantita-
tive trait loci (QTL) and differences in the genetic back-
ground between breeds [8, 9]. Thus, the partitioning of 
breeding values into breed-specific effects is more accu-
rate in BOA models than when the partitioning is based 
on the breed proportions alone. Christensen et  al. [5] 
considered only the first generation of crossbreeding, for 
which BS is not present, while Ibánẽz-Escriche et al. [8] 
ignored BS for three-way and four-way crossbreeding, 
and Karaman et  al. [9] and Eiríksson et  al. [10] ignored 
BS in genomic BOA models for rotational crossbreeding 
systems. For a three-way terminal crossbreeding system, 
Christensen et  al. [11] presented a single-step genomic 
model by partitioning the breeding value into breed-spe-
cific terms according to BOA and a BS term for segrega-
tion between the two maternal breeds. In that paper [11], 
a BS partial relationship for the segregation between the 
two maternal breeds was constructed based on informa-
tion on BOA. For a population of inbred maize lines with 
lines from two genetic groups and admixed lines, Rio 
et al. [12] presented a genomic model with group-specific 
effects and a BS term. Recently, Aase et al. [13] presented 
an extension of the model of Rio et al. [12], adapted for 
an admixture of multiple groups in wild animal popula-
tions but ignored the BS term, although formulas for BS 

covariances were given in their Supplementary material 
[13], but without fully considering the properties of the 
proposed (co)variance structure. We are not aware of any 
published studies that explain how to construct BS par-
tial relationships in genomic BOA models for crossbred 
populations with any breed composition.

A concept that accounts for genetic effects that are 
not accounted for by the breed-specific genetic effects, 
similar to BS, is local breed proportion (LBP) effects [14]. 
For crossbred dairy cattle, Eiríksson et al. [14] fitted LBP 
effects with random regressions on the proportion of 
alleles assigned to each breed origin within chromosome 
segments or for individual SNPs. They reported a low but 
statistically significant estimate of variance related to the 
LBP effects for milk production traits. Similarly, Bolor-
maa et al. [15] investigated the effect of local zebu or tau-
rine ancestry of chromosome segments on phenotypes in 
Australian composite beef cattle and found that ancestry 
at some positions affected the studied traits. The effects 
of LBP, or of local ancestry, have similarities with BS but 
are defined for individual breeds rather than between 
pairs of breeds. However, the theoretical background of 
LBP and the exact relationship between LBP and BS is 
unclear.

Therefore, the objectives of this study were: (1) to 
derive and present the theoretical background of the 
effects of LBP in genetic models and how they are related 
to BS effects, (2) to investigate how BS effects can be 
included in genomic BOA models, and (3) to present 
variance structure that can be included in genetic and 
genomic models for crossbred populations with any 
breed composition to account for BS variance.

Methods
We start this section by reviewing the theory behind par-
titioning the breeding value into breed-specific terms and 
BS or LBP terms in genetic models. Second, we review 
the construction of breed-specific partial relationship 
matrices for these models. Third, we show that the (co)
variance structure for BS effects based on BOA does not 
lead to relationship matrices that have a quadratic form. 
Finally, we present an alternative method for the inclu-
sion of LBP effects in both pedigree-based and genomic 
BOA models, which accounts for BS and results in valid 
relationship matrices and variance components.

Theory
We start by reviewing the theory behind models for par-
titioning the additive genetic value of crossbreds into 
breed-specific terms [6]. We specify the additive genetic 
value of individual i as follows (inspired by Lo et al. [4] 
and the Appendix of Christensen et al. [11]):
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Vector g , which contains the additive genetic values 
for crossbred individuals involving nb breeds, can then 
be decomposed as:

where vector ab contains the partial additive genetic 
effects related to breed b as defined in García-Cortés and 
Toro [6] and Christensen et  al. [5], with value 
abi =

∑m
j=1(r
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j
i
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) for individual i , vector fb con-

tains f bi  for all individuals, and vector kb contains 

kbi =
∑m

j=1ǫ
b
j z̈

b
ij
 . The effects of breed proportions, δb for 

each breed b , are fixed effects in the model and 
∑

b a
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random animal effects that are independent from 
∑

b k
b 

[6, 9]. Therefore, the variance–covariance matrix of the 
vector of additive genetic values g for the crossbreds is 
therefore Var
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b
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.

García-Cortés and Toro [6] modelled the term 
∑

b k
b in 

Eq. (3) with BS terms, i.e. between each pair of breeds b 
and b′ , instead of summing across breeds,

where vector wb,b′ contains the BS effects. In this study, 
we specify the (co)variance of the 

∑
b k

b term in Eq. (3), 
i.e. Var
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b k

b
)
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)
 , we develop two 

alternative models for genetic evaluation of crossbreds, 
i.e. a model based on LBP terms for each breed and a 
model based on BS terms (Eq. 4).

Breed‑specific partial relationships
Here, we review how 

∑
b Var

(
ab
)
 is inferred from pedi-

gree and genomic information in models where the breed-
ing value of crossbreds is split into breed-specific parts. 
Pedigree-based breed-specific partial additive genetic (co)
variance matrices were derived in García-Cortés and Toro 
[6] and breed-specific partial genomic relationship matri-
ces for terminal three-way crossbreeding systems were 
derived in Christensen et al. [11] and Sevillano et al. [16].

Pedigree-based partial relationship matrices are con-
structed recursively, as described by García-Cortés and 
Toro [6]. For breed b , the self-relationship for individual 
i is:

and the partial relationship between individuals i and i′ 
is:
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where f bi  is the proportion of breed b , Ab
s,d is the partial 

relationship between the parents of i , and Ab,
s,i′ and Ab,

d,i′ 
are the partial relationships of individual i′ with the sire 
and dam of i , respectively. Having the pedigree-based 
partial relationship matrices, the partial genetic effects in 
Eq.  (3) are assumed to be independent and 
ab ∼ N

(
0,Abσ 2

a(b)

)
 , where σ 2

a(b) is the additive genetic 
variance for breed b.

For crossbreds with genome-wide SNP information, we 
consider a genotype matrix M of size n×m , where n is 
the number of individuals and m is the number of SNPs, 
containing genotype information coded as 0 and 2 for 
loci that are homozygous for the alternative and refer-
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 and rb
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information on BOA and SNP genotypes, breed-specific 
genotype matrices can be formed: 
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b
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d , where ◦ is element-wise mul-
tiplication. The genomic partial relationship matrix for 
breed b then is:
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scaling parameter that can be chosen such that the par-
tial genomic matrix is compatible with the pedigree par-
tial relationship matrix [5]. Based on the genomic partial 
relationship matrices, the partial genetic effects in Eq. (3) 
are assumed to be distributed ab ∼ N
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.

Breed segregation
For the pedigree-based model, García-Cortés and Toro 
[6] derived the distribution for the wb,b′ term in Eq. (4) to 
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After some algebra, we get (see derivation in Appendix 1):

Similarly, the breed-segregation covariance between 
individuals i and i′ for one locus is (see derivation in 
Appendix 1):
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Realizing that zbi
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is a BS similarity matrix for BS between breeds b and b′ , 
with Zb = Tb − 2fb1T , and 1 is a vector of 1s, and

is the variance for BS between breeds b and b′ . Here, the 
definition of the breed-segregation variance follows, e.g., 
Lo et al. [4], and is defined as the extra genetic variance in 
the F2 population compared to the F1.

However, matrix Wb,b′ does not have a quadratic 
form and is, thus, not necessarily positive semi-definite. 
Thus, the BOA-derived BS similarity matrix is not a 
proper relationship matrix. In contrast, the pedigree-
based partial BS relationship matrix given by García-
Cortés and Toro [6] is always positive semi-definite.

Genomic local breed proportion (co)variance
Eiríksson et al. [14] fitted three independent LBP effects 
in a genomic model for a population of crossbreds from 
three breeds. The effects were either fitted with random 
regression on LBP (similar to SNP-best linear unbiased 
prediction (BLUP) for markers) or using LBP similarity 
matrices. In Appendix 2, we show that the variance for 
LBP effects from fitting three independent LBP terms is 
not guaranteed to be non-negative and, therefore, not a 
valid variance term. Here, we present an alternative LBP 
model, where one of the breeds is set as a reference breed 
and is left out of the model, but the other LBP effects 
are assumed to be correlated. We start by presenting a 
genomic model based on BOA, followed by the pedigree-
based model. As before, we assume that the marker loci 
are the QTL, the origin of alleles is known, and the ǫbj  
terms are random unknown variables with mean zero.
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Now, we have nb − 1 LBP variance terms and their covari-
ances between breeds [the b  = b′ case in Eq.  (11)]. The 
covariance between the LBP effects of individuals i and i′ 
comes from the deviation in shared ancestry of loci from the 
expectation based on breed proportions, which is derived in 
the same manner as for the LBP variance above (see Appen-
dix 3). Therefore,

Assuming that ǫbj  and ǫb′j′  are independent for j  = j′ , 

both when b = b′ and when b  = b′ , the total variance of 
LBP effects related to individual i is obtained by sum-
ming the contributions of each locus from Eq. (11):

Similar to the SNP-BLUP and genomic BLUP models, 
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LBP effects is the same for each locus for each breed and 
we denote this by σθ(bb′) . That is, for all loci j and j′,

Therefore, we can write Eq. (13) as:
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viduals i and i′ from summing over loci based on Eqs. 
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is the variance of LBP effects for breed b when b = b′ and 
the covariance between LBP effects for breeds b and b′ 
when b  = b′.

(12)
Cov

(
κ̈sum
ij

, κ̈sum
i′ j

)
=

∑
b �=b∗

∑
b′ �=b∗

z̈b
ij
z̈b

′

i′ j
E
[(

ǫbj − ǫb
∗

j

)(
ǫb

′

j − ǫb
∗

j

)]
.

(13)Var
(
ksumi

)
=

∑

b �=b∗

∑

b′ �=b∗

m∑

j=1

z̈b
ij
z̈b

′

ij
E
[(

ǫbj − ǫb
∗

j

)(
ǫb

′

j − ǫb
∗

j

)]
.

(14)
σθ(bb′) = E

[(
ǫbj − ǫb

∗

j

)(
ǫb

′

j − ǫb
∗

j

)]
= E

[(
ǫbj′ − ǫb

∗

j′

)(
ǫb

′

j′ − ǫb
∗

j′

)]
.

(15)Var
(
ksumi

)
=

∑

b �=b∗

∑

b′ �=b∗

zbi
T
zb

′

i σθ(bb′).

(16)Cov
(
ksumi , ksumi′

)
=

∑

b �=b∗

∑

b′ �=b∗

zbi
T
zb

′

i′ σθ(bb′).

(17)Qbb′ =
ZbZb′T

m

(18)

σk(bb′) = mσθ(bb′) =
∑m

j=1
E
[(

ǫbj − ǫb
∗

j

)(
ǫb

′

j − ǫb
∗

j

)]
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When b = b′ , both the partial relationship matrix 
( Qbb ) and the variance component ( σk(bb) ) have a quad-
ratic form and are therefore a valid relationship matrix 
and variance component, respectively. Defined in this 
way, the diagonal elements of Qbb depend on deviations 
from the global breed proportion of individuals from 
their assignment to breed b of individual SNPs. The off-
diagonal element between two individuals measures the 
degree to which these individuals share local deviations 
from the global breed proportions for breed b . For b  = b′ , 
the Qbb′σk(bb′) and Qb′bσk(bb′) terms contain covariances 
between the LBP effects for breeds b and b′ for all pairs 
of individuals (where the diagonal elements are covari-
ances between breeds within individuals). Note that 
Qbb′ = Qb′bT , while σk(bb′) = σk(b′b).

Using the variance structure described above, we write 
the total additive genetic effect in Eq. (3) based on nb − 1 
modified LBP effects:

where vector k̃b contains the modified LBP effects of 
breed b , and we assume that:

In Eq.  (20), the combined (co)variance structure for the 
LBP effects has a quadratic form and is therefore a valid (co)
variance structure. Furthermore, the combined relationship 

matrix for LBP effects, Q =




Q11 · · · Qnb−1,1

.

.

.
. . .

.

.

.

Q1nb−1 · · · Qnb−1,nb−1


, 

also has a quadratic form, similar to a genomic relationship 
matrix [1]. However, the variance and covariance compo-
nents cannot be factored directly out of the combined LBP 
(co)variance matrices. The variance structure in Eq. (20) can 
alternatively be expressed as:

(19)g =
∑

b

(
ab + δbfb

)
+

∑

b �=b∗

k̃b,

(20)




�k1
.
.
.

�knb−1


 ∼ N


0,




Q11σk(11) · · · Qnb−1,1σk(1,nb−1)

.

.

.
. . .

.

.

.

Q1nb−1σk(1,nb−1) · · · Qnb−1,nb−1σk(nb−1,nb−1)





.

(21)Var




�k1
.
.
.

�knb−1,1
⋆

.

.

.

�k1,nb−1
⋆

.

.

.

�knb−1




= � ⊗Q,

where kb,b
′

⋆  , for b and b′ in (1,…, nb − 1 ), are vectors with 
artificial variables, i.e. variables that are not meaningful 
in themselves but included only to make the expression 
as a Kronecker product  possible, matrix 

� =




σk(11) · · · σk(1,nb−1)

.

.

.
. . .

.

.

.

σk(1,nb−1) · · · σk(nb−1,nb−1)


 is positive definite, 

and ⊗ is Kronecker product. Based on this formulation, 
the variance components for LBP effects can be esti-
mated using standard software.

Similar to usual genomic BLUP, an equivalent SNP-
BLUP model can be formed from the model in Eq. (19):

where vector αb contains marker effects in breed b and 
vector θb contains the modified effects of LBP from breed 
b for each marker. It is assumed that αb ∼ N (0, I 1

cb
σ 2
a(b)) 

( cb is the scaling factor used in building Gb ) and 


θ
1
x
.
.
.

θ
nb−1
x


 ∼ N


0,




Iσθ(11) · · · Iσθ(1nb−1)

.

.

.
. . .

.

.

.

Iσθ(1nb−1) · · · Iσθ(nb−1,nb−1)





.

Pedigree‑based local breed proportion (co)variance
Here, we present how the (co)variance structure for LBP 
effects with one breed as a reference breed can be con-
structed using pedigree information. First, consider the 
contribution to the variance of the LBP effect from the 
paternal allele at a single locus. The expectation that the 
paternal allele at locus j is from breed b equals the sire’s 

breed proportion, i.e. E
(
rb
s
j
i

)
= f bsi  . Therefore, the expec-

tation of κsum
s
j
i

 is E
(
κsum
s
j
i

)
=

∑
b ǫ

b
j f

b
si

 . For the variance 

related to the LBP effect of the paternal allele, rb
s
j
i

rb
′

s
j
i

= 0 

for all b  = b′ , because the paternal allele at locus j origi-
nates only from one of the breeds. Furthermore, 
(rb
s
j
i

)
2
= rb

s
j
i

 for all b , because rb
s
j
i

 is either 0 or 1. Therefore, 

E

[
Var

(
κsum
s
j
i

)]
=

∑
b f

b
si
ǫbj

2
−

(∑
b f

b
si
ǫbj

)2
 . By setting 

one breed as the reference breed, b∗ , and with algebra as 
detailed in Appendix 4, we have nb − 1 LBP terms for 

g =
∑

b

(
Mb

α
b + δbfb

)
+

∑

b �=b∗

Zb
θ
b
,
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expected variance of the LBP effect of the allele (for 
b = b′),

Furthermore, based on algebra described in Appen-
dix 4, the covariance between the LBP effects for breeds 
b and b′ is:

Similarly, for the maternal allele,

and

For the expectation of the variance of LBP effects 
related to both alleles, we need the covariance between 
the maternal and paternal LBP effects for locus j in 
individual i . The probability that the paternal allele 
of individual i comes from the paternal grandsire (or 
granddam) is 1

2
 , and thus,

(22)E

[
Var

(
κb
s
j
i

)]
=

∑

b �=b∗

f bsi

(
1− f bsi

)(
ǫbj − ǫb

∗

j

)2
.

(23)

E

[
Cov

(
κb
s
j
i

, κb
′

s
j
i

)]
=

∑

b �=b∗

∑

b′ �={b,b∗}

[
−f bsi f

b′

si

(
ǫb

′

j − ǫb
∗

j

)(
ǫbj − ǫb

∗

j

)]
.

(24)E

[
Var

(
κb
d
j
i

)]
=

∑

b �=b∗

f bdi(1− f bdi)(ǫ
b
j − ǫb

∗

j )
2
,

(25)

E

[
Cov

(
κb
d
j
i

, κb
′

d
j
i

)]
=

∑

b �=b∗

∑

b′ �={b,b∗}

[
−f bdi f

b′

di

(
ǫb

′

j − ǫb
∗

j

)(
ǫbj − ǫb

∗

j

)]
.

Similarly, E(κsum
d
j
i

) = 1
2
(κsum

s
j
d

+ κsum
d
j
d

) = 1
2
κ̈sum
dj

 . There-

fore, the expectation of the covariance between the LBP 
effects of the maternal and paternal alleles is:

where Cov(κ̈sum
sj

, κ̈sum
dj

) is the covariance between LBP 

effects at locus j of the two parents of i.
The expectation of the covariance of the LBP effects 

of the maternal and paternal alleles is thus 1/4 of the 
covariance between LBP effects of the parents, which is 
a known result for pedigree and BS relationships [6].

Now, we consider the LBP covariance between indi-
viduals i and i′ . First, we look at the covariance of pater-
nal allele of individual i at locus j with κ̈sum

i′ j
 . Using the 

same argument as for Eq.  (26), we have 

E

[
Cov

(
κsum
s
j
i

, κ̈sum
i′ j

)]
= 1

2
Cov

(
κ̈sum
sj

, κ̈sum
i′ j

)
 . Similar to 

Eq.  (11), we can write Cov

(
κ̈sum
sj

, κ̈sum
i′
j

)

=
∑

b �=b∗
∑

b′ �=b∗ z̈
b
sj
z̈b

′

i′ j

(
ǫbj − ǫb

∗

j

)(
ǫb

′

j − ǫb
∗

j

)
 , i.e. 

Cov
(
κ̈sum
sj

, κ̈sum
i′ j

)
=

∑
b �=b∗

∑
b′ �=b∗ Cov

(
κ̈b
sj
, κ̈b

′

i′ j

)
 . Therefore, 

E

[
Cov

(
κsum
s
j

i

, κ̈sum
i′
j

)]
=
∑

b  =b∗
∑

b′  =b∗
1
2

[
Cov

(
κ̈b
sj
, κ̈b

′

i′ j

)]
 and, 

similarly, E

[
Cov

(
κsum
d
j
i

, κ̈sum
i′ j

)]
=

∑
b �=b∗

∑
b′ �=b∗

1

2

[
Cov

(
κ̈b
dj
, κ̈b

′

i′ j

)]
 . Therefore,

Summing over all loci and the paternal and mater-
nal alleles in Eqs. (22) to (25) and Eq.  (27) gives the 
expected variance of LBP effects for individual i:

(26)E

(
κsum
s
j
i

)
=

1

2

(
κsum
s
j
s

+ κsum
d
j
s

)
=

1

2
κ̈sum
sj

.

(27)E

[
Cov

(
κsum
s
j
i

, κsum
d
j
i

)]
=

1

4
Cov

(
κ̈sum
sj

, κ̈sum
dj

)
,

E
[
Cov

(
κ̈sum
ij

, κ̈sum
i′j

)]
= E

[
Cov

(
κsum
s
j
i

, κ̈sum
i′j

)]
+ E

[
Cov

(
κsum
d
j
i

, κ̈sum
i′j

)]

=
∑

b �=b∗

∑

b′ �=b∗

1

2

[
Cov

(
κ̈b
sj
, κ̈b

′

i′j

)
+ Cov

(
κ̈b
dj
, κ̈b

′

i′j

)]
.

(28)

E
�
Var

�
ksumi

��
=

�

b �=b∗



�
f bsi

�
1− f bsi

�
+ f bdi

�
1− f bdi

�� m�

j=1

�
ǫbj − ǫb

∗

j

�2
+

1

2
Cov

�
kbsi , k

b
di

�



+
�

b �=b∗

�

b′ �={b,b∗}



�
−f bsi f

b′

si
− f bsi f

b′

si

� m�

j=1

�
ǫb

′

j − ǫb
∗

j

��
ǫbj − ǫb

∗

j

�

+

1

4
Cov

�
kbsi , k

b′

di

�
+

1

4
Cov

�
kb

′

si
, kbdi

�
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and the expected covariance between individuals 
becomes:

Combining Eqs. (28) and (29), and extending to mul-
tiple individuals, we write the (co)variance of LBP 
effects as Var

(∑
b k

b
)
=

∑
b �=b∗

∑
b
′

�=b∗
Abb′

(k)σk(bb′) , 

where Ab,b′

(k)  is a pedigree-based partial LBP relationship 
matrix when b = b′ and a matrix that describes the rela-
tionship between the LBP effects of breeds b and b′ 
when b  = b′ . Lo et al. [4] showed that pedigree relation-
ship matrices that include BS can be constructed using 
the usual recursive rules, which, in turn, García-Cortés 
and Toro [6] used to construct partial BS relationship 
matrices. Similarly, the partial LBP relationship matri-
ces Abb

(k) are constructed as:

and

Matrices that describe the relationship of LBP effects 
between breeds, Abb′

(k) , when b  = b′ are constructed as:

and

Note that Abb′

(k) is a symmetric matrix and Abb′

(k) = Ab′b
(k).

Based on these derivations, we propose a pedigree-
based model that partitions the breeding value as an 
alternative to the model of Garcia-Cortes and Toro [6], 
in which we consider pedigree LBP relationship matrices, 
Abb′

(k) , for nb − 1 breeds and their covariances instead of 
BS effects for each pair of breeds. The k̃b terms in Eq. (19) 
can be estimated from pedigree by assuming:

(29)

E
[
Cov

(
k
sum

i
, k

sum

i′

)]

=
∑

b �=b∗

∑
b′ �=b∗

1

2

[
Cov

(
k
sum
si

, k
sum

i′

)
+ Cov

(
k
sum

di
, k

sum

i′

)]
.

(30)Abb
(k)i,i = f bs

(
1− f bs

)
+ f bd

(
1− f bd

)
+

1

2
Abb
(k)s,d ,

Abb
(k)i,i′ =

1

2

(
Abb
(k)s,i′ + Abb

(k)d,i′

)
.

(31)Abb′

(k)i,i = −f bs f
b′

s − f bd f
b′

d +
1

2
Abb′

(k)s,d ,

Abb′

(k)i,i′ =
1

2

(
Abb′

(k)s,i′ + Abb′

(k)d,i′

)
.

Table 1  Pedigree and breed proportions for Example I

Animal Sire Dam Breed proportions

A B C

1 1 0 0

2 1 0 0

3 1 0 0

4 0 1 0

5 0 0 1

6 4 1 0.5 0.5 0

7 5 6 0.25 0.25 0.5

8 2 7 0.625 0.125 0.25

9 3 7 0.625 0.125 0.25




�k1
.
.
.

�knb−1


 ∼ N


0,




A
11

(k)
σ 2

k(11)
· · · A

1,nb−1

(k)
σ 2

k(1,nb−1)

.

.

.
. . .

.

.

.

A
1,nb−1

(k)
σ 2

k(1,nb−1)
· · · A

nb−1,nb−1

(k)
σ 2

k(nb−1,nb−1)





.

Similar to the genomic LBP (co)variance structure, the 
combined pedigree LBP (co)variance matrix cannot be 
directly expressed as a Kronecker product of the rela-
tionship matrix and the (co)variance component matrix. 
However, an alternative model can be formed by includ-
ing artificial effects, as described for the genomic model 
in Eq. (21).

Garcia-Cortes and Toro [6] showed that a generalized 
inverse of the partial BS relationship matrices can be con-
structed based on a slight modification of the Quaas [17] 
procedure for constructing the inverse of the numerator 
relationship matrix. A generalized inverse of Abb

(k) can be 
found in a similar manner. However, for models with 
more than two breeds, the inverse of the matrix 

A(k) =




A11
(k) · · · A

1,nb−1

(k)
.
.
.

. . .
.
.
.

A
1,nb−1

(k) · · · A
nb−1,nb−1

(k)


 is needed, which has a 

more complicated structure.

Converting (co)variances
The estimated LBP variance components may depend 
on the choice of the reference breed, b∗ , and are not eas-
ily interpreted. However, with the derivations presented 
here, we can convert the estimated LBP (co)variances to 
represent the better-known concept of BS variance, as 
will be described in the following.

As detailed in Appendix 5, with some algebra on the 
expression for BS variance in Eq.  (10) and for the LBP 
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(co)variance in Eq. (18), the BS variance between breeds b 
and b′ is calculated from the LBP (co)variance as:

and for the BS variance between the reference breed for 
LBP, b∗ , and breed b as:

It follows that estimates of LBP variances can be obtained 
from estimated BS variances as σk(bb) = 2σ 2

w(b,b∗) . Further-
more, the covariance between LBP effects for breeds b and 
b′ can be calculated from BS variances as (derivation in 
Appendix 5) σk(bb′) = σ 2

w(b,b∗) + σ 2
w(b′,b∗) − σ 2

w(b,b′).

In the case of two breeds, b and b′ , we only have 
a single BS term and a single LBP term. Further-
more, Qbbσk(bb) = Wb,b′σ 2

w(b,b′) , Qbb = 2Wb,b′ , and 

σk(bb) =
1
2
σ 2
w(b,b′).

Example I
For a demonstration of the partial BS relationship and 
similarity matrices and the partial LBP relationship 
matrices, Table 1 presents the matrices for a small cross-
bred pedigree for three breeds, A, B, and C, with nine 
individuals. We constructed the pedigree-based BS rela-
tionship matrices for these individuals using Eq. (6). We 
also obtained genotypes and assigned BOA for three 
crossbred dairy cows, which had crossbred dams and the 
same pedigree structure as individuals 7 to 9 in Table 1. 
The genotypes are a part of the dataset used by Eiríksson 
et al. [18], where further details can be found. Based on 
these data, we constructed the Tb matrices, which were 
then used to construct the genomic BS similarity matri-
ces using Eq. (9). We calculated the values of a genomic 
partial LBP relationship matrices for the same cows for 
breeds A and B and the genomic matrix describing the 
relationship of LBP effects between breeds A and B using 
Eq. (17). Furthermore, for individuals 7 to 9 in Table 1, we 
constructed the pedigree-based partial LBP relationship 
matrices for breeds A and B (setting breed C as the refer-
ence breed) using Eq. (30) and the matrix of relationships 
between LBP effects of breeds A and B using Eq. (31).

Example II
To demonstrate and test a model with the genomic par-
tial LBP relationship matrices, we simulated genotypes 
and phenotypes for crossbreds of three breeds using 
the QMSim software [19] (see Additional file  1 for the 

(32)σ 2
w(b,b′) =

1

2
σk(bb) +

1

2
σk(b′b′) − σk(bb′),

σ 2
w(b,b∗) =

1

2

m∑

j=1

(
ǫbj − ǫb

∗

j

)2
=

1

2
σk(bb).

QMSim instruction code). We simulated a genome con-
sisting of 10 chromosomes of 50 cM. Initially, each chro-
mosome had 1000 evenly spaced biallelic markers and 
50 randomly placed biallelic QTL. The QTL effects were 
randomly drawn from a gamma distribution with shape 
parameter 0.5. The simulated trait had a heritability of 
0.3. Throughout the simulation, each female had five off-
spring with an equal probability of being male or female.

The 1000 historical generations consisted of 2000 ani-
mals each. From the last historical generation, three 
populations, A, B and C, were formed by randomly 
selecting 20 males and 20 females as founders of each 
population. Each population was then randomly mated 
for 40 discrete generations with replacements selected 
at random from the offspring of the previous genera-
tion. In the first 10 generations, the number of females 
in each population increased linearly to 60, but popula-
tion size was kept stable thereafter. A single generation of 
F1 crossbred animals was formed by mating 20 randomly 
selected males from generation 39 of population A to 60 
randomly selected females from generation 39 of popu-
lation B. Subsequently, another crossbred population, D, 
was formed by mating 20 randomly selected males from 
generation 40 of population C to 100 randomly selected 
females from the F1 crossbred population. Population D 
mated randomly for three generations, resulting in 1500 
animals with one or both parents being crossbred.

We used the marker genotypes of generations 38 to 40 
of populations A, B and C, and all three generations of 
population D to test our model. For these genotypes, 
7375 SNPs had a minor allele frequency higher than 0.05 
and were retained for further analysis. In the output of 
QMSim, the phase of the genotypes is available in the 
output. However, for the crossbred individuals, the popu-
lation of origin of the alleles is not in the output. There-
fore, we assigned the marker alleles in the D population 
to BOA using the AllOr method [10] and using the 
phased genotypes from generations 38 to 40 of the pure-
bred populations as reference haplotypes for AllOr. Fur-
thermore, we set the window size for the BOA 
assignment to 50 SNPs with an overlap of 45 SNPs. Based 
on the assigned BOA and the genotypes of population D, 
we formed the within-breed genomic relationship matri-
ces based on Eq. (5), with allele frequencies pb calculated 
from generations 38 to 40 for populations b = A, B, C , 
and standardizing factor cb =

∑m
j=1 2p

b
j (1− pbj ) . We set 

population C as reference breed. Thus, only LBP effects 
for breeds A and B were included in the model. The LBP 
relationship matrix was constructed as 

QAB =

[
ZA

ZB

][
ZA

ZB

]T
× 1

m , where ZA and ZB contain the 

BOA information and were calculated as described for Zb 
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in Eq.  (7), and m is the number of SNPs in the analysis 
(7375).

For the variance component estimation, we considered 
the following model:

where vector y contains the phenotypes of 1500 individu-
als from population D, matrix F contains the proportion 
of alleles assigned to each breed, vector δ contains the 
effects of breed proportions, vectors aA , aB , and aC con-
tain the partial genetic effects for breeds A, B, and C, 

respectively, vector k̃A⋆ =

[
k̃A

k̃B,A⋆

]
 contains the modified 

LBP effects of breed A ( ̃kA ) and artificial effects k̃B,A⋆  , and 
matrix XA =

[
I 0

]
 connects the phenotypes to the first 

1500 elements of k̃A⋆  . Similarly, k̃B⋆ =

[
k̃A,B⋆

k̃B

]
 contains the 

modified LBP effects of breed B ( ̃kB ) and artificial effects 
( ̃kA,B⋆  ), and XB =

[
0 I

]
 . We assumed the variance struc-

ture to be ab ∼ N (0, σ 2
a(b)G

b) for populations b = A, B, 

and C, 
[
k̃A⋆
k̃B⋆

]
∼ N (0,

[
σk(AA) σk(AB)
σk(AB) σk ,(BB)

]
⊗QAB) , and 

e ∼ N (0, σ 2
e I) , where σ 2

e  is the residual variance.
We estimated the variance components using the aver-

age information REML (AI-REML) algorithm imple-
mented in the DMU package [20]. We calculated the 
inverses of the relationship matrices GA , GB , GC and QAB 
using Julia [21] (see Additional file  2). We added a small 
value, 0.0001, to the diagonal of the relationship matrices to 
avoid singularity.

For comparison with the estimated values, we calculated 
the true variance components based on the simulated QTL 

y = Fδ+ aA + aB + aC + XAk̃
A
⋆ + XBk̃

B
⋆ + e,

Table 2  Pedigree-based breed-segregation relationship 
matrices for Example 1

The coefficients from pedigree-based partial breed-segregation relationship 
matrices for animals with a crossbred parent in the pedigree in Table 1

Breeds Animal 7 8 9

A-B 7 0.5 0.25 0.25

8 0.25 0.125 0.125

9 0.25 0.125 0.125

A-C 7 0 0 0

8 0 0.25 0

9 0 0 0.25

B-C 7 0 0 0

8 0 0.25 0

9 0 0 0.25

Table 3  Genomic breed-segregation similarity matrices for 
Example 1

The coefficients from genomic breed segregation similarity matrices for animals 
with a crossbred parent in the pedigree in Table 1

Breeds Animal 7 8 9

A-B 7 0.48 0.25 0.18

8 0.25 0.12 0.09

9 0.18 0.09 0.07

A-C 7 0.00 0.03 − 0.02

8 0.03 0.25 0.06

9 − 0.02 0.06 0.19

B-C 7 0.00 − 0.03 0.02

8 − 0.03 0.25 − 0.06

9 0.02 − 0.06 0.28

Table 4  Pedigree-based local breed proportion relationship 
matrices for Example 1

The coefficients from the pedigree-based partial local breed proportion 
relationship matrices for breeds A and B and the elements from the pedigree-
based matrix describing the relationship of local breed proportion effects 
between breeds A and B. Values are shown for animals with a crossbred parent 
in the pedigree in Table 1. Breed C is the reference breed

Breed Animal 7 8 9

A 7 0.25 0.125 0.125

8 0.125 0.1875 0.0625

9 0.125 0.0625 0.1875

B 7 0.25 0.125 0.125

8 0.125 0.1875 0.0625

9 0.125 0.0625 0.1875

A-B 7 − 0.25 − 0.125 − 0.125

8 − 0.125 − 0.0625 − 0.0625

9 − 0.125 − 0.0625 − 0.0625

Table 5  Genomic local breed proportion matrices for Example 1

The coefficients from the genomic local breed proportion partial relationship 
matrices for breeds A and B and the elements from the genomic matrix 
describing the relationship of local breed proportion effects between breeds A 
and B. Values are shown for animals with a crossbred parent in the pedigree in 
Table 1. Breed C is the reference breed

Breed Animal 7 8 9

A 7 0.24 0.14 0.08

8 0.14 0.19 0.08

9 0.08 0.08 0.13

B 7 0.24 0.11 0.10

8 0.11 0.19 0.02

9 0.10 0.02 0.17

A-B 7 − 0.24 − 0.14 − 0.08

8 − 0.11 − 0.06 − 0.04

9 − 0.10 − 0.06 − 0.03
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effects and allele frequencies. The within-population additive 
genetic variance for each population b was calculated as 
σ 2
a(b)true

= 2
∑

j pQTL,bj(1− pQTL,bj)(βj,1 − βj,2)
2 , where 

the summation is over all segregating QTL, pQTL,bj is the fre-

quency of allele 1 for QTL j in population b , calculated from 
generations 38 to 40, and βj,1 ( βj,2 ) is the simulated effect of 
allele 1 (2) for QTL j . The true LBP variances were calculated 
as σ 2

k(bb′)true
=

∑
j(ǫ

b
j − ǫCj )(ǫ

b′

j − ǫCj ) for b = A,B and 

b′ = A,B , and ǫbj = pQTL,bjβj,1 +
(
1− pQTL,bj

)
βj,2 for 

b = A, B, C.

Results
Example I
The pedigree-based partial BS relationship matrices for 
individuals 7, 8, and 9, which are those with non-zero ele-
ments in at least one BS matrix, are in Table 2. For individual 
7, which is the offspring of a F1 crossbred dam of breeds A 
and B, and a purebred sire of breed C, BS is only expected 
between breeds A and B and therefore all elements related 
to this individual in the pedigree-based partial relationship 
matrices for BS between A and C, and B and C, are 0. The 
genomic BS similarity matrices are in Table 3. The values in 
the genomic BS similarity matrices deviate from those in the 
pedigree-based matrices but show the same pattern. For seg-
regation between breeds A and C and between breeds B and 
C, the diagonal element for individual 7 is 0, while the off-
diagonal elements that connect individual 7 to individuals 8 
and 9 are non-zero. These matrices are, therefore, not valid 
relationship matrices.

Table 4 presents the pedigree-based partial LBP relation-
ship matrices for breeds A and B for individuals 7, 8, and 9, 
as well as the matrix describing the relationship between the 
LBP effects of breeds A and B. In this example, the matrices 
for breeds A and B are identical. All elements of the between-
breed partial LBP relationship matrix (A-B) are negative. The 
genomic partial LBP relationship matrices are in Table  5. 
Similar to the comparison between the genomic and pedi-
gree BS matrices, the elements of the genomic LBP partial 
relationship matrices deviate from those in the pedigree 

matrices but show the same pattern. The genomic matrix 
with relationships of LBP effects between breeds is non-sym-
metric, in contrast to its pedigree-based counterpart.

Example II
The AI-REML algorithm converged in 10 rounds of itera-
tions. The true and estimated variance components from 
Example II are presented in Table 6. The within-breed addi-
tive genetic variances were slightly smaller than the simu-
lated values for the last historical generation. This reduction 
in genetic variance is expected because of the small popula-
tion sizes for the 40 generations that separated the popula-
tions, resulting in considerable genetic drift. This genetic 
drift, however, resulted in substantial segregation between 
the populations, as reflected in the true LBP variance of up to 
0.10 (Population B; Table 6). The true BS variances were 0.04, 
0.03, and 0.05 for σ 2

w(A,B) , σ
2
w(A,C) , and σ 2

w(B,C) , respectively. 
The estimated LBP variances were on the same level as their 
true values, while the estimated population-specific additive 
genetic variances were slightly smaller than their true values.

Discussion
In this paper, we present the theoretical background for 
including LBP effects in genetic and genomic evaluation 
models for crossbred populations with varying breed com-
positions based on pedigree information or BOA of SNP 
genotypes. We also show that LBP and BS account for the 
same extra additive genetic variance in later generations of 
crossbreeding compared to the first generation. Further-
more, we provide a method for constructing the genomic BS 
similarity matrices based on the estimated BOA of genotypes 
for a general crossbreeding population. However, we found 
that the genomic BS similarity matrices are not necessarily 
positive semidefinite and present an alternative method that 
consists of setting one breed as reference breed and fitting 
LBP effects of all other breeds, while accounting for the cor-
relation between the LBP effects of different breeds. This 
model was applied to a simulated dataset.

The results from Example I illustrate the properties of 
the relationship matrices for a small toy example. Interest-
ingly, the genomic BS similarity matrix between breeds A 

Table 6  Estimated and true variance components for the simulated data from Example II

Breed specific additive genetic variance for breed A ( σ 2

a(A) ), B ( σ 2

a(B) ), and C ( σ 2

a(C) ), and local breed proportion variance for breed A ( σk(AA) ) and B ( σk(BB) ), local breed 

proportion covariance between breed A and B ( σk(AB) ), and residual variance ( σ 2
e  ), with standard errors of the estimates

σ
2

a(A)
σ
2

a(B)
σ
2

a(C)
σk(AA) σk(BB) σk(AB) σ

2
e

True 0.26 0.27 0.23 0.07 0.10 0.04 0.70

Estimated 0.23 ± 0.09 0.21 ± 0.08 0.19 ± 0.05 0.06 ± 0.04 0.11 ± 0.06 0.01 ± 0.04 0.75 ± 0.03
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and B (Table 3) was not positive semi-definite, underlining 
the limitations of modelling BS using BOA information. 
The results from Example II demonstrate the ability of the 
genomic LBP model to capture the effects of segregation 
between breeds in crossbred populations. The simulated 
scenario was intentionally designed to obtain large LBP 
variances, with multiple generations since the separation 
of the breeds, a small size of the purebred populations, and 
relatively few (500) QTL affecting the trait, and this was 
evident from the results. Furthermore, the crossbreeding 
structure with both parents of all individuals in genera-
tions 2 and 3 of population D being crossbred, facilitated 
estimation of LBP effects. In addition, the half-sib and 
full-sib progeny from crossbred parents are expected to 
increase the LBP relationships between individuals. Still, 
the fast convergence of the AI-REML algorithm and vari-
ance estimates that were close to their true variances, for 
a data set with phenotypes of only 1500 individuals, sup-
ports that the model will be able to disentangle the contri-
bution of breed-specific and LBP effects to the phenotypes 
of crossbreds in real data sets also.

The models proposed in this paper are relevant for 
genetic and genomic prediction based on data from more 
than one generation of crossbreeding, for which the breed-
ing values of crossbreds are partitioned into breed-specific 
terms [6]. Previous studies [11–13] have presented BOA 
models with BS terms for specific cases only [11, 12]. The 
BS terms presented in the supplementary material of Aase 
et al. [13] are equivalent to our genomic BOA model with 
BS, and thus, suffer from the same problem of matrices 
that may be not positive semi-definite. The way we pro-
pose to account for segregation between breeds, i.e. with 
LBP effects, can be applied to any number of breeds or 
breed composition and is, therefore, more general than the 
methods presented by Christensen et al. [11] and Rio et al. 
[12].

Compared to the pedigree-based model of García-
Cortés and Toro [6], for the models with LBP effects, a 
complication for estimation of variance components is 
that the LBP (co)variance structure cannot be directly 
expressed as a Kronecker product. Therefore, the model 
must be extended with artificial effects (Eq.  21) for vari-
ance component estimation. In Example II, we success-
fully estimated the variance components using AI-REML 
implemented in a commonly used mixed model software 
for genetic evaluation, using such an extension. There-
fore, the need to extend the models with artificial effects 
appears to be only a minor complication. When the vari-
ance components are assumed to be known and only the 
effects need to be predicted, the extension can be avoided 
by multiplying the parts of Qb,b′ relating to each breed, or 
to each pair of breeds, with the appropriate (co)variance 
estimates, as shown in Eq. (20).

In a terminal crossbreeding system, the crossbred ani-
mals are not potential breeding stock and estimates of 
the k̃b or wb,b′ terms will therefore not be a part of the 
predicted breeding values required for selection, but they 
are used only to reduce the residual error when includ-
ing records on crossbreds to improve the prediction for 
purebred selection candidates. Thus, ignoring BS or LBP, 
as was done in the literature [8, 16, 22, 23], is unlikely to 
have a considerable impact on selection among purebred 
selection candidates, even if there was significant BS. 
When there is selection among crossbred animals, which 
can occur in, e.g. rotational crossbreeding systems, the 
BS terms are part of the breeding values of the crossbred 
individuals. In this case, models with or without a BS term 
could lead to different selection decisions. However, mod-
els for genomic evaluation in a rotational crossbreeding 
system of three breeds have excluded BS and LBP effects 
in previous studies on simulated data [12, 13]. The same is 
true for studies with BOA models applied to real data for 
admixed populations [24] or populations with crossbreed-
ing involving varying breed combinations [18]. For such 
scenarios, the LBP model presented here could improve 
predictions of breeding values if there was significant BS, 
which would need investigation. Although the focus of 
this paper is on segregation between breeds in a livestock 
context, the developed models may also be applicable to 
model segregation between genetic groups in plant breed-
ing [12].

For the pedigree-based model, we have not found a 
simple algorithm for the construction of the generalized 
inverses of the partial LBP relationship matrices when 
covariances between LBP effects for different breeds are 
included. Therefore, inclusion of BS effects, as in García-
Cortés and Toro [6], is more attractive for pedigree-based 
models than for the pedigree-based LBP model. However, 
for single-step genomic models [2, 3], phenotypes for both 
genotyped and non-genotyped individuals are included. 
For such models, compatible pedigree and genomic rela-
tionship matrices are important [25]. Christensen et  al. 
[11] presented a model for three-way terminal crossbreed-
ing with a combined genomic and pedigree-based partial 
BS relationship matrix. However, for more complex cross-
breeding scenarios, the genomic BS similarity matrix may 
not be positive semi-definite. Therefore, single-step mod-
els for complex crossbreeding should include LBP effects 
rather than BS and, thus, pedigree-based LBP matrices 
are needed. Values for the pedigree and genomic partial 
LBP relationship matrices presented here have the same 
expectation if pedigree information is complete, i.e. when 
the pedigree of all crossbred individuals can be traced back 
to purebred ancestors and BOA assignment is complete, 
i.e. all alleles are assigned breed origin. Compatibility of 
the partial LBP matrices is demonstrated in the results of 
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Example I, Tables 4 and 5. The genomic and pedigree par-
tial LBP relationship matrices can therefore be combined 
in a similar manner as in Christensen et al. [11], but single-
step models with LBP effects need further investigation.

For a simulated data set in a two-breed rotational 
crossbreeding system, Poulsen et al. [26] tested differ-
ent relationship matrices and found that partitioning 
the breeding value as García-Cortés and Toro [6] per-
formed similar to the metafounder approach [27] and 
outperformed other options. Both these approaches 
include BS. No genotypes of crossbreds were included 
in the study by Poulsen et al. [26]. Further comparison 
of models for rotational crossbreeding could include 
genotyped crossbreds and account for BS or LBP 
effects using the methods presented in this paper.

For practical genetic and genomic evaluation, the rele-
vance of LBP or BS terms depends on the magnitude of the 
LBP or BS variance in the population analysed. Such esti-
mates are rare in the literature. Eiríksson et  al. [14] found 
small but statistically significant LBP variance for milk pro-
duction traits in crossbred dairy cows. Munilla Leguizamón 
and Cantet [28] did not find significant BS variance for wean-
ing weight in Angus × Hereford crossbred beef cattle. How-
ever, Birchmeier et al. [29] found significant BS variance for 
birth weight in crossbred beef cattle. Here, we have shown 
that LBP effects can be modelled based on assigned BOA 
in genomic models for data with complicated crossbreed-
ing structures. Although BOA assignment is generally not 
complete and contains errors [10, 18, 30], BOA information 
should provide a more precise estimate of LBP or BS rela-
tionships than pedigree-based models. Therefore, the mod-
els developed here should facilitate more accurate estimation 

of BS or LBP variances than the previous pedigree-based 
models and open the possibility of accounting for BS or LBP 
in genomic predictions for crossbred populations with BOA 
models, regardless of the crossbreeding structure.

Based on the results presented here, combined with previ-
ous work on the inclusion of BS effects in genetic models, we 
recommend that for pedigree-based models, BS terms are 
included following García-Cortés and Toro [6]. For genomic 
BOA models applied to data that include segregation for two 
breeds only, either LBP or BS effects can be included. How-
ever, for genomic BOA models applied to data that includes 
segregation for more than one pair of breeds, LBP terms 
should be used, as presented here, rather than BS terms.

Conclusions
Models for the genetic evaluation using crossbred data 
that partition the genetic value into breed-specific terms 
should, in theory, account for the effects of LBP or BS. 
The (co)variance structure for BS effects in genomic BOA 
models for crossbred data involving more than two breeds 
are not guaranteed to lead to relationship matrices that are 
positive semi-definite. The LBP (co)variance structure can 
be constructed from the pedigree or BOA information by 
including LBP effects for each breed except for a reference 
breed, given that the covariance between LBP effects of 
each pair of breeds is included in the model.

Appendices

Appendix 1
Here, we derive the formulas for breed-segregation (BS) 
variance and covariance for a single locus in Eqs. (7) and 
(8), respectively. The contribution of locus j to the BS 
variance of individual i , a crossbred of nb breeds, is 

Var
(∑

b ǫ
b
j z̈

b
ij

)
= E

[(∑
b ǫ

b
j z̈

b
ij

)2]
 . Furthermore,
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∑
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b
ij
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Rearranging, gives:
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The contribution of locus j to the BS covariance 
between animals i and i′ is: 
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Furthermore,

Therefore, Cov
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 , which gives the expression in Eq.  (8) in 

the main text.

Appendix 2
In Appendix  2, we investigate the modelling of three 
independent LBP effects in relation to the presented the-
ory of BS. We assume that the marker loci are the QTL 
for simplicity, the origin of the alleles is known, and ǫbj  are 
random unknown variables with mean zero.

We name the three breeds as A, B and C. The genomic LBP 
variance for three breeds related to locus j for animal i is:
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First, we show that when zA + zB + zC = 0,

The proof is as follows. Note that 
zA = −zB − zC and zB = −zA − zC . This leads 
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which completes the proof.
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2 and similarly 
with the other pairs of breeds in Eq. (33) gives:

Some rearranging gives:
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Therefore,

This decomposition of Var
(
κ̈sum
ij

)
 gives a sum over 

three independent LBP terms and could be extended to a 
relationship matrix across multiple individuals. However, 
the E

[(
ǫAj − ǫBj

)(
ǫAj − ǫCj

)]
 term is not guaranteed to 

be positive. Therefore, the variance for the whole genome, 
∑

j E
[(

ǫAj − ǫBj

)(
ǫAj − ǫCj

)]
 is not necessarily non-nega-

tive, and therefore not a valid variance term, and the 
same holds for other combinations of breeds.

Appendix 3
Here, we present the derivation of Eq. (11). The variance 
for LBP over all breeds b for locus j is:

We set one breed as reference breed, b∗ . Next, 
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the second term, we see that the second and the fifth 
terms cancel out, and using that 
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third term, we see that the third and the fourth terms 
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 , which is Eq. (11).

Equation  (12) about the covariance between the LBP 
effects of individuals i and i′ over all breeds b for locus j is 
derived similarly to the above derivation of Eq. (11), and we 
obtain:

Appendix 4
Here, we derive Eqs. (22) and (23), with the expectation of 
pedigree-based LBP variance and covariance for single loci, 
respectively. In a pedigree-based LBP model, we have the 
expectation of LBP variance as:
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Using Eq. (35), then:

Using that 
∑
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terms, we have:

Removing the terms that cancel out,
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and (nb − 1)2 covariances between breeds b and b′,

Appendix 5
Here, we show the relationship between BS variances and 
LBP variances in Eq.  (32) for the variance of BS between 
breeds b and b′ when neither of the breeds is the reference 

breed, b∗ . The BS variance is σ 2
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1
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j

)2
 . 

Substituting ǫbj − ǫb
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∗

j )− (ǫb
′

j − ǫb
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j ) and 
rearranging gives:

Furthermore, here we derive how the covariance 
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from BS variance components. We have the covariance 
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gives:

Therefore,
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in Example II.

Additional file 2. It contains the Julia code for the construction and inver-
sion of the relationship matrices used in Example II.
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