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A breed‑of‑origin of alleles model 
that includes crossbred data improves 
predictive ability for crossbred animals 
in a multi‑breed population
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Abstract 

Background  Recently, crossbred animals have begun to be used as parents in the next generations of dairy and beef 
cattle systems, which has increased the interest in predicting the genetic merit of those animals. The primary objec-
tive of this study was to investigate three available methods for genomic prediction of crossbred animals.  In the first 
two methods, SNP effects from within-breed evaluations are used by weighting them by the average breed propor-
tions across the genome (BPM method) or by their breed-of-origin (BOM method). The third method differs from the 
BOM in that it estimates breed-specific SNP effects using purebred and crossbred data, considering the breed-of-ori-
gin of alleles (BOA method). For within-breed evaluations, and thus for BPM and BOM, 5948 Charolais, 6771 Limousin 
and 7552 Others (a combined population of other breeds) were used to estimate SNP effects separately within each 
breed. For the BOA, the purebreds’ data were enhanced with data from ~ 4K, ~ 8K or ~ 18K crossbred animals. For each 
animal, its predictor of genetic merit (PGM) was estimated by considering the breed-specific SNP effects. Predictive 
ability and absence of bias were estimated for crossbreds and the Limousin and Charolais animals. Predictive ability 
was measured as the correlation between PGM and the adjusted phenotype, while the regression of the adjusted 
phenotype on PGM was estimated as a measure of bias.

Results  With BPM and BOM, the predictive abilities for crossbreds were 0.468 and 0.472, respectively, and with the 
BOA method, they ranged from 0.490 to 0.510. The performance of the BOA method improved as the number of 
crossbred animals in the reference increased and with the use of the correlated approach, in which the correlation of 
SNP effects across the genome of the different breeds was considered. The slopes of regression for PGM on adjusted 
phenotypes for crossbreds showed overdispersion of the genetic merits for all methods but this bias tended to be 
reduced by the use of the BOA method and by increasing the number of crossbred animals.

Conclusions  For the estimation of the genetic merit of crossbred animals, the results from this study suggest that 
the BOA method that accommodates crossbred data can yield more accurate predictions than the methods that use 
SNP effects from separate within-breed evaluations.

Background
The use of crossbred animals in livestock production has 
been adopted for many years in pigs and poultry, and cur-
rently, it is increasing in cattle to improve the profitabil-
ity of the systems [1]. Accordingly, there is an increasing 
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interest in predicting the genetic merit of crossbred ani-
mals [2].

Genomic prediction (GP) consists of the use of a large 
number of single nucleotide polymorphisms (SNPs) 
to predict the genetic merit of selection candidates [3] 
and has become common in livestock due to the proven 
increase in the rate of genetic gain [4]. The accuracy of 
the estimation of SNP effects, and therefore of the pre-
diction of genetic merit, relies heavily on the degree 
of linkage disequilibrium (LD) between the SNPs and 
the quantitative trait loci (QTL), which differs between 
breeds and may not be consistent across breeds [5]. This 
may challenge the estimation of the genetic merit of ani-
mals when reference populations involve multiple breeds. 
For example, the Irish national cattle genetic evaluation 
is based on a multi-breed population that includes many 
breeds (~ 40), and the vast majority of the animals are 
crossbreds with varying contributions from those pure 
breeds.

For prediction in crossbred animals, VanRaden et  al. 
[6] suggested an approach based on partitioning the 
genetic merits of the crossbreds into breed-specific pure-
bred terms, which rely on the estimates of SNP effects 
from separate within-breed genomic evaluations and 
breed proportions averaged across the genome, which 
are estimated from genotypes for each crossbred ani-
mal (referred by the authors as "Base Breed Representa-
tion", BBR). These average genomic breed proportions, 
which can take any value from 0 to 1 for a given breed 
in any individual, are then used as weights for combin-
ing the results obtained from separate within-breed 
genomic evaluations. Hence, all SNPs across the genome 
get equal weights when predicting an individual’s genetic 
merit. Using simulations, Eiríksson et  al. [7] reported 
that a method combining SNP effects that are estimated 
from separate within-breed genomic evaluations based 
on breed-of-origin of genome regions outperformed the 
method that was proposed by VanRaden et al. [6] across 
the four generations evaluated, with the largest difference 
observed in the first generation. The same methods were 
compared in a real dairy crossbred population, with simi-
lar results [8]. The method based on the breed-of-origin 
of genome regions used in Eiríksson et al. [7] relies on the 
estimation of the breed-of-origin (proportion) for each 
SNP allele (BOA), which, for a certain allele, can take 
only the values 0 or 1 when the allele can be assigned to a 
specific breed. Otherwise, the probability of BOA assign-
ment can be considered. Following Eiríksson et al. [7], we 
will refer to the method of VanRaden et  al. [6] as BPM 
and to that of Eiríksson et al. [7] as BOM. The limitation 
of both these methods is that the genetic merit of cross-
bred animals is predicted based only on purebred data. 
Karaman et  al. [9] proposed a methodology that allows 

to include multiple breeds and crossbred animals in the 
reference population while accounting for BOA, and we 
will refer to this method as the breed-of-origin of alleles 
(BOA) method. Although both the BOM and BOA meth-
ods use the information on breed-of-origin of alleles for 
crossbred selection candidates, BOM does not consider 
crossbred animals in the reference population, whereas 
the BOA does. On the one hand, the inclusion of cross-
bred animals in the reference population may increase 
the accuracy of GP by the addition of intra-breed infor-
mation. On the other hand, a joint analysis of all the 
breeds’ data may help to transfer information between 
breeds if SNP effects are allowed to be correlated in the 
BOA method.

Thus, this study had two principal aims: (1) to investi-
gate whether the accuracy of GP from a BOA method is 
higher than that from methods that combine SNP effects 
from within-breed evaluations (BPM and BOM) for 
crossbred animals and (2) to investigate the impact of the 
number of crossbred animals in the reference population 
when using the BOA method. The predictive ability and 
absence of bias of the three methods were tested using 
purebred and crossbred animals from the multi-breed 
Irish cattle population.

Methods
Data
The cattle data used in our study were sourced from the 
Irish Cattle Breeding Federation (ICBF, https://​www.​
icbf.​com) national database. In the genomic prediction 
models, we used carcass weight (kg) and genomic data 
from 26,164 purebred and 47,818 crossbred animals born 
between 2000 and 2020 and slaughtered between 307 and 
1277 days of age. In this study, an animal was defined as 
a purebred when the pedigree breed proportion was 32 
out of 32 from a particular breed, which means that all its 
ancestors, five generations back, had to be registered as a 
purebred of the same breed; otherwise, it was considered 
a crossbred.

Marker data were collected and pre-processed by the 
ICBF. Crossbred animals were genotyped with 12 SNP 
arrays, of which 98% were of medium density (between 
50 and 54K), while purebred animals were genotyped 
with 20 SNP arrays, of which 84% were of medium den-
sity (between 45 and 63K). The ICBF provided the geno-
types imputed to a common reference panel for all breeds 
and phased them into two haplotypes using the FImpute 
software [10]. In total, 50,493 SNPs across the 29 bovine 
autosomes were available for statistical analysis.

Estimation of breed‑of‑origin
Analysis using BOA information requires that the breed-
of-origin of phased alleles in the crossbred animals is 

https://www.icbf.com
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known. We estimated BOA for all the crossbred ani-
mals using the four breeds that contributed the most to 
the crossbred genotyped animals as parental breeds, i.e. 
Limousin, Charolais, Angus and Holstein, and then Oth-
ers group that included the purebred animals of the five 
breeds that ranked after the previous four in terms of 
their contribution to the crossbreds, i.e. Friesian, Sim-
mental, Hereford, Belgian Blue and Shorthorn. We used 
this grouping strategy because the number of purebred 
animals from these breeds was small, and their individ-
ual contribution to the crossbred animals was very low 
(~ 3%). The contribution of the other breeds to the cross-
breds was so low that they were considered negligible.

We used the AllOr software [7] to infer the breed-of-
origin of each SNP allele of all pre-selected genotyped 
crossbred animals (166,925). This software was designed 
to detect BOA in genotypes of crossbred animals where 
the dam is a purebred or crossbred from known breeds, 
and the sire is a purebred from a known breed, and it was 
later extended to allow the use of crossbred sires (Jon 
Eiríksson, personal communication). AllOr requires (i) 
the phased genotypes of the representative samples of 
all contributing pure breeds, (ii) the phased genotypes 
of the crossbred animals, (iii) a pedigree file connecting 
the crossbred animals to genotyped purebred ancestors 
(optional), and (iv) information on sire and dam breeds 
of the crossbred animals. Details of the procedures for 
the assignment of alleles in AllOr are described in Eiríks-
son et al. [7]. The genotypes from the pure breeds used 
in AllOr consisted of 32,801 animals, of which 24,000 
were Limousin, Charolais, Angus and Holstein (i.e. 6000 
for each breed), 8000 were Simmental, Hereford, Belgian 
Blue and Shorthorn (i.e. 2000 for each breed) and 801 
were Friesian. To assign BOA, the entire set of crossbreds 
was divided into 10 sets, of which nine contained 16,000 
animals (16K), and one contained 22,925 animals.

We also included a pedigree file that contained 
481,058 animals born from 1966 to 2020 (40,869 pure-
breds), which were obtained by tracing back the geno-
typed crossbred animals in a full pedigree containing 
11,850,818 animals. We used the DMU Trace program 
[11], with a default pruning value (i.e. GPRUNE = 0), in 
which the pedigree is not pruned to a specific number 
of generations, but the pruning is done based on non-
informative individuals.

AllOr detects BOA for each chromosome separately, 
thus requiring a split analysis by chromosome. Therefore, 
290 analyses were performed (one per chromosome per 
set). On average, across the 10 sets, for the longest chro-
mosome (3139 SNPs), it took ~ 102 h to detect BOA, and 
for the shortest chromosome (895 SNPs), it took ~ 28 h. 
Analyses required ~ 860 Mb and ~ 283 Mb of memory for 
the longest and the shortest chromosomes, respectively.

The alleles with their assigned BOA were used to 
build the breed-specific genotype matrices required 
for the BOA method and for validation using the BOM 
(explained later). The alleles not assigned to Limousin, 
Charolais, Angus and Holstein, and Others were also 
defined as originating from the Others group.

The contribution of Angus and Holstein alleles in the 
crossbred genotyped population was small, i.e. ~ 13% 
for each breed and only 2215 Angus and 1515 Holstein 
individuals had phenotype data in addition to genotypes. 
Therefore, keeping these as two separate breeds when 
estimating parameters in the models resulted in conver-
gence issues, especially in the estimation of covariances 
between breeds in the BOA method. Thus, these breeds 
were included in the Others group, keeping three com-
ponents for GP, the two main breeds: Limousin and 
Charolais, and Others.

After estimating BOA, genomic breed proportions 
(GBP) were calculated for each crossbred animal by 
counting the alleles assigned to Limousin, Charolais, or 
the Others group.

Models
Before running the prediction models, the phenotypes 
of all animals in the population (10,159,498) were pre-
corrected with the DMU software [12] using an animal 
model that resembles the routine genetic evaluation for 
carcass weight in Ireland as carried out by the ICBF. The 
model included the following fixed effects: birth year, 
type of birth (twin or single), slaughterhouse, and age at 
slaughter linear, quadratic and cubic; and the following 
random effects: contemporary group of herd of slaughter 
and prior to slaughter, dam permanent environment, and 
animal genetic effect. The adjusted phenotypes were then 
calculated as the summation of the residuals of the model 
and the animal genetic effects. Unlike the current ICBF 
model, which includes effects to correct for heterosis and 
recombination losses, we did not include non-additive 
effects to maintain the effects that are partially captured 
by the additive effect when crossbred animals are used in 
the BOA method.

We compared three methods based on different data 
sources in the reference population and validation strat-
egies used. In two methods (BPM and BOM), separate 
within-breed evaluations were performed to obtain SNP 
effects for each breed. Those effects were then used 
to obtain the PGM, either (1) based on GBP (BPM) or 
(2) based on breed-origin-of-alleles (BOM). The third 
method (BOA) considered information on crossbred 
animals to estimate SNP effects and combined those 
effects with the BOA estimates to obtain PGM. The BOA 
method was implemented assuming that the SNP effects 
of the different breeds are (3a) uncorrelated (BOAUNCOR) 
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or (3b) correlated (BOACOR), as shown in Table  1. It 
should be noted that these correlations were not fixed 
but were estimated, as explained later.

Estimation of SNP effects
BPM and BOM
For each breed, separately (Charolais, Limousin and Oth-
ers), we applied a Bayesian whole-genome regression 
method to estimate SNP effects:

where y∗ is the vector of adjusted phenotypes for the ref-
erence animals, 1 is a vector of 1s, µ is the overall mean, Z 
is the matrix of centered genotypes based on current 
allele frequencies in the reference population, u is the 
vector of SNP effects, and e is the vector of random resid-
uals. The vector of SNP effects was assigned a prior of a 
normal distribution u|σ2u ∼ N

(
0, Iσ2u

)
 , where I is an iden-

tity matrix and σ2u is the variance of SNP effects. The σ2u 
was further assigned a scaled inverted chi-square prior, 
with a degree of freedom ( df u ) and a scale parameter 

( Su ), where df u = 4 and Su =
σ
2
uold

(df u−2)
df u

 [13]. Here, σ2uold 
is the variance of SNP effects that was estimated in an 
earlier analysis. This Bayesian regression method given 
above is equivalent to SNP best linear unbiased predic-
tion (SNPBLUP), except that marker and residual vari-
ances are treated as unknown and estimated, whereas 
they are assumed to be known in SNPBLUP. For residual 

variances, df e = 4 and Se =
σ 2
eold

(df e−2)
df e

 , where σ2eold is the 
residual variance that was also estimated in an earlier 
analysis.

BOACOR and BOAUNCOR
The following model was used to jointly analyze all pure-
breds and crossbred animals, which is referred to as the 
BOA model [9]:

where y∗ , 1 , µ , e are as described for Eq.  (1), X is the 
matrix of GBP calculated after the BOA estimation step, 

(1)y∗ = 1µ+ Zu + e,

(2)
y∗ = 1µ+ Xb+ ZCHuCH + ZLMuLM + ZOTuOT + e,

and b is the vector of fixed breed effects, ZCH , ZLM and 
ZOT are the matrices of breed-specific content of SNPs 
for Charolais, Limousin, and Others, respectively. These 
Z (BOA matrices), were created as in Sevillano et al. [14]. 
In their general form, each BOA entry is xjk −mjkpjk , 
where xjk is the partial genotype at locus j originating 
from breed k , mjk is the number of alleles at locus j origi-
nating from breed k , pjk is the breed-specific allele fre-
quency for locus j in breed k . The pjk was calculated as 
the number of occurrences of reference alleles generated 
from breed k divided by the total number of alleles from 
breed k . An entry in the corresponding Z matrix is 0 
when an animal carries no alleles at locus j from a breed, 
0-pjk or 1-pjk when an animal carries only one allele at 
locus j , and 0-2pjk , 1-2pjk or 2-2pjk when an animal car-
ries both alleles at locus j from breed k.

Finally, uCH , uLM and uOT are the vectors of SNP effects 
for Charolais, Limousin, and Others, respectively. Each 
vector of SNP effects was assigned a prior in the form of a 
normal distribution: uk|σ2u,k ∼ N

(
0, Iσ2

u,k

)
 , with k repre-

senting Charolais, Limousin, and Others. Consequently, 
the breed-specific SNP effects were assumed to be uncor-
related across breeds (BOAUNCOR).

The σ2
u,k

 were further assigned a scaled inverted chi-
square prior, with a degree of freedom ( df  ) and a scale 

parameter ( S ), where df = 4 and Sk =
σ
2
uold ,k

(df−2)

df  [13]. 
Here, σ2

uold ,k
 is the SNP variance for breed k , estimated 

in an earlier analysis.
Priors were also assigned to estimate breed-

specific SNP effects, but assuming that the SNP 
effects between the different breeds were correlated 
(BOACOR). In that case, a multivariate normal distri-
bution was assigned for each vector of SNP effects: [
u′CHu

′
LMu′OT

]′
|B ∼ N (0,B⊗ I) , where I is an identity 

matrix of size equal to the number of SNPs (50,493), 
and B is as follows [9, 15]:

The diagonals of B are the breed-specific SNP vari-
ances, while the off-diagonals are SNP covariances 
between the breeds. The B matrices were assumed to 
follow an inverted Wishart distribution with a shape 
vB and a scale VB parameter: B|vB,VB ∼ IW (vB,VB) . 
VB = (vB − 3− 1)Bold , where vB = 6, and Bold is the 
matrix of SNP (co)variances obtained in an earlier anal-
ysis. The values of σ2uold , σ

2
uold ,i

 and σ 2
eold

 were obtained 
from a preliminary BOA analysis using animals in con-
temporary groups of herd of slaughter with at least 20 
animals (5310 animals).

B =




σ 2
CH σCH ,LM σCH ,OT

σLM,CH σ 2
LM σLM,OT

σOT ,CH σOT ,LM σ 2
OT



.

Table 1  Characteristics of each method

P: purebred; C: crossbred

Method Analysis to estimate 
SNP effects

Reference SNP effects

BPM 3 single breed P Not correlated

BOM 3 single breed P Not correlated

BOAUNCOR 1 multi-breed P + C Not correlated

BOACOR 1 multi-breed P + C Correlated
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For all the models, the Markov-chain Monte Carlo 
(McMC) algorithm with Gibbs sampling was run for 
100,000 cycles to infer model parameters, and the first 
20,000 cycles were taken as the burn-in period and thus 
discarded. Every 10th cycle of the remaining samples was 
saved, giving 8000 posterior samples for each param-
eter. The mean value of each parameter over the poste-
rior samples was used as its estimate. In addition to the 
estimates of SNP effects, we also obtained the posterior 
distribution of B , which was used to estimate the correla-
tion of SNP effects between breeds (Table 5). The analy-
ses were conducted using in-house software tools written 
in the Julia programming language [16].

Validation of methods
Reference and validation populations were defined 
similarly to those in Su et  al. [17] and Liu et  al. [18] to 
reduce the relationship between reference and validation 
populations. First, we set an initial threshold of 2018 to 
define the validation population as the animals born after 
that year. Second, if more than half of the offspring was 
born after 2018 for a bull, the entire group (bull and off-
spring) was assigned to the validation population; other-
wise, it was assigned to the reference population. Hence, 
each bull was included with its offspring in the same 
population.

For the reference set used in within-breed evaluations, 
we used all available purebred animals that were not allo-
cated to the validation population: 5948 Charolais, 6771 
Limousin and 7552 Others. For the reference sets used in 
the BOA method, we used the purebreds mentioned for 
within-breed evaluations and added an increasing num-
ber of crossbred animals. The selection of the crossbred 
animals to be included was based on a minimum num-
ber of animals in each contemporary group of the herd 
of slaughter: 15 animals per group (4423), 10 animals per 
group (8239) and five animals per group (18,385). A sum-
mary of the reference sets used in the BOA model is in 
Table 2.

The validation set consisted of 35,362 animals, of which 
5893 were purebred (1117 Charolais, 1670 Limousin, 
and 3106 Others) and 29,433 were crossbred. Crossbred 
animals were separated into four groups depending on 
the contribution of the two main breeds: a contribution 
of < 25% (6343 animals), ≥ 25 to < 50% (3360 animals), ≥ 
50 to < 85% (10,670 animals) and ≥ 85% (9060 animals).

After estimating the SNP effects using each reference 
population, PGM were estimated differently depending 
on the approach used. It should be noted that both BPM 
and BOM rely on the same set of SNP effect estimates 
obtained by fitting Eq.  (1) to each breed’s data alone. 
Thus, a comparison of the PGM for purebred animals is 
irrelevant between BPM and BOM.

BPM
The PGM from the BPM is obtained as follows [6]:

where GBPCH,i , GBPLM,i and GBPOT,i are the GBP val-
ues for Charolais, Limousin and Others, respectively, on 
animal i , mi is the vector of allele contents for animal i , 
û1CH , û1LM and û1OT

 are the vectors of SNP solutions from 
Eq. (1) for Charolais, Limousin and Others, respectively, 
GBPk ,i is the GBP value for breed k on animal i , and b̂k is 
the mean effect of breed k .

BOM
The PGM from the BOM is obtained as follows [7]:

where GBPk ,i , b̂k and û1CH , û1LM and û1OT
 are as defined 

for Eq. (3), zCH,i , zLM,i and zOT,i are the vectors of breed-
specific allele contents for Charolais, Limousin and Oth-
ers, respectively for animal i.

BOAUNCOR and BOACOR
The PGM from the BOA is obtained as follows:

where GBPk ,i and b̂k are as defined for Eq. (3), zCH,i , zLM,i 
and zOT,i are as described for Eq. (4) and û2CH , û2LM and 
û2OT

 are the vectors of SNP solutions from  Eq. (2) for 
Charolais, Limousin and Others, respectively.

Predictive ability
We tested the ability of each method to predict the 
performance of the validation animals. The predictive 

(3)

PGMBPM,i =GBPCH,im
′
iû1CH +GBPLM,im

′
iû1LM

+ GBPOT,im
′
iû1OT

+

Nk∑

k=1

GBPk ,ib̂k,

(4)

PGMBOM,i = z
′

CH,iû1CH + z
′

LM,iû1LM

+ z
′

OTiû1OT
+

Nk∑

k=1

GBPk ,ib̂k,

(5)

PGMBOA,i = z
′

CH,iû2CH + z
′

LM,iû2LM

+ z
′

OT,iû2OT
+

Nk∑

k=1

GBPk ,ib̂k,

Table 2  Summary of animals used as reference set in the 
different BOA scenarios

Scenario Purebreds (P) Crossbreds (C) Total

20K_P + 4K_C 20,271 4423 24,694

20K_P + 8K_C 20,271 8239 28,510

20K_P + 18K_C 20,271 18,385 38,656



Page 6 of 12Guillenea et al. Genetics Selection Evolution           (2023) 55:34 

abilities of each method were calculated as the correla-
tion between adjusted phenotypes (y*) and PGM for the 
validation animals. A nonparametric bootstrap proce-
dure, with a size equal to that of the validation popula-
tion, was obtained by random sampling with replacement 
from validation animals. We repeated the bootstrap pro-
cedure to obtain 10,000 bootstrap samples of the PGM of 
each scenario. The comparisons were performed using 
a two-tailed paired t-test of the 10,000 samples of each 
scenario.  Bonferroni correction was applied to account 
for the multiple-test comparisons. The slopes of regres-
sion of adjusted phenotypes on PGM were calculated 
as a measure of bias for all methods. Slopes of ~ 1 imply 
no bias, while slopes greater than or less than 1 indicate 
under- or overdispersion of genetic merits, respectively.

Results
Breed‑of‑origin assignment
The AllOr software was able to assign most alleles to 
their breed-of-origin, i.e. on average, 97.03% (rang-
ing from 69.99 to 99.88%) of the alleles were assigned a 
breed-of-origin. We observed no trend in the assignment 
between different chromosomes, but the extremities of 
all the chromosomes had the lowest assignment (Fig. 1).

Genomic prediction
The genomic prediction results are in Table 3. The BOA 
method enhanced predictive ability over both BPM 
and BOM for crossbred animals, while for the last two 

there was no difference in predictive ability. The BOA 
method, on average, outperformed the BPM by 5%, 7%, 
and 8% when ~ 4K, ~ 8K and ~ 18K crossbred animals 
were included in the reference population. There were 
no significant differences between methods for purebred 
animals. The results of BOACOR and BOAUNCOR did not 
differ significantly. However, within the BOA analyses, 
BOAUNCOR including ~ 4K crossbreds yielded the worst 
performance and the BOACOR including ~ 18K crossbreds 
yielded the best performance.

The advantage of BOA over the other two methods for 
crossbred animals tended to be larger as the proportion 
of the main breeds contained in the tested crossbred ani-
mals increased. The increases with the BOACOR in the 
20K_P_18K_C scenario compared to those of BPM were 
equal to 14%, 43%, 35% and 37% for the groups with a 
contribution of the main breeds of < 25%, ≥ 25 to < 50%, 
≥ 50 to < 85% and ≥ 85%, respectively. There was no sig-
nificant difference between BPM and BOM, regardless 
of the contribution from the main breeds. The predictive 
abilities for the Limousin were slightly higher than those 
for the Charolais although the significance between these 
differences was not tested. For purebred performance, 
BPM and BOM share the same set of SNP effect esti-
mates, and therefore, the difference between them lies 
only in the prediction of the crossbred animals’ genetic 
merit. For purebred performance, there was no signifi-
cant difference between these methods and BOA.

Fig. 1  Average proportion of alleles assigned to breeds across the genome. Alternate red and blue refer to each bovine autosome
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Prediction bias
The regression slopes of adjusted phenotypes on PGM 
per scenario and method are in Table 4. The regressions 
can be seen as a measure of the bias of PGM. Slopes 
smaller than 1 indicate overdispersion of PGM, whereas 
slopes larger than 1 indicate an underprediction of PGM. 
All methods showed overdispersion of PGM for cross-
bred animals, but the slopes of regression for the BOA 
method were closer to 1 than for the other two methods. 
The increase in the number of crossbred animals tended 
to yield slopes approaching 1. For the groups divided by 
breed proportions of the two main breeds, BPM showed 
an underprediction of the PGM for animals with a breed 
composition of the main breeds lower than 50%, while 

the results were the opposite for the groups of animals 
with more than 50% of the main breeds. For methods  
considering the origin of the genomic segments for cross-
bred selection candidates  (BOM and BOA), the slopes 
tended to be smaller (more overdispersion) as the con-
tribution of the main breeds increased. For the Charolais 
animals, slopes indicated an overdispersion of the PGM 
across all methods and scenarios but tended to be closer 
to 1 as the number of animals increased in the analysis 
using BOA. On the contrary, for the Limousin animals, 
slopes showed underdispersion of the PGM across all 
methods and scenarios, but the increase in the number of 
animals also tended to show slopes closer to 1.

Table 3  Predictive ability (standard error) for each method with a significant test

Values with different superscripts indicate significant differences at P < 0.05 with Bonferroni correction, within each row; predictive abilities of BPM, BOM, BOAUNCOR 
and BOACOR were compared to each other within the same group of animals

bp: breed proportion of the two main breeds

BPM BOM BOA

UNCOR COR UNCOR COR UNCOR COR

20K_P 20K_P + 4K_C 20K_P + 8K_C 20K_P + 18K_C

Crossbred
All 0.468c (0.005) 0.472c (0.005) 0.490b (0.005) 0.497ab (0.005) 0.495ab (0.005) 0.502ab (0.005) 0.502ab (0.004) 0.510a (0.004)

By bp

< 25% 0.358c (0.011) 0.349c (0.011) 0.393abc (0.011) 0.401ab (0.011) 0.397abc (0.011) 0.406ab (0.011) 0.396abc (0.011) 0.409a (0.011)

≥25–< 50% 0.261bc (0.017) 0.253c (0.016) 0.326ab (0.015) 0.343a (0.015) 0.340a (0.015) 0.355a (0.015) 0.357a (0.015) 0.373a (0.015)

≥50–< 85% 0.246e (0.009) 0.264de (0.009) 0.290bcd (0.009) 0.301abc (0.009) 0.297abc (0.009) 0.310ab (0.009) 0.318ab (0.009) 0.331a (0.009)

≥85% 0.238d (0.010) 0.258 cd (0.010) 0.279bcd (0.010) 0.293abc (0.010) 0.292abc (0.010) 0.304ab (0.010) 0.317ab (0.010) 0.327a (0.010)

Purebred
Charolais 0.225a (0.029) 0.245a (0.029) 0.252a (0.029) 0.253a (0.029) 0.259a (0.029) 0.273a (0.029) 0.279a (0.029)

Limousin 0.285a (0.023) 0.306a (0.023) 0.300a (0.024) 0.313a (0.023) 0.309a (0.023) 0.316a (0.023) 0.314a (0.023)

Table 4  Average slope of regression for predicted genetic merits on adjusted phenotypes (standard error) for each method

bp: breed proportion of the main two breeds

BPM BOM BOA

UNCOR COR UNCOR COR UNCOR COR

20K_P 20K_P + 4K_C 20K_P + 8K_C 20K_P + 18K_C

Crossbred
All 0.752 (0.008) 0.704 (0.008) 0.784 (0.008) 0.785 (0.008) 0.814 (0.008) 0.790 (0.008) 0.926 (0.009) 0.853 (0.008)

By bp

< 25% 1.102 (0.037) 1.067 (0.037) 1.073 (0.033) 1.071 (0.032) 1.044 (0.032) 1.034 (0.030) 1.025 (0.031) 1.017 (0.030)

≥25–< 50% 1.157 (0.075) 0.789 (0.052) 0.966 (0.048) 0.971 (0.046) 0.965 (0.047) 0.960 (0.044) 0.955 (0.042) 0.946 (0.041)

≥50–< 85% 0.871 (0.032) 0.692 (0.024) 0.725 (0.023) 0.719 (0.022) 0.727 (0.021) 0.758 (0.022) 0.758 (0.022) 0.738 (0.020)

≥85% 0.908 (0.039) 0.763 (0.030) 0.743 (0.027) 0.727 (0.025) 0.744 (0.026) 0.729 (0.024) 0.759 (0.024) 0.730 (0.022)

Purebred
Charolais 0.822 (0.109) 0.791 (0.094) 0.811 (0.093) 0.801 (0.093) 0.821 (0.092) 0.845 (0.093) 0.865 (0.091)

Limousin 1.008 (0.084) 1.050 (0.081) 1.039 (0.082) 1.047 (0.079) 1.033 (0.080) 1.034 (0.078) 1.025 (0.079)
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Correlations between SNP effects
The correlations between the SNP effects of the differ-
ent breeds ranged from 0.49 to 0.86 (Table 5), computed 
from the posterior distribution of B . The most stable 
correlation was between Charolais and Others, which 
on average was equal to 0.72 and remained almost con-
stant as the number of crossbred animals in the dataset 
increased. The correlation between Charolais and Lim-
ousin ranged from 0.69 to 0.86 and tended to decrease 
as the number of crossbred individuals in the reference 
population increased. The correlations between Limou-
sin and Others ranged from 0.49 to 0.65, with no clear 
trend. We observed that as the number of crossbred 
animals increased, the correlations involving the Others 
group were estimated with higher precision (lower stand-
ard error). These correlations between the SNP effects of 
the breeds reflect the genetic correlations between them 
[19].

Discussion
In this study, we investigated the use of three methods for 
predicting the genotypic merit of crossbred animals. On 
the one hand, the first two methods consider only pure-
bred information (phenotypes and genotypes) to esti-
mate SNP effects and combine those SNP solutions based 
either on breed proportions (BPM) or on the breed-of-
origin of the genome regions (BOM). On the other hand, 
the third method relies not only on the purebred but also 
on the crossbred information and takes the breed-of-
origin of the genome regions into account in the analy-
sis (BOA method). In addition, for the last method, the 
impact of including different numbers of crossbred ani-
mals in the reference population was investigated.

The BOM and BOA methods require that alleles are 
traced back to their breed-of-origin with high accuracy. 
The BOM method uses this information only to predict 
the genetic merit of crossbred animals but not to estimate 
the SNP effects, whereas the BOA method also uses it to 
integrate crossbred data in the reference population and 
thereby to estimate the SNP effects. Errors in the breed-
of-origin assignments can affect the performance of both 
the BOM and BOA methods, but such errors may have a 
greater impact on the BOA method, as they also impact 
the accuracy in the estimation of the SNP effects. If the 

origins of alleles at certain loci are switched (e.g., from 
Charolais to Limousin or vice versa), then the estimates 
of breed-specific alleles will be affected by information 
from the opposite breed, resulting in a higher similarity, 
and therefore, in a higher correlation between them [20], 
when the BOA method is used. For crossbred animals 
with a more complex breed composition, the number 
of alleles wrongly assigned can be larger, and thus more 
overestimation of the correlations is likely to occur [20].

VanRaden et  al. [6] proposed a simpler approach to 
predict the PGM of crossbred animals, which avoids trac-
ing the alleles to their breed-of-origin. In the approach of 
VanRaden et  al. [6], SNP effects from separate within-
breed evaluations are combined using BBR to measure 
the proportion of genome originating from each breed 
in the crossbred animal. The BPM method here and the 
one used by Eiríksson et al. [7] are based on the approach 
presented in VanRaden et  al. [6] but with some differ-
ences. In Eiríksson et  al. [7], GBP were estimated from 
all marker genotypes with a linear Gaussian model rather 
than assuming a heavy-tailed distribution as in VanRaden 
et al. [20]. In addition to accounting for the genome pro-
portions from each breed, Eiríksson et al. [7] calculate the 
BBR from genotypes with some differences from what 
was proposed by VanRaden et al. [6]. In the BPM method 
applied here, the proportions of the genome from each 
breed (GBP) were estimated based on BOA assignments 
and used for both BPM and BOM.

A high percentage of the alleles were assigned to a 
breed-of-origin (i.e. only 3% were unassigned) even when 
the type of crosses varied in the population. The assign-
ments did not differ much between chromosomes, but 
their extremities presented lower assignments than the 
middle regions. This occurs with haplotype-based assign-
ment methods because the number of possible matching 
haplotypes decreases when the algorithm looks only in 
one direction, which occurs at the start and end of the 
chromosomes [7]. For a rotational crossbred simulated 
population (using purebred sires), the same software 
assigned 99.8% of the alleles [7]. For a real population, 
including simple crosses of Holstein, Jersey, and Red 
Dairy Cattle (i.e., first-generation crosses, three-way 
crosses, and backcrosses primarily), it assigned 99.3% of 
the alleles [8]. In our study, some alleles that could not 
be assigned to a specific breed had a 75% chance of origi-
nating from Limousin or Charolais; others had a 50% 
chance of originating from one of these breeds. In this 
study, these alleles were assigned to the Others group. In 
the BOM method proposed by Eiríksson et al. [7], prob-
abilities (values between 0 and 1) were assigned to alleles 
that could not be assigned to a certain breed instead 
of assigning them to the Others group as in the BOM 
applied here. Taking into account the probabilities in the 

Table 5  Estimated correlation (standard error) of SNP effects 
between groups calculated from BOACOR

Charolais-
Limousin

Charolais-
Others

Limousin-Others

20K_P + 4K_C 0.86 (0.06) 0.71 (0.07) 0.49 (0.11)

20K_P + 8K_C 0.85 (0.06) 0.73 (0.07) 0.65 (0.08)

20K_P + 18K_C 0.69 (0.07) 0.73 (0.05) 0.56 (0.06)
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assignments has already been reported to improve pre-
diction accuracies using the BOA method [21].

The BOA method yielded a higher predictive ability for 
crossbred animals than the two BPM and BOM methods 
that are based on combining SNP solutions from sepa-
rate within-breed evaluations, which indicates that SNP 
effects are estimated with higher accuracy when cross-
bred data are included in the reference population with 
the help of BOA. In addition, the predictive ability for 
crossbreds increased as the number of crossbred animals 
in the reference population increased. In our study, the 
predictive abilities of the methods that use SNP solutions 
from separate within-breed evaluations were not signifi-
cantly different in most cases, while the BOM method 
proposed by Eiríksson et  al. [7] outperformed BPM in 
simulations and real data [7, 8]. This may be due to the 
fact that in our study, GBP were calculated based on 
allele assignments, while Eiríksson et  al. [7] calculated 
them  based on a regression on the markers of the pure 
breeds. From these GBP, they calculated BBR, which was 
restricted to sum to 1 across breeds and to have a value 
between 0 and 1 for any breed, as described in VanRaden 
et  al. [6]. In that sense, our BPM and BOM are more 
similar because for each animal the breed composition is 
strictly the same in both models, while they may differ in 
their models.

In addition to assessing the methods’ ability to predict 
the genetic merits of crossbred animals, we also assessed 
their predictive ability in purebreds. Although there were 
no significant differences between the methods, BOA 
tended to yield higher predictive abilities for the pure-
bred animals as the number of crossbreds in the refer-
ence population increased. When comparing the pure 
breeds, the predictive ability was higher for the Limou-
sin than for the Charolais breed. One explanation is that 
the number of purebred animals to estimate SNP effects 
is larger for the Limousin than the Charolais breed (6771 
vs 5948). Furthermore, when we used genomic relation-
ship matrices within pure breeds, we observed that the 
genomic relationship between the reference and vali-
dation animals was higher in the Limousin than in the 
Charolais breed (results not shown), which could be due 
to the higher levels of artificial insemination used in this 
breed and thus implies that there were fewer effective 
sires in the Limousin population.

Using the BOA method, the number of SNP effects to 
be estimated increases as the number of breeds included 
in the analysis increases, whereas the number of pheno-
types may be constant. In this study, for the proof of con-
cept, we applied a restriction on the breed proportions 
of animals, taking two dominating breeds (Charolais 
and Limousin) in the population as the main breeds of 
interest and the rest of the breeds as Others, implicitly 

assuming that those in the Others group have the same 
SNP effects. Such decisions are also needed even for rela-
tively simpler approaches [22].

The slopes of the BOA method were closer to 1 than 
those of BPM and BOM in most scenarios. The slope 
tended to be closer to 1 as the number of crossbred ani-
mals in the reference population increased. It has been 
previously reported that including crossbreds’ genomic 
information in prediction models reduces prediction 
bias [23]. The slopes of BPM and BOM were near 1 for 
the Limousin breed only, with the BOA method show-
ing a slight underprediction for this breed. For Charolais, 
all methods showed overdispersion, with slopes for BOA 
slightly closer to 1.

When considering the methods based on breed-spe-
cific SNP effects, an important factor to consider is the 
level of genetic relationships among the breeds [24, 25], 
which can be measured from the correlation between 
SNP estimates. In this study, we reported moderate to 
relatively high correlations of the SNP effects of Charolais 
with those of Limousin. However, although these two 
beef breeds may cluster together in some phylogenetic 
analyses [26, 27], they have been extensively selected 
within breed, which may imply some genetic divergence. 
For example, a genome-wide association study involving 
Charolais and Limousin cows of the Irish national herd 
found only two SNPs located in both breeds within the 
same regions associated with carcass weight, cull-cow 
weight and live weight [28].

The amount of genetic variation explained may vary 
between regions leading to heterogeneous variance pat-
terns across the genome [29]. Accounting for hetero-
geneous (co)variances along the genome has increased 
prediction reliability in Bayesian analysis for single-breed 
evaluations [30] and for admixed populations [20].

We ran additional BOA analyses (BOACOR and 
BOAUNCOR) including only purebred animals in the ref-
erence population. Some covariances did not fully con-
verge for the BOACOR, and thus we do not present those 
results. The predictive ability of the BOAUNCOR using 
only purebred animals was 0.473 for crossbreds, 0.220 
for Charolais and 0.287 for Limousin (results not given 
elsewhere), very similar to the results of BOM which also 
relies only on purebred data and assumes uncorrelated 
SNP effects.

In some way, the estimated allele substitution effects 
capture non-additive effects using the BOA method. 
First, breed differences that may be due to multi-locus 
interactions are accounted for by estimating separate 
SNP effects for each breed, which is similar to the sepa-
rate within-breed evaluations. Second, the dominance is 
partially accounted for in the estimation of breed-spe-
cific allele substitution effects since they depend on the 
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additive effect, the dominance effect and the allele fre-
quencies [31]. More components could be added to the 
model to explicitly separate the additive from the non-
additive effects.

The aim of the current study was to compare method-
ologies that are or can be implemented in multi-breed 
routine evaluations. From the comparisons performed 
here, it was not possible to differentiate if the increase 
in predictive ability of the BOA method was driven by 
accounting for the origin of the genome regions or by 
the use of additional information (i.e. crossbred data). 
To assess this, an additional joint analysis was performed 
using a combined dataset of the reference population 
animals, with just one additive component in the model 
(i.e. ignoring the BOA). The same three groups of ani-
mals were used as for the BOA method, 20K_P + 4K_C, 
20K_P + 8K_C and 20K_P + 18K_C. The description of 
this model and the results are presented in Additional 
file 1 and Additional file 2: Tables S1 and S2. The results 
showed the same pattern as the BOA models, i.e., the pre-
dictive abilities increased as more crossbred animals were 
added to the reference population. However, the BOACOR 
tended to yield higher predictive abilities than the joint 
analysis for crossbred animals, especially for animals with 
a contribution of 50% or more of the two main breeds. 
The BOACOR led to the same predictive abilities as the 
joint analysis for Charolais but to slightly higher ones for 
Limousin (see Additional file 2: Table S1). There was no 
clear advantage of one method over the other in terms 
of bias of prediction (see Additional file  2: Table  S2). A 
previous study using a subset of the Irish cattle popula-
tion showed that when a pedigree BLUP model, a SNPB-
LUP model and the BOA method, all including the same 
purebred and crossbred data, were run, the inclusion of 
genomic data led to the greatest improvement for predic-
tion of crossbreds, although the BOA method also out-
performed the SNPBLUP [32]. The current multi-breed 
genetic evaluation carried out by the ICBF integrates 
genomic information, but the model ignores BOA. Our 
results showed that the predictions could be improved by 
using the BOA method.

For the current implementation of the BOA method, 
all crossbred animals need to be genotyped. The single-
step genomic BLUP [33, 34] facilitates real-life situations 
where populations include genotyped and ungenotyped 
animals. This methodology has been modified to com-
bine purebred and crossbred performances in two ways. 
One way is to use metafounders, which are pseudo-
individuals included in the pedigree as founders without 
parent groups so that each metafounder represents one 
ancestral population [35]. Therefore, to include crossbred 
information, one metafounder is assigned per purebred 
line [36, 37]. The second way is based on breed-specific 

relationship matrices. It was proposed by Christensen 
et  al. [38] by reformulating the model of Wei and van 
der Werf [39] and using breed-specific partial relation-
ship matrices as in García-Cortés and Toro [40]. In this 
approach, partial relationship matrices describe relation-
ships according to the genetic origin, and it adjusts the 
partial relationship matrices to be compatible with the 
pedigree-based relationship matrices. The BOA models 
can be extended to accommodate non-genotyped ani-
mals, either as a “SNP-effect” model where breed-specific 
SNP effects are estimated or equivalently as a "breed-
ing value" model based on genomic relationship matri-
ces, where genetic merits of individuals are predicted 
in one step [41]. The computational time and predictive 
performance of these alternative approaches need to be 
investigated. One of the limitations of the models based 
on BOA assignments is that, currently, allele assignment 
can be time-consuming. However, if genomic evaluations 
start to use the BOA method (or BOM) routinely, then 
inference of breed-of-origin of alleles is only needed for 
the newly genotyped crossbred animals. Nevertheless, 
efficient methods are needed for BOA assignment in 
large populations.

Conclusions
Our results indicate that using phenotypes from cross-
bred and purebred animals can greatly enhance pre-
dictive ability over methods that rely on phenotypes 
from purebred animals only, even when ignoring BOA. 
Greater predictive abilities can be achieved by accounting 
for BOA. In addition, the predictive ability of the BOA 
method increases as the number of crossbred phenotypes 
included in the analysis increases. Therefore, this meth-
odology could be a good alternative to predict genotypic 
values for crossbred selection candidates.
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