Skip to content

Commit 0f2ae68

Browse files
committed
NumPy
1 parent 6a02b1f commit 0f2ae68

File tree

2 files changed

+6
-6
lines changed

2 files changed

+6
-6
lines changed

README.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -2662,14 +2662,14 @@ import numpy as np
26622662

26632663
```python
26642664
<array> = np.copy/abs/sqrt/log/int64(<array>) # Returns new array of the same shape.
2665-
<array> = <array>.sum/max/mean/argmax/all([axis]) # Passed dimension gets aggregated.
2665+
<array> = <array>.sum/max/mean/argmax/all(axis) # Passed dimension gets aggregated.
26662666
<array> = np.apply_along_axis(<func>, axis, <array>) # Func can return a scalar or array.
26672667
```
26682668

26692669
```python
26702670
<array> = np.concatenate(<list_of_arrays>, axis=0) # Links arrays along first axis (rows).
26712671
<array> = np.row_stack/column_stack(<list_of_arrays>) # Treats 1d arrays as rows or columns.
2672-
<array> = np.tile(<array>, <int/shape>) # Multiplies passed array.
2672+
<array> = np.tile/repeat(<array>, <int/list>) # Tiles array or repeats its elements.
26732673
```
26742674
* **Shape is a tuple of dimension sizes. A 100x50 RGB image has shape (50, 100, 3).**
26752675
* **Axis is an index of the dimension that gets aggregated. Leftmost dimension has index 0. Summing the RGB image along axis 2 will return a greyscale image with shape (50, 100).**

index.html

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -54,7 +54,7 @@
5454

5555
<body>
5656
<header>
57-
<aside>April 1, 2023</aside>
57+
<aside>April 2, 2023</aside>
5858
<a href="https://gto76.github.io" rel="author">Jure Šorn</a>
5959
</header>
6060

@@ -2179,12 +2179,12 @@ <h3 id="format-2">Format</h3><div><h4 id="forstandardtypesizesandmanualalignment
21792179
&lt;view&gt; = &lt;array&gt;.transpose() <span class="hljs-comment"># Or: &lt;array&gt;.T</span>
21802180
</code></pre>
21812181
<pre><code class="python language-python hljs">&lt;array&gt; = np.copy/abs/sqrt/log/int64(&lt;array&gt;) <span class="hljs-comment"># Returns new array of the same shape.</span>
2182-
&lt;array&gt; = &lt;array&gt;.sum/max/mean/argmax/all([axis]) <span class="hljs-comment"># Passed dimension gets aggregated.</span>
2182+
&lt;array&gt; = &lt;array&gt;.sum/max/mean/argmax/all(axis) <span class="hljs-comment"># Passed dimension gets aggregated.</span>
21832183
&lt;array&gt; = np.apply_along_axis(&lt;func&gt;, axis, &lt;array&gt;) <span class="hljs-comment"># Func can return a scalar or array.</span>
21842184
</code></pre>
21852185
<pre><code class="python language-python hljs">&lt;array&gt; = np.concatenate(&lt;list_of_arrays&gt;, axis=<span class="hljs-number">0</span>) <span class="hljs-comment"># Links arrays along first axis (rows).</span>
21862186
&lt;array&gt; = np.row_stack/column_stack(&lt;list_of_arrays&gt;) <span class="hljs-comment"># Treats 1d arrays as rows or columns.</span>
2187-
&lt;array&gt; = np.tile(&lt;array&gt;, &lt;int/shape&gt;) <span class="hljs-comment"># Multiplies passed array.</span>
2187+
&lt;array&gt; = np.tile/repeat(&lt;array&gt;, &lt;int/list&gt;) <span class="hljs-comment"># Tiles array or repeats its elements.</span>
21882188
</code></pre>
21892189
<ul>
21902190
<li><strong>Shape is a tuple of dimension sizes. A 100x50 RGB image has shape (50, 100, 3).</strong></li>
@@ -2935,7 +2935,7 @@ <h3 id="format-2">Format</h3><div><h4 id="forstandardtypesizesandmanualalignment
29352935

29362936

29372937
<footer>
2938-
<aside>April 1, 2023</aside>
2938+
<aside>April 2, 2023</aside>
29392939
<a href="https://gto76.github.io" rel="author">Jure Šorn</a>
29402940
</footer>
29412941

0 commit comments

Comments
 (0)