diff --git "a/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000004.horizon" "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000004.horizon" new file mode 100644 index 0000000..b64b923 Binary files /dev/null and "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000004.horizon" differ diff --git "a/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000005.CatItemTypesByName.atx" "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000005.CatItemTypesByName.atx" index 738cef6..066487f 100644 Binary files "a/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000005.CatItemTypesByName.atx" and "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000005.CatItemTypesByName.atx" differ diff --git "a/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000005.CatItemTypesByParentTypeID.atx" "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000005.CatItemTypesByParentTypeID.atx" index f8d7d0a..682aa2e 100644 Binary files "a/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000005.CatItemTypesByParentTypeID.atx" and "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000005.CatItemTypesByParentTypeID.atx" differ diff --git "a/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000005.CatItemTypesByUUID.atx" "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000005.CatItemTypesByUUID.atx" index 0798d5b..9f1d5e3 100644 Binary files "a/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000005.CatItemTypesByUUID.atx" and "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000005.CatItemTypesByUUID.atx" differ diff --git "a/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000005.gdbtable" "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000005.gdbtable" index 3ad55bf..75cb658 100644 Binary files "a/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000005.gdbtable" and "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000005.gdbtable" differ diff --git "a/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000005.gdbtablx" "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000005.gdbtablx" index bf48c58..360875c 100644 Binary files "a/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000005.gdbtablx" and "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000005.gdbtablx" differ diff --git "a/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000007.CatRelTypesByBackwardLabel.atx" "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000007.CatRelTypesByBackwardLabel.atx" index 8060d3f..c8b62e6 100644 Binary files "a/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000007.CatRelTypesByBackwardLabel.atx" and "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000007.CatRelTypesByBackwardLabel.atx" differ diff --git "a/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000007.CatRelTypesByDestItemTypeID.atx" "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000007.CatRelTypesByDestItemTypeID.atx" index e556634..f115117 100644 Binary files "a/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000007.CatRelTypesByDestItemTypeID.atx" and "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000007.CatRelTypesByDestItemTypeID.atx" differ diff --git "a/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000007.CatRelTypesByForwardLabel.atx" "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000007.CatRelTypesByForwardLabel.atx" index df57f2c..73df508 100644 Binary files "a/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000007.CatRelTypesByForwardLabel.atx" and "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000007.CatRelTypesByForwardLabel.atx" differ diff --git "a/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000007.CatRelTypesByName.atx" "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000007.CatRelTypesByName.atx" index 121cee0..d219046 100644 Binary files "a/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000007.CatRelTypesByName.atx" and "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000007.CatRelTypesByName.atx" differ diff --git "a/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000007.CatRelTypesByOriginItemTypeID.atx" "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000007.CatRelTypesByOriginItemTypeID.atx" index ae96edf..6690f85 100644 Binary files "a/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000007.CatRelTypesByOriginItemTypeID.atx" and "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000007.CatRelTypesByOriginItemTypeID.atx" differ diff --git "a/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000007.CatRelTypesByUUID.atx" "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000007.CatRelTypesByUUID.atx" index b27ff03..e39c91f 100644 Binary files "a/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000007.CatRelTypesByUUID.atx" and "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000007.CatRelTypesByUUID.atx" differ diff --git "a/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000007.gdbtable" "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000007.gdbtable" index 911ab56..dea8459 100644 Binary files "a/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000007.gdbtable" and "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000007.gdbtable" differ diff --git "a/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000007.gdbtablx" "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000007.gdbtablx" index d65dde3..41f3696 100644 Binary files "a/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000007.gdbtablx" and "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000007.gdbtablx" differ diff --git "a/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000073.horizon" "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000073.horizon" new file mode 100644 index 0000000..189dbe0 --- /dev/null +++ "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000073.horizon" @@ -0,0 +1 @@ +|E�s�1�U� �|�|E�sA1�U� �|A \ No newline at end of file diff --git "a/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000076.horizon" "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000076.horizon" new file mode 100644 index 0000000..189dbe0 --- /dev/null +++ "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/a00000076.horizon" @@ -0,0 +1 @@ +|E�s�1�U� �|�|E�sA1�U� �|A \ No newline at end of file diff --git "a/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/timestamps" "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/timestamps" index bd75488..11c2ed1 100644 Binary files "a/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/timestamps" and "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/Scratch/scratch.gdb/timestamps" differ diff --git "a/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/ToolData/ToolData.gdb/a00000004.horizon" "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/ToolData/ToolData.gdb/a00000004.horizon" new file mode 100644 index 0000000..b64b923 Binary files /dev/null and "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/ToolData/ToolData.gdb/a00000004.horizon" differ diff --git "a/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/ToolData/ToolData.gdb/a00000005.CatItemTypesByName.atx" "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/ToolData/ToolData.gdb/a00000005.CatItemTypesByName.atx" index f30ea64..a4a1afc 100644 Binary files "a/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/ToolData/ToolData.gdb/a00000005.CatItemTypesByName.atx" and "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/ToolData/ToolData.gdb/a00000005.CatItemTypesByName.atx" differ diff --git "a/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/ToolData/ToolData.gdb/a00000005.CatItemTypesByParentTypeID.atx" "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/ToolData/ToolData.gdb/a00000005.CatItemTypesByParentTypeID.atx" index d66fa44..675b7cb 100644 Binary files "a/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/ToolData/ToolData.gdb/a00000005.CatItemTypesByParentTypeID.atx" and "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/ToolData/ToolData.gdb/a00000005.CatItemTypesByParentTypeID.atx" differ diff --git "a/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/ToolData/ToolData.gdb/a00000005.CatItemTypesByUUID.atx" "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/ToolData/ToolData.gdb/a00000005.CatItemTypesByUUID.atx" index ccd938a..cb73bb1 100644 Binary files "a/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/ToolData/ToolData.gdb/a00000005.CatItemTypesByUUID.atx" and "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/ToolData/ToolData.gdb/a00000005.CatItemTypesByUUID.atx" differ diff --git "a/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/ToolData/ToolData.gdb/a00000005.gdbtable" "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/ToolData/ToolData.gdb/a00000005.gdbtable" index 550570a..a9f0fcc 100644 Binary files "a/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/ToolData/ToolData.gdb/a00000005.gdbtable" and "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/ToolData/ToolData.gdb/a00000005.gdbtable" differ diff --git "a/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/ToolData/ToolData.gdb/a00000005.gdbtablx" "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/ToolData/ToolData.gdb/a00000005.gdbtablx" index b6f5370..4b1035e 100644 Binary files "a/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/ToolData/ToolData.gdb/a00000005.gdbtablx" and "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/ToolData/ToolData.gdb/a00000005.gdbtablx" differ diff --git "a/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/ToolData/ToolData.gdb/a00000007.CatRelTypesByBackwardLabel.atx" "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/ToolData/ToolData.gdb/a00000007.CatRelTypesByBackwardLabel.atx" index cbce846..cc4b87e 100644 Binary files "a/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/ToolData/ToolData.gdb/a00000007.CatRelTypesByBackwardLabel.atx" and "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/ToolData/ToolData.gdb/a00000007.CatRelTypesByBackwardLabel.atx" differ diff --git "a/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/ToolData/ToolData.gdb/a00000007.CatRelTypesByDestItemTypeID.atx" "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/ToolData/ToolData.gdb/a00000007.CatRelTypesByDestItemTypeID.atx" index 60cae14..40183e1 100644 Binary files "a/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/ToolData/ToolData.gdb/a00000007.CatRelTypesByDestItemTypeID.atx" and "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/ToolData/ToolData.gdb/a00000007.CatRelTypesByDestItemTypeID.atx" differ diff --git "a/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/ToolData/ToolData.gdb/a00000007.CatRelTypesByForwardLabel.atx" "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/ToolData/ToolData.gdb/a00000007.CatRelTypesByForwardLabel.atx" index a405cfe..3420d6e 100644 Binary files "a/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/ToolData/ToolData.gdb/a00000007.CatRelTypesByForwardLabel.atx" and "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/ToolData/ToolData.gdb/a00000007.CatRelTypesByForwardLabel.atx" differ diff --git "a/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/ToolData/ToolData.gdb/a00000007.CatRelTypesByName.atx" "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/ToolData/ToolData.gdb/a00000007.CatRelTypesByName.atx" index bf20685..088c379 100644 Binary files "a/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/ToolData/ToolData.gdb/a00000007.CatRelTypesByName.atx" and "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/ToolData/ToolData.gdb/a00000007.CatRelTypesByName.atx" differ diff --git "a/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/ToolData/ToolData.gdb/a00000007.CatRelTypesByOriginItemTypeID.atx" "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/ToolData/ToolData.gdb/a00000007.CatRelTypesByOriginItemTypeID.atx" index 504f51d..7918e16 100644 Binary files "a/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/ToolData/ToolData.gdb/a00000007.CatRelTypesByOriginItemTypeID.atx" and "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/ToolData/ToolData.gdb/a00000007.CatRelTypesByOriginItemTypeID.atx" differ diff --git "a/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/ToolData/ToolData.gdb/a00000007.CatRelTypesByUUID.atx" "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/ToolData/ToolData.gdb/a00000007.CatRelTypesByUUID.atx" index cfa4023..de55959 100644 Binary files "a/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/ToolData/ToolData.gdb/a00000007.CatRelTypesByUUID.atx" and "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/ToolData/ToolData.gdb/a00000007.CatRelTypesByUUID.atx" differ diff --git "a/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/ToolData/ToolData.gdb/a00000007.gdbtable" "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/ToolData/ToolData.gdb/a00000007.gdbtable" index 0c6890d..b5f7506 100644 Binary files "a/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/ToolData/ToolData.gdb/a00000007.gdbtable" and "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/ToolData/ToolData.gdb/a00000007.gdbtable" differ diff --git "a/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/ToolData/ToolData.gdb/a00000007.gdbtablx" "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/ToolData/ToolData.gdb/a00000007.gdbtablx" index eae2bc6..7188a70 100644 Binary files "a/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/ToolData/ToolData.gdb/a00000007.gdbtablx" and "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/ToolData/ToolData.gdb/a00000007.gdbtablx" differ diff --git "a/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/ToolData/ToolData.gdb/timestamps" "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/ToolData/ToolData.gdb/timestamps" index d0265a4..432c92a 100644 Binary files "a/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/ToolData/ToolData.gdb/timestamps" and "b/0003\350\234\202\347\252\235\345\244\232\350\276\271\345\275\242/ToolData/ToolData.gdb/timestamps" differ diff --git "a/011GDALPython\345\274\200\345\217\221/.ipynb_checkpoints/4.1 GDAL(1)\357\274\232\351\251\261\345\212\250\343\200\201\346\225\260\346\215\256\346\272\220\344\270\216\346\217\217\350\277\260-checkpoint.ipynb" "b/011GDALPython\345\274\200\345\217\221/.ipynb_checkpoints/4.1 GDAL(1)\357\274\232\351\251\261\345\212\250\343\200\201\346\225\260\346\215\256\346\272\220\344\270\216\346\217\217\350\277\260-checkpoint.ipynb" new file mode 100644 index 0000000..dda7b0c --- /dev/null +++ "b/011GDALPython\345\274\200\345\217\221/.ipynb_checkpoints/4.1 GDAL(1)\357\274\232\351\251\261\345\212\250\343\200\201\346\225\260\346\215\256\346\272\220\344\270\216\346\217\217\350\277\260-checkpoint.ipynb" @@ -0,0 +1,359 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "scrolled": false + }, + "outputs": [], + "source": [ + "import ogr" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "netCDF\n", + "PCIDSK\n", + "JP2OpenJPEG\n", + "PDF\n", + "DB2ODBC\n", + "ESRI Shapefile\n", + "MapInfo File\n", + "UK .NTF\n", + "OGR_SDTS\n", + "S57\n", + "DGN\n", + "OGR_VRT\n", + "REC\n", + "Memory\n", + "BNA\n", + "CSV\n", + "NAS\n", + "GML\n", + "GPX\n", + "KML\n", + "GeoJSON\n", + "OGR_GMT\n", + "GPKG\n", + "SQLite\n", + "ODBC\n", + "WAsP\n", + "PGeo\n", + "MSSQLSpatial\n", + "PostgreSQL\n", + "OpenFileGDB\n", + "XPlane\n", + "DXF\n", + "CAD\n", + "Geoconcept\n", + "GeoRSS\n", + "GPSTrackMaker\n", + "VFK\n", + "PGDUMP\n", + "OSM\n", + "GPSBabel\n", + "SUA\n", + "OpenAir\n", + "OGR_PDS\n", + "WFS\n", + "HTF\n", + "AeronavFAA\n", + "Geomedia\n", + "EDIGEO\n", + "GFT\n", + "SVG\n", + "CouchDB\n", + "Cloudant\n", + "Idrisi\n", + "ARCGEN\n", + "SEGUKOOA\n", + "SEGY\n", + "XLS\n", + "ODS\n", + "XLSX\n", + "ElasticSearch\n", + "Walk\n", + "Carto\n", + "AmigoCloud\n", + "SXF\n", + "Selafin\n", + "JML\n", + "PLSCENES\n", + "CSW\n", + "VDV\n", + "GMLAS\n", + "TIGER\n", + "AVCBin\n", + "AVCE00\n", + "HTTP\n" + ] + } + ], + "source": [ + "cnt = ogr.GetDriverCount()\n", + "for i in range(cnt):\n", + " driver = ogr.GetDriver(i)\n", + " driverName = driver.GetName()\n", + " print(driverName)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ARCGEN\n", + "AVCBin\n", + "AVCE00\n", + "AeronavFAA\n", + "AmigoCloud\n", + "BNA\n", + "CAD\n", + "CSV\n", + "CSW\n", + "Carto\n", + "Cloudant\n", + "CouchDB\n", + "DB2ODBC\n", + "DGN\n", + "DXF\n", + "EDIGEO\n", + "ESRI Shapefile\n", + "ElasticSearch\n", + "GFT\n", + "GML\n", + "GMLAS\n", + "GPKG\n", + "GPSBabel\n", + "GPSTrackMaker\n", + "GPX\n", + "GeoJSON\n", + "GeoRSS\n", + "Geoconcept\n", + "Geomedia\n", + "HTF\n", + "HTTP\n", + "Idrisi\n", + "JML\n", + "JP2OpenJPEG\n", + "KML\n", + "MSSQLSpatial\n", + "MapInfo File\n", + "Memory\n", + "NAS\n", + "ODBC\n", + "ODS\n", + "OGR_GMT\n", + "OGR_PDS\n", + "OGR_SDTS\n", + "OGR_VRT\n", + "OSM\n", + "OpenAir\n", + "OpenFileGDB\n", + "PCIDSK\n", + "PDF\n", + "PGDUMP\n", + "PGeo\n", + "PLSCENES\n", + "PostgreSQL\n", + "REC\n", + "S57\n", + "SEGUKOOA\n", + "SEGY\n", + "SQLite\n", + "SUA\n", + "SVG\n", + "SXF\n", + "Selafin\n", + "TIGER\n", + "UK .NTF\n", + "VDV\n", + "VFK\n", + "WAsP\n", + "WFS\n", + "Walk\n", + "XLS\n", + "XLSX\n", + "XPlane\n", + "netCDF\n" + ] + } + ], + "source": [ + "drvName = []\n", + "cnt = ogr.GetDriverCount()\n", + "for i in range(cnt):\n", + " driver = ogr.GetDriver(i)\n", + " driverName = driver.GetName()\n", + " drvName.append(driverName)\n", + "drvName.sort()\n", + "for d in drvName:\n", + " print(d)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "path = os.getcwd()+\"/shp/\"" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'D:\\\\workspace\\\\DevWork\\\\PyExample\\\\exam4/shp/'" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "path" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "pnt = path + \"北京_point.shp\"" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "driver = ogr.GetDriverByName('ESRI Shapefile')\n", + "dataSource = driver.Open(pnt, 0)" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "layer = dataSource.GetLayerByIndex(0)" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "图层描述 :北京_point\n", + "图层范围 :(115.37294, 117.36857, 39.41652, 41.07743)\n", + "要素数量 :128554\n", + "元数据描述 :{'DBF_DATE_LAST_UPDATE': '2009-05-19'}\n", + "空间参考 :GEOGCS[\"Geographic Coordinate System\",\n", + " DATUM[\"WGS84\",\n", + " SPHEROID[\"WGS84\",6378137.0,298.257223560493]],\n", + " PRIMEM[\"Greenwich\",0.0],\n", + " UNIT[\"degree\",0.0174532925199433],\n", + " AUTHORITY[\"EPSG\",\"4326\"]]\n" + ] + } + ], + "source": [ + "print(\"图层描述 :{0}\".format(layer.GetDescription()))\n", + "print(\"图层范围 :{0}\".format(layer.GetExtent()))\n", + "print(\"要素数量 :{0}\".format(layer.GetFeatureCount()))\n", + "print(\"元数据描述 :{0}\".format(layer.GetMetadata()))\n", + "print(\"空间参考 :{0}\".format(layer.GetSpatialRef()))" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "字段名:NAME 字段类型:4 字段长度:String 字段精度:65\n", + "字段名:LAYER 字段类型:4 字段长度:String 字段精度:21\n", + "字段名:MARINE 字段类型:4 字段长度:String 字段精度:1\n", + "字段名:RegionName 字段类型:4 字段长度:String 字段精度:6\n", + "字段名:DataLevel 字段类型:0 字段长度:Integer 字段精度:1\n", + "字段名:MP_TYPE 字段类型:4 字段长度:String 字段精度:6\n", + "字段名:Phone 字段类型:4 字段长度:String 字段精度:12\n", + "字段名:StreetDesc 字段类型:4 字段长度:String 字段精度:46\n", + "字段名:HighwayIdx 字段类型:0 字段长度:Integer 字段精度:2\n", + "字段名:ZipIdx 字段类型:0 字段长度:Integer 字段精度:1\n", + "字段名:City 字段类型:4 字段长度:String 字段精度:1\n" + ] + } + ], + "source": [ + "layerDefinition = layer.GetLayerDefn()\n", + "for i in range(layerDefinition.GetFieldCount()):\n", + " fieldName = layerDefinition.GetFieldDefn(i).GetName()\n", + " fieldTypeCode = layerDefinition.GetFieldDefn(i).GetType()\n", + " fieldType = layerDefinition.GetFieldDefn(i).GetFieldTypeName(fieldTypeCode)\n", + " fieldWidth = layerDefinition.GetFieldDefn(i).GetWidth()\n", + " GetPrecision = layerDefinition.GetFieldDefn(i).GetPrecision()\n", + " print(\"字段名:{0} 字段类型:{1} 字段长度:{2} \\\n", + " 字段精度:{3}\".format(fieldName,fieldTypeCode,\n", + " fieldType,fieldWidth,GetPrecision))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git "a/011GDALPython\345\274\200\345\217\221/.ipynb_checkpoints/4.5 GDAL\357\274\2105\357\274\211\357\274\232\346\225\260\346\215\256\346\240\274\345\274\217\350\275\254\346\215\242 -checkpoint.ipynb" "b/011GDALPython\345\274\200\345\217\221/.ipynb_checkpoints/4.5 GDAL\357\274\2105\357\274\211\357\274\232\346\225\260\346\215\256\346\240\274\345\274\217\350\275\254\346\215\242 -checkpoint.ipynb" new file mode 100644 index 0000000..a2b0588 --- /dev/null +++ "b/011GDALPython\345\274\200\345\217\221/.ipynb_checkpoints/4.5 GDAL\357\274\2105\357\274\211\357\274\232\346\225\260\346\215\256\346\240\274\345\274\217\350\275\254\346\215\242 -checkpoint.ipynb" @@ -0,0 +1,108 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import ogr\n", + "import os\n", + "path = os.getcwd()" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "xzqhshp = path +\"/shp/\"+ \"行政区划.shp\"\n", + "outfile = path + \"/xzqh.json\"" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "xzqh = ogr.GetDriverByName(\"ESRI Shapefile\").Open(xzqhshp)\n", + "ogr.GetDriverByName(\"GeoJSON\").CopyDataSource(xzqh, outfile)\n", + "xzqh = None" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + " >" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "outfile = path + \"/xzqh.kml\"\n", + "xzqh = ogr.GetDriverByName(\"ESRI Shapefile\").Open(xzqhshp)\n", + "ogr.GetDriverByName(\"KML\").CopyDataSource(xzqh, outfile)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + " >" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "outfile = path + \"/xzqh.csv\"\n", + "xzqh = ogr.GetDriverByName(\"ESRI Shapefile\").Open(xzqhshp)\n", + "ogr.GetDriverByName(\"CSV\").CopyDataSource(xzqh, outfile)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git "a/011GDALPython\345\274\200\345\217\221/4.1 GDAL(1)\357\274\232\351\251\261\345\212\250\343\200\201\346\225\260\346\215\256\346\272\220\344\270\216\346\217\217\350\277\260.ipynb" "b/011GDALPython\345\274\200\345\217\221/4.1 GDAL(1)\357\274\232\351\251\261\345\212\250\343\200\201\346\225\260\346\215\256\346\272\220\344\270\216\346\217\217\350\277\260.ipynb" index ec8613f..6ee6db2 100644 --- "a/011GDALPython\345\274\200\345\217\221/4.1 GDAL(1)\357\274\232\351\251\261\345\212\250\343\200\201\346\225\260\346\215\256\346\272\220\344\270\216\346\217\217\350\277\260.ipynb" +++ "b/011GDALPython\345\274\200\345\217\221/4.1 GDAL(1)\357\274\232\351\251\261\345\212\250\343\200\201\346\225\260\346\215\256\346\272\220\344\270\216\346\217\217\350\277\260.ipynb" @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 5, + "execution_count": 1, "metadata": { "scrolled": false }, @@ -13,17 +13,19 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "netCDF\n", "PCIDSK\n", - "JP2OpenJPEG\n", + "netCDF\n", + "JP2KAK\n", "PDF\n", + "MBTiles\n", + "EEDA\n", "DB2ODBC\n", "ESRI Shapefile\n", "MapInfo File\n", @@ -41,6 +43,8 @@ "GPX\n", "KML\n", "GeoJSON\n", + "ESRIJSON\n", + "TopoJSON\n", "OGR_GMT\n", "GPKG\n", "SQLite\n", @@ -48,7 +52,6 @@ "WAsP\n", "PGeo\n", "MSSQLSpatial\n", - "PostgreSQL\n", "OpenFileGDB\n", "XPlane\n", "DXF\n", @@ -64,6 +67,7 @@ "OpenAir\n", "OGR_PDS\n", "WFS\n", + "WFS3\n", "HTF\n", "AeronavFAA\n", "Geomedia\n", @@ -90,6 +94,7 @@ "CSW\n", "VDV\n", "GMLAS\n", + "MVT\n", "TIGER\n", "AVCBin\n", "AVCE00\n", @@ -107,7 +112,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -130,7 +135,9 @@ "DGN\n", "DXF\n", "EDIGEO\n", + "EEDA\n", "ESRI Shapefile\n", + "ESRIJSON\n", "ElasticSearch\n", "GFT\n", "GML\n", @@ -147,9 +154,11 @@ "HTTP\n", "Idrisi\n", "JML\n", - "JP2OpenJPEG\n", + "JP2KAK\n", "KML\n", + "MBTiles\n", "MSSQLSpatial\n", + "MVT\n", "MapInfo File\n", "Memory\n", "NAS\n", @@ -167,7 +176,6 @@ "PGDUMP\n", "PGeo\n", "PLSCENES\n", - "PostgreSQL\n", "REC\n", "S57\n", "SEGUKOOA\n", @@ -178,11 +186,13 @@ "SXF\n", "Selafin\n", "TIGER\n", + "TopoJSON\n", "UK .NTF\n", "VDV\n", "VFK\n", "WAsP\n", "WFS\n", + "WFS3\n", "Walk\n", "XLS\n", "XLSX\n", @@ -351,7 +361,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.7" + "version": "3.7.9" } }, "nbformat": 4, diff --git "a/011GDALPython\345\274\200\345\217\221/4.5 GDAL\357\274\2105\357\274\211\357\274\232\346\225\260\346\215\256\346\240\274\345\274\217\350\275\254\346\215\242 .ipynb" "b/011GDALPython\345\274\200\345\217\221/4.5 GDAL\357\274\2105\357\274\211\357\274\232\346\225\260\346\215\256\346\240\274\345\274\217\350\275\254\346\215\242 .ipynb" index 2789a52..a2b0588 100644 --- "a/011GDALPython\345\274\200\345\217\221/4.5 GDAL\357\274\2105\357\274\211\357\274\232\346\225\260\346\215\256\346\240\274\345\274\217\350\275\254\346\215\242 .ipynb" +++ "b/011GDALPython\345\274\200\345\217\221/4.5 GDAL\357\274\2105\357\274\211\357\274\232\346\225\260\346\215\256\346\240\274\345\274\217\350\275\254\346\215\242 .ipynb" @@ -100,7 +100,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.7" + "version": "3.7.9" } }, "nbformat": 4, diff --git "a/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a00000004.horizon" "b/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a00000004.horizon" new file mode 100644 index 0000000..b64b923 Binary files /dev/null and "b/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a00000004.horizon" differ diff --git "a/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a00000005.CatItemTypesByName.atx" "b/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a00000005.CatItemTypesByName.atx" index 194fa10..1438fb0 100644 Binary files "a/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a00000005.CatItemTypesByName.atx" and "b/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a00000005.CatItemTypesByName.atx" differ diff --git "a/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a00000005.CatItemTypesByParentTypeID.atx" "b/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a00000005.CatItemTypesByParentTypeID.atx" index 2f9ca18..36d21c9 100644 Binary files "a/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a00000005.CatItemTypesByParentTypeID.atx" and "b/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a00000005.CatItemTypesByParentTypeID.atx" differ diff --git "a/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a00000005.CatItemTypesByUUID.atx" "b/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a00000005.CatItemTypesByUUID.atx" index 885dc48..ff4ad60 100644 Binary files "a/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a00000005.CatItemTypesByUUID.atx" and "b/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a00000005.CatItemTypesByUUID.atx" differ diff --git "a/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a00000005.gdbtable" "b/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a00000005.gdbtable" index 18ceff7..465cb66 100644 Binary files "a/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a00000005.gdbtable" and "b/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a00000005.gdbtable" differ diff --git "a/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a00000005.gdbtablx" "b/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a00000005.gdbtablx" index b385286..c1e5b5c 100644 Binary files "a/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a00000005.gdbtablx" and "b/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a00000005.gdbtablx" differ diff --git "a/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a00000007.CatRelTypesByBackwardLabel.atx" "b/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a00000007.CatRelTypesByBackwardLabel.atx" index 42b64ed..fe1a9a2 100644 Binary files "a/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a00000007.CatRelTypesByBackwardLabel.atx" and "b/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a00000007.CatRelTypesByBackwardLabel.atx" differ diff --git "a/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a00000007.CatRelTypesByDestItemTypeID.atx" "b/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a00000007.CatRelTypesByDestItemTypeID.atx" index 9188a6f..199defc 100644 Binary files "a/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a00000007.CatRelTypesByDestItemTypeID.atx" and "b/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a00000007.CatRelTypesByDestItemTypeID.atx" differ diff --git "a/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a00000007.CatRelTypesByForwardLabel.atx" "b/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a00000007.CatRelTypesByForwardLabel.atx" index f28997e..151f575 100644 Binary files "a/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a00000007.CatRelTypesByForwardLabel.atx" and "b/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a00000007.CatRelTypesByForwardLabel.atx" differ diff --git "a/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a00000007.CatRelTypesByName.atx" "b/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a00000007.CatRelTypesByName.atx" index 99b2e7d..b46605b 100644 Binary files "a/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a00000007.CatRelTypesByName.atx" and "b/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a00000007.CatRelTypesByName.atx" differ diff --git "a/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a00000007.CatRelTypesByOriginItemTypeID.atx" "b/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a00000007.CatRelTypesByOriginItemTypeID.atx" index 50b0f7f..3cc9444 100644 Binary files "a/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a00000007.CatRelTypesByOriginItemTypeID.atx" and "b/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a00000007.CatRelTypesByOriginItemTypeID.atx" differ diff --git "a/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a00000007.CatRelTypesByUUID.atx" "b/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a00000007.CatRelTypesByUUID.atx" index 3f317a3..b2c5ce9 100644 Binary files "a/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a00000007.CatRelTypesByUUID.atx" and "b/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a00000007.CatRelTypesByUUID.atx" differ diff --git "a/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a00000007.gdbtable" "b/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a00000007.gdbtable" index 2130e8e..a2e7697 100644 Binary files "a/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a00000007.gdbtable" and "b/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a00000007.gdbtable" differ diff --git "a/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a00000007.gdbtablx" "b/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a00000007.gdbtablx" index 561cae9..87f93af 100644 Binary files "a/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a00000007.gdbtablx" and "b/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a00000007.gdbtablx" differ diff --git "a/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a00000009.horizon" "b/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a00000009.horizon" new file mode 100644 index 0000000..b64b923 Binary files /dev/null and "b/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a00000009.horizon" differ diff --git "a/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a0000000a.horizon" "b/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a0000000a.horizon" new file mode 100644 index 0000000..189dbe0 --- /dev/null +++ "b/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/a0000000a.horizon" @@ -0,0 +1 @@ +|E�s�1�U� �|�|E�sA1�U� �|A \ No newline at end of file diff --git "a/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/timestamps" "b/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/timestamps" index bb6fbaf..cdca914 100644 Binary files "a/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/timestamps" and "b/016GIS\347\256\227\346\263\225\350\256\276\350\256\241\345\222\214\345\272\224\347\224\250\345\274\200\345\217\221\357\274\232Python\347\257\207Demo/work.gdb/timestamps" differ diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/.ipynb_checkpoints/\346\227\245\345\216\206\346\212\275\345\245\226_\345\214\272\345\235\227\351\223\276\347\256\227\346\263\225-checkpoint.ipynb" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/.ipynb_checkpoints/\346\227\245\345\216\206\346\212\275\345\245\226_\345\214\272\345\235\227\351\223\276\347\256\227\346\263\225-checkpoint.ipynb" new file mode 100644 index 0000000..9520a5c --- /dev/null +++ "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/.ipynb_checkpoints/\346\227\245\345\216\206\346\212\275\345\245\226_\345\214\272\345\235\227\351\223\276\347\256\227\346\263\225-checkpoint.ipynb" @@ -0,0 +1,1498 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import warnings\n", + "warnings.filterwarnings(\"ignore\")" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import hashlib,pandas" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import matplotlib.pyplot as plt\n", + "plt.rcParams['font.sans-serif']=['SimHei']\n", + "plt.rcParams['axes.unicode_minus']=False" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "def hashKnife(i):\n", + " sha256 = hashlib.sha256()\n", + " sha256.update('{0}'.format(i).encode('utf-8'))\n", + " s1 = sha256.hexdigest()\n", + " sha256 = hashlib.sha256()\n", + " sha256.update('{0}'.format(s1).encode('utf-8'))\n", + " return sha256.hexdigest()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "4 \t 033c339a7975542785be7423a5b32fa8047813689726214143cdd7939747709c\n", + "21 \t 053b22ca1fcea7a8de0da76b0f4deaef4aa9fb1100bff13965c3c0da76272862\n", + "31 \t 028f917950de90c724f3dacb96792258929510f54bfd4866dd6dba26e0b4414a\n", + "33 \t 0cca79f951e82323381375324442d5fe77e5bcb5899b87cb2f0bebff1bc0244a\n", + "83 \t 0401167548c0ed9abc4ef94cc0b43b1942030903ca05abf1e938c822d492f8a3\n", + "98 \t 0a23001d74edbe05d7e79524a918f077b3928eb3ee34b3ec13d990f9a4b43e45\n" + ] + } + ], + "source": [ + "for i in range(100):\n", + " h = hashKnife(i)\n", + " if h[0:1] == \"0\":\n", + " print(i,\"\\t\",hashKnife(i))" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "pd = pandas.read_csv(\"./加权.csv\")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
indexname朋友圈加权留言加权广告加权虾神点赞
01锅醋姜就是我0210
12蔚蓝天空01210
23XYQ011110
34Hi~我是蘇小美0010
45LS0210
56HelloWorld0010
67Yang0210
78壳乐乐0110
89R27210
910浩阳24211
1011Lilly An20210
1112孙宇76210
1213Pz0010
1314默溪9111
1415Pursuit88511
1516A^Hundred^Flowers23110
1617夏天14000
1718蓝袜子-UP6101
1819ChercherᝰACE20110
1920柳好肥36110
2021会跳舞的文艺青年70011
2122HYL-GISer7301
2223其实,不懂你85100
2324白桃大魔王03600
2425CityDast01400
2526筱䓉^_^薇諒01100
2627周浩0600
2728Berton0400
2829阳光的丹尼尔0400
2930城城0200
3031Mr_wu0200
3132汤鹏0200
3233浩阳0200
3334Snow0200
3435含信0200
3536别来无恙0200
3637郭家乐0200
3738M I AO0100
3839期待灵感的hm啊0100
3940🇭 🇪 🇷 🇴 🇮 🇨0100
4041直到世界的尽头0100
4142HelloWorld0100
4243小昭她哥0100
4344炒饭没了?0100
4445七度十二分0100
4546人海0100
4647兔子州0100
4748YYL0100
4849雪落香杉树0200
49500100
5051文献综合征患者0100
5152金喜william0100
5253一一0100
5354虫虫0100
5455Bing0100
5556、Fresh0100
5657轩仔0100
\n", + "
" + ], + "text/plain": [ + " index name 朋友圈加权 留言加权 广告加权 虾神点赞\n", + "0 1 锅醋姜就是我 0 2 1 0\n", + "1 2 蔚蓝天空 0 12 1 0\n", + "2 3 XYQ 0 111 1 0\n", + "3 4 Hi~我是蘇小美 0 0 1 0\n", + "4 5 LS 0 2 1 0\n", + "5 6 HelloWorld 0 0 1 0\n", + "6 7 Yang 0 2 1 0\n", + "7 8 壳乐乐 0 1 1 0\n", + "8 9 R 27 2 1 0\n", + "9 10 浩阳 24 2 1 1\n", + "10 11 Lilly An 20 2 1 0\n", + "11 12 孙宇 76 2 1 0\n", + "12 13 Pz 0 0 1 0\n", + "13 14 默溪 9 1 1 1\n", + "14 15 Pursuit 88 5 1 1\n", + "15 16 A^Hundred^Flowers 23 1 1 0\n", + "16 17 夏天 14 0 0 0\n", + "17 18 蓝袜子-UP 6 1 0 1\n", + "18 19 ChercherᝰACE 20 1 1 0\n", + "19 20 柳好肥 36 1 1 0\n", + "20 21 会跳舞的文艺青年 70 0 1 1\n", + "21 22 HYL-GISer 7 3 0 1\n", + "22 23 其实,不懂你 85 1 0 0\n", + "23 24 白桃大魔王 0 36 0 0\n", + "24 25 CityDast 0 14 0 0\n", + "25 26 筱䓉^_^薇諒 0 11 0 0\n", + "26 27 周浩 0 6 0 0\n", + "27 28 Berton 0 4 0 0\n", + "28 29 阳光的丹尼尔 0 4 0 0\n", + "29 30 城城 0 2 0 0\n", + "30 31 Mr_wu 0 2 0 0\n", + "31 32 汤鹏 0 2 0 0\n", + "32 33 浩阳 0 2 0 0\n", + "33 34 Snow 0 2 0 0\n", + "34 35 含信 0 2 0 0\n", + "35 36 别来无恙 0 2 0 0\n", + "36 37 郭家乐 0 2 0 0\n", + "37 38 M I AO 0 1 0 0\n", + "38 39 期待灵感的hm啊 0 1 0 0\n", + "39 40 🇭 🇪 🇷 🇴 🇮 🇨 0 1 0 0\n", + "40 41 直到世界的尽头 0 1 0 0\n", + "41 42 HelloWorld 0 1 0 0\n", + "42 43 小昭她哥 0 1 0 0\n", + "43 44 炒饭没了? 0 1 0 0\n", + "44 45 七度十二分 0 1 0 0\n", + "45 46 人海 0 1 0 0\n", + "46 47 兔子州 0 1 0 0\n", + "47 48 YYL 0 1 0 0\n", + "48 49 雪落香杉树 0 2 0 0\n", + "49 50 憬 0 1 0 0\n", + "50 51 文献综合征患者 0 1 0 0\n", + "51 52 金喜william 0 1 0 0\n", + "52 53 一一 0 1 0 0\n", + "53 54 虫虫 0 1 0 0\n", + "54 55 Bing 0 1 0 0\n", + "55 56 、Fresh 0 1 0 0\n", + "56 57 轩仔 0 1 0 0" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "pd[\"life\"] = round(1 + pd[\"朋友圈加权\"] * 0.2 \\\n", + " + pd[\"留言加权\"]*0.1 + pd[\"广告加权\"] + pd[\"虾神点赞\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "pd2 = pd.drop(14)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
indexname朋友圈加权留言加权广告加权虾神点赞life
2223其实,不懂你8510018.0
1112孙宇7621017.0
2021会跳舞的文艺青年7001117.0
23XYQ01111013.0
1920柳好肥361109.0
89R272108.0
910浩阳242118.0
1516A^Hundred^Flowers231107.0
1011Lilly An202106.0
1819ChercherᝰACE201106.0
\n", + "
" + ], + "text/plain": [ + " index name 朋友圈加权 留言加权 广告加权 虾神点赞 life\n", + "22 23 其实,不懂你 85 1 0 0 18.0\n", + "11 12 孙宇 76 2 1 0 17.0\n", + "20 21 会跳舞的文艺青年 70 0 1 1 17.0\n", + "2 3 XYQ 0 111 1 0 13.0\n", + "19 20 柳好肥 36 1 1 0 9.0\n", + "8 9 R 27 2 1 0 8.0\n", + "9 10 浩阳 24 2 1 1 8.0\n", + "15 16 A^Hundred^Flowers 23 1 1 0 7.0\n", + "10 11 Lilly An 20 2 1 0 6.0\n", + "18 19 ChercherᝰACE 20 1 1 0 6.0" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd2.sort_values(\"life\",ascending=False).head(10)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "e = [0 for i in range(26)] + [0.1]" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtgAAAKsCAYAAADWYMrSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3gc1dUH4N+Z2SptUa+2JPeG3LGNCy5geoeEEggkkIQSIJBGEpIIAgT4AilAQgnFEFpCTejudGyMDe5dvdftbeZ+f+wajLGllTSr2ZXO+zx6pN2dnTlqu2funHsuCSHAGGOMMcYY04akdwCMMcYYY4wNJpxgM8YYY4wxpiFOsBljjDHGGNMQJ9iMMcYYY4xpiBNsxhhjjDHGNMQJNmOMMcYYYxriBJsxxhhjjDENcYLNGGOMMcaYhjjBZowxxhhjTEOcYDPGGGOMMaYhTrAZY4wxxhjTECfYjDHGGGOMaYgTbMYYY4wxxjTECTZjjDHGGGMa4gSbMcYYY4wxDXGCzRhjjDHGmIY4wWaMMcYYY0xDnGAzxhhjjDGmIU6wGWOMMcYY0xAn2IwxxhhjjGmIE2zGGGOMMcY0xAk2Y4wxxhhjGuIEmzHGGGOMMQ1xgs0YY4wxxpiGOMFmjDHGGGNMQ5xgM8YYY4wxpiFOsBljjDHGGNMQJ9iMMcYYY4xpiBNsxhhjjDHGNMQJNmOMMcYYYxriBJsxxhhjjDENcYLNGGOMMcaYhjjBZowxxhhjTEOcYDPGGGOMMaYhTrAZY4wxxhjTECfYjDHGGGOMaYgTbMYYY4wxxjTECTZjjDHGGGMa4gSbMcYYY4wxDXGCzRhjjDHGmIY4wWaMMcYYY0xDnGAzxhhjjDGmIU6wGWOMMcYY0xAn2IyxQY+IKojo4iM89pfD3LcmnvviPHYWEXmIyNKX5zPGGEs9nGAzxoY0IcRPEnyIpQDMAI5N8HEYY4wlCU6wGWNDWl9GponoFiK6MPb174nogm42PwnAA7HPB0bTbyeitUS0iYgK+hI3Y4yx5MUJNmOM9d6TAC6MfX0SgFe62fYYALcBOO6g+0YLIRYCeAbAkkQEyBhjTD+cYDPGWC8JIfYCsBPRIgBbhBCBw21HRJMB5AB4AUAZEQ2PPfRk7HMzAFNio2WMMTbQOMFmjLG+eQ7AY/gqWT6cEwHcIYRYBOBvsdsA4E1saIMHEVmI6HEiWkxEMhHdS0SFRPTmIds1E9EaIuogorlEtOKQj+FHOgZjjGmNE2zG2FBxKxF9Gvv4sQb7ewGAAPB+N9ucCGBV7OtViNVhs/jFrg78HsB0AIsAnA9gGYDpRPQGEb0S23Q9ohNKPwAQBvCpEOJ4IcTxACoBGAY2csbYUEZCCL1jYIyxlEJEkwA8DuAhIcSjesczmBHRSABpQogtsZaKjwJoAHC/EOKCg7Z7DcCdABYDeBPAeUKIm2KP/RPAbUKIygEOnzE2RPEZPWOM9ZIQYiuAWXrHMUQ4ATxBRDcC6ARwJoA0ABOJ6GZEr8Rujm27GMAGPYJkjLGD8Qg2Y4yxpEZEVkTLPqYACB7ysAFAF4D7APwCQAWAuxEt4dkT22YCgHk8gs0YGyg8gs0YYyzZ/RjAbgCvAvgIgCd2vwzgQyHEb4gIQohtRKQAyALw3CElIowxNmB4kiNjjLFkdwqAbSJ6yTVw0OTFGwAMO7AREV0BYDK+OcrNGGMDikewGWOMJS0iKgEwXAixK3bXRCJaEfvaBmBH7GsJwLuIloaMBXAREc2JPTYOwB0DFDJjjHGCzRhjLKllA/gXABARAdgZG70GEU0F8LPYduYDSTgRtQC4UgjxRuz2yYjWaTPG2IDgSY6MMcZSBhE5hRCcLDPGkhon2IwxxhhjjGmIJzkyxhhjjDGmIU6wGWOMMcYY0xAn2IwxxhhjjGmIE2zGGGOMMcY0xAk2Y4wxxhhjGuIEmzHGGGOMMQ1xgs0YY4wxxpiGOMFmjDHGGGNMQ5xgM8YYY4wxpiFOsBljjDHGGNMQJ9iM6YCIJCLq1f8fERUnKh7GGGOMaYcTbMb0sQDAu0T0LhEFDtxJRGu6ec4tRPSthEfGGGOMsX4hIYTeMTA2ZBHRnQC2CyGWxW6/JoQ4Lfb1aADPAuiKbZ4OIAIgGLvtBHCREGL3wEbNGGOMse4Y9A6AsaGKiLIALBJC3EREfwCwJnb/iQAmAHgNwAoANwshlEOeKwO4DQANaNCMMcYY6xGPYDOmEyKyA9gC4GUAIwBcBeBhAD8A8G8hxIJYIv0egBCAAgBGALUAzACOF0J49Iid9U7ZTa9nASgEkAPAEfuwH/JhA2A96MNy0NcGAOpBH0octxUAAQAuAO6DPlyqw9gSOibPD6A99tEGoL1x8dRIAn8MjDE2ZPAINmM6IKKzANwMoAPArwG8LYSoJyIIIRqIyEBE6UIIL4C5sedcBiBHCPGn2G0iIkkIoerzXQxtZTe9bkH0pOfAR+ERbucDMOkU5uGF1E8AzD707oLVm9z4KuFuA1APYD+AfbHP+wHUNy6eyiMzjDHWDU6wGdPHKgArAfwPQBGAmkMe/wTAXCL6PaJ110BsBJuITovdNgO4CcDaxIc79JTd9DohmiSPBjAq9nHg65EAsvSLrp+MdKSR6gOj6aXdPDtYsHpTFb5KuL+WgDcuntquZaisd4joCQBTEL16UYvoPI2wrkExNgRxgs2YDoQQLiKyxG5OAfD2IZu8CyBdCDH/wB2HjmAzjVQ4jQDGABiPaO37BAATNprTlWnBR47WNbYEEQapP6UgZgBjYx/fULB6kwtfT773A9gJYFPj4qnN/Tgui9+1Qoj3iehxAMcDeFPvgBgbajjBZkw/3wcQFkK8CABEdBKATAAQQrx08IaxntlWAHxpvj8qnMMAHANgGr5KpkfhMK+FTng7Bja4AWRKaIdWB6InjVMOfaBg9aYGAJtiHxtjn/dwyYn2iIgQresP6R0LY0MRJ9iM6ScA4KcH3R4L4DdH2PYWRCc/XpzooAaNCqcJwHREE+oDH8PifbpEyMyEq6MDjswERagbIev22l8Y+zj5oPs8Bas3fQFgA4B1sY/dnHT3y32IljD9D9FyNMbYAOMuIoyxweGr0ek5sc/TES1n6LPvBG/a8oGYfJQG0SWVQLa/ETNHF+gdRzc6AHyK6FyEdQA+4fKS+MRqsP8JYD6AoBDiz/pGxNjQxCPYjLHU08/R6XgVe7blIn2y1rvVn9Wc7O34MgEsjX0AAApWb6oG8D6A5QDeaVw8tV6n2FLFQwDeI6K/HdpHnzGWeJxgM8aSX4UzB8AifJVM93t0Oh4T5ZpAz1ulILNB1juEPigBcFHsAwWrN20F8A6iCffaxsVTfTrGlnSEEB1EtArAuQD+rXc8jA01XCLCGEtOFc5JAE6PfcwBkNCZeYfzvruo9mLjnzQfGddbYKK5FcNzcvSOQ0NBAB8gmnC/g2jHEn5zY4zphhNsxlhyiLbLW4hoQn0aor2mdVXtt7YdS49m6x2H1vzTbZ2U68zQO44EagGwArGEm8tJGGMDjRNsxph+KpzZAE5BNKk+EdEWb0kjqFB4XPhpo95xaM0/L8tHNmua3nEMoG34anSby0kYYwnHCTZjbGBVOCfiq9KPY6BD6UdvzPLc42k2FNr0jkNL/uPyFTKkZB22FoKIjm7/B8ArjYundukcD2NsEOJJjoyxxIqWfhyLr5Jq3Us/emO0ss87mBJsoSoRMhiG8mu/GcCpsY9QwepN7yA6CfDVxsVTXbpGxhgbNIbyiyxjLFEqnDKii4lcDOAkAE59A+q78WJf8EPM0zsMzQihBMGv/QeYEK33Pw1A8JBk261rZIyxlMYvsowx7VQ4xyG6BPwliK7Yl/LGoGaQ1dGpIQDpekeRhMyIXWWZLT5YsXLVuZ0A/gXgjeOW7A3rGhljLOVwgs0Y658Kpx3AtxFNrOfqHI3mRhmaB9XrpIDKyWIPzsNzYwCUAjgPQNvKVaP+DeCp45bs/UjfyBhjqWJQvXEwxgZQhfNYRJPq8zCIR0RLjF1pGERj2ELiVf26YxG+bUWon3jQXdkArgJw1cpVo/YCeBrRZHuPLgEyxlICJ9iMsfhVOIsBXArgMgBj9A1mYOQYgw4KKkKQTHrHogVOsLs3H++2dPPwKAC/A/C7latGvQ/gfgAvHrdkb7IvPc8YG2CcYDPGulfhNAE4E9HR6hOQ5G31tGaQIA+L1LhqjGVJ1aO7z2SoeoeQtIRQz8BL4+Lcen7so37lqlEPAnjouCV7mxMXHGMslQypN0rGWC9UOKegwvk3APWIdlY4CUP0NWOMss+jdwxaEQbiBPsIbHBtzkZbQS+fVgTgVgDVK1eNenLlqlFHJyA0xliK4RFsxthXoqPVFwO4BsB0naNJGuOwP7xK7yA0IgyDotIlIea2/DsPuX1+uhnR7jmXrFw16hMA9wH4N3cgYWxo4gSbMQZUODMRnch1LYDejuANemOpVu8QtGMaHLXkmlMV9XTnexka7W127ONPK1eNegjAg8ct2duo0b4ZYylgSF7uZYzFVDhHxMpAagDcDk6uD2uEocWodwxaEZxgH1a2a1djlslr1Xi3BQB+j2j5yDMrV42ao/H+GWNJikewGRuKKpyzAPwMwDkAZJ2jSXrDjG7boJkaaDbw7/swjlVWJrK7ihHAhQAuXLlq1KeIlo88d9ySvaEEHpMxpiMSYhA1eGWMda/CeQqAXwI4Vu9QUokqIMb6n1Ajkinlk1P/WGMTjcjL1zuOpKKEww+p34XNEBrIKxXNiLb5+9txS/Z2DeBxGWMDgEtEGBvsKpyECuc5qHBuAPA6OLnuNYlAZZH9Lr3j0ITZwFcuD1HYtbVxgJNrAMhDtPtI5cpVoypWrhqVMcDHZ4wlECfYjA1WFU4ZFc7vANgM4EVwV5B+Gavu8+kdgyasxkFTT66VJViu53thBqJ12pUrV426ZeWqUZk6xsIY0wiPZDA22FQ4jYiutngToivPMQ2MRWX4Db2D0ILFZNY7hGRC4UDweOf6ZJjc60R0lcifrFw16m8A/nzckr3tOseUUERkAjASwIGVMK9EdML167HbBgA7hRCCiIwA0gDkAygBMAHADAC/FEI0HbTPuLZjLNE4wWZssIgm1j9EtMZ6uM7RDDpjpPqUv+InhADMRk6wD1Lq2tRkylJK9I7jIA4ANwO4PpZo/+m4JXs79Q0pYdIBHAcgGLtdErvPG7ttAbCbiBYAeBrA5wA6AXQB2Bi778uJokS0KJ7tGBsInGAzNhhUOM8GcBeAMXqHMliNMLSmfmIqlCBJUup/HxpaKi9P1pIZO4DfALh65apRdyM6GXJwlCnFCCE6iCiM6AI9fgDFAAIARiCaXP9BCKEQUQGAvwshbieiowFcL4R4+DC7jHc7xhKOE2zGUlmFcyaAe8ATFxOu2OhJRyIbuQ0AIZQQoisOMgBSyOubb/88GcpDupMJ4I+IjmjfBuDhwbI6JBHZAfgAPHKETQpjJR/liM4lAYAwviopOVBmEhbRlmjxbsdYwnGbPsZSUYVzOIA7AHwHAC8cMkDG+x4OByRbso549khR/O3hU0Zn6R1Hshjbuqbq99n3leodRy/tB3ALgKeOW7I3pbuzE1EZgFcA/OUIm9wEYCqANxEd0Q4CsAEYBmBHbBsDgAuEELVEtDqe7TT+Nhg7LB7BZiyVVDhtiL7p3AhA61XnWA9GR/Z1bTFNztE7jj4jdVCMfGrlZNM7qfg/NALAEwB+sXLVqN8ct2TvK/qG0y9dAO4WQjxDRG8gOjkRALqEEGcSURcAVQixmIimIJow1wH4CYBfALAJIfYd2Fm82zE2EFJ+0g5jQ0K05d4PAexBtC4zFRODlDdG3efXO4b+ECQiPW81NBgCXa5Z9p15esfRDxMBvLxy1ai3V64aNVbvYPpCCNEhhHgmdjNNCLFICLEI0Q4gEEK8LIQIEVEOgGUAWg96eiGA12IJNQAg3u0YGwicYDOW7CqcJwDYBOAhxN54mD7GoSqlL8kLedAs+N5vEz0fDpYWeCcA2Lxy1ag/rlw1Kq3HrZMQEZ2D6IjzAYbY/VcQ0WQAbyE6YfGTAxsIIT4HcDGAl4gom4gc8WyX+O+GsShOsBlLVhXOiahwvgngbQBH6R0OA0ZLDSld784J9ldONS+36x2DhkyIlo7tWLlq1Ll6BxMvInIQ0V5Eu4j87KCHrET0IYBrEb1qd4EQYm0sEb8bsWRcCPEZgDlCiDYhhCue7Qbsm2NDHk9yZCzZVDgPLKF8BQBZ52jYQfb4bM3HSw+nbFlByOqrVI8dU6Z3HHoze1s6Hku7cjCvmPgOgGuPW7J3l96B9ISIMoUQHXFuWwggG8A2IcQRTxbj3Y6xROJJjowliwqnBcANAH6FaA9clmSKTD4HUriKWRhTegBeM1P873chDYM5wT5QNnIPgNuSuX92vMl1bNsGAA1abcdYInGJCGPJoMJ5IqLtpO4AJ9dJK82gWpyRjtSd6GiS+TUfwBlpywdzcn2ACdGT9e2pVDbC2GDBL7aM6anC6USF8zFEJ+ekWj/eIWm0stejdwx9JUyGIT+EneauaxlhbXLqHccAKgHwwspVo95auWoUr/TK2ADhBJsxvVQ4TwWwFcD39A6FxW+c2BfQO4Y+MxuGfE3/zODapC2XSLATAWxZuWrUHanabeRgRPQPIjo59vV1RPQLvWNi7GCcYDM20CqcmahwPgngNQDFeofDemcMqlN3wXSLIWVXodSEUMUZ6SuHcqu2g8tGztE7mH66G8D1RCQD+C6Af+gcD2Nfw5McGRtIFc6zhBD/IKICvUNhfTNabkzZ101hMQ7pGhGHq6qp0NHJ/3vRspEXV64a9TqAHxy3ZG/KTQgUQuwnohZEl41/DYCIrQZpAVAlhPgeEVUAMAKYD8AJ4CREV498CdEuI3sBbBZC3KHDt8AGOR7BZmwgVDhzUOF8FsDLnFynthJDp0XvGPrMYjLpHYKe5kZWh/SOIcmcimjZyIV6B9JHdyLaeelviK7Y+ACAkwGUEdGBRblGCyEWAngGwBIA4wHUApgHYBQn1yxROMFmLNEqnN8SQmwFcIHeobD+KzD5HXrH0GcWk1nvEHSjKuqptjW5eoeRhLIAPLNy1ah/r1w1KkfvYHoj9rraIIRoBxBGdO2ApxH9nqyxzZ6MfW5GtESmDsAMAO8C+OuABsyGFE6wGUuUCmceKpwvAPg3EaXs4iTs68yyMOVFGr16x9FbQqgqmQwpW97SXzmuXQ1ZJq+15y2HrG8hOpp9ut6B9NHlAF4AcCGAg/8/D/1fPQnAH4QQxwghnh6o4NjQwwk2Y4lQ4bxQCLENAPefHYRGKXvdesfQW0IoQb1j0NMCZSWv6NezfAD/Xblq1OMrV41KtSs1yxGdwLkqdvtIE8g3AriPiFYR0XNEdNSARMeGHE6wGdNShbMAFc5XADxDREO5W8GgNl7sT71aXqGkXsxaUcLhkxwf8NyH+F0WiRjfqKioWKx3ID0RQoyOfX5XCHGUEGKBEGKuEOIDIUSFEGJN7PEnhBBPAJgDYBeiJSU2AClVFsNSx5C9XMiY5iqc3xVC/IWIhsIqcUPaWKoResfQWwJqWO8Y9FLYtbXRlhkarnccqUIIhLduXZwJYEVFRcU9AG6uqKgYFCdoQohHADyidxxs8OMRbMb6q8JpQ4XzOQDLOLkeGkbJTSk3OCFIDNkEewmW83tdL7S0lH3g6sqfiGiO8HMAH1dUVEzQOSzGUgq/6LCEI6IKItpORO8S0UoiKtI7Js1UOCcIIdYBOF/vUNjAGW7sSrmV8IQkUneBnH6gcCB4vHM9l4fEKRIxbt65Y96CQ+6eBmBDRUXFD/SIibFUxAk2Gyi3CyGOBfA4gGv1DkYTFc4LhBDriYhHdoaYXGPQAaGkVpmIjCE5ya/UtanJJClDfon4eAgBz6aNJzsA6XA/LyuAhysqKp6pqKiwD3RsjKUaTrDZQMsE4CeiNbGPYMqNaFc4TcrvHPcDeJaI0vUOhw08gwR5WKQ2pTqJCJmGZIK9VF4+tJeH74Wa6vKNfr+ztIfNLgTwWUVFxfSBiImxVMUJNhsovyGidxGdwf1XIcQiAP8CcL8Qol7XyHqjwjk8rIiPZImu0TsUpq+xyl6P3jH0hjAOvUXSpZDXN9/+OZeHxKGmJq2lqmrqoaUhRzIawIcVFRVXJjImxlIZJ9hsoNwuhDhWCPEdIUQXEU1FdGXDX+ocV9zU3zuWRlTxhVEmHrlhGCv2p9akQaM05DLs0a71LQZJDLnvu7cCAfgr95/Q26txZgD/qKioeLqiosKWiLgShYieIKL5sa9vJqLLutl2TTz3HfSYiYi+IKLpRLSBiI4hoif6EONhjxGLvay3+2MDjxNsNuCIyAngHwAuFUJE9I6nRxVOCv/WcQsBbxskytA7HJYcxkp1eofQOyZ5yCWaJ5ve4ZUb47Bl84x2wN7XibsXAVjPXUaihBAhAARgDIAyRBe8qdQxJKYTTrCZHq4GMAzA07E67IV6B3REFc6sYEQsN8r0OyIacgkKO7KRcotJ7xh6Q5gNQ+r13hDocs2y78zTO45kt39/ZrXfP/FIqx7GazyATyoqKs7RIiYd5BPRm0T0IRH9qjdPJKJsInqNiN4jor/E7nYBKAewGcBUAFWH246IyojoaSJ6nIge7+YYI2KxrQAwsQ/fH9PBkHrBZfqIrab1r4Nu/1EIMVwIsSj2sVbP+I6ownl0WBGbzQY6Tu9QWPIZZnKlVqs+syHlenf3x0TPh+16x5DsPG6pq6Z6aaFGu7MDeKGiouKOioqKVMgt7ouVYVyO6BLrzwsh5gI4q5er8P4KwLNCiAUAnER0EoAqAAsAvAPgWERHsA+3HQCcDuAhIcT3ujnGLwDcDeAkRH/OLAWkwj8BYwMu8jvHNaoQHxrlFOtwwgZMljHsMKih1OktbTEOqQT7VPNyTkS6oaoQW7bODxGZteyyQgB+Vaxk3V9703sZGu43Ea6NTbZ/FNF68qtiCXc6gN687k8E8Ens608ATEA0wR4J4AsAc2O3D7cdALwjhPi4h2OMAPBFrKRyUy9iYzriBJuxg1U404I3O54zSHS/RDSkEhLWOxKBSiOVLr3jiJewGIdMuzqzt6XjKFtVb0Yhh5zdu4qqwqHSXK33axKGzSeEp1wO4JPam94br/X+EyQI4KZYwn0ngN5c/diKaHcsxD5vRXTEugrAXkRPOmqOsB0AxNONqArARCKSES09YSmAE2zGDqhwjg0pYqPZQLwqI4vLWHWfT+8Y4mY2pVTNeH9M8b/fpXcMyay93dDS1LSoROv9kkDjucE5+TIkE4CxiCbZp2p9nAS4E8DPiOgDRMswmnrx3D8CuICI3gfQKYR4B18l1/sB1AohwkfYLl7/B+BmAMsBhHrxPKYjEiK1FiNjLBHCv3UsJsJ/DRKlVLsppq+/dB5b9RfLlT0tzJEU/McVqGSQh8Sgym2+q7tGWJuceseRjCIRRD755ES3quRlarpjgeAp4Wl7itSsSYc8ogK4adidC/5P0+MxluSGxIstY93x/NrxPYnwDifXrLfGUF1KdJYRqhIeKsl1mruuhZPrI9u2bXSd5sk1gOmREesPk1wD0Tzj7tqb3nu49qb3uOyODRlD4gWXsSNp+4X9rnQjHpMlrrdmvTfC0JoSZRdCKEG9YxgoM4NrU6dsZ4A1NlrruzqP0fyKS57ieH+6MnJ+D5v9AMCbtTe9xyc/bEjgBJsNSXuusxuaf25/JTtN+gW3t2Z9VWzypMRVDwEltVad7CuhijPSV+ToHUYyCgYR2LP7BM2T24gr6D4lNG1unJsfD+DD2pveS4myKsb6gxNsNuR8ckV6lt2ET/PSpTP1joWlNqdRsVlUTwokryIFYuw/p6uyqdDS1dslv4eELVumtgrh0PRnEw6EghfIC2QD9WoRo4kAPq696b0ZWsbCWLLhBJsNKR9fkT5mTLa8Od8mTdE7FjY4jIrsT/pWfUISEb1jGAjHRFZzh4XDqKpyVvu85cO03KeiKOrS4GR3htynJdYLAKxNkQ4jjPUJJ9hsyJj9m7L5O/PS3sqy8uIxTDtj1H1+vWPoiZBE6iyI01eqop5qW6t5X+dU5/WSq7rqhAKt9zveld8w2lzcn3KcdACv1t703hVaxcRYMuEEmw0Js39Tdq6/LH3FPaPyhq9RjS16x8MGj3GoSv7RYRmDvh9rjmtXQ5bJa9U7jmSiqkJs2TzPD1g0nYyb3iHXL7ROKdZgVzKAR2pveu/XGuyLsaTCCTYb9Gb9dsS1vlG254VJMguDZPzJ8Pz0rarMC1EwTYyRGpL+dVQYSNU7hkRboKwc9N9jb+3ZU1gVCo3I13KfqivU/i3LgkIt9wng9tqb3vtz7U3vJfWMcyKqIKKLD7qdTkQvE9FaInqKeMY8O0jSvzEw1ldnjDPSrJtH3OUfmf5XyCQfuF8xSWnfLcpHvSBu58X6rdTQZtE7hp4I4yB/qVfC4ZMcH2heBpHKOjsMrY0NizVdrTHsDwUukI61GkhORCL5k0r3ljvvOf+0VGqZegmAj4QQCxFdbn2mzvGwJDLIX3XZUHXGOKPcdF7xY/7R6b+A9M1RhZDV4DwvN9/bpWJIdFdgiVNk8tn1jqFHpoQkREmjsGtro80QMuodR7KIRKBs275Ept519+iWElHUk8NTfQ5DekLKcNqCDe990vr6LwC8eM/5pyX9SWtMHYCziWiMEOIKIcR6vQNiyYMTbDboOKY5THvOKl7hG2u/DN1csXPbTbnnZOa1hITgS8usz9INqtUR6QjoHUd3hEka1K/1S7B8UH9/vbVj+8haJZKv6WqNR7mLG8tMhVla7vMAd7jjoxX1T86L3TwDwBv3nH9a0veYF0L8D8CfAbxERH8j+upKKWP8osQGFcc0R3remXlvyRPti+LZvjnLUnShLac2wWGxQW60utetdwzdMhkG7Rs/hQPB453ruTwkprnZ3NDeru1qjc52Y90866SEdF/yR7wb3qr95wx8PR9ZDGDVPeeflpCEXitENAbAWwCmAsgFcHG3T2BDCifYbNBwTHNk5J2Vt9I6wrq4N8/blZdecpUpozJBYbEhYJy6P7lHsC3GVKpr7ZVS16Ymk6QM2hOI3ggGEdi960Q7kXZv7aIr3HaudX5CkuuwGtz6eu1D41Woh+tycjSAlfecf1oyr8x5BYCzhRAKgC0AUqW0hQ0ATrCHICKSD57tTESO2GcDEWUR0XgiOpGIbiSiW1JhZrTzaGd+3tl5a6xl1tl9ef77xY6y2yRbldZxsaFhDKqTu8+0xThoE9Cl8nKuvY7ZumVyq6o6NSutCPtD/gsNC20SSZq/B3QFulr/V/1gkSLC3a0uORXRkexk6m9+KxF9SkSfAvACuIyI1gCYBeApXSNjSYWEGPTtUYcsIjoTwF2InlU3AnAKISYQ0bcAjAWwTAhRS0RPA9iA6CWu0QDaAbQC+ADAQgC/FUIk7QppGXMyhuWelvu2ZbhlYr92JIS4sbK17nvwa7riGRv83nUX137X+H9J+3cTmO10I8OW/JMxe0kKeX2Py5daDZJI+kGARKupdtRUVp45XKv9KeGIcop/mmu4KU/TWm4AaPd3RFbUPxkRUiDeEd9tAI776fOvNWodC2OJwiPYg1sQwOcA3gbwMoBdsfsjAMIA/k5EFkRbDe0F8CSALgB3AggByASwM5mTa+ds54ic03KW9zu5BgAiurckp+AN1dSkQWhsCCk1dCT1pWFhMZr1jiERRrvWt3ByDfh85KmsPCFPq/0JITDVW9KUiOTaHfQqqxueDfYiuQaAiYiOZGva05uxROIEe3CTAWwFkAUgAMBDRIsAzACQB+BVAFMAXCeEeFUIsR3AiwDuAfAEABXA7gGPOk6OmY7RuafmvmEdbh2v2U5lMvyqJM/5qWpo12yfbNArMPkdesdwJEIIAZNR05X8ksXJpneG/MqN0dUaj/EAVs1OorI6LHWzLRM0r7v2hwPqivpn/BFyd1cWciQTAKzmJJulCk6wB7fd+GokugjAx4iOXtsApCNaNrIHwAQiuoyIzgbwWmzbxwGMQ7R0JOk4ZjjG552W9z9rqYbJdYxqlCw/KM437lMlj9b7ZoOTWRam3EijV+84DksoIRqEXfoMgS7XLPtOzUZtU9XevfnVweAo7bqodEVaz7bO1WIZ9K8JKWGxvPZ5Twjt/akRnwAeyWYpYvC96rKDqYj2FB2NaC31FCHE+4hOzIAQ4nUhRBuAKwH8G9FZ0DcDeBPAjxEtMblGh7i75ZjmmPTHQNYLCxtkZ6KOEbHI9gsK8kNtAsFEHYMNLqOUfUnZqk8IZVD+DU/0fDjkrzJ1dcntDfVLNKv9D/uCvosMCx2Shl1IAEBRFbG8+gW3H41aXOmZiGh3kWwN9sVYwnCCPbh1ALgewHsAXgJwoEvGZAAHj3hcBqAE0SQ8O/bY3wE0ACgioqRpk+SY5pj8h1Dmc0sU66Qb1lL+vPdDCeth7U83Zp2dnd/hV0Vyd4hgSWGcuj8p5yoIqINytdJTzcsH3aTN3lAUKFu3LhZE2nSIiYQjyhnKrFCabNG0nEgVAiuq/+v2oFrLMqpJAN6+5/zTkrY0izFOsAe3owB8G8BKRJPrTiKajOjyruuI6PjYdqcCyAFwPqKj3TNin89CtEzkhwMb9uE5pjkm3xzKWHaCknYUAMgg6dr3qHjhmlBNoo7Z4TQXnOfMbYhwux3Wg3FSdVL+jQgafAm22dvScZStakiPYO7YUVarRAo1+RkIIXC0d0RzsTEnQ4v9HWxNzVuuTrErEYnwDERXfExLwL4HFBGVEtEaIrqAiCYQ0dFH2K7Pk6ljbXiPOCGYiIx9XYmSiDIP+lrTRY5SGSfYg5sJQDWA2QBORrRd330A/gjgIQC/JyInAIcQ4n0hxFIANyI68n0/gC8QbaJ/hx7BH8wxzXHUz0POx05X0qcefL8Eoqs+omHHrQhWJ+rY1Tlpw75vzUrY/tngMEpqTs7FXKTBdwVmiv99l94x6KmlxdTY1jpPs0QmryOtdoZlbKFW+zvgg9o17hbli0SOMs+TTBPufeDKVaneJWcCou/RRYi21v3iwANEZCKi04joIgAPEdGcWLOCryGidiJaccjHZwdtcj2At2L31xPRW7GPBiJ6C9HS0OMPs9+biej8IwVORIUAniciiYjyADxORMn5WjjAOMEe3EKI1lY/CeByRMs//i6EqBJCtAN4FMB1AP5LRKNi/2S/B/A9IcSdiLbuW01Eui7/6pjmmHRl2PHQeYptxuEel0D0w/VSyYnvJC7J3lhoL/2lwVGZqP2z1Dfc2JmUI2lCgqp3DFo7I215ht4x6CUUQnDXzhPStVqtUeqMtJyZNlfzHu7rGz7x1IY/SWgZj2yatMaUfvKPADz7wJWrknIxJSJ6gojmx76+OdZQoICIbjqwjRDiLSGEXwhxrxDiDCFEkIhGENGbiDYa+A6A/Yi21w0CuJmITj7kUJ0AVhzyETroGPcA+AmijQzOFEKcJIQ4CdEr2FcCuEcI8fZhvoUAgMOepBPRMwCeB+AA8CmiV8sdAFYS0c/j/ykNTnyWMYgJIdbGvmwCACL6TWxJ1wOPP3Hw9kR0jhDCd9DjywAs03Mlx8V2+/hLM9Je+G66bVx32xEI398glRgjwarXTjEn5BLVG8OcZcVVkerrhK8kEftnqS3PFHQgqAiQnFR9mYU8uBLsdHddywhbUzKt7Degtm6Z1KyqmZosKBP2Br3fMx2focW+DvZF8xfevf7VtgS+daiyeeb7xrRjF8Vunw3gkQeuXHX5NQ8uScpSrYMJIRoRXW+iO9UATkN0nQoIIT4iossAuBEt/RxGRCS+Kl/0I5pUH+y8Q27/EUApgHNiCfq9AIYBsAJ4+OD9EdF3APznwBOJaDQAuxBi40H7uwbAdEQT8PMQPQnYgGiL4Hd7+P4GPU6wh5CDk+sjPO47wv26vGAttttHT7VY7/p+WuYYGT2/UhMI3/1cLjVFgpUvnWEu0zwgIjxSkj2sqFJpOI+Cml9OZanNIEEujtS56owlyTXxyiglfcLRGzODa72wYUgm2LW1thqPZ7omyXUkFI6crc5RLEaTpkvN72zb5d/medOawOQ6YrAu+MRgOfrYQ+7/HqKrEP8sUQfWChGVAagQQlzWzWYXALgY0bIRQUTnIVpKMhHRBeGMAH4F4EAZSCeAPx2yj+0HHfMMAIUA/otoQ4MTEe0WNg7R5Ph5ABQ7ViaA3wghnj7o92hGtHR03sHfCqKVEIfmFpxbgktEWJJabLeXjTaZbrs0M/MEQy8nXlywVS47/6VgZUICk0i6tSQ3+33V0JqQ/bOUNlbZm3S9sIVRSqoR9X4Rqjg9fcWQTK59PvLs33eCJt+7UFUc4xvTWmDM0vRksLKzKrCp61UjUWJyCyEQNKQt/cxgOXreETb56QNXrvppIo7dT/cR0RpESzXjIoR4WghxMoA/A/gLgG8BWAbgdwCuAvCFEOIzIppHRPcC+AjRMo2DP5qI6M9EVC6E+C+iJyDZiC4odwWi6128jGgjg/8i2mEMsWM9e0g8WwHsIaLTAYCIFgB4DtFR7J8AGI9oDfdPYvG9TURZ8X6/gxGfZbCks9huH15gMFT8KDv7FLMk9WnW9Lk75TLDvwOVT3/bUqZxeBAGyfTj4flpz9Y0uiZISnKNVjJdjRWVodV6B3EoU1KWpvaJ01XZVOjo0m5RlRQhhMCWLXPcQLomV86KOh21U9JGaVp3Xe9uDK1rf1ECqQnJKyKqqijGJR1Wc/msHjb9vweuXFV3zYNLnktEHH10rRDifSK6Od4nENEoAIsQHV0uQjSB3Rj7/F18lQB/BmAbgAsBvAVgaez+pxHN8YwADkwKtgM4cAVEFUJcTEQvApgP4EIhhCdWEnoVgDMPE9b/AXgYwP+EEO8R0akAIkIIEUvynxNCrIvFbxBCROL9fgcjHsFmSWWx3Z7vkKTf/Dg759R0Se7XBJkz9xrKLns2MSPZiklOu7gwX20QdNiyGjY0jZUS1pa9z4RJHjQZ9jGR1UnZazzR9u3LrQoGxmiSXBs61aZT02Zrmly3+trDH7Q8rwgKa9pD+4CwooaC8pKI0zE9npMrArDsgStXLU5ELANoJAAnojXNfxZC3ARgNaJlIR1CiHcAQAjhB+AB8GtEO4AFES39eBHRGuoJQogDi01lAhgL4BgASiyJDyCamB9I/ksArBFCfKNpgBBiC4DH6KsZtq8DeI2IXgPwAwAvE9GB23/T7CeRongEmyWNxXa700T08+tyck/LMhg0WdzmlEq5zPivYOUjF2tfkx1KM2Scm5vf8nZLo9FO0LSOkaWmkXJz8v0dmA2DI8FWFfVU29ohVx7icsnt9XXHa7J0ecQTdF9iOl7T/uFdAVdkTeOzYZUCCemiE4qoQdVyCmXbJ/amFZ8JwMsPXLlq/jUPLtmSiLgSTQixHMByIvoeonXRBQDuRjSZ3kpECwGQEGINoiUeOwD8D8DniHYEeeLg/cUWjLsJQAuANAB5AG5DdFG54wC0ENH82GrPNxz0VAPw1URpIcQ/D/r6hNiI95UAPkZ0hLwSwIN6zd1KJjyCzZLCYrvdSsD1P87OOavIaNTkzeSApTVy2dXLAlU9b9l7brsp95yMvOaQEIOqUwPrm2FGV7reMXyDxTAoBlJyXLsaskxeq95xDCRFgbp1y0IVMPb7dxgJhcPnYi7MkkmzvwdvyK+srH82oJAnIcl1IKz6YT1HyrBP7MvIuBPA6w9cuUrXCelCiMtiSSuEELcJIZ4QQlT2MMERQLSzF6KTNvci2m73eQBTEC0DWQbAS0QzER09PhvRGm8CcA0RrSOibUTUTETfBXAGgJ2IrosxHoAN0cTYDcAghHjgQJwHHb8C0cmWB3cOOfBYJhH9CsCq2PNvE0L8MvbwJ0T019hJwZBFfJLB9LbYbjcCuOaKrKzLp1ujqzQmwvv5kaq/XmYqJUn788rxTd7q//jauH3fEKcKiDGBJ4RCpqQZvPBPt3VQrjOz5y2T29lt99ecl7Vakw4aqWLbtpKqttaF/W47qqqqmOce0zLJXJanRVwAEIwE1beqn/YEqCUh81D8IdVnsl9gTE8b1t+rQp8BOPaaB5ck3QTknhCRA0A4VgZy6GOZQoiO2AhylhCibYBjI0TbCK4WQngOeSwN0frxN4fySHbSvAmwoWmx3S4BuOQMh+P8RCbXADC/yVD600fD1VBVzf/hd+Snl1xjclZqvV+WWiQClYWrkmuVQbMx1Ve5A5Rw+CTHB0NqNKy11dTU2rJAk5P20q7MOi2T64gaEe/U/CdhybU3qHqtGZeaNEiugWif5ucfuHJVyuU7QgjX4ZLr2GMdsc9ioJPrg477v0OT69hjPiHEG0M5uQY4wWY6Wmy3E4Azj7ZaLzjBZu9pZrgm5rTKJb98JFRLivZJ9rvFzrI7JFtCSlFY6hijJlmrPosp5RPswq6tjTZDKPnq2xMkHEZo547jrUT9b7Fo6hCNJ1pnajapURUqlle/7PahLiHJtTsgPLasKywWc66WpU2nItoBg7EBwwk209PCEqPxu9/JyJwvabXubxxmtBuG/+rhUB1FVM3rpp8tySxZBmud1vtlqWOcqEya1lRCqAqZUn+S4xIsH1LvVVu3TmhS1ex+J7ARd9B1gXmRphNDV1W/3uUS+xKSXHf54cnIvTLNbMpIxN/sjQ9cuer7CdgvY4c1pF60WPJYbLdPs0vSD6/OzllgkqQBn7g0tdMw7OaHQvVyWO12dcteI6I/leTkvy2MTZrul6WMMVK93iF8SahKsOetkhuFA8HjneuHTHlIfX16rds1s9+15uFgOPQtmiebJO1OsN6tWeFqU7c5tdrfwTr8sjs7/+p0oyE9kXnJPx64ctX8BO6fsS9xgs0G3GK7fQwBP74uJ3eOQ5Y1bRnVG+Uuw7DfPRRulEMaJ9kyGX4xPN+5UTV0aLpflhJGGFqTqCRDSfm+0aWuTU0mSUn5Ufh4+P3w7dt7Yr9fE1VFFYsDE7uyDU7Nutp8XP+BuyGyISEj1+0+kzsv/2qbQbYkdtVRIaThNSt/tX38BJ6QzhKOE2w2oBbb7XkAfnJFVtbkYqNxhN7xTHDLxbc8GG4yBlRNL+urRslyeXG+XKVKyVWPyxKu2OSx6R3DAQJqWO8Y+mupvHzI1F5v2XJ0pxDp/b6iN8qVUz/eXKJZacjGxs88VcH3+7Xw15G0+dLcBYVX22XZmOjkuuOorf/8Yszel04B8Mr28ROGVMtHNvA4wWYDZrHdng7g+hNs9jHTrGkz9Y7ngLFeuejWB8OtxoC2yUjYIju+nZ8faBdI+cv0LH5OQ8RmVn1JkdgKSu2liqWQ1zff/vmQKA/Zty+rKuAfX9Tf/Vg6qOE46zTN1hLY3rrdt8u3PCH93dv8Ge7i4ivtUgJapx5MUsJ7Z6//gyuvddP02F3TADyW0IOyIY8TbDYgFtvtMoArJpjNE09zOBbpHc+hRvnlgtv/EW43+1VNL6n7bMbss7PyOwKq0LYMhSUtImBUZF9StOoTUmr/3Y12rW8xSCKxI5tJwO2WOutql/Y7KVbcoc4LLMfmaxETAOzt2Of/ous1Mwia/w7a/Pme4qLvJ2RU/GDmQMe6+R/+Mi/d13RoP/ELto+f8ItEH58NXZxgs4SLteM7N1OW51yelb3YQJSUl3zLAnL+Hf8Id1o9qqYjzu0Z5oLznLn16tBuCTqkjFX3HrZ3LQAofjf8+zdC8XVpdjzF2wGhHGawWkZKrzB6sumdQX8ZX1GgbtmyIAz0b4XFcCAUPF+abzKQQZP39dquuuCGjpcMkFRN69+FEGgLlnqLi76T8FIqR8umj+d+/NuZBiV4pET+ju3jJyxJdBxsaOIEmw2EYwCcdnV2zsw0SUrIDHStDA/KeX98KOyyupWAlvutykkb/n1rVqWW+2TJaxyqD1uaEfG0o/mFCoQadqHp2V8fNslWg140/fv3aHruZjS/dBuEEoYS8KDpP79H49O/QNvb9wMAXBv+h8Z//QJqKAD//o0g+Zv5mTBQyibYhkCXa5Z9p2aLoySr3buGVUfC/auXVhRFXRqc7M6Q7ZosWd7saQl91PZvCFI0HQxRhVA7I+N9xQXnJqTk5MvjqEokfdu/2mdufWQOQXSX58gAnt0+foJmJTWMHcAJNkuoxXb7SABXXJKRObzYaBytdzzxKArJuXc9FPGmu5QjjkL2xYZCe9mvZDsvRDMEjJbqDzvqF26tRtaSH8A593xYR0xHqHHPN7bxbl0Dx9FnIf+C2yCnZ8K/7zN4t6yCbdJiFHznbqghP4INuxFu3o/0oxYj1LgLdITFGoUhdasrJno+bNc7hkRrbzM2Nzcf2++l0Me78htGm4tztIipw98Vebf5WUWlkKbdcFRVKG5larAw71RNTgKOJBz2e8o+uzcwu/mjrDifkgfg39vHT0jKK6ssdXGCzRJmsd2eCeC6mVarbXZa2rF6x9MbBWE5+66HFL+9Q/Fpud/XhmeU3k9pNVrukyWfMkP7YZMTa9lUmIvHI1CzBcGGXTAXT/jGNvbpp8I6YhoAQPV1QU5zQrLaEW6rgxrwQHG1wuDIhRACQonAv38jrCNnHD4Qk6xphq26uhD89GOoXfF1oFTa2yAifZvveap5eUJawiWLcBjh7TuONxP173eU3iHXL7RO0WQE1h30Kqsbngkq5Ne0NEdR1YiX5oTzc49LaMlP0NvcMnPdrebRnsrelp/MBa/0yDTGCTZLiMV2uwnA1VmynHlBRuaJA7lSo1byIlLWXY8oQWe7ol2rPSI8VJJd9JIwN2i2T5Z0Ck3eI07eEkLAu/09kCwD3fxbBOu2Qw16YC4eD8uwSQh31MO14X8wZg+DZLHBOmIa/HvXw2DPQcuLf0Cg6otvHsvUu6W2lfY2tP3wgsM/1taCzl9fi/COLei48YdQO9vhe/XfaL/hCrTfcAXafnA+XPfeBt/Lz6H9uu9B+P0IffoRyND7gUGzt6X9KFtVvCOQKWnbtnH1qpLTr5I51RXq+JZlQaEW8QTCAXVl3bO+MLk0Ld+IKGo4IC1ScrPmWbTc76FCLVvql6y/PSc77OrrSPT128dPOEfToNiQlnJJD0t+sUmNFwIYfXV2ztw0SUrZkagcRcq8659KOLNFcWu2U4nkipLc7A9UQ6tm+2RJxWZQrY5Ix2Hr+IkI2SdcBXPRBPj3rjvs8xW/G+0rHkL2yT8BAHS8uwzZJ16DjHkXwpg1DJ7NK5A+4VhkzP8OJEs6rKOOhm/XB9/ckdnYqwlqngf/DBE8/BzfSOVe2K7+GWwXXwHTzGMQ3r0DaWd+G1l//iey/vxPGMunwXraOQjv3QnL0lMR3rkVZOlbTjXF/15SdGFJlIaGtDpX16x+lYaE/aHABdKxFkM/R8ABIKyExTu1z3uC1KZpV49QRA2GTSer2ZkzE7b4khCqMO59vfGkrf8oMiPS35/FY9vHTxipSWBsyOMEmyXCMQCOuzQzs6QoRequu5OlSBl3Paao2U0Rzd70hUEyXTMs37pDlQd1IjGUjVK/2aqv6+MX4NmyEkB0MqNk/uZgoVDCaH31TmQceykMzugcPxEOItRSCaEqCDbs+nLbcHsdDBmFINkIcZguNcIc/zLZoc/WgawWSFmHX0jQPGMOTBMnI/T5BoR3bIFx4uQvH1NamqF2tMM4diIgBBCJIPjpRzDPmhfv4b/mjLQVmX16YgoIBODfs+eEfn1/SkRRTw5P9TkM/V+URlEV8U71i24/GjUdCAmG1QCsZ0mZjkkJS64jSjiY9/nDnQtq3tCqV7oTwH+2j5+QRKuxslTFCTbT1GK7vRjA92dZ06SjrWmL9I5HKxmq5LzrCZXy6iOa9VZTzHL6xYX5SqNKmk6mZMlhnLLvG0PBtqknwbtlNRqf/iWEUCHbc9Dx7lNf28bzxXKEGveg66Pn0fjMTfBufxfOOd9C+1v3o+Yv50P1u5E+cSHUoA9yeiaM2cPh/vwtWEunfiMGMhviav0mwmF4nnoYth9c3/12QiCw5h2QwQiSvsrdfa8+j7QzvgUAMM88BsGP34Ocm4/Om3+C0Mb18YTwpXR3XcsIa1NSdxvqjy2bZ7RD9K/bx1Hu4sYyU2G/S2iEEFhZ/V+XB1WaJtf+kOoz2C6QHbbRCZs4GAq6Oieu/6Na3rlZ65Ox6eB6bKYBOtyoB2N9sdhutwL4bbYs5/0qL/9bqVwaciRuUj03f0eKNAw3ZGi1T4cr1Px2a2OWjdCvPrgsuTzWOaPqVstP+90hoj/8Mx0uyrb3+H/oefIhGEpGwrJoKdpvuAJZf/5n99s/9gAMI0bDsvhECFVFx3WXIev+J798PLx9MyL1tVDb26DU18Jx/U1xx7yw9ZnKH2a/WBb3E1JIZWVmdU31aSX92Yejw1D3betCTSY1rq5+y9WsfK7p67Q3qHrTMr5rtlryEvZ6Fuyqbpz/+V9z7WpA0x7dhzh1wo7tbyRw/2yQ4xFspomD6q4LrsrOWTgYk2sAsAvJdsfTqrG4KqJZCzGXw5R3TkZeU5jPdgeV0XKj/q+vVqMpns1CGz6B79Xn0X7DFYjs2YmuP93yjW28zz4O/zv/AwCoHjfIFi3XDW/+DMbx5V/bNlJTBUPRMJDJBIhetOIWqjg9fUW/ekInK49H6qquWtqvCYnCFW47z7Kg38upA8AHdWvdWifX7oDwpGddbklkcq3WfVR/wmd3FyQ4uQaAJ7aPn6BV6QkbgvR/A2CDxTEAFl2UkVE8GOquu5MupPTbn1Utw/dF2rTaZ0OWpfg76dnVWu2P6a/U0KHrKoRCCMB8hAbZh8j662NfTlY0jB6H9PMuhufRB762jfW0cxFY/jrar/8+oKowzTwGABBc/xGMk6d/uZ3q9UDKyoFcOhL+116EafrsuGN2uiqbCi1dCV2ERA+qKsSWzfOCROY+l0yE/SH/hfJCm0S96wxzOJ82rPPUhj7WdEJjlx8eZ84P0yymzIQkvqqqKOnbnm05fve/imQakLGIXIXwSPmy8tRtJs90xSUirN9idde3jDebxTXZOZfJREOi1MEPEaj4Fnn2jzZossADACyu7ar8W7irTKv9Mf0EFAqNDz8d1whyIgg1EgqeXKrb8fvipLZHqy/JeqNfJRTJaOeOosrm5uPK+vp8JRxRTvFPcw035fW73nhz82bvVs/r6UTa5Y2dfsmdk/cjm8FgTUgyGg4HvCM/f0Ad49mn6UlBd4IG7PztJbKhsoDu23zp5r8O1HHZ4MEj2KxfYnXX1xiA0CWZmacNleQaAKwgyy3/EfbROyPNWu1z9TBn2Z1SOo9kDwIWWZhyIk2aLlTUG0KoIb2O3Seqop5qWzvoykM6OgwtTU2L+nzSIITAVG9JkxbJ9a623f6tnjetWibX7T6TOzf/moQl10Ffa+uMdbcaByq5FoD4fASt/d6N8ojKAhoF4M7yZeUTB+LYbHDhBJv12cF115dnZZdnyoYhV69mAZl//5JwjtsWbtJqn0+XZA1/CpY6rfbH9DNa2atd//ReElBSKsHOce1qyDJ5dS2r0Vokgsi2bccZiOQ+v9dmdVrqZlsm9LvuuqqzOrix6xUjkdDsfb/Nl+YuKLzKLsvGhCTXoZbt9UvW/yE7J9w1IFdiFELjn8+SNt5+gbwwItOBY1oA/Kt8WTkvpc56hRNs1h/HAFg0umCyOi7NMUvvYPRiBpl/+yoyJ24ON2qyQyL6v5LcvOWqUbORcaaPcer+w6/aMgAE1L6tUa6TBcrKXsyGTA3bto2uU5V+jDx3hVvPtsztd8eQBndT6JP2FwikanaFsdXvdBcXX2mXJO1LroUQQt7/dsNJW+8vMot+Lx4Tl0YH1v/wOtn08QRp+mEengbgmzN/GesGJ9isTxbb7QUAvmc02ZonzPvZ2WtnV/iqbGVDNiE0gUy/eQ3ZkzeGNVkCXchk/FlJvn2TaujUYn9DRZNHRVhJnnklY6lGv6RREopux+4tJRw+yfHBoLoC1tRoqe/qPKbPbRrDvqDvIsMih0T9e5tu87WHP2h5ThEU1mwUuC2Q5xlWdHlCSjYUJRzM2fzPzoVV/9VkCfieRIQIP3lUpPG6awxHu9Oou97ivyxfVt63lZPYkMQJNuu1xXa7AcAVAMKz5/10vtnizDJaMjL2zPhp7rsjzquMgAbdSFQ8jCDjTW8hd9qnoXot9qcaJev3i/OlKlXyarG/ZLK/Q8Wpz/iw4HEvfvr2YVcUR1dA4OSnvVj6lBdnP+9DSBGHfd7960KY/5gX3pDAO3sjMPZ/5WjNjJabdLusLCSkTIJd2LW10WYIDZpL8MEgArt3n9jnxXIi4YhyhjIrlCZb+pUUdwXckdWNz4YUCmhSeiOEQHugxFNceLFNi/0dKhR0d4379C5lSvumAVnJs1lSWn7+HfK+drolnpM7CcBT5cvKB2yiJUttnGCzvjgRwJiyUUut+YXTvuzBRSRRpHRx2cqjf9/RYC3UrE90KjGADL9YTvmzPg5pUkMdtsiOb+fnB9oFdCs1SIRfrgjgt8ea8N730lHrVrGmMvKNbZ7eHMaNc8xYfkk6CtIJb+2JHPZ5mxoVXDLZiPX1CtISUwraZ8ONXfrVFMtImRPdJVg+qN6LtmyZ2iqEo0/tBoUQONo7ornYmJPRnxh8Yb+ysv6ZgEIeTdoeCiFEZ3isr6jwvIQk10FXTdPcdbfaSvwN/VrlMh5CCLG6KFJ5/Q3G7LrSXi0aNgLAHxMUFhtkBtWLGku8xXb7CADnmcyOpvJp3z3zcLPRjem52VuP/pXzo+GnVKoCyXO9foDIIPmG1VR4zAehWi3257MZs8/Jym8PqL1ZsSO57WpTMb0wWruZl0boCnzzz+Tqo01YOipaMtriE8hLp8M+TwggrALv7I3g5DHJ1cQm1xRwQOhTsyKMUkr871E4EDzeuV6z8hCXS8GGT33o6opvAL+jPYJIRLsfVVWVs9rnLR/W1+fndaTVzrCM7Vd5RDASUpfXPOcNU6cmybAqhNqlTPYX5p+ekORXqV9Xv3TDXfkOxZfoxWPgheq+42Q0/eNSS5likvqSA11Vvqx8juaBsUGHE2wWtynDj7YETI7fCVBg9ryfLjKbHUe8jCdJsuwfdWrZ8pm/bm41ZXcNZJzJQAZJ171LRceuDdVosb+2DHPhtx25deog6Vt/3kQjblkTxP92hvHWXgXHjTxyYvxRTQQdAYE5wwyHfd4Jowx4bVcYwxwSznjWh9X7vzkarhejBENRpE6XTiIiyUbzj6TUtanJJClxJ1Yd7RH86EeHP3dta4vgN79uxI6dQfz0p/Xo7FTw3/+6cOON9bjxxnr86Ie1+PO9LXjllS5cf30d/H4Vn27ww2DQ5mfl9ZKruuqEPp8sSJ2RljPT5vY5OQeAiBoRy2v+4wlQsyarNCqqGvGK2aGC3KWaJ9eqqirWHf9pXrprWZFhABaP2WaL1F5zjWz6fJqxPyd0EoCHuasI60lyDfewpKbKxjN91oJx+cOOycsrmDIqnucY7cX5m2b/Npyx99WqmfWr+zzhJxXJIOnqDzHMoASrVy0x93vxjP25acN/EM6qejTYkfI/x5uPNeP96gj+78MQLp1ihM10+ASn3S9w7ZsBvPjttCM+7/yjjCjLIOztEDh1jAEvbg9j8YjkeWkbq+7z1qNE0yWp42Lse2u4gbRUXt6rROWhh9oRCh4+GausDOGqq7MxcaIFHreK3buDOOMMB844I/rjv+++Vpx4oh3/+68LS4+3Y+fOIMxmbZLr2GqNfsDSp9912Bv0fs90fEa/YhAqVlS/4vKits/13weLKGo4KC9ScjNnWrTY38HCkYCv7PN/KOPce/K03vc3jiVE6F8z1MY3T7RotYhROYCfArhTo/2xQSglXoCZ/srL5o4BcLLB4lgzb/ol+b1ZqECSjUbX2PNK35n6s/pOo8OTuCiTjwSiH34iDT/xnWCVFvtbV2QvvVm2V2qxL71NLZBR3aXixmMOP48rpAh8+z8+/PE4C0ozpG6ft6tNxahMgtlAUJNskH+c2K9LP2phTqLZnkcghby++fbP4x5N3LjRD4uFkJl1+AHvGTPSMHGiBV984ceOHUFMnPhVXtjaEkFHh4KxY80QAogoAhs+9WPWLG0GZvfsKawKhUbm9+W5kVA4crY6R7FIpn6Niq6qfsPVJfZqklyHImowbDpRzU5Ach30tbVN++Q2eZx7T8InDDbKSvNPv0uBN0/s/yDHIX5Xvqx8pMb7ZIMIJ9isR+Vlc60AfgCgc+FRZ89NM9v7VNdnyBhRtH52heHz3NmalE2kCglE398glZ76pjZJ9qvDM8oehDXlf4b/90EQN84xIc1I2Nai4OZVX+8m8uhnYWxoUHD7e0EsesKL57eEv/E8AHAFBQpsEibmynh4QwjHd1NuoocxpEkpfu+ZDAmvZ+2v0a71LQZJxHUiEA4LPPVUB674QXed1KKTBNes9sJgAA6usH31VRfOOD06uDxjphUff+xDTq6M3/62CZs2+vv+TQDo7JTbGhsW9ymBE6qKY3xjWguMWf26yvFezUpXm7pVkyslwYgagPVMynSUm7XY39f23bazftH6P2TlhTs03/fBVCHE2yVK5U9uNOY2DjMk4gqSFcCDCdgvGyRIDJKaTpY45WVzLwBwQkFGifuMWZdfLUlyvzMYpXVb7THbH8u2Kf5BtXJbT545Sql85XRzWb93pArltsqmljMpNKh6Bw9Gn3my688x3Nfvlfh6yz/e1EyluQm//N4f17t+3TzLvjOuGJ96sgMlpUYsXGjDjTfW4957u/+RPv54O8rKTFi82AZVFbj+unrcd/9Xa7Zs3x5AfX0EHR0RNNRHcO11OX36HiIRKOs+WdqlKAXdZ/5HUNhuqzs1bXa/FpP5pP5Dd2XwPU1Gg/0h1We0n2+0pQ3XtMZYCAG5amXDosqXE97f2g3Vde+pFNg62TgQf/+XbL50878G4DgsxSRsBJuIRhPR74hoQPpZ9hYRzSSim4gooWfRqa68bO44ACcDqFsw6YyTtUiuAUDOmTjswzm3qjsyJw+pJcEv2iKXnfdKsLLfO5JI/m1JXubHwtDW/6hYIg03ujVpk9ZrZkNyDeUfwuDvdMWbXAPAZ5/58eqr0QmLe/eEcM+fWr6xzXPPduKdd6JzSj0eFTZb9C1u8+YAJkz4+kt9bW0YRUUGGI39KyvasX1kbV+Ta7lTaepvcr2paaN3f+BdTZJrb0j1WpyXmLROrhUlEsra8lj7QCTXXzgiNT/+sWwZoOQaAO4tX1aePUDHYikkIQk2ERUD+AOATwDcR0QJ6ZvZV0RUDuBaANsA/I2Ikv5Sqh4OKg3pmDpiwehse8EYLfdvMKal10/5UfHK8ZdX+yWTLnWqevj2drnsohcClf3djzBI5iuL8827VMmlQVgsQbJNIYcsQgPfYtFq0mzlvkSY6P2oV73y//yXItx7b/Rj1GgTzjvPicce+/ouTj3NjhXLPbjhJ/VQVWDmzOgFsk/X+1E++auLZV6viqxMGaWlJrzxuhvTp/ftQlpzs7mhvb1vqzVGPEH3RaZF/UrMtrdu9+30vpPWmzkxR+IOCE965vctVku+pidmoZCna+ynd0emtX3Wp5OQuI8jRPChWWrNbddYhvvt8kD+7ecC+L8BPB5LEZqUiBBRFoBqADlCiMMuy0ZETwD4pxDifSK6GUCtEOKJPhzrCQAVQohKLZ8be2wKgAMt5e4XQrwQe2yNEGJRb4+X6g6UhpgMlvqLjr3xGospLSNRx4oEXa7RWx/zjXTtHjIlD6+NUCqfvKD/5SIWX6Tj9YYGS54khlS5TSpZ4r6lc59xTMZAHtO/KDdM5v5NmkukX7tvaJ9kq05o0pVIoRCC6z45PSxERq8HkCKhcPjc0JxAriGjzyPP+zr2B9a3v2CEpPZ7gKgrAE9mzg/STEa7poNuQXd90zGb/pKdoXgTejWlzqg03fEdOa2l0KDnKotLNl+6ebWOx2dJRqt/pqUAzACO1Wh/erlWCLEo9vGC3sHoqbxsbgmAkwDULTzqrPmJTK4BwGB2OPZPu75gzeiLKkMkJ08j4wQ6bb9cdvnT/R/JDqQZMs/JzXd7BIbEzy0VjVH2Dehy90KoajIn12ZvS0on1wCwZXN5c1+Sa1VVxXz/uPb+JNe1rvrg+o6XZC2S6w6/5M7OvSpd6+Q60rChfumGP+YnMrlWhVDfGBGpvPEGY57OyTUAPFi+TPtJoSx1afUPdRKAB2Kf40ZETxBRWezrCiJaFLvvd0T0HhF9SERWIhoR+3oFgImx7cuI6GkiepyIHo/dl09Eb8a2/VXsvm88tz+IKJuIXovF9xciMhDRR0Q0i4jWEdEcIvr7EWI5XMx5RLSaiN4noof6G58WysvmSgAuAeArzCx1jMibMG8gjktEUIfNK1s9q8Jdmza8dSCOqbcTqw1lP3oy0O/uIl0OU965ztymMM9aTkrjcJi14BNJKEldcjXF/15KlzXVVDtqvN6pw/vy3JLOjLqjzCP61M4PAJq9reGPWp4XoEi/T6DafUZ3Xv7VNoPBqllLR1WoqmXni80n7HysyIDEVUa5oHb9/ixqe+ICS5mQpWRoSTkWwG/0DoIlD60S7GMA3AbguB62u4+I1gC4vIftbEKIBQA2AZgG4BcA7kY0gT/4LPV0AA8JIb4Xu/0rAM8LIeYCOIuIsrt57hHjI6LfdbPNrwA8G4vPCeB4ACFEy0uqAUwG8NkRYjlczAsAbBZCzAewgoiSoXXiLERfLJrnTzxds4mN8TJaszJ3Hv2LrPfLzqqMgAbN8uBHclydofTax4NVQu3ft1qfbS2+JD27WqOwmIbGUN2AJgBCqMGBPF5vnZG2Iiknv8fD5yNPZeUJfZpAZ+oQjSelHd3nlRo7A12Rd5uejahSqN+9qdt8VndB4dV2WT7CKk99EIkEfcM23ueZ27AqoRMMP8uIVF9znSF950RDbiKP0we/LF9WPl7vIFhy6HcyR0STAeQAeAFAGRF1d1Z/bayW+dHDPHZw/eiy2OdmACYAIwB8IYSIIJp0H/COEOLjg26PA3BVLIlPB1DUzXOPGJ8Q4tZutpmI6ORNxD5PALAdwCkAVgM4A8CGI8RyuJjfBCAT0XIAk4UQuiaU5WVzbQAuBtA0dcSCcVpPbIwXkSSFypaWrZz527YmS36HHjEMpAWNcumNj4WqofZvmZSt+bbSnxgdlRqFxTQywtA6oBMOBdTwQB6vN9LddS0jrE2aLIYy0KKrNc7xANZelwJE3EHXBeZFfU4IPSGvsqr+maBCvn7PtWjzO9zFxVfZJUm7+f1Bf0fb5HW3yeNduxK2amlQiMADx6i1d15lKQmmS8nYJccEnvDIYrQYLT0RwB2xxPlvsdvxCgGwx7p4LD3o/kPrFasATIxtV37Q/YeuCrgTwE2xWO4E0N7Nc/tqK4A5sa/nxG5vBDAe0a4kiwFsOUIsh4v5GABPCSGWAlhCRHEtQZ5ApwOwmg2W0NSRC3pV8pMIRlt+7uZZv7Z/MuyEKnWQVz8c02Io+fk/QzWk9C/JXjkso+z/KJ1HspNIsckzoJ2UBKlJW48/M7h2QOvRtbR3b351MDi61xOxw8Fw6Fs0TzZJfVv8JxAJqitqn/WFydXvlo+t/lxPcdEVmtYrB9v3NCxcd2tmQag9YTXINSal8SeXk7J2kanPVwAGyGnly8oX6x0E059WCfaq2Ner0Ls67OcA/BXAPwDs6Wa7/wNwM4DliCblR3IngJ8R0QexOJp68dx4/RHABUT0PoBOIcQ7iJaE7AewC8AOIUT4CLEczl4AdxPRR4iO2Guy2l9flJfNLUX091l/7FFnzbcYEzuxMV6SZDB4R59Zunz6TY3tpsyUrt3sydFthpJfPhKqpUj/6kWeLMka9oywDKke48kswxCxmVXfwI0qS0IZsGP1hlDF6ekrku2yfly6uuT2hvolvU7uVEUViwMTu7INzj4lx2ElLN6pft4TpLZ+JcVCCLQFhnmHFV2i2cmeEAKoWt1wwud/LkwToYSUNypCKK+MUSp/eoOxoC3foE9P+d77U/my8mSoC2c64pUcGYAvJzb+CkBRYWZp5PSjv6/Jio1aU5RQKHv3S43TG9/r07LEqWKzU6m9/QfGItUo9flNixQR/ktVY8cSCif1an5Dxcmu37RtN00akAUpwpKnRlk6rk+T8BLJ2bWv8e+On6dcK05FgbLuk+O7IpHCXnc+KevIrJ0YLh5W5Oj9vEZFVfF21X+63KjsV0mNEEJ0hMf4ivLP0CxBVdRIOHvbv1zTW9cn7G+6k5SOu86W1b3jDKm4kMt3N1+6+Sm9g2D6SYYJdSw5HJjY2KLHxMZ4ybLJ1Dn+gpJ3Jt9Q5zLYfHrHkyjlXfKw3z0UbpDDap9HIoVMxhuG5du/UOVODUNjfTRW3ecfqGOJRLZv6IdjIquTursJAHS0R/CT6+u/dt+O7WW1B5JrRVHwzDPP4NFHH8XGjRsBAA0NDXjyySfx6KOP4sMPPwQArFy5Ek8/9lTwOMu0YR9Wb+x1HEIIrKz5b7+Ta1UItUsp92uZXIdCXvfoT/8USmRyvS47UvXj6432FE2uAeD28mXl/Z6MylIXJ9jswMTGSwA0HVUyZ5ReExt7w5A1uviT2bfQluwZtXrHkigT3XJxxT/CTYZg3+tpVZNkvawoX6pVadCejKSKsQPZqs8oJd+lSVVRT7WtTeryELdbwV13tyAQ+Or8pKXF1NjWNu/L1RrXrVuHoqIiXH755di1axeCwSDefPNNnHnmmfj+97+P7du3o6OjA672rtDxRbNNW5p2obgPo9dra95xdag7+5VcK6oa8YhZwYLcE9L6s5+DBd0NzbPX3Wod4atJSLlGQKi+vxyr1v3ph5bSkDUpJzLGaziAG/QOgumHE2wGRCc2WgDyTR254Hi9g4mXbLRYm8u/P2zFpCtrfLLlsCuIprpxXrno1gfDLcZA37tChK0Gx3l5Bb4OVZM5CKyPxkgNA/Z6KwxJ0Rf4a3JcuxqyTN6kXm1Ukgg335yPtPToryoUQmjXzhPSDu6eWllZiUmTJgEAhg8fjvr6evj9fjidThAR0tLS4HV5QiMoXxJC0LraLzBn+NRexfFh3buuJmVTv7pxRBQ1HJAWRvKyF2j2Mw83bao/bsMduZkRT0IS3/1mpf7aH8r4cJ6pOBH718FN5cvKk/qkkiUOJ9hD3METG48eveQom8WZcvWRUm758Pdn3xrZlTGhvuetU89on1x4+z/C7Wa/2ucE2Ws35pyTld8WUPVtAzmUjTC0DdzlYrOcdAn2AmVl0v/tpadLsNm+elvcumVSk6pmfi3RDYfDsNuj8w3NZjO8Xi+GDx+OdevWYfPmzejo6MB3nMe7puSPN9R1NYFAOPeZa7G7tTKuGDY0rvfUhD7qV3IdVtRQ2Hiimp15tCZ/c0Koqnn3q00nbn+kyARV878tRYjIf8YrVb/8ibGoK0fWbLQ9CTgAVOgdBNMHJ9hDWGxi48UAvLJkFJNKZi/RO6a+MpjSbbVTf1y0atxlVUEyJm0P4L4qC8j5t/8j3Gnx9n0BkdZMc+EFjty6wd7uMFkVmrwD1qpPmOTkem1XwuGTHB+k1Ml7ba2txuOZ/o2JoiaTCZFItNonFApBCIHTTjsNOTk5WLduHc6cvLRjjGVYzg+O/jbOOeoEWI0WnDz2WKzc+1GPx9zSvNm327eyX6UXwYgaEJYzkOnUZtnuSCTkL9z0d/e8unf6vPpkd9pJaf/Vt8n1n7PNpej7nO5k9sPyZeXj9A6CDbxB+dfM4jYbsYmNx4w/aYbFlJayq6t9qfDo0jWzK3yVtpFHaouYskqCct4dD4ZdVo/S53KYvblpw39kyazUMCwWJ5tBTbMrnQNTymTuW7/lRCns2tpoM4T6vbT3QFEiUPfvO+Gwl/YLCwtRXR1tM9/U1ISMjAxIkoTs7GwgpIZ+N+NHX76OugIepJusMMlGCHR/Yru7fY9/i+dNCxH1eYTYH1b9ctq3ZYdtrCYLGwUDne3l62+XJnZt13xhICEEPsyNVF37E6OzcrSh191ZUogB0dWk2RDDCfYQVV42Nw3AdwA0WYxpxrFFU4/VOyatGC0Zzr0zbsh7d+S3K8OQkrMfcB8NC8m5dz4Y8aS7lD53pPi4yFH2O9muW7/1oWy0ss89IAcyG5MqmV2C5SnzXiOEgMdjiwDplv3792PdunVfe3zKlClYs2YN3nzzTbS0tKC4OFouvOKtd0L3HPdL44H8eF97DSbmjcbUwgl4YsOL3dZhr6/dGPys82Ujkejzz8kbUn0Wx8VGW3qJJr/7YMe+hoXrbs0oDLZqvniMX6jee5eI+r9cYSkNWzRcTjJ5nVG+rHyh3kGwgZUyL3pMc4sBpAHwzZtw6hyTwTygK80lGpFEkZKFZatm/b6zPq24Te94tFQYlnPufDjis3Uqfe4M8vLwjJKHyTpoO7Akq7HKvgEZwRYWY9J0X6BwIHi8c33KlIfs25tbddll15gAYMSIEZg1a9bXHjcYDDAajSgpKcEll1wCSZIQ9ocCz596jzK3ZBqFlQgue+GXuPH1O/B54w6UZBThb6f/Fne/+wjOeuoqPLTuOQDAXe8+gkv/8ws0uBpD/961TAKpff6deYLCk575fbPVUqDN773m3foTNt1TmKYGNc8R9lgjdddeKUufzDEVab3vJMeLzwwxnGAPQeVlc50AzgTQaLNkWEbkT5ynd0yJYkzLyd4285cZH5acXqX0dI02heSH5ey7HlGCjnalb8tOE9F9JTmF/xWmRo1DY90YS9UDc0XFatKkREALpa5NTSZJSYlRSpdL6qivP/6IHSz8fj9eeeUVqKqKSZMmwWKxQIko6onhqV6HId0KAI9veBGTC8bhlUv+gZV7P4Qn6MPvVvwV95xyE16++O94c+daVHfWo9XbjtKMIvXZXQ+pGemmPo86uwLwOLJ/mGYxZfX7Z6yokbBj61OtS/Y+X6T1NNmIEOFnjlKqfv0TS7ErS07qbjIJMhPAhXoHwQYOJ9hD00kAZAChueNPnmuQjZpfAkwmkiTLgZEnla6Y+ZuWZnNOp97xaCU3ImXe9U8lnNmqePq0A4nkm0vyMtephkE1wp/MRkuNA5NoWpLnf3qpvDxpkv3uKArUrVsWKsCRR/8lScJ5550Hs/mrH+8kd1HDSFPhl4uhfFSzEaeNj84Xn1F0FL5o3IFOvwtFjnwQETKtTnhCPgQjIbHfvUXZ19ZgGZXbtxLkTr/kzsy9Ks1ktPf7vTwc9rlHbrg3OLPl45z+7utQrZLS+suLyPvK6ebSnrce1H5bvqyc864hgn/RQ0x52dxcACcAaHBYs6yleeNm6x3TQDHai/K+mPXb9PVFS6oGSyeNbEXKuPNRRcluUlx9eb4wSOYfDcs371GlgakNHuJKje0JH7kTqhIhQ3JMcpSDXu8Cx6aEdJ/Q2s6dJdWRyLBuk0uz2QyL5avOd44OQ91861FfG/H2hwMosEd3Yzeno8XbgZnDyvHEhhfx8rblqOlqQFlGkaoa2kLtfrcRAP6++iM0uXr3L9jhM7pz86+2GQ3Wfr+PBz1NLUd/cqtllLdK01JBIQTWFkaqrrvBmFVTZsjQct8pajyAc/UOgg0MTrCHnjMAKAAicyecMk+WDCkxuqQVSTYY3WPPLV0+7RcNHUbnoEgqM1XJeecTCnIbIl19eX7ELNsuLCiINKs0KBfrSSYFJr890ccQQulzK0etjXava5UJSV932tpqamptWdCr0VXhCredZ1nwjTriNKMVgXD0V+AN+aFCxZ0n/gyjskuxbMNL+MHR3xbL6573LhhfaJ5RVgyTQUZ5cQG21zfHfew2n9WdX3i1XZZN/f7Zhps31x/36e05WRG3phNjfVA9d56Ixgcus5RGTIOz/14f/UbvANjA4D/6IaS8bO5wAPMBNGak56QPzxkzq6fnDFbGjLLCT2f/3rQp75gavWPRglOVHHc+qcr5dZHOvjw/kG7IPDcnv8srxGGX867pSvo1QlKCRRbm7Ehzgpet7/uCRFo72fRO0tfahsMI79xxvJUo/tUvVUVVL5QX2qTDPGdywTisr90MANjesgfDHQWQJRmjsoZDAEizdboCaLYDQCAUhtlggCxLcU8QafM73MXFV9mlfjbfEEIVxj3/azxx24NFJiiangTtSIvU/vgq2bBxhjFlJrcOoCnly8pP1zsIlnicYA8R5WVzCcA5AIIA1LnjT5kvS3JStfIaaLLBbG6fePHw5eXX1nrktAQnPYlnVyXbH59SjdlbA5377th3xO1ERKDqz1XYe9tedLzbAQDwV/qx8aG6/KLHQ+rdHwYFAPxmZQCnPuODEAKrKw+bd7M+GKPsTeiVEwE1KRZaMvg7XUfbd+XpHUdPtm6d0KCq2XGvnKhEIkqmmq7aZKv5g6oNeGLDi197/LyjTsK97z+G36/4K3a1VmFa0UQAwN3v/hNLxo33+KjWCQAtbg8KMxwYnpWBD3ZXYmQ3ddidvmhXzjZ/jqe46Ip+XwWJKKFA/ucPdS2ofUvTBDgsROjJqUr17663DPNkyAO3cmnq4VHsIYAT7KGjDMA0AE1ZtnxbcfaomTrHkzTk7PHDPpxzK7ZlTanTO5b+UiIiPfBAvV3uUo7YraJtRRssZRaMunkU3J+7ofgVNPyrAcWXF2P4raNNd20Tof0dKpq8ApPzJGxsVFHi5JcKrYwT+xJawiEkkRS93yd6P2rXO4ae1Nen17pdM0vi3V4IgamekqbXL3nYAADzSmfgshlfL6k1G0ywmqyYWVyOZy+4F3JspPn0yVNdBbkBm6KqePS99Xhu3eeobe9Cti0NF82Zhrc278R9Kz/Amp3Rk+M3N+/AP99bByEEdje1oi1Q7Cku+m6/a6SDga6Oo9b9EUd1bsno774O1iQrLT+/mPyvnWyO++c5hM0uX1a+VO8gWGLxu+YQEBu9PhuAH4CYM+7EebIkJ02f3GRgMFrTGif/sHjlhB/U+CVz0tSw9pYM4G9FxfJol0RleyKth9vGu8ML56zowmxpo9Pgr/RD8SowZZtARAjnmM2/CaXVCwFEVOC9qggWlibFnLlBYQxqElpvkywJ9mnmd+IeFdZDwA/fvr0nZve85VeyOi11sy0Tjti/uTPgxg2v3wFFjeD0CUvgiC0v8F7tKnerssUBAO/vrsSwTCeuPW4etjU0IRCO4JXPtuL8WVPw4yVzsbm2AW0eH9yBEIqcDtR2dAnZNCpQXHh+/5PrzsrGBetudRQFmzUbXRZCiJXDIpXX32jMqS8xaL7i4yCm6yg2Ef2AiG6Lff1vItpORCfHbl9HRL8gIhsRvUxEHxDRMiLivKEXOMEeGkYCmAKgOd3sMBdnjZyud0DJivKnDn9v9i2hPc6xKdkf2ibLsMsyDIB063+EbdTOSMuh26hBFcbMaHWQZJUQ6YogbUwa2la0ofOjToTaQvhidm5RY7alo6pLBRFw7BM+bG9Jirwt5Y2WmxJbmiVD94J5s7elfZKtOqmXv968eWanEOnx14h3hVvPtsw9Yo9sAJBJwt/PrIDNlP7lfevqP3bXh9d/Wdaxt6UNU4YXAgDKsjNR29EJXyiEjDQriAhpJhOCkQgAgYiqiq1NpvAxk67pd0Ks1n5Qf8LGPxXY1IBmZ8seqO7bT0HzQ5dYylRD/DXsDACwsHxZ+Xwdj/8EgJOJaCKAHACnALieiGQA3wXwDwDXAtgthJgHwAzg2zrFmpI4wR7kYqPX5wLwAhCzxh4/Q5aHVueQ3jKY7faqqdcVrBlzcVWIDClbfGwBWSpeEo6x2yNfa08gWSSooWgOpgZUQABFlxXBXGhG28o25J6SCyJC9XdKnMWT0trTjIRzxhvw+u6U/VEkleHGroRO/BMG0j3BnuJ/r09tIwfKvn1ZVYHAkUeiDxX2BX0XGRY5JOr+LdNuTv9y1BoAPm/a5N0XWPO1mulQRIHTGs2XLUYj3IEQynKy8P7uSnxWVYcOnx+FTjty7Xa1xWtRM+wTTX/570/Q2FHVq+/xAFVVIrZtT7ccv+eZIpm0a0+61Rap+fGPZfMXU40p0YYxSd2s14GFEGEADwN4HcBtQoj9AFoA3ALgNSGEG8BsAO/GnvI+gKP1iDVVcYI9+I0BMAlAsywZpLK8CUOm73V/EBHU4mNKV8+qcFenl8bfPyvJmEHm370iMiZsDn85Im8ts8K3OzqnM1ATgCnHBJIIpoLoeZfzmNhVXomkFxx2537J4DIbCOrgaB2uuzxTwCFE4nJgYdB/IPGMtBWZesdwJG631FlXu7TbkeiDRcIR5QxlVihNtvRqYGJH6w7/du/bVqKv/z7MBgPCsSkSwUgEQgicN6MceQ4bPthTicXjR0JRRfjo8ZeEjj3qItlkMGPKiAXYUv1Jbw4PAAiH/Z6yz/4cmNX8YW6vn3ykfQoRfHSmUn3LtZbhPrvMgzX9c2L5snI950OtBJAH4OPY7TsB3ADgb7HbdkQH5xD7nNRlX8mGE+xB7KDRaw8AzBi1aJLZaOV/kF4wWjMzd8/8We57I86tjED/kcHe+tjrxX86Ok03v4bs8s/DDQCQMS8DzS83o+HpBgTrg7COig6oNr/UjIJvFeBAQhBsDMJSZpVfnFVgvPuTkMp12NowSjAUR2oTN8Jr0nqR695Jd9e1jLA2JWUtrqpC3bJlQRgwxVVLKoTA0d4RzcXGnIzeHMcf9qufu/5nIvrme2xxphP7W6Pde+o7XchKt0KSCHn2aFlJeXFhKGw8Qc3JnG3xh7wwG9NgkI3o7UlZ0NvSMmPdrebRnv2aLR7TYFCabryMQm8v5YmMGtJtFBvAzwD8F8CVACCE2AqgQQhxYIKyG4CNiM4EMB1An9ZaGKo4wR7cxgIYh+hlH4wtmnaMvuGkJiKJwqVLylYe/bv2BmtB0ndGAIBlJdE1M+akp+M7mZkwgow3vYHcqRtC9aYcE8p+Xoa0MWko+3kZDrTyHfaDYUgf91XtqLnADMtwC4zFFmv2bWPdxUXGlG9lmCzGqPu8PW/VN0LnBHtmcG3Cvrf+2rmzuDoSLol7NDevI612hmVsYW+OUedqCLkjrQRS5d1NrXh/d+XXHp9ZVox3tu7CKxu3osnlQUlWdLD/zc07sXTiuJCwnIFM52RzU2cNirNHojRvPNZueQVjCqfEHUOoZWv9kvW35eSEXZrU+6tCqG+VRqpuuMGY11RkSPhiSUPMGeXLyssH+qBEVILo1e3vA7iUiA5XurYOwCIAnQCuAvDhQMU3GJAYJEtGs28qL5t7A6IlIs0Ths0sXXjUWZfpHFLKU1VFse1/o2ZW9VulUgqsUHeoCIRy73Gi8dNZprgvkR9gc4db32pucDgl8GXhfrqj84Sqhy2X9WrlwHgFSlGH8cW9/v1qQqjiT4ErfIWWrvSeNx5Y7W3G5i1bvpVLFN8JiNQZafm+5cRelVa0eFvDq5v+pQgKdjspscsfwP7WdozLz4XVFM2BA2HVb0g/z2BLL+t1UtzhaUamLQ9CCGHY/1bTwurXNOtv7Ybadc9pFNpWbtSszIR9w3ObL9184UAekIgeBLBcCPEiEf0GgFcI8Rci2iOEGB3bxgHgX4hOghwPYK4QYsdAxpnKeAR7kCovm1sMYDJio9dHlczm0WsNSJIs+0adXrZ8xq+a28xZST2R63AMIPmnK6nwmA9Dtb19rsduzDknK681lMgC4iFiLCVuAVFhNurWSsvpqmxKxuQ6EkF4+47jzfEm12Fv0HuRaXFGb47RGeiKrG16LtxTcu0OBPGvjz7D1OFFXybXvpDqM9m/Y7SllxkVJYJ/vPlr3PPKtfhox5sAgJqWXbjvtZ/jnleuxcrP/w0A+O+6R/GPN38NIQR21W+CooSDuV883Kllcr3JGam55lo5jZPrhPt2+bLysoE8oBDiSiHEi7GvbxdC/CX29eiDtnEJIc4QQswFMAvAzoGMMdVxgj14HQcgAkAUZY3IyrIXjNM7oMHE6BiWv3HW7ywbChdW6x1Lb8kg6bq1VDT/3VCvs7zmTEvRBbacXifn7OtGyi2Ja9VnNuiWYB8TWZ00y7QfbOvWsQ2qkhNXXXgkFI6crc5RLJIp7t+RJ+RTVtU/G1TIm9bddr5QGM+t+xyhyFctLz1B4U3LuMycZi00AMCarS+jJHccfnrWfdhS9TECIR/+88H9uHjRz3HjmX/Dpv3vodXVALe/A0VZI1HbuhvpxjTP+PV3qpM7vtBkcmlIiOCDs9WaO662DA/YhvaKvwNEAnCN3kF0RwixR3DJQ69wgj0IlZfNdQI4FkATAEwfteiYQ2eys/6TZKOpa9y3S96ZcmN9l8GetHWnhyODpB9/QMMWr+p9kr07L73kR6aMygSENWQMM7oSN8prNeqTEKmKeqptbdKNdDY0WOtcXbPjmpQnVBVzfGNaC4xZcU8GD0SC6oq6Z31h6nnkXiLg4jnTcOAigysAjz37B1aLOefLGcS76z/H9FELAQAjCiahumUnvEE3Mm15ICKkmx0IhH2AEFBVBVv2rnZdVvOydXigUZP2j7VGpfGG71F41RLTcC32x+J2efmy8m5P0Fhq4QR7cJqP6O82YrdmWgszy+KfHcN6zZA5qmjdnAr5i5yjE3fdvxc6FQUfer3oiHyzb3VrJIJwbBBCAtGPPqFhS1cEez0K/2Gxo+xW2da3xrwM2aaQXRLhxJTaWEzmhOy3BzmuXQ1ZJm9Ce3z3ViAA/549J8Y9qlvU6aibahkVd4lFWImI5TX/9gTRGtfEP4vR+GVZSKdfcmfmXpVmNjq+9j4cCgeQkZYT2z4NLn8HRhZMwtotr2D97pVo8zShOGskCrNGoLlps/+o+rWOqyt3ynuD/VuAVhVC/d9IpeqnNxjzWwoNmnUeYXHLBHCx3kEw7XCCPciUl801I7oiUzMAzBpz/ExZ4kt8iSYbLJbWoy4bvnzS1TVeyerv7/7cioIf1tbg8ppqXFtXi9Bhrsw919GBS6urcGl1Fc6u3I/fNzaiJRLBVbU1+CLgx2U1NWiPRPB0Rwcurq6CT1XxodcL40FXMyQQXbFeKjnlrWCvk+X/DM8s+SesXC7SBzJBKo1UaV7DL4QAzEZdEuwFysqkq83fsmVGO4Q9rlFBuVNpOjVtdtyTQxVVxfKal1w+1Pe69WlYgZKbf7XNaLB+4z3YbLQirEQrbYIRP4QQuHDBDcjPGI53t76CpVPOhxCqcppRabnS4LKmS4SlNjvWej29DeNLXaR2/u5san/qfHOpkHlFRh1dq3cATDucYA8+MwCkAQgYZJNcmjdult4BDSVy7qThH8y5Rd2ZMam+P/t5zeXCZZlZeHR4CXJkA94/zJvnBZmZWFZSimUlpZhhteLbGRnYHQziprx8XJmdg3np6dgWDGBHMIDTHQ5sCfhhOcx7J4Fw2Ua59IzXeplkE9FfS3IK3hCmpj5/o0PYWGWf9m0PhRIkSYeXdSUcPsnxgWaT67RQWZlZ5fdNjCthjniC7otMi7J7s/9VNa+53GJ/r/t9t/ksbrN5mCzLpsMmsiW5Y7C3cTMAoK5tL7LtBZAkGfkZ0YqNqWXzvSWf/dU3p+ndXLeiIl2SYCJCX6tjN2RGqn98rcG2a4Ihp297YBo6qnxZ+WK9g2Da4AR7ECkvmysBOANAOwDMHL2k3GSw8KW+AWYwpafXTb26aNW471UHJVOfJn1dmJmJuenRks4ORUG2fOR5a03hMNoUBZMsFsxNT8cUqxWf+nzYHPBjqsUKASAigA+8PixIP/Kfw8Wb5dJzXwlW9ipQmQw3Dc/LWK8aUqI/eDIZi/1hrfcphKLLJMPCrq2NNkMoaa6UeTxSV3XV0riWQo+EwuFzxVyYpfgWnwGAtTXvuNrV7b0euW7z2dyFhVfaEevwubNuI9ZueeVr28weeyJe/3QZXvjgfjR2VKMsbzwA4H/rH8NJk8/rmrH+NuNYz157ZSiEcWYzyi0WPN3ZgZlpvSvfDQrVf/88tfauKy0lwXRJt4mx7Bt4FHuQ4AR7cJkAoADR1ZcwpnDyHH3DGeIKZ5asmV3h328f3ecR3k1+P7pUBVOsRy5tfaazExdkZHx5WwiBN90uGIggEWFeWjrWejwoMBhwTV0tPvEdeT7m+dvlsgte7F2SLYyS+YfD8k17Vcndm+cNdWOpXxc5DktA1Txpj8cSLE+a9xJVFWLL5nlBInOPCb+qqmK+f1x7rjEj7sVTPqp7390Y2djr5LrVn+0pLv6hXZIk/OSMewEA44qnYeFRZ31tuyx7Pn586t0YWXAUrj31bkhSdP7jBeVn1V9R87IjN9xpAoAykwnjLBYMM5nw2oiR3b5GHKrKpDRcf4WsvnusaVhvvw+WcGeULyvn38sgkDQviqx/Ysuin4bYsujji6eXpFsc+fpGxYxmp3Pf9Ovz1o66oCoMWen5GV/pVBTc3tSE2wqOvJCcKgTW+byYnfZVAwMiwm/zCzDNasVajwcnOxy4JicHdlnCwnQblru7z4PP2SWXfff53pWLRMyy7cKC/HCLSoHePG8oG2Fo0b5WmgY+waZwIHi8c33SlIfs3l1UFQ6X5cWzbUlnRt1R5hFxv05+1vippzr0Qa9XMmwLFHmGFV0a99XEjPQcTB+1CFazDUIIIe1/p+GkLfcVWUW41/XRDeGv/iQUIZSXxipVP7/BWNieJyddv3IGAJAB/EDvIFj/cYI9eAxHdKWlNgAYP2zGdH3DYQcQSaQMX1C6atbvu2rTilvjeU5ICNxYX4cbcnNR3E3XtQ1+PyYfNHL1z7Y2vNrVBQBwKQrscvRfvCoUwnCjCSYixDMT7bR9cun3nglUxhPrAf50Y9a5OXldflX06kRiqCo2ejRPcASJb7aOSbBS18Ymk6TIPW+ZeB0dhpamxsVxteQzdYjGk9KOjnukcGvLVt8u34pe/c6EEKI9NNJXXHhBXMm1y9eOP796/Ze3FSUSytn8z45FVa8WAkBYCFxVW4OLqqrwYlcnAGBbIIDv11TjoqoqPN7eBgD4S0sLrqytgRAC63zRUv8OUjt+8y3qeu5ccyn0qNNnvXFF+bJyLttJcfxfNngcDyAMQKSbHeZc57CJegfEvs6Ylp21c+Yvsz4oPaNSEeh2StJLnZ3YFgjgobZWXFpdhQdaW/HXlpZvbPe+14uZ1q9qL7+VkYH/urpwSXUVVADz0tLhURTkGAwYbTbh312dOCYtvhzh5CpD2Y+e6l2S3eE055/rzGuI8IIEPcowRuxm1a9pQizkuM6fNHWCvDwpaq8jEUS2bTvOQCT3+L4WcQddF5gXxd2ze3f7nsAW9+tm6sWCAqoQaldkkr8o/6y4iqN9QTeeWn03gpHoRaBQ0NM17tO7IlPaN2Ud2Obpjg5MsljwTGkp1no88KrRq1y3FxTi6ZISLHd7UBsKoU2JYKzZjO3BIAqNBnycE6m69nqDY98YQ9YRA2DJpAjA6XoHwfqHz5AGgfKyuVkA5gGoB4BpI48t59Z8yYkkWQqOOLFsRe6UlmmbHzTmBVsyDrfdBZmZuCCz5/a9N+R+PUdwyjIeHf71ATybLH85YfLlshG9ive4WkOZ4YlA1f3fNZXG252iJsc67LJwVtW/Ah2lvTrYEEMEjIjsc+0wTdIs6RnoBFsOer3zHZ8nRXnI9m2j61Qlr8e/uXAwHPo2zZNNkiGuUffqrprgZ52vyCAR9yi9ogrFI2aGCvIWxj3zkEjC94+/GQ+9/TsEXHVN8z7/S7ZT8X3tPXq9z/fl//xUqxVbAgF0qQoKY1e5MmQJHlWFAKAI4EOfN+Q6K6P143lm/l9MPVcCeFnvIFjf8Qj24LAg9lkBgLK8CVwekuSMtoLcL2bfbFtXvLRKTfLB3oUNhtKfPB6qEmr8udvnhfbSXxgclYmLanAYq2rcqs8gDegf02j3ulaZoHvf5KZGS31n5zE9JpGqoorFgYld2QZnXJdxGj3NoY/b/gOQEveARURVw35pXjg/Z2GvFt2xmtJhNdugBDpDJ3x2Z/6hyTUA+ISKfEP0bpskoy2iYJrViqc7OvCaqwt14QjGmc0YYzJjuxL0v3wM4Zm1dUWBep4akYKWli8rH6l3EKzvOMFOcbGFZU5EbGGZsrzx+Tar88iz4ljSkCSDwTPmrNLl03/Z2GHK0HzRES3NazaU/uzRUDVUNe4E7s1hzrK/UlpSrG6ZrMahStsSEePA5ronm97RfeXGYBCB3btPjKsf9UhXdt14c0lcpSHt/o7we83PKoLCcU9GDStqKGQ4Xs3JnGOJ9zkHqKqqWHe+0JwTaDYZjnAhIk2SEIidkPtUFSoEKvILMMJkwjMdnbg8KwsqELHOd1bVfy/bGsw2mBwzHPB83vdFaJhuCMCP9A6C9R0n2KlvEgALgCAATCqZw6PXKcboLC34dPbvzRvz5/V6yfKBNLvVUPLLR8K1pMSZZBPhnyXZxf8WZu370Q0SY6R6bV+DTT3XH2vF4O90HW3fFVe3jkTasmVqqxCOHkekLR3UcLx1elyTGt1Bj7K64dmQSoG4TyBCETWgmk9HlnNqr7vDRCJB37BNf/Me07C625/nJLMFn/mjFz12BgMoNhohE2GEyQQAmJuR3nbT+eR+4UxzqeJTIFtkkIHAUyJS1iXly8o5T0tR/ItLfccD8AKAUYKcJjfmKmok6ZYsZt2TZZO5Y8JFJe+UX1/nktO1X+FPIzPa5eG/fihcR5E460Ukkm4ryc1Zqxri6p4y1JQZ2no90tkdYTIM2BD2RO9Hui8uVFXlrPZ5e+4ZrLhDXRdYjo2rHZ8/HFBX1D3ri5A77o4hgbDqp7RzJad9nCne5xwQ9LW3TfnkD/J41+6v9db+2OvF0x0dX9v2TKcT97e24o6mJuwNhTDZEs3//9ragsVjMhuvu8GUUTXKkBlsDMJaYoV1pBXtK9qRPo478qWoQgC8smOKIj6zTV3lZXNzAdwNoBqAmFJkmTBteNq3wwp8QTW/xWqfZ0u3lvVq+V+mPyXs9xXteLp9UtvGpF1sYKtdqbvtR8YCxSjFNfFLDim+Z2oawxMlpddLSw9m7ojsK4881bsl+LoRGCHVY2xhXCsY9tev3Te0T7JV69aVwusl12cbzrMAlm6T2nAgFLxQma9kyPYef84hJSzerHraHaCmuBeS8YVUn8VxkSnNWtTrpgHBtl0Ni7b8Pd8qwnEPdjVHwtjg82N+ejrssgy/UL33HwfX+tkmLg0cnB7bfOnmy/UOgvUej2CnttkAVCDa8q00yzQFAIwy0mzGplI58FJ2R/NfW9va3qgKR9w8yyVFyEZrWlP5FcNWTPxhtV+yBPWO53AmueXi3z8YbjIE1bhqiBWTnHZJUT7qBSXt6Lwe7AYlzaZ0afc7thgGpHuQ2duia3IdXa1xrr+n5FpRFHVpcLI7nuQ6oipiefV/epVce4KqNy3jMnNvk2shBKhyZcPJm/9a2JvkGgDyDEac7HDALsvYlRap+/GVssTJ9aB2bvmycu0XpWIJxwl2iiovmysDWAqgFQDsZiktI00ec+h2VqOSky7tKA27Hja2Nj1U29W1vl5VI3zZIgVIeVNK3ptzS2i3c3yD3rEczniPXHTLg+EWYyC+JDtkNTjPy833dqnQZTnvZDVa2avZBFdhMQ5I69Up/vd0nZS7Z09BVSg0sseSj3Gu/IbR5uKcnrZThcDK6lfdHtTEnVy7AsJjz/6BxWLO6dUiO4oaCWVtebxtceVLfU6KI0KEny5Xqm++3lLszpJ1n2jKEsoJ4FS9g2C9xwl26hoHwAHADwCTCi2TJKIj/j4lItlm8g4zq+8Vedv/5m1tebbS56/uONL2LDkYTDZ79dQfF64e+92qIBmSLjEd45ML//BguNXki2+JbrfdlHtOZl5LSAieJxAzVt2v3dUli6nXNcB9cUbaip6btCdIZ6fc1tiwpMfVGtM7pPpF1inF8exzTfWbXZ1id9zJdaef3Jm5V6aZjc5eJdehkNc19tP/i0xr29Dn0r0WSWn9xUXkffU0c1wrVrJB4SK9A2C9xwk2ACIyElE6EVmO8JFORDIRGYjoGy+osfsHdNEeVem6UKj+XCFUAwAMyzBOife5Rhk2m6GhTAq8kNnR/LeWtra3q8IRT1KWIjCAiCCKZpeumX2Lt8pW1qx3PIca6ZcLbn8o3G72KnEl2c1ZlqILbTm1iY4rVYxFtXYnGxZTwi8lp7vrWkZYm3SppY9EoGzbuoSIDN2+d6muUMe3LMfGNUL8fu1qV4u6Oe7vp8NncOfkX20zGtJ79f4ZcNc3z/nklrRSX22fau6FEGJ1UaTquhuMWbVlhoy+7IOlrFPLl5XHfQLIkgOv5Bg1A8DFAA5c6j4bwEoABy6DGgDcD2A6gOuIKALgwOXJptjj/wfgxYEIdlJxgR2QxgoYskGGczJtji6bOSuukZpDWY2RXGArwq4tka6Io8ZomWGw26YWSJKk++IR7OuMloyMPTN+Kqqq11bO3f9iiQEiaU6QSwNy/h8fjDT/5ofI8NvlHkdRd+Wll1xVp1T+I9RZNgDhJbXRcoMmv0chVJVMhoS/ps8MrvXChriXGdfSjh0jaxWloNsFZcL+UOA70rEWA8k9voatr//EXRdeF3fi0u4zu/MLf2SXpd79mCONn9WfsOPxoiP1t+6JF6rnryeRd9N0C6/IODRZAJwD4Amd42C9wF1EYoioDMB/AbQDKEG0MwcAZAC4XAix4ZDtrwAAIcQ/By7KqEnFBfMAXAGgCoB97qiy08cX5nyj/rqvQgrcIVHclm6fn2G1FGdotV+mnbC3pW3yloeo0N+g20Szw6k3Ka2/vsLg8Dl7TrIB4Pyq9qqbVc+QThr2+9NbFtMj/U5YVTXsD51clth6XKGKPwWu8BVauga871tzs7lhx/bzCruphIMSUdSlvvKOkabCHkswvmj63LvN+2Y6UXxjCW0+m7uw8Aq7JMV/PqQKVbXufrVlXv2KuFoEHs729Ejt3Zcac71OmSe6DW0rNl+6eaneQbD4Jc0IWBIgRJcafw3A32OfXwPgQfL9nJYA6Ip97R6Rk6HpaJJJht1mqCsj//MZ7c33Nbe1L6+ORHwhLY/B+seYnpu99ehfOT8afkqlKpA0Z8lFITnnzkciblt7JK6/l+dLMkseh3VIl4sUmHzaXPoVSsL/R52uyiY9kutQCMFdO0+wd5dcA8Akd1FDPMn1jtad/m3et6xxJ9f+LE9x8Q97lVxHIkF/8cb73X1NrsNChJ6YptT8/jrLME6uGYDF5cvKC/QOgsWPS0S+IgAUAzjtkPtHABBElANgNWIrJgLRS6REdGXsthnAxUKIzxMZ5KTignwAIxEdvcao3KxhZmPi6vHSjOE8YDOCXV+EOxVntcl6tMmWXl7QmzcalhiSJMv+UaeWLc+b2jRj80OWnFBbUvSYLgjL2Xc9qrT/6nuwuXIM3Y9kE9G9JTkFhVVNTSdRqM+jfKnMKgtzVqDF1y7n9qsftkB8E03745jIal1OtLdsLm8WImN4d9s4Ogz1861H9Vgqt7+zKvC5678movgGTtoChZ7iogtt8cYKAEF/Z/u0jfemF/Txf7JJVprvuEi2NAwzd/s9syFFBnA+gL/qHQiLDyfYX1EBfASgFsAe4MtRwWMARIQQrQDKD2xMRG8DMAkhBnqVpRmxWAEAI3Kyxg/EQWWJjDbJVYLISnjaV7pCYni7zT4/y2Ip5IkXOjPai/M3zf5tOGPvq1Uz61cnRblFbkTOuusxtfOmyyLoyushyZbJ8Mvhec68msaO6RTRrTuFnsZE9no+6W+CTSKxCbaqqKfa1g547XVNjb3G653abaIpXOG28yyLe5zUWO9uDK1vf0ECqT12/xBCiI7QSF9x4dm9S6479jYs3PxAfpoa7PUohCqEWFmiVj96gbFENfA8GPYNF4ET7JTBw5AxQohqAGsQ/QM+E8BZsY/tQohNB29LRJMRTXI3ENE5AxXjpOICCcBxANoO3JfrSB+QBPtgJhkOm6GmTPiecbQ339fU3rGqOqL4k66F3FAiyUaja+x5pe9M/Vl9p9Hh0TseAMhWpIy7nlD9mQ09l4uoRslyRVG+YZ8qJUXsA22s2NfvVn1CEooWsRxJjmtXQ5bJO6A9l30+8lTuPzGvu23C/pD/QnmhTaLuE9JWb1v4g5bnVEGRHucHqEKonZGJ/qKCs+MuhxFCANVr6k/YdG9hX5JrD1TXbaei+ZGLzaWcXLMjmFW+rHy03kGw+HCCDSDWgu95ADkAPgbwcwDfR3QRlwcO2TYfwHMAfgvgdgC/IaKZAxTqCACZAHwAUJzhyLEajbothU5ESDOG89OwqSTY+XfR2vxYtcuzuUmveBhgyBhRtH52heHz3Nk1escCAFmK5LzrSTWYU9tzkh22yPYLCvKDbQJDrmXkWNT0v1Wf3McWFXFaoKwc0N7lQghs2TzHA1iPWH+sRCLKqeHpAZt85G0AoCvgiqxpejasUtDS03EVVSgedXqwMO/kuK8oKGoknLH1ybYl+/5T1HPvkm/a7IjUXPNj2bJlinFIlkmxXuGe2CmCE2wAQggFwGUA/gjgYQBvAlgP4BUAhlgCLhHRtwC8D+BmIcSnQogOABcCeIyI7iCiEQkOdTaiEzEBAKPysgd89PpIZIlMNmNniSm8PL+r5c9drS0vVgaCTbqu9jZUyQazpW3Sd4cvP+qaWo9s9esdT4Yq2f/4tBrOqwr3mGT7043Z52Tld/jVxI7GJpvRclO/y/WETIlLgJVw+CTHBwM6wWrv3vzKYHD0EY8phMAUd0lTiSm/27Iib8inrKx/JqCQt8eEWVHViF+aF87LWRz3SH045HOP+vSe0IzWdb0e7AgJEfzn0WrNH66xDI+nvSVjiLbrYymAE2wAsRHotwH8C9EVEmcDGI3opII7ALyH6LLk3wJwshDipQPPFULsAjAXgBtAwkaTJxUXGAHMB9By4L4Chy1pEuyDmQ3CaTNUlQnvv+ztzfc3dnSsqYkowbiW02bakXMmDvtwzq3qjszJdXrH4lSl9DueFUrh/nCPpUTtGeaCbznzGtQh1EK0xNjZr/prABDGxFUVFHVtabQZQsaEHeAQXV1ye33dkm7rrrM6LHVzrBOKutsmGAmqy2uf84apq8c66rCihoLycUpO5pweR7m/3L+nsXnWulstI33Vve6sUm9Qmm68jELvHG/iiYysN6aULyvv07oXbGDxJEcAQohPARx7mIeWxT4OePsIz/cgOvqdSCMRbTYfAoCsdKs93WxK6n8yIqI0Y6gA+AzBzg3BTiWrzpw222q3Tey2ppJpx2BMS6+f8qP0usbPqufueqrAqoZ0GyVzCMl62/Nq4HfnhUTd6O6X9K7KsQ77XjiralmgIykmbSZaringEEEVPbWh65YxcXW7S7B8wAZjFAXKtq2LQWQ88kTErnDr2dbF3b7+RdSIeKfmP54gtfQ4ETsUUYOq5RTKsk+Mux1euOnz+uO2P1pogtKrn7sqhPrWCKXmyW+ZeCIj66tTADyidxCsezyCnTqm4qDykHH5uePi7eGaDGSJzDZjR6kx/FZeV8ufO1pbX64MBFsH5YQ2b8CF7bWfwuPv6nnjOJ/n8rVDUfp+EYAKppe8N/uWwD7HmMY+70QDdiFZ/vACULIz1GOd9WeF9tJfGhyVAxCW7kwSDEWRenf/dtKX6t+eUTgQOM756YCVh+zYUVobiRQecQGlsC/ou8iwyCF1t+CMqmJ59ctuH+p6TK4DYcUP6zmUYZ8Y18mnEKpq2v3fphO3P1zU2+TaBbWr4kxqe+JCC09kZP1xqt4BsJ5xgp0CYt1D5uKg7iGFGfakLA+Jh9kgMm3y/jLhXZbe1vxAfUfnezWKEhwUNbdd3jb8481fo6p5J/762k/h9nd+Yxtf0I2/v/Er/PnV6/Hsu38+4vPWbnkF9756PYJhP3bUboAs9++Ck8HscOyfdn3BmtEXVYZI1q1kxyYk0y0vQRqxPdRj54w3hjnL/kZp1T1tNxiMUff264RTmA0JeT0vdW1sNklKj23ttNDSYmpsa51fcqTHI+GIcoYyK5QmW7pNhlfXvN7lEvt6TK59IdVntF1kcNhGxpVcR5RQoGDTP1zz697u9WTEjRmR6h9fZ0jbMcmgyzLzbFA5rnxZOdfsJzkuEUkNwwHYAHQAgMVoMDmsljJdI9IAEVG6MVgEsR7+znWBgJJTa0mfk2ZLH5eyb0ANHZU4d+7VGJE/Eb6gGzWtuzFx+NFf22bdruU4eszxOHrMcXhi5R2oatkJf9DzjefVtu3BrDHHo6plJ4wGbRZyIyKow+aVrc6e0DFp88PKMF9NjiY77qV0SMbfv6LS7ZGgb3e5+cj1x0R4pCR7WFGl0nAeBXvsc5zKxon9oXexsO87MBsS8np+grx8QGqvQyGEdu08IY2O0G5PCIGZ3rLmYktOt38Ha2uWu9rUbT0u8OIJql5b5mVmizknrp9bMNDVMWXjn61FwZaMeLY/ICRE4J9zReuaRZYjnjgw1ks2AAsBLNc7EHZkPIKdGsoPvjE2P2eERDQgI0oDxSCRxWZsKzWEXs/tbPlLe2vrq5XBULtP77h6a/ywGRiRPxF76r9AVfMOjMif+I1t0i0ONHfWwBf0oMPTjCxb3uGfJwQUVcGOmk8xafgsTeM0WrMydx79i6z3y86qiiCB3Se6kQbJcPNrZJ6wKeDtdkOJpFtLcrPfVw2tAxSaLsZSP1eMtxg1T7DloNc73/H5gJSHbN06qUlVM4846pzXkVY70zKu2+T647oP3I2Rz3ocuXYFhMee/QNL3Ml1x/7GY9fd4iwKtsQ9ARIAaoxK408up8iaRaZhvXkeY3E4Re8AWPc4wU5yk4oLCMA8AO0H7ivOcIzRL6LEsxjULJu8t0z1PG5pa/pHXUfnB7WKGk6ZEhIhBDbsXQ1ZMuBwdaKjCsrR7KrD2i0vIT+jBGkm+2GfN37YTGyp+hgZtlw89PZvsatuo6ZxEklSqGxp6cqZv21rsuR3aLrzOFkhyb96U7JO3hDstv5YGCTTj4fnp21X5UHb+nGk3NyvBFlYjJqPNI92r2uVCQmvFa6ttdV63NOP2E1D6oy0nJk2t9skdWPjBm9V6H17T8fq9JM7M/fKNLPRGdcghah5r/6ETfcUpPdi8RhVCPXVUUrVz24w5rfmG3q1EiRjceI67CTHCXbyywOQD+DLUb4sW9qgTrAPICIp3eQvtopPhvk77gu1Nj9V5fHtSfpRTCLC+Quux8iCSdjy/+ydd5xcZdn+r+fU6WV7y+6m9wRIJ4ReRKKiIigiWAF97V1fC3aUF/Xnq68KKCIKgoCggNJCb6EkIZWEJNv7Tp85/Ty/P87sZstsS3Z3tjzfz2eTnTPPOec5MztnrnOf+77u+pcGPf/P7X/A+7d8HheuuRKl4Tl48c3/5FxvzYKzcNHaq+CWfFhevQE7jz47IfMVfaXFu9d/0/9y1QX1+bDGc4HjvvIo5zvlFW3YqlBL4j0fKi+1WymZdnc2RsMcMTFmq7d+yMM7sxwPF0qPTnjnRkUh6aNHzh8yVclIa+nLpbNCw21jX+e+zMHM4yNaHUYVPllU+imfKHhH/O6zbcv077u965zDf6vgyeg/F3FiR7/9HhL566VyDeVZISNjwljIujpObZjAnvr0yzGoCgdLZEEY8RboTEPg4PaJnTWC9s+iWOcvu7u7/1Wv67EpJ7Qe23knXj74KAAgo6XglgcHr3RTRUvkKGzbQn37ARBChlyvI96E4kAFBF50WjFPEBwnCOkF76x5bM032rqlgkmPEssg5EuPc4ENL6qR4cZpHiH03qLSVJJiRD/t6UahpAc4ahx/uo5LHJ9E/SyCEkus8x+cUEtNp1vj+gTgzZl6YeqGebG90XJx0pDR+bcih9XdyQdljBBpj2TkZEnZf/kFXh5R9BpGJlX72o3quo6XxlSj8EqB2fBfnxP8h5YIealtYMw6WBR7CsME9tTnVAC9gmduUXhWRK+HwyXYhV7uUI2Z+oOru+N3zbHYS82WbeYlj3ggm5duxfaDj+EXD3welNoIe4vxr+1/7Dfm/JMvx53P/BxfvvWdSGsJrF1w9qD1llathaKn4feEURauwfP7H8LiylMmfP5iYE7Z6xu+7Xq9bMukO3eIIOSzT/Hh055TO4cblwxIJe8JlXQYE3nFkQd4Aq7abDiuixtqWwYR+HE9ny9Lvzjsxc54cORIcb2qLsqZV01tGxszC7rKxYIhAwqN8Sbt9dg/eBA6bLpHd8abLCv/pJ/nRs7C0dIdnWu3/0BekK4fdWqHSm3lV1vs5huucVXr7lHshMEYH5jAnsKQGfYdNaNYXlnmA/ArAI0AKABcsmbFhwNu16xovjEWDAsZ1S7p8Pg2B7yeuUN66DJGjxl5q3njvptDATN1YqkLY8QCxU2nWm1PnuEatrhuSXu64e+Z7hnlzHB17MMtj7rOH7Y7YS5sS0/pb587rrm+30x+IbLc1zBhn6VEgovu2nmpH8hdnFkW8TZt9WwcMu+6PdWpP91xO6XEGDZy35UJp6oqPzKq10bv2NNy1r6by2WYo07tqJOtlh9fKYRiRfwJd+NkMMaIBqBw91W7hy8UZ+QFFsGe2vTkV1EA8Eii7HfJrK1uDkQeHr/YUctr/yiIdvy/ru7uh+t1I6Hke17TGaFgQeXLG7/H7Slcc4L2FmODB8HVL/Bl529TW4Ybd6DUW/1pMVg3SdOaFBahTj+e9SiscU2ZkdOdEyquLQv23j1nWEOJaz5mtQ8nrqNKzHy2405rJHHdrZaNSlxTalPx8ENtb9v324rRimuLUuvexVb9Vz8vVjBxzcgTMoBz8z0JRm6YwJ7anIxsa3QAWFhaNI+cUC/l2YFbtIq83IEaM3mz1NXx+6Z4/JUW2zbZrZrjgBdc7o6VH616fPm1jWneNWJjmHHbLwg++jJfcdGj6rDi/umqYO1POG/9ZM1rollEmo+zKI6Oq8BerTw7oXn4B9+c02CaVTnzlM2UlrxcOrNwqHWTWtra1nqHZhFlyAJMSimNaLXpyvLLRxTXpmVoJbtuim9pfHjUdoQRYkW+cSmJ3/UeuQYcOyUz8gqz65uisDPDFCXbvXEN+tjzlQV8tXmb0DSEI4T3iekq2X62Ih35Vaar8476jNKQFzu66Q5XvHLO8xu+bx4MLR02qjyu+wTBh17jqy7+tzpsPvgd1QXVt8HdPFnzmkjmCl3HVahIOTqunTnf6Xk8PJ7b60t3l9je2Xl6zjQ3UzeM99JTIXNSzsi2Yqj24y13KCZJDpm2ZFNqx4ylSkXZe0ZMbdLVRHT59p/QlbHdodHO/4Vis/4znxeDdQsElorGmApckO8JMHLDBPbUZQ4AN/pEsMMeN8u9Pk5EHl6f0FbDqfeEox3/r7O7+z/1hpmctIjsTECQvL6mkz5dsW3xh+s1Ik6KiwcHgvfv5KsvfVAdOkpNCPmf6qLSR6jYPhlzmkgqxaGF43BQjo6bT7w32dw5190+YifE48EwYBw4cJ47V7dG27bpacriSLEYyullrVsGfazprpSOyJBRadumVtI+WSsvffuIKRtavL5t8/bvBSq19lE1j1Gonfn5mXbLLz/uqjFc3Ixq9MWY1tSsvG0la2Q0BWECe+qyBDhmO+WVJZdbEifUMmu24BatYi+3r8ZI3CR0td/UGE+81mLbNkshGS3l62qe2vC9TJ1v3qQIWg4El+wWaj54v1o35CCeCF+dUxrcYQvT+g5FWDT9kq2MPRrNY9z+ftdqT09YwdS+vUtbbbswpytIdSzUvEKeW5rrOcu26GMN9yQVtA3pKGLZtpkmpxqlRWeP6N1tN73Qcv7rN5T5bXVUQvmwy2z+zLU8eWmTNOYC1JmG3n1cZQKMiWVzvifAGAwT2FOXDQBiPQ/mFoXnEEJY04JxhCNE8EmpObL1dEUq8st0V+ff6hW1OZbveU0HRFcweHjNF0qemXdpnQFuUrpsvmu/UPvhe5S6oZ63Rc71scpSvt7mpm1FPSHAPOvImPOfqTBO7e6pTd/hfbx4XLY1gJYWT1MisTan64sUpW1v86zLGYWjlOLxhn8mU2gYUlwblq2r/NlWccGmYaPRtm2Zvv13dJ771l9H1TzGpNT823Kr/htfcFUmCvgJb7oznnRv68aRnxzBkZ8cwVvffgvNf8qdRWXGTRz58ZHex9SkqP9FPQ7/8DCizzjXq+33tKPu53WglCJ9YNp+vGYyp+V7AozBMIE9BVleWRYAMBdAb/vosoCfpYdMIBIPn09oqSHKXaFox686IpFH600zw0I1w0AIR8zqM2q3rf9urMVT2T0Z+3z7IbH2E3cpQ6aLGC4+cGlpqRqh0CZjPhPBQuvomBsoUXF8TuXBRF17uSs+7raMqoLMkcMX5MxZNpNa4v3ymUOK+icb/5OI0YNDimvdtDVLfjsKQ6cMm79uGEqq5vVfqOvbnx/VBUQXZ3V/7QMkdd875Wl57i08uxDzvjEP874xD55FHhScOfjlt9IWmm5ugq0duz7rfrwbrloX5n9rPpK7krAUC2bChGuOC2q9CrFgyJ4/jPzBIthTECawpyZz4Vjz9YZYwl6Wfz1ZuEWzxEP21Gjx35KujlsaE8mdrbY9JfrYTElET1HhvrVfC71Q/Y46i45fqsJQnHdErPnkHUNHsjM+sfDdBaVR1R6/vOTJZDHqxz5viR+Xu1ubzCcn5KJy9+61MUp9g/KiDc3Q30c28xIn5EzVeL7pqWSn9caQ4lo1bAXu93Ah/7Jh28Rrma6uNdt/IC1MHR2FZR/FM2Vm/We/IIYb5wqhkcZPdYyoATNhwl2bIwDPAXM+NQec65gUSB9II7jeScH3LPBAqVOcLrIWkD6YhnfJpNriM0bHqpW3rRxXH3zGicME9tRkMYDeL1lJ4AWvzHL/JhueI6JPTMyRzG3lqcgvE12dd9erams83/OainAcz6vz3lb7+NpvdXbIRbGJ3t9Z9WLtZ/88tMiOhOSy9wWKW+xp2EhrAdcyZrFMpXHwirMt6yLf0+OeHnL0aEG9qi4ddP6yLZuepS6LFwrBnIrt1dbtqSbj5ZwFjwCg6HZG9L1fCPjmDRtS1bv2tZz9yg8Ki4z4sCIcADKwUz87j7b9+iOuGnM8XtMpQPcT3Sg4O7fhCe/mwXv6X9vYmg0x7LyknJuDGTfhqnJB79ZBCMHRnxyF2sLqw6cYPICN+Z4Eoz8z4gQyA1kFoFfIzS0KV3HM/zqvSDwCPqGphmbuCEY6/rc9En2iwbSUSXHSmE6I/vKSN9Z/27u94pz6iRa3pzWLtV+6VanHEHcX6oo9cz7mKph2Htlzhe6xW/XJ4gm7WhQl3mwrkNLjmmecTHKxpsbzcgYH5iUKm5fI1TkF/e6O3em3lG1DRuTSmp12h66SvJ6qIcU1pZTyRx5pe9ue31TIdOTmMW96zKZPf5IXXlsnjdoPe6pDbYr0/jR8S0cf3ORcHGzd+UzZqg1QoOiCIoRODYFIBIE1AaR2pSZqyozjh+VhTzGYaJtiLK8s8wKoANBbSTI/XFvGUWHa5pTOJAgh8IhGqQe7qrXY/9Gujj80JJK721gKyTE4XhBTi95T89jJX22NisHkyGscPxvaxJqv3aoNKbJfrfDX/Lfgr5vIOYw3FVJ6yKjtUFA5d4rFWDjdemJc/4htG/bePVsMQBokgl1R0nqu+5ScRY0Huw8qe1MPu4eq6U6qNOUr+LjLJRfn9MoGAMsytKI3bo6d0fDPEcWySalx+2qr4dufc1WlQvyoLPumC5mDGXjmja3JpLvWjcwhpwxAbVQhFTmBfytjgXfxIAJxUkYYUw2Whz3FYAJ76lGDAfnXFy+4fP57535BOq/sE5GV/gsbSsSljSL8LFUhz/AckXxivFoyHytLdf8y3tV5T72qtU9oB7zphBiqLX91w3elnSWbGidyP2s6xJr/vkVrIENYLf6zKlT7f8Q9oXMYT/yC5fFaibFdULtytxwfNZZhXBB4YVwjtwffrGw0jMERaiupx9/vOj2nHV9drF7dEX9AJCT3d1NcQSpUfK1HlkJDXlDoWjK25JXr7dXRXSM2y+ngrM4vX0Ey/3q7nNPdZLqT3JOEZ7EjsNVmFe33juysGdocQsc/OtD611ZoLRrc893Q2jS4q91wz3Mj8ngE3sUsD3sKsnHlbSuZP/sUgrAr0anF8sqydwC4GEAjABAQ3P+B27/qEuRBt24VQ8m0pVui7UqD0a03uFNWRxGIzT5geYRSCsWU2yAu1wOBUysEXj4x4TNDsLoPNG3a94cCn5UZWzhtDOwNG40/+IRcZfODm5jAptYP6jo6LiZa+UTtfzx5V/wrXbvkk3O2Es+FuiGYRMg35sh3DxWRHY03hH8453jXH0gkInbs2f2+YkL6F18aqq693zrNCvP+QX8Hrck2/dnOO0CJkTNXOqrwyeLSa3wC7xoy3UNLNLZv3vWrooCVGfY8SCmlT1ZZDTe/X5pjzZBc6/HEiBrIHMrAt8I3KEebMaU5ZfdVu3fkexIMB/blP/VYDaA3CrqqbHlhLnENAG7R7Zkbmu+ZG5oPALBsy+pSujraMo1Kp1rPx4ymsEVUFmqYRJwUEr0M2AEt9roWswpaZM962e9bnjNiN1vgC5dUvbDx+5mq/bc3L4vsqpyIfSyPinOu+73WdN3VcoUtDBBNHOG/U11cUFLf1n0qZxZOxP7Hk0X0iLILJ496PHWJ8onYiJyNx8ZNZJomjAP7z5UGimvLsuxztZXJsOwfdOHQlYkYz3XeZVFi5DzXRTJSsrTsGh/Pi0MeptX8cst5B2+vEEbwt07BTv7yQpJ542QXc2YaAjEs9jqJMKYVmwEwgT1FmLICmxDCUUqHzQkkhAgA7JHGTReWV5bJcCz6ejsCrC1fPeoWqDzH86Xe0pJSbymAtQCApJZMtKWb4+1qvd2tN/pUu7sABKxhzSTAc0T2cdFqGI8g3vlozCA1cZ9/S4FLLj7uSON0RhDdnrZVV3ta23c2nvrmn0vctjb2Yr4RWBIXq37wO63pu9fI5abYv501FTj5U1Wl5t+a2hJLOGtI67epwCI0jNqqj1JKIYkjOmQMBTFU9Zzgq+OWHrJ376JWyyoalHKxOFHautBdNejiKq4mzafa7jRsoua8u9Gd8STLy6/2c0MEmm3btrwH7+ne1PZ0xUhntn0+s/FnV4klmQA/Kz+DjBnPaQB+ne9JMBwmTWATQj4C4Ao4ucVLAewHIANYAGAvnLbgd1JKb8mucgch5DpK6YHs+o9TSs8dsNkPAvggIf26mBUAWAfgMkrp3RN2QBOAQKT5HOFKTGrEbWolAGBh4fxRC+xc+GV/wC8vCSzEEgCAbhl6Z6Y90pZp0Dq1BilhtRRQGOMudBj9kQUaklEXoumjtDvuauXElWYgsKGcn4UpJKT0pDnPhuYn5+37Y3RB/OC4OzYsTIpVP/qt3vzf10plptRfZFsy772ivDT6YGurUsbRKduZbyHXOvr78tTSCMcdd3FeTWJHh1RgjUsOcmuruzkR3zBoW94o13Kme/UgcZ3WFeuJljtUi6Ry2lx0KaFkVeVHhxTDhqlmanf91lqcfKtkuHkZlOq3r7Hb/3OBa9zSYBiMKQgrdJxCTFoONiFEBGBRSm1CyO8AfBJACYDPUUq/mY1Gi3D8n5cDCMJJlfgqgDIAKwHshuP3+E1K6bM59nE2gB8A+Aml9MFh5vInALdQSp8jhFwH4C0A58JJz0jBaVH+AUrppHoRnTV//VYK+h2bml6b2rZp69Ffbf3Bqgp/6YTdq7OpTWNqPNqWaUx1KA2IGo0BHYnQRO2PcQzTpppqFbW5vBs8Pu+SCWlPPZWhlIJvean+1Lf+VilRc9wvNBo8Zus3r5GKdRc3aNuBhN7xSFdbgY9Mzbt4RxRv59nk5lH9TdiWltDfPu+4I/JXx77fekZw1wnnpqsqlFdeuZiC9s+vthJ69GPi+SFhQMqIZur2fxr+mlJJR865dyulqcqKDw7pL6dlurvW7vh5oNiIDRu9b+Otjh9fzrvaqoQpfdeCwRgnanZftbsh35NgTGIEm1JqEELOJIQchpMCUQ5gCbLtwCmlJgCTEBKAcxW2FkATgCsopSYh5EFK6VbieDcNuhGYjZC/B8BFlNLYcU7zM1nR/S040fHfH+d2jguBE+cBeJlSsZvCDvpFf1Wpt2hCvxQ4wpECd7igwB0uWIZVAADFUDPtmZZoe6bB6NIb3CmrvRDEnpJCZDojcET2cd010B9GLPPvqEnmxf2BLcWyVDAr8uYJIbArN9U8WbAkunTPzUZ1un7YKORYqc4I5df/Vm/7+ielQt3F9bOKSwSkkveYJc0PxdorxKH84PJIuZQJYJQu6xT2cfux81o6fVpg17jcRdizZ00E1N8vSm0ouno5d7proLg2bZM+1nh3TnFNKUVUr01XVrx3aHHd/WbLmXt+W+6mxpDvnU0pfazGbrj1MrHaFnIUvjIYM5O1AJjAngJMtmg6E06EeD4ci8BPAphLCDkDgAfANZTS/YSQWwFcAuA+AF8lhJwPYCUh5CkAOqX0/Bz518UAbusR14QQFwBQSo+n5VQYk/wHet7CzQROB8cYIQQEfPzkyhVenhufFshjwS26PLXBeZ7a4DwATvFkt9LV2ZZpzHSo9XzMaA5bRJkVInCycAk0DBwO26m3aLfpbuak1TQQWF/OcyfeQGSqI7rD4UNrv0zrG56q23T0vmoBdNwK7qpUoeyG/9Pbv3aNGFa9fL9IZ2uBq/KDRmH93ZnIlCt2c/NULlQ7M9188YiuK5Qcv8BekNzexRfihI+/ri7UoGSW9UsNsUzLvsA4KR2UvP2KSm1q4/GGfyTSaB50Z86m1I6bS9SKsotynl8opeDrn2i9sO4fw3a2TcJO/HwrUfeukqfce8tgTDCr4WgnRp7JR1SyRzCeC8AF4MsANlFKfwL0Fi7+Fs5V2CcBvA/APgD/gJO8/8/s+lcCuIyQ3pLxWgAKIeTjffb1O0LIhXCEaw/bhpnb/xJCUgD2ALjzuI7u+CkC4AbQ2bNgfrh6SjhP8BzPl3hLi0v6Fk/qqWRbujnWrtTbEb3Rq9hdhax4cmzEMgpCnv5pwIQQ4hXVStCXoURfVlSrqMPl2+T1eRaO2rJtOkIIR4yas2ufKFrRtWrP77lypS13b+fjoFwTSm/4ndHx9WsQTPv4fvUG+0t9NZ9tsup+ZcRrx2t/48V880hyNAIbHB11QeRALpQePeE89FSKizc2nDcoCr48WdE6z10+KO96W8NDiTg9Mlhc29RK2ifp5SXn5DxmyzL14n23pU7qfn3YdJY3Ambj/1wllqk+nqWEMGYjq/I9AYbDZAvs5wF0AHgOwCsAHqOUNhNC1hFCCHUSwq8C8CicFBIbTtHil7LjPwHgfgCglP4RwB97NkwI+TKAOkrpPQP2ef/ASWQj5H3pEemfoZQ+dyIHeAIM+iKqCJZOCYGdC7/k8/ulxf6FYefaxbAMvSPTHmnLNKpdWr0UN1sKKDFmRFc0RTfwl5d2wKYUssDjio2nQOAHB1mTqoY/v/Aa/uvsUwEATdE4Htq1H7plYWVVOc5cPA//3n0AzbEEPnbaOrzV0Y21tUPXsAoc3D6uqwbavxBLc90WNz/l928plqTQhHlJ5xvRW1K0d903rfqjD9etb/hPDTdOF22lulDys98ZnV+7Bv6Uv3+3viergrU/rTfrv2anp1S0cxE9om3HhhHHUQ7HJbAFJZZY5z94Qmk5tk3pnt2bNcDVTzAHokLLae4Vg85pzzQ+nui29w0SvpZtmxmyySwt3pxT8Ot6Kr5sx/+TqpWWIS+8dEq1WzfQjifOYYWMjFnN6nxPgOEw2QJ7BYAb4QjaLwAAIcSCky6SAPB7Sukfssvfn825/jmA2wG8E8DDAG4ihFydzdk+XtoBzIMj9OcBGFQwmQfmA/2/KIs9BVNWYA9E5EWp0l9VVumvArAJlFLEtFi0Ld2U7FDqETGbAjqNh/I9z+Ph9YZmnLFoLhaVFePe13bjzbZOLK/s/9ZkdAN/274LunnsLbz/9b24YtPJCLpd+PW2F7CysgxJVUdFMIDmWGJQ9Ho4XIJdCBwqNFMH7aThbebl1fAH1pbznDjjmmRwHM9n5r+j9rHik9vX7v29u1CLjEskstgQim/4ndn9tU/AToT4fhcpf6kuqK6ss5qvgDohHt3Hw2I0jMp+lPI4rkr1ZekXI3DhhF7bQ4cq6g2jtrbffBJG9yWuswZFmV9qeT7Zar42aH+mZRuacJZdHFqT84JcSzS3n7rrl4VBKzPk91WzaLX/+IO8p7NcZOKaMdupXXnbysDuq3azrsJ5ZrIFtgHg+wBMAKHsshScVJGBcyGEkI8CKKOUfpEQcjGl9P8IIb8C8A44KSN9EYFRf9H8DsBfCSGfANAK4EkAHxrrwYwzy9GnwQwAhN2BaSOwB0IIQdgVDodd4fBSrAQAqKaqtKdbI21Kg9Gt1btSVnsRnQbFk5sX1Pb+ntJ0+FyDTQs4Alyx8WTc+vyrvcsyut4roj2SBM00AVBYlOJoZwSnLawdtJ2R4AjhvFKmEvRFKJEXM6pd0un2nerzeuZN+eYpY0UMVJXuWP8dPfzWPxrWtD49LjZyhSZfeMNNZuRrnwBi4T4imxDys+rikvL6ts5ziDElHF3m8+2j+2yI3HEJ7K3yoyckrqNRoau97azqviWihqIrV/BneDnSv6hwZ9vr6XrtuUF2e7ppa5Z8IQoDy3NahZqtrzaf9+ZtlQJyX2vYlNr/nmc1/vl9UjXN1cGTwZh9EDhpIvm6G8/IMpk+2F+D44OdgSOEe/bdE8GWCCFFlNL/yS73ArgHwB19HoNS+tkc2/4lgPMAvGs0c6GU1mGwX+SHR3ck4895CzcLAKoBtPQsqwlVBGRBmrI+vceDS3C5a4JzK2uCcwEAlm3Z3Up3Z1umMdOpNvAxszFkQhnSOSDf1HVFoegGagrDg55zieKgZbVFBXjuUB08kohoRkF50I+ygB913TGE3C7835Mv4pK1K1EaOL6eFwIPj4/vqIF2P2IpvsviF6T9gdNKJDE4Y/5uOF6U4osvrX60ZE3Lhr03B4Nm8oSLa8MWX3DDzWb0ax+jNFIo9G6P8kT8YlWp78+NrdHVnDX4TZ5kqsXYqFKBqDh2YSmnOyPLfQ3HnedumjD37ztHIORYrpRlmtZFximqX/L0e+32d+3PvJl5zDMw2UczbJV4LubDvgWDPjw2tW3PwX90ntq6bcg7CnHYsf+5mDPeXMY6MjIYA1gNJrDzzmTa9P0UwE/HMP7MAY/PGGbs5497YlODIjhXnb1hmsVF88bVsmwqwnM8V+ItKS7xlgBYAwBI6alkW7ol3q7UW916o1exOwtAkPc0iIym4/4de3HlqaeMep1L1qzEW53deGTPmzhryTwQQnD64nkobGlHStWwsrIM+1s6jltg98UlWkXAm0Vm8oCVMH1NgnwyCfhPqeA4YUZE9YTw/IrtG69TSw/8rXFV1ysnnAYQtPjwz26xYl//CJJdJULvG2BLnPsjlWXG/c2t6WrOzqtTTomkBqhmg5AR/vylsQvs1cqzCXhw3AJ7/74FzZZV0itsKaVYnaxur3aX9nP3OBw9orwRf1AG119eK7qdkfzvF72eqkHi2jS1TPWu35lLkgeHvIP3eths+MWHpArNO9jjnMGYdVCa8Nu0ocY0oqtVzd6kTJ1Ut9kMOzlNDQZ9kcwJls14gZ0Ln+TzL5AW+ReEFwEADMswOjMdHceKJ5vDNjEmNUJrWjZuf/F1vH3lYhR4R19fyHEEJX5Ho51Sfex8p+oGZEGAaduwzOM2gMi9T0J4n5iugv0c0pHn0qpd1uX1b/Z73DXj5sqRL3jB5epa8eE5j3Wuazx1/61FXls5ob+DgM2HfnarlfjmVUi0lR1rQmK4+MD7Sku7/9PeKoY5HHcL8hNF4iBUWK3JVqFy2CswKgljvgB9p+fx447Qt7e7WmKxTf2ixgVRV/NGz9J+X+pN8Wbtteh9Aji7n9VkWrPTntCVsttVMuj7R1Oi3Sfv+LmvTI/k/KBplKq3bKZdT5/hGpeUIQZjOkFtakmKFStWjMxCVbdX65rnAsHQqy2rEk6NWw8z3t51OsAE9tRgkJVEia9wSuSB5huRF8UKf2VZhb8SwEZQShHX4tG2dFOyXa1HVG/yqzQansheIduPNqIpGsfj+9/C4/vfwoKSQlg2xYUrF4+47r93v4mLVi1Fz/w6kymUhwKQBQF/eHY7Lls/cQXfIg+vyLd5od6LaJLvtPnFmUBwc6ko+Ke1uwtfvHzO88HvpWv23dayOLZ3WD/kkfDZfOAnf7KS//0hxFsqhV4njIxPLHyPUdr670hbqYsbKYQ8cSy0DqdGEtiQhTF9mXqTzZ1zfe3HdX7RNKiHDp7f32IvbnS9231WP3HdkerUX+y+G5RY/SLUSZWm/IUfc7uk8KA5a5FDrWfs/r9SD9Vzvt4NktX6kyv4QHepOLT1DoMxA6CUUl61EwWKkZyr6tZJhs5vsHTvSTCCMiGFAJyaGwIM4SG0bPJmyxiKSWuVzhia8xZu/jwcN5NIz7IbLvzax4s8YXabZxSopqa2p1u725UGs0trcCWt1gIQe3BSNAM2pVbG9LeIrjWC33dyGcdN88Kw1lcbNh/6a5ls6ycUac4QO/XtD3Jm4xwh1Hf53M5M4/3Jzjlcnpo9/jB6Qf0t7quGzTFWl0mdmFM8asF8RtcddVcX3lt7PPN57dXVTZnMql6Ba2S0zFX0bMHDH6v8jSpx84nW2wyL9L/DEFeQChd/wiOJ/n4CmlIK0vBk6xlH7i3P1VbLotT61yK76Y73iDXg8p4txmCML7qdCmSMZLVqaCt1nV9vae4N1Aj5yQkHQMtxXbxtXObIOC5YBDvPZDs4zoPjptJLUPazCPYocQmyqyZYW1kTrAXgFEh1K91dbZnGdIfSwMfMpqCJ9IknOs8AnBSS1BxYTyMdeTql0Your/+0oNtVlfeivuOifG31UwUL44v2/DE6N/nWcbvueCjn+9Ff7fR3329GjtYKvek0R4s9cz5hFNT/QYvmpZBuEdc44hjqkkafaE9t+g7v48d1bmmoDzZmMqt6899Nw7Teaa3XPaKrN50jpaetJ1vv0AZ2eo0qXLK49FqfwLv6TdWyTaNw3+2JU7peLc/leB4jVvSn7+Htw4tZR0bG9IaatubNmLEKxVCX6jrWmrprk60HyjnqA9C/uH98rueXAWACO48wgZ1/ej5cvdHr2lBlQOSFvOV+Tnc4wnHFnuKiYk9xEeAUJab1dKot0xJry9RbEaPBk7E6C6dC8WQ+EXn4RLT4oNyNaELooMIS1R/YXCoK3pyWaVMVUQ4Gj5zyuUBD0/P1px7+e5UI67jyD12U837/Tptcd6nRfXi+2Gt7uL3CX/OtBrPuh1aydtwmPUrm8x0j34mRpVG/X8FEXXt5ID6o6+JIpNMkWV9/Xm9dCKUUa9O1HZWuol6/a9VQ7cea7sgYJNHvYjaSkZKlZdf4eF7sJxt0PZ1csvNXfG2mKafF5PZCs/5XH5IqdTcrZGRMH6hFTVkxYyWKmVmk6fYaU5M32bp/IbF9GFhvNbHfQMswfOfqKU22qzeltH+n2uxy5OqFQggJARAopV2TMskRYCeu/FMM9Dd5XVhUy6LX44xX8vrmSwt980MLAQCGZRpdSkdnW6ZR6VTrxYTZXGARfcbY240Vt2iWAHtgxHebcSvYKLnWiD7f6jJumtySJ4Qj1pwtNdsKl0WW773Jrko3HVdreRmc53t329z3LzG6Di4Ue7fxwJxQbVWd2XgtlEltZFIlJjwjuvu7xVEL7FPNbdpY55Dt1pgB3L3CuSTmaV7rXtybwmZYBn2s6e6UTvo3BerOeJLl5Z/wc1z/ax4t2dqxcdcvC8JmatB3kErtzO/OQPSFzcx+jzF1oZRSQbFihYqZnqfp5km6Lmy0Nd9qmEGBkP7nn/xkmE1qHjYh5GoAH4Rjw3wSgJ3Zp1YD2JX9/a8A3p8dsxTAfgAygAUA9sJ5pe6klN4C4FIAnyWEmDh2YdIOR7feAODeHNO4HMAiAJ8ftwM7AVgOdp45b+HmDQCuAdDQs+zKk9+9/qx5Gy7M36xmJ3E1HmtNNyU61AZE9AafSqMFE1k8OdXRLSR1WtXt858WdrkqgiOvMTWgtmW76h9v2FD/r2oB9LiuEHTY2k/eTRJ7l4jHLnZtav2wrr3zXUQfcwT4eLFs2Au122CT3B07KbUt7W1zRhexty3rN+aHjZCYGVOR68GDpXXtbefX9jwmMbPzY64Lel8Xy7boI/V/TyZR319cK6FkZcVHB6VmGW07Ws468MdyCfagD9dR2Wr58ZVCKF7Ej96uh8GYYIhmJYMZM1mj6vpKXec3WLp7PdXDHo5MZbeOJ3Bd/NzJ2lk2smxTSm1CyPcopd/NLr8BwDfhiOR2AFZ2zO8AfBJACYDPUUq/md2GSClVBmz74wCQFd4D97k/u13AEd8cAD37uBjAeZTSBuQBFsHOP1UYUAdc6AlNz3zYaU7QFQwFXcHQEiwHAGimprZn2iJtmQajW2uQE1ZrIQa4IsxkJB5+CU1+mrkTkYTUDmGpFgieWibwnimdvkQ4ntPmXlD7RPHqzpN3/04s0TpDY92GBE7+5j/swE/fobe/sUJyoicc4b9dXRIubWjr3kjMSemcyXPg5piNsXpxXijX89S2NACjEqNFiTfbQsHMmAqnYzG+u6317N5ujUZaS39YOqd3LpRSPNHwr0QS9f0uwLqV0lRlxQf7iWtKbdt16J+dZ7c8Nsj5xaLUvG+p3fz3d7FCRkYeMWzFq5iJSsVQl+s61hmaaxP0UBGBH8Cxv2cCYOoHX+ZO5s4opSYh5GZCSBRAhhDyJwBPU0q/QgipAPBNSumnCCFnEkIOA2gGUA5gCYBkzzbgdPoe9W4BaAAughOo/H9wxPXFAB4C8MC4HNxxwgR2/pkLIN13QcjlD+VnKoy+yILsqg7UVFQHnDvVNrVpRIk4xZNqPRczmkMGUjO+eJIQAo9olAJvQIvtMmJWqEFyr5N93hWlUzmFRPSVFb+x4Vtm4PCD9WubHq0ZqxOICE7++r9o+AZbb9uxSioDACpw8rWVpcbfm1oTCzn7hFqNj5ZF1uHMUAIbsHSMUmCfbj2Ru9/4EJgmrH17zyaEOD7bpm6YF9sbLbco915kPtX0SCJK3+wV15RSRPWadGXFJb7+29KVqt036cvi+wcVokaI1X39pTypm88KGRmTA7Wo4VLMWKliKIs1na41dGmTrQfmOs2ljqUKTnkNPSzVuC7I47r4+DZbGB4dTpdsA0AIQIQQ8kL28XxCSEd2XArAfDjR5k8CmEsIOQPOuewaAJ0AnoQjngEnEg1CyLXZxzKAKyiluwghX4WTa34nnGClDCdF5ccAfo0+HbInGyaw80jWQaQaAxxE/LKPRbCnIBzhSJGnqKjIU1QEnAzAKZ5sz7TE2pQGK6I1eFJ2ZyEhx5eWMB3gOSL6uHg1zMeR6n48rqM66gucVuCSyyZFbI4VjhOE1MKLax4rOblt/d6bPGE9NqZ5CiDSVx5C4S9MrfWVU+RyALBk3nd5eVn0odZWpYSjE563v5jWGY8N8RyFbYxqI5ZhXBB4YUypLQcOzGuyrLIaAKC2jY2ZBV3lroLebbzQ9HSyw9zV+3pSSmnMWKRUlL2jn4OIpsQiJ+34ubdc7+4X5aaU4oVSq/43V0hVpsxN5VvtjGkKtaktqlasUDEyC1TDPNnQxI227lsJM8gR0r/WaeadtQU4d8jrJ3GfHJz85yo4lyfPAagBcBTAdZTS6wgh1+HYpcu5AFwAvgxgE6X0J322tbLnF0LIIwAkSulZfXdGCAnCEeQfAbCbOjnPJiHkewD+nJ1LEED3uB7lKGECO794MMBBBAB8kocJ7GmCV/L65kkLffOyxZOmbZpdmU6neFKrF2Nmc9iGNiPzSSUBQQkNQZr+KyJxuQ3iciMQ2FQm8K4pl0YjBmvKXt3wXa3o4D0NJ7c/P6YugAKI+MVHuOJfWVrLi+vkCgBQPUL4PUWl7f/pbhN9J+5XOywLueYhn6NkcCV9Lirie9p8YX3UBZodHXJrpHtTTU/QvzzubzrJvaDX//q11ldSjcZLx1rMU2onrdVqeem5/f7WteiR1jN2/7rUY2v95ItC7fRvzkF8+wZWyMg4cSil4DQ7EVLM5FxVN1fpOrfB0rxrqBF0c6QAwLFOtqT3n9nAXEyuwPbDSfHgsz8inILED/cZ8zyADjji+xUAj1FKmwkh6wghhA4oDCSErIJjBPEaIeQ9lNL7ep6jlMYJId8GcBMAjRBSCieC3ZD9/2pKaV7ENcAEdr4pwgAHkWJvgZtZ9E1fBE4QynzlpWW+cgDrAQBxLRFvSzfF25V6RIxGn2pHZlTxpJNCopcBO6DFXtdjVrhB9mxw+X3LS0Zee/LgeUmOLr28+tGStc0b990SDljpUV/48CDC5x7nSkVTa35mk1wJAPGgVHqJWdz8r3hHhTiBb+g8oXPI8wHl6Khu/56Nx0Ydn9N1aAffPN9Psg0s+ZjVsdW9sVdc7+7YnTmkPOHtOWTLts0MNpqlxaf1ez1p4zMt5791V8XA5jGH3Gbz9VeKBckC/oS6cDJmKbqd8SlmfI6q68s1nay3dPdGWw+GOQQAHLtDNT3ypCeauQCemsT9lQL4HIAz4NyZvwnAX+BEkXtYAeBGOPnTXwAAQogFJ/qdAPD7noFZwfw3AFcCOAzgcUJIA6X01Z4xlNI3AGzMjv8wgCpK6Q8n5vDGBhPY+SWMAZfSFcHSoG6blsSNrf0xY+oSlAPBoLwsuDjrmqSZmtaRaY+0ZRr0Lq1BTlotBZRYM+KiiueI5ONi1TAeQbzz0ZhBamI+/5ZCl1w8ZXLVhcJFlS9v/F6m4sBfm5Z37xh1220OhP/UU1y5YGpN27bIVQDQXOiuvNIorL9TiUxYJLZSTPowVPY0P+QzvRBDVc8Jvjrq9JA9e1Z2UBqaAwBmSkt+SDq3N/p3sPuQsjf1bxfJqmvTsg2NP9MuDq/tdSaxbNMI778jsbbz5Yq+ZzeTUuPulXbr/e9wjekOAmN2Qk2quxUzVq4YyhJNx1pTkzdRPTCHUA8G1h3MvPSO8WLSCh0JIW8HcARADMCtcN6VZkrpfaS/baEB4PtwIt2h7LIUnFQRIbstDsB74eRRf61HUBNCPgDgHkLIgwBuppQeneDDOiGYwM4vYQw4NXQXqOHb3E/x1LTTxKBpyeI1jyVbQXhIAXxiEReUS/iQv29rYsb0oCXRjopAKWRBlucEqsvnBBydYVObRpVod1umKdWu1HExsyloIDUlc5rHgizQkIy6EE0fpd1xVysRV5jBwMZynpfzft7hRbenfeXHPa0duxo2H/hzqdtWR+UlzYFwVz/HVYqW2vjIma45ALCnzFfzhSaz7hdGonYi5hoWTb+kKKbOuQe9blQgIwrsmsSODqnAGpWobWz0N6ZTJzniWjeM99JTIXOSAAD1sQZtR/x+safGQDdtzZIvRGFgee9rZxiZ5MKd/0vmpRv6uax0cVbXTy7jhcZamYlrRj+oTS1JsWJFipFZpOnWyYYubbR1/1KYfo6Q/nfBZn1AesxMZgqWDOB2OLnTlwD4AYDqrJXeTwE0E0K+BuAKABk4Eeyec1pPBFvKivE3ALwPwIWU0rd6dkApPUgIORXAZwAUEkLWw4mYG9ntlQGQCSE99oQcgNcppZ+fsKMeBuaDnUfOW7j5gwC2oE870/kblm4oW1D1tpHWtU1LhUHTosWpbksy/bYbYeLli7iAXMyHvGHePyPzfieLznQE19z/Hdz3wV8PO+4j934dXzrto1hRuqh32YHOI/j+tl/jjst+jp8+czP2tR/Cny75Ke7d+wguWTHiWwsAyBiZdFu6JdquNFjdeoM7bXUUgtBpf1fDsqmmWIVtLu8Gj8+7dEo0VDL1VGru3luTC+MHykce7UBB6W3rrcaHzzkWjb2yrrvhKzQ9IQLygsS3Im9KywoGLtd8Sh3dvKB2uHWvjn2/9YzgrhGPLZMhqddefa8IuGXbtumpyQUdK+S5pQDQmmzXn+38KygxJADQTFsl7ov5gG9Bb769lmrv2LjzF+GwmexdRimlz1RYDb+/XJpjSlPYcoYx4VBKKa/aibBipOaqhrFa1/iNtu47GUZQ7slHYow323Bd/JzJ3GE2+rySUrqrz7KFAI4M7Mo4DvvqCTQaA3O3s8/zcIojlYHPTQZ5jyTNcioBqH0XSG55VA09OIF3QYDLApCCiRSSaEUSPVrdtm0Thp3kTaK6TFH3UxcNwssXEr9YzAU9hULQL5CB2ZEMAIipSXzhoR9DMYb/TP5j76OoCVb0E9eUUnx/269hWE7tWVc6gqUl87Gn/SAqA4McyobEI3q880ILvPNCCwAAlm1ZnZnOjmznST5uNRVY07B4kueI7OMiNdD/jXjmP1GDzI37A1uKZanQO/LaE4Mg+XwNJ33a19S6vX7ToTsqXdQc8bxIQMhV2/k5kqnW33+BU6j35+qCqso6q/lyoo7Ja3o0LLCOaG/maswmcsN+hnktnT4tsGvE9BBKKfbs3pgC3GUAUB0PNa9wz60CgO5MxHi+828WJYYbABTdzoj+y0SfZ06vkNY73mg5Z98t5RKs3vmkYad+dQFJ7VjDChlnHbqdDmSMRLVq6Mt1nWwwNfd6GKEgQRB983FnV8FhPpjUzrMAQCm1caxzY8+yQxO0L32E5y0AeRHXABPY+aYUA9580SWNS2oAx3ECZC5MZUCBDQUZdCCDQ+gE4EQTqGEnORMZyeR1ny1bQXi5AviFIi7gKRZCPlf21vBsgycc/u9d1+Fj935zyDFRJYEfPPl/+NBJ78IL9a/j1JpTAAB37X4Yp1afgqePbgfgCBfTtrC96Q18dM0lxz8njufLfGUlZb4yAOsAAAktEW9LNyfalXoaMRp9it0dJtOoelIWaFjGkbCdOky7TXcLJ62yA/515TwvT3qknhACWrGh5umCxbGFu2+i89L1Izr5EBDygdf4GsFU6++5yFUDjnDX1xSXlNW3dZxNjHEt8FxI63PeaqTS8AJ7QXJ7F1848m3iw4dL6zRtYS0AiFHa9jb3uioASGhJ88m2O3WLqF4ASOt22hP8kOx2lQoAQKlNpcMPtZ/d9J9+BYsHvGbTz64Ui1IhftK6XjImH2ramidjxSsUXVmq61hn6vImWw+Wc9QL4NhF87Q5K804Rl1jwhh/ZqWAmgqct3CzYMIqB9DBgzMInFxKUR4fgT0ShBBCJN4PCX4dQAQaItBwtI9joG1aGWLQtGjymseWLD91owA+oZgLysVcyOcXPGNquTxd8MsjB1NveeVuXLT4THzwpHfi+qdvQkrPYF3VSvxj76P4y6U39grsxcXz8HrzXlT4S/DeOz6Dn17wZSwsqh2XeQbkQDAgB4KLsBQAoFu61pFuj7QpDXqXVi8lzdYCm5ijyi3OJ4QQ4hXVCtDtUGIvq6pV3OTybvL6vAuLRl57fBFdodDRtV+m9Q3bWjcffaAsVzvvvhBCcOkbQo1oqnV3vstVS3kifqGq1H97Y2tsFWeFxmte87mW3BcdsjjsxciF0qMj+nTH43ykpfnsOYQAZlJLXCmfXwwAGUOxHm++Q7VIygcASZWm/IUfdbukAh4ATEtXK964RV0R39srog1K9TtPttsevJAVMs4kqE1NOWPFilVDWaTq1imGJp1Kdf8iYvvhtLo+Bkv2mEq4cV2wCNfFu/I9kdkIE9h5opVEQwSkigArCYhEQHSechnCkyljbcYJvAcCPCaABAwkYKAZCfQ0RrItW4dhpwSTU12WaPipi4bh4wtJQC7hg54w7/dxMzS1bm/HIXzrrE+hxFeIdyw5C8/UvYrH33oBXz/jGoj8sY/VJ9ZdisfCz6MrHcWFi07HE4dfHDeBPRCJl+SqwJzyqsAcAJud4kk12t2Wbkp1qPVc1GgKGEiOKgUpXwgccfm4rhro/0Isw3Wb3LxkwL+lRJLCk5YOQwhHaM255U8UrYwt3vM7zzylY8SC4nfvE2olU6m77b3uWlvi3B+uKDX+2dKaqeLouMy7VojknAOVhSHzvAQllljnPzjs+cSyYO3beyYlROQNzdAvJZt5iRN43dLtx5r+ljFIzA8AcRWpcNHVHkn0cwCgqfHo6h2/dFdoHaGebbXzVudP3s9LLdWskHG6QimlgmrHChQjPV/VzZN0Xdhg677VMIJifycIFpWePlQBYAI7DzCBnScMYvkBHATQBAoOgJ/nuKAoS+vyPLVRw/GcBJ4rsAFkYCGDNNqRBtAOwKkOp4aV4k2iyJag+2yXHYSHKyR+sYgLeor4kG+62hHWhirREGvBgsIa7Gp7E1XBUtz2+j9wNNoEANjX8RZ+9szN+Orpn0BCTcEruaFbBjL2qPqCjAsc4Uihu7Cw0F1YuByrAQCKoWSyxZNGt97gTlkdRSD2lHwPXIJdCLxVaKUO2d2mp5mXTqL+wNoKnhMn5apN9paGjqz7ln3k8P3ps5q2eXgyvKS46KBYK9yt1P3hUnet4RYCl5SUdf27o1UIczhhx58qKeXJZchHXOKQTX2WpV+MwIVh74gdOFDTaJoVtbZt07PUZfFCOVhs2iZ9tOHvKRUdAQCIKlyyuOQanyC4CQBosbq2LW/8b7HPVnnAEWVPzLEabvmAVG0Lw6esMKYORLNSAcVM1CiGsVLXuA2W7l4HPeQjJAzH4So7sPcfxvRkDoCd+Z7EbIQJ7PwRQM9Zi8AGEHf7PDrHzZwvKMIRnshCkMoIqqBQoaALCg5nu5ZSSik17RQxaEayBM1rSVYAHlIAv1DMBd3FfNA3FewIn69/DYe66vDhNe/tXXbthsvx1f/8FP/74u1wCy7c9O4f4mNr39f7/Pvu+Cy+evoncCTSiGUlC+CV3Ljq71/Fzy8aOq97MnCLbs/c0HzP3NB8AE7xZJfS2dGWblQ6tQYhZjSFevJtpwqEEM4rKpWgL0KJvJhR7ZJOt+9Un9czr3DktU8MjuM5LHyv96Gi1eraN2+zK9TIsBHpCw6LteKdSt3vPuCuTfvFoveYpa3/jrSVuk7wVk5YsmRPKm5lhGC/iyEqi+JQJ4yt8qPDiuvOTqmtu+u0GkKAefHC5iXu6iqb2ni84f5EGk1BAIhkpGRp2TU+nnd2Yzc+13L+W3+r4ImTEp6Cnfjl24nyxkmskHHKYtiqRzFjVYqhLdN0stbS5FOpHiom8MHpJOzAhPRMZcrcFZ9tMJu+PLF48eLTAXwEfdqYFhcXF5x77rmfyd+sph4D7QgDtpuGiU8oIgG5WAh6Q8yOcNxJaMlEe7o53q7W2916o0+xuwqmYvGkanDdFr8g5fdvKZak4IT/HZimZktH74uc2fzciLnhz1YZdf/7IXctAMzvyDTcl+qs5k7wJbwo9uXUXtcpvr7LlC2FKvG4BtVCyOnOyB891w6y9etB16Fvf/kindICnyuK1ivc55QDwOP1Dya67b0BAOjOuJPl5Vf7OY6HbVtm4MDfYus7Xug99r1+s/GGq8TSjJ/P+0UwA6AWNVyKGStVDGWxptNTDF061dYD8zg7rxfMjXEbc4IzM1VwmvB1XBf/ab4nMRthEez8UQynk1EvHo9nxIKk2UYuO8IWJAG0AgBs2zZg2Cne5BSXJZh+22UHqZcr4gJyERd0FwoBZkc4RgKyPxCQlwQWYgkAQLcMvSPT1t2WadC6tAYpYbUWUhh5L550iXYhcLDQTL1pJU1vMy+fDL9/TTnPCRPybS4IMmcv/EDRA8WnxLbs/5NQoCV8Q43d0iTWCn9S6n/xYXfN4RJP9TVmuO5mLVZ7IvtfYB8x9uKU3seUUkAWc74Pq5VnE/BgSIG9d8+yDkoLqqykHn+/67xSAHi28Ylj4loJJCsrP+4HAMNQUvN3/RoLUnVFAGBQqv15nd3xyHmuSbcAYwDUpragWvEixUzPV3XzZEMTN9q6bwXMgEBIf2/5MX4S2lM2Lvm7gmc/Mrwmf+edGXzvTBknlx+7obKnw8IXH1Hx6Ie8+O8nVOxst/HgB9x4ss7ElavZNVgemfRicYYDE9j5oxQDPLBdLhcT2GOE4zgxa0cYHsKO0M7aESqyyWteW7aD1EsKiF8q4oPuEj7ok2epHeFokXhRqvLPKa/yHyuejKmxSFumKdWhNCBqNAZ0JEL5mh9HCO8VM5Wwn0cm8nxGs0s7PP7NAY+7dkiBeSL4Q4tD29d9xyg88vfGdS0vDykyN7WKNcIflPobPiLXvFQRqL2uwaq/zkoedyrFAtLUv0kDtXTC544ev9Pz+JA2g01NvqZUak2Voera+7nTRIEI3MstLyRbzFcDANClFKeqKj7kBwAt3dm1bufPg0VGQgSAVsFq//HlvKe9UmbieoKhlILT7ERIMZO1qm6s0nV+g6V711I96ObGP086qlBcdb+CtD78Xe2/vmFgXpjrJ64ppfjiIyr07F9oe5piVQmHHW02qln0Ot8wgZ0nmLDIHyUAtL4LJEmakbZ3+YQQwhGJD0BCQAOgjWxHaAaom2T9wF3FfMjr52emHeHxwhGOFLgLCgrcBQXLsAoAoBhqpj3TEm3LNBjdeoMnZbUXgNiTfn4ReXhEvr0W6n2IJvlOm1+UCQRPKxUF/7i+h5LgFpOLrpzzUOm6ps27/1AaMpWcxYbrOsSab/5Ba/jJx+Q5984JVVfUm01XU+W4vGkX8G39HlNq68DgAkpvsrlzrq89Z5dMRSHpI4fPL6W2Rc/VVibDsr9oZ/uO9FH1GT8ARLQ56aqKS30AoHfubTl7703lMkxiU2o/Ums13HapVMMKGScAw874MmaiSjW05ZpG1lm6a5Othwo4BIA+haoEwARla/EccNclHrzrb5khx0QUii89quKTayU8edTEWXOdj/itOw2cVSvgkcPOTVlKAdMGnq038dkNLHqdZya8VoWRGyaw80cIQL8zmSzLLIKdB3LZETYhAaAZAGBbtgbDTgsmp7gt0fTbWTtCLiAX80FvmPd7Z6od4Whxiy5PbXCepzY4D4BTPNmtdHW2ZRozHWo9HzOawxZRJjUX1C1axcB+GIl9Vtz0N4nyKZzff1I5xwnjplDcwaVVL238frrwwB+VdV37cxYVntQlVn/7Zq3hhx+X5/xvdVF5eV172zuIPuYGLPPESD8RT2Hl7GK2TnsqgxzJK5RS7Nq5TiPE612YKGpa6K6q2t91QHkz/agHAI0aCzOV5e/0UmpT8cgj7Wc3PlgBAAnY8RvfRfT9y121Y50zoz/Uoro7Y8bLFENZout0reMnHZxDqAdA/zqCST6lBOSRPxa/eFHD+5YJuGatiG88oSGpU2yew+Mvbxh45ApPr8BeUcLhxSYLc4I8Tv9TBjdtdWFp8ZQ0K5oNsAh2nmACOw8sXryYwKneTvRdLkkSE9hTEI7nZPCcbANIw0IaabT1syO0LWrYKd4kGdkSDJ/tskPUyxcQv1jMB93FQtAvkInJC56q8BzPl3hLi0u8pQDWAgCSeirZlm6OtSv1dkRv8Cp2dyFGsL4bDzhCeJ+YqoL9DNKRZ1IaLe/2+k4Lut1zQuOxfUnweJMrPo37O55PnPfm371eyxikJFZExOrv3qQ1fu8TcuV/zykJlza0da/nzDFFlqqkjBvGsccUtjFoELXpVu8TOb9Q3zpU1GIYSyq8Ua7lTPfqqiPROvWN+L8km1CasFapFaXneU3L0Mr2/DGzKvpGGQDsDJoNP79KKle93JT2T59qUJtaomLFixUjvVDTrZMNXdxk6/6lMAPcwDzpaXQ/YEebjf85X0aZj8OlywQ8dsTCv9408ZNzZIh9Sl2+sEnGgjcNtKcp3rNEwEOHTCawJwFKqU3BRU3wCQ1iJg2X0kFDbavyPbFZChPY+UEEwAP9nW1FUWQCexpCOI4nMjfIjrDH2/+YHSEycrYrZpB6SAEJiEVcwFUihPxuTh7Sz3im4Jd8fr+02L8wvBgAYFiG3pFpj7RlGtUurV6Kmy0FlBgTmo4j8vCJaPVB/TuiSaHD5hcrgeDmMlHwnXDRZqBkc2BbcImxYP+tmaWxo/6Bzy+NiXO+/zut6bvXyBXXVJXKf29qTS7g7EHjhsLL21JY7cpE+SIn0slRa+CYYOJoe3kgPig6nkhwsdbWc8vtpB59n+v88qZEi/ZK9F7egknTdINeVrzFo2uJ2Iod/0+uUtvCGqXarRtpx7azWUfG4aCUgtfseDhjpOaqhrHa0Pj1lu49BUbIRUgB0KfQdAbY4C0o4HAkamNJEY9XW2zUBAl+84qJQxEbgIadbRa+tU3FD892IaZS+CUC3QJSI+R1M/pjWNBVi2hpW9BTlmgkbZcZp247Rr00QgPoRgARBPkuEua7SViMkAK5mwvLSS4ggnCF6J8WUluXp+OY7TCBnR/cwOC2EUxgz0wIIYSIvA8ifDoAHTpi0FGPWO+YrB1hSjQ5zWNLZrYtPV9EAq5iPuwJCt4ZZ0co8qJU6a8qq/RXAdgESiliWizalm5Kdij1iJhNAZ3GQxO1f7dolgB7YcT3mHEr0Ci61gp+3+qyE/Gi98qFYsvqL4qNrU91nXno/pBErX7n2EVJsepHv9Obv3WNVPaBsrLEQ22taglHR31RscA+knwlK7Aph0EC+1TzSW3gMsuCvWvnFtlUoX2AbHFHM1Hzha67qWnr0PgzzJLwOrcWb2g77Y1fFfsthW8UrfbrP8h7O8tFVsjYF91O+zNmolrV9RW6TtabunsD9FCQIAjgWIR/BghpANh21MS+ThufXn8sh/qrmyV8/J8qfvSsDo8I3HepB5/beOza9Mw/pfHDs1042G1hdRkPv0Tw9jsy+NO7Zl8Zi02prVpEVSxeT1uinrIlM267rRj12FH4EKEBRBDkuhDiu0lY6OIKpAgXlqJc2GUSWUJPfQWf/Tl+2N2nPMF8sPPA4sWLywD8EEBT3+UXXnjhB0Kh0KL8zIoxlbEtx45QMIniskTTR112iPr4Qs4vlXAhT1jw+2aiHaFqqkpbujXSnmkwu/R6V9pqL6QTWDypW0jqtDLi9Z8WdLsqQyeyLU3tSK3a+we1Mtk0KGWj3mO2fPNaqcSrmt3/6W4t9BIyqmP678S7Gv4qXVYNALqQarDPWXwswmxb1m/MDxshMdNPzezaURWNxk4PnptaniikPt/jLX82FCvFWfIFCAdWylbzSy1nHfxLBYFNH55vN/zlErGa8rO3kJGatubJWLEKVdeWaDpdZ+ryJlsPVnCUBUBmIboFXbU4NWPzRtKSjKQtm3HqsaPUa0epH90Ict0Icd0kJHSRAiFCwlKEK3Cl+MBUqu701V1/UTrfk5htsAh2fsh5ouZ5fvZd5jNGBcdzIngubAPhDGxksnaEQAeAPnaEBjKyJeheW7ZD1MMVcH6xiAu6ivmgfzraEboEl7s2OLeyNjgXAGDZlt2tdHe2ZRoznWoDHzMbQyaUIf2ox4rEwy+h2Q/lLkQSYjuEpVogeGqZwHvG/GUpu0p8B075qre+eVv9+rcemCOA9ubh12SEip/+Vm/9+rVS0XuDJW0PxjsqhVE081lMGo5FRDiz3/miKPFmWyiYqey7rL1Nisfip4eXxsvaSoVw8aPNf1YzVoon7neRoGce793/t84N7c9WRIid/vnFnHJwqTxrOjJSm5qSYsVLFCO9SNPpKY6ftH8Jsf1wbFSPMasqKGYelk0tzeI0xea0lCUaKVs247bLilGvHaU+2o0AiSDIdZEw342QEOEKpG6uQIpyYZdFxPGMJueLEIBJFdiEkEJKafcQz/EAbEopzTYx4ymlZvY5Dk7w1xqwzqcA/JFSqhJCLgfwIqX06IAxyyil+/o8Xg1gH6V0cL3K2I9HBqDTMUSlp90X7gwhp5AWBIFFSBjHRX87QgoNKiJQcSRrR0gpBTXtDDFpWjJ5zWNJVoB6UEB8QiEXdJXwIZ+Pd+e9ecxI8BzPlXhLiku8JQDWAABSvcWTDXa33ujN2J2FZByKJz2iUQq8AS22y4hZwQbJvU7yeVeWcdzo1RYhPFGrzqvZVriyc/Xu3wulmY5e7+IqRSj/2f/p7V+/Viq5yihs+KsSGVHczufbe7/eKWf1e79Ot57ol3am6zDfPHC2JxiT2tZLi0v+03B7OmFGBdF7KS9JRUbN67/UFqaOFL8ctlr/9yqxWHdzee34N1FQSimv2vECxUjNV3VztaELGy3ddxKMoEhI/3zVWRu3n/pQSmHYRFMsTktbgp62RTNuu8w49Vgx20sj8PdNueC7SVjsJgVSlA+70pxfhOPS4gGH2XjBFECPLdYkQAg5DcCnAbyfOJ+x7wC9JdotACiAy4hTpwAA9xJCfgHgt9mfuYSQP1JKLULIuuz4kwF8hBDyGoDrAHycEFIK4NUecQ7gU4SQpyil92Qf/wjATwgh0QHCez8Gvx5LKaX9AhTZC4EtAJbBuejeSQhJU0ofHc3rwAR2fnAjx6mcCWzGREEIARF5D0R4DABxGIgjjkbEMaQdIXXTcG8eeMgT4r1T0o7QJ/n8C6TF/gXHiieNzkxHd0u63mxT6vxpu80HbrCzx2jhOSL6uEQ1zCeQ6n4ioaEq5vFuLvV6Kkd9QSK4y4p3r/1vs77hofq1Rx+p6WmbXqEJpT/7rdHxtWvdZV8yA/U3GolhRXa1EHX3VG8QAWJvKMUyjAsCL/Qrbtz52iKNJoP6xfKmkkcb7k5FjE7eE7xCJBafWLP9Rz6PHpV/dRptfe50uXwML8eUhmhWKqCYiWrF0FcZGr8umyftIyQEJ4qXHdj7D2OSsWxqqRanZixeT9uCkbRlI2G7LaeAz0cjCJBuBLkIQnwXVyD2FPFF+bDLJoIMQAbBdI4m54PJvnj+MoBqQsjfAXwJQJBS+mEAIIQ8TSk9gxCyA8CZAEApvY4QciuAdXCErBfAYQDbAGzIbnMXgPkALgXwKwCrAMgAdhFCPgTgkuy4BYSQTwD43+zjFgC3EELOo5T2BCFUAI8PmHOvuCaE+AH8DU7H7RiAG+AULKsAPkYIqaaU3jLSi8AEdn5wI8c1NEsRYeSTwXaEKbQhBcBpcJK1I0zyJlFkSzD8tov2dMUs5kOeYiHgmwp2hCIvihX+yrIKfyWAU0EpRUSJJBuSdXZbpkFM2+2cSWKuUWRkDEISEJDQFKDq39CVECMmWeAqKjzDJQjeEY+b4wQhVfuumieKTm5bs/smT4EWDQBAmS6U3PBbo/Nr1/hLf95tNnyRZoZ07igV1ADVbBDCgXMJVs+3RUV8T5svrPcWJR497EmlEicJ7yeb/Y833J9q15o5f8FHXSTe1nX2vt+X1Il6+luf4LloMT8txTU1bdWbMeOViqEu03WsMzX3RmoESgn1AX1cwJmQnhAopdCz0eSMJehJWzKStsuKUY8Vtb00igDpRoA4uclhoYsLSxFSIEW4AlnhvCIcAeWdpdHkfDBpRfKEkA8CSMG5xcgBqIATkb4+OyRCCDkbwDfgRNZtQohGKf0IIeRPAP4EoJZSui07/k0AX4cTAQ8CKAewFc7l1a2UUgXArYQQDceOsxWAH8AcAOcA2AmgBkDflJKBAvvyPr+nAVwMYDOAMymljxFC1mbncCWAUwghXB/BnhMmsPODF84tj36QURY6MRj5IGtHGKIyQj12hJ057Ag5g6YlU9C9tmwFqIcUEr9YxAXcJULY5+KkSbcjJISg0FPoL/QU4lhaSdpqSDTqnWqLmjTbrLTdEgSxRj03Qgh8slkAHIAa228lVG/a71+v+oOnjOhtzfuqy17f8B296PC9DSc1P1cNACWGUPw/vzO6vvaJUEFl1G65DGpFrnUljorldmuyja/0E7fUm1d4Nh7rlSnpNDEa6s4Vz1VX0Vc6nsy0qHVcsOgTblfjC12n1f+r5L6Fdve97xWKMIZUl3xBLWrIihkrVQxlsabTNaYubrL14HxiezEw1Y7p6DFj2jA1i2gZi9dStugU8DlOFzRK/YgggG4EuS6E+QjnpFx0kwIpxgddlEWTpxOT6UJlwMlZbwbw/yilPwVwBiHkOwBup5QeJYS8H07k5jE4keGLCSFvg/OZ/i4AiRBSBeBGOCL9u9ltLwNwLpwINgDIhJAApTQB4OM4JpJ/BydyHsnO42kAnX3meATA/wyYd3uf38+GE4UPAijMiutaAO/NzlvIzuHh4V4IJujyQxCA2XcBz/Pc8UTUGIypwmA7Qg1RaKhHtHeMbVoKDJqWTF5126Llp25aAL+QTUPxBgXvpKRJ+SQvv6xoiRtY4gYAy7bQnu5KdqntsS6tgcSM+qCB1Kg8qgWe8AXejBf2U95Y+zaForLDEzyzQHaVD7k+x0lSZOEHqh8vWdu8fs8toYCR8haaQtENN1ndX/9Ygbcg0pk4TzBydoZcYB/OtPGVfup1WwBADFU9J/hqb3rIrtdPNhbH5lnN0b30aPogCRV+1FW+/65kSXRn+FvvReroYmnKdXajNrUF1YoXKWZ6vqqbJ5m6sMnSfCtgBoVp3JhlMrAppbpFNMV2oslZOzgzTt121PbRKPykG0HShRAfIWGhixSIPQV8KucR4OiACY0mm4lOCIHikQcyJorJFNj3AHgNwBcA/JIQci2AlXCiwTWEEDeAHQDmAvgnnFSPAwBuyo4DnHjN7wkhPgBVADQ44vszAH4KR+wCzmXdzuzvc+CkdQCAQSk9TAhJAfgKpfRsACCELAVwNZxIdr8CyezzPwfwT0rp4wAeJ4ScCSeN5acA3pfd391wLhyGFdfADBDYhJDHMfRxNFFKr5jM+YySAAYIbEEQpv17wWCMBCfwbghwmwCSMJFEEi1IwkmT62tHyCkuSzA8liQEbLergPjlEj4sl8phkSfjHyrjOR4V/lJ/hb/U75zvgbSupNoybbF2pcHq1us8GautEGR4CeKSODfQWmNn7qCxGN9KxOWmL7SlnOddOT/fXHBh5csbv6dUHPxr0/L216vCFl/40z9Y0W9dUcSFU136WtEY5F4yzzrCPyeeDipLPADUJHZ0SAVWNQDs21OQcbevMMVkgtuV3EOCwQ8Iy3f+Wn/L0yre8HmON1zcqBvbTASUUnCanQwqZrJW1fVVus5vsHXPWlsPeTgSBtBbBDrb0jtMG6ZqETVj8boTTXZlo8leO0p96Jty0Y2QEOELpG5SIMe5gEyJ4ALgGo9ospWOovP+n6Dsgz/L+Ty1THT+40ewlSR8q8+Hb9X50NreQuypW0ENDZ7FpyKw/j2IPvNnGO1HUHzJd6E2vAHfinOOf1KME2Uy009XAPgFgHlwRPReODnM8wB8C8DX4OROHwHwDwA6gHfDyaF+EE7E+ffZn7cBuAKOwC6Fo52ugKP5KJy/dFd27FfgNPFbCeB1Qog3u17fk8hhAD8A8HYAe+Ckm2wB8OPstiQAKUJIBZxI+dvgtCKugRMVfw+cyPbLo3khRiXqCCE/gJPH0p6d4IOU0qdGs+4otn0dgKdOYHvXZ682cm374j6/FwBoAFBEKVWzy/oe14fgvHCX4ditgs9TSnce57yGww+gn22MIAjsBlueURQFLS0tKC8vh8czPhf8qVQKbrcbPM/e3tEw2I5QRRdUHEEUQAOoTW1LN1Wi2ZZgELhNkQ8Sj13EB2mpUMCVS0UumRPH5cX2Sm7ffGmub35oLoAzYNim0ZWJdLZlGpUurV6MG40FFlFzRtwJIcQl2+XAbqjRXZpm+Ft415rCYHjtoGIjnne525d+rKq9dF3jxr23FYcsNfyj2634f7+30L7Z7sxUc1a/P8a5tEkGANvtkgDgHPqIHwAi3ZzR9dbp9klpH/9K7CUacL+NrNn5P/jLxoz96hZh3KwMR41hZ3wZM1GpGtpyTSPrLd21ydZDBRz8cM6Bx5ghtts2pVSziKpanJ62e5qLuMyY7bFj8NEIDZBuBLhuhB2hTMJiN1cgR7gCl865BPTkj+cpN9lSU+h66BegxqB+Rb0kX/sXpLIFCJ32QXT840fwLD4N0cd/j6J3fhW8vwjtf/kK3ItOhZ2OQSyphd5+mEWv88+kCWxK6RuEkI/B0VM/hxMxXgpHvN4KoB7OX/caOHnQHJxosgHgmwAUOMWMyLqB3JNNF3kRwKfgCPbbAHyAUtoE9EamPw3g/wFoBPBFOIL+AThuJRIAi1Kqw8kB/yKAq7L7ujQ7FwLgFkrp3dntzQHwEoCD2SJMMTv/vZTS743mtRhRYBNCToWj8DcDuBZOqPzB0Wx8inEenKum0wE8muO4rs6O+xGl9C8TPBc/BkewmQLLI8lkEnfffTcWLlyIRx99FFdeeSW83v5aSFVV3HvvvbBtG5Ik4ZJLLoGu67jvvvug6zqKi4uxdetWbN++HXv27MEVV1yBw4cPY/Xq1Xk6qpkH4QgnuEQPXE74IgMgAwWtULAbbaCUwtQMi+qWJppE81BJDRGfUUgCfDEXcpcKYa+P9xyXHaHICWK5r6S03HfMIjCuJWOt6ZZEh1KPiNHgV+2u8MBUL57nZA+frgaeQbRtm5KmpXY4fI7sdVX1P/8WrJrz/MbvpWr3/6llYWR/xbfuscxPvbes7c+0VS7g7d7zw1y+UwAA6pJlXktlTg/vDlsWsP+1jfrqRBXZHnkFhfYKWnHwf7nvfITyiSJhQr9cqUV1V8aMlauGuljV6RpTk06lerCGUMcWrS9TP+0bAGDYMFSLaBlL0NK2aCZs2YzbHitGPTRC/TSCINeNINfXDi7CheU4F5RBODcA93TMTSaEQ/G7voaOe38w5Bi1cTdCZ3wYACBXLIXe9hYsJdkrojm3H1TPgFIK2Da0pr3wr3nnZEyfMTSTbcHqAnARHFEdhRPJ/hCcM8BXAFgAvkspvYcQ4gJwS/a5j1FK6wghD/VsKOuLrcEpivwMnFuMDQD+ixDyV0rpHjiFlN+A4zgSh6PpboYThf4InNzppQC+Qwi5CI6w/gMcgf8XSul1fSdPKX0dThT8LACnE8eF6NvZeR/ICvCVlNK7h3sRRhPBvgDAw1lD8EfgJJKfRwj5Hpxc4rcBSAD4M4ASALsppf+VfWGeAvAKgFWU0guyL+Sf4OTUxOBcOeB4tzeKufflbQB+k/3/0RzHtRw935oTjwvo3+aYCez80tnZiQsuuABVVVVQVRWtra1YsGBBvzG7d+/Gxo0bMX/+fDz44IN46623EIvFsGrVKqxcuRL33XcfWlpa0NbWhlWrVqGlpQWiOOk1fbMaQghEl8TD5XjeKgAUZNCKDHrcUCzT1KhhpwQTqssSTL/tpmHiF4pJUCoRwr5CITjq2xdB2R8KyotDS+BYBGqmrrZnOiPtSqPRpdbJcau5mBCz97PtlgW3G92wM3ehKWarXnlVMhA4s4DnZR4AeNHna1z1aV9zx8v1G/bfOeeb9xrhqy8sj//F1xx2cc6tzvlSjIDaNmRJnN/4uCpUAW+8UpmpbVuOV7veQFXKSxsDd/G3fYEf17xLalNbVK1YUcZIL9R0+2RDFzbZun8ZzABHSEm/wVMgIN0TTVYsXkvbgpG0ZCNBXVbM9tjRrB2cYwkX4rtIgdBNCqQIH5YjpEA2OFmEc7vZN5ucLjh55D8ZaqgQ/IW94610FK6qZUi89i/wbj/MeAfE4rmQimugNR9wotp3fA2FF3wGYtGcEbbOmCAm26GsHMD/UUpvyOY1P0wpbSGEnAvgVDgFgt8jhHwazqerFc7n7Q+EEAU9eXoOf87+fxBO6sk2ONHuMwF8gxDyCUrpE1m/7JPhCOGtAD5LKVUIITfBEde/IYTUwCluPA9OjObzAM4mhLwdjrtbEYDfUEp/mPXy/gUcz+0/wMnN/lLWr/thOBH6YRmNwC4F8CoAUEqPEEL+BceQ+wxCyFfhVFuWANiTDaPfRwhZRSl9A8BGAL+ilH4lu62rAeyilL6fEPIROLk6ALDgOLc3FjYBOA3AE7mOC8ARQsgaAP9NCPl4dsw5A7sJjRMigH72LjzLIcgr8+bNAwDU19ejubkZZ5xxxqAx69at6/09k8nA6/VC0zR0dXVBVVXE43EEg0FQSmHbNg4fPozTTz990o6BMTp4QZAhOBEdFYAKDZ3QcDDrhmLbtmnrZoozqSKbguGzZTsEH1dEAlIxH/IWCyGfyIk5JaQsSK7qQGVFdaASwEbY1KZdmWisLn5EiKj1NENbYXAZP0cIimTeBex1KbE3dNMONsmezR63d3kxANglG2qeCszX5u673fj8vw/7Pnt+RcdN4ZZSACiXDIlXVAWA91zxabm1WdKFA6fjza7DqIx2kgfPOio1LeSP+8qOUgpes+MhxUzNVXVjta4LGyzNcwqMkMtJtSvoHTwJedKGBV21iJa2BT1lZXOTqduOUp8dpX7SjQAiCPJdJMx3kbAYJQVyNxeWklygfzSZVbmMC0R0gxo6IHtBdQWQXCi44L+gNuxG/Nm/ILDxEhBCEFh3MTLhl2GlY/AsOhWZw68gyAR2vpjUtu2U0icBPJn9/Yt9nnoawHo493Xu6KuvsjnTykDru2Hq6LZlf3rGvQInAAs4BZM9y//WdyVCyBZKaVf24XBa8lUAp2cdSu7vs70vEEK+TymNDrlmltGcchLI5oURQtZnJ9QTee6A88YtBnBqtuIyBMew+w04Ivm+PttaAuDe7O9/yv7/dhy7Qhnr9kYFIWQVnCuTewDUEkLm5DiuHkU1GSkiApxbHr1wY2kPx5gQKKXYs2cPeJ7HcI4ujY2NUFUVVVVV8Pl8OHToEF5++WUUFRXB5XJh/vz52LlzJxYvXow777wTW7Zswdy5cyfxSBgnAsdxAueSQgBCBoAoTEQRw1HEADSAUkotw0xCs3ROo7xs8GKQ+OwSsdCsFApJiRjyup0IKDjCkRJvYajEWwinhwKQVJNqd6a1qyF5yNNpNPlsLia5hFQN9EeQzPw7YnPVSY//7GLZVeRpPvlz8oHm5+Ifevxe//fOLqn/bmFHjcCBm2cfSh2IB+S1obfE3Q+cnc60tYOz93G3XBlzm64xJDTrdtqvmIk5iq6t0HVufbYxS4ggCOeOosMJCmnTpjRpEjtu8nbKEsy0LZkp22Wm4NETCBhxErD6dOETurgCKcKFpSgXdplEngmtqmcMUtkCqE174V1yGvTOo/BVLAHheIgFTp8O77Ize8faahqc5IZtmaC2kqcZMzBF7sH0aVlu5nhuUlq59xHXI41z4i+5nxtRXAOjE9jPw4k8/xKOCFUwuKf9mwC2U0pvJYRshZMfAzhm4305AOdb5gk4yewd2eXHu73RcgGAH1NKf54tbLxgiOOarG5HYnZ/vRDm0Zd3CCG46KKLsG3bNhw8eBArVqwYNEZRFPz73//GpZc615jbtm3D1q1bIcsyXnzxRezcuRNr1qxBKBRCNBrFwoULsX//fiawZxCEECJIoh+SCPide5Vd0NGFVuxDKwDANEwNJpKiyatuSzQD1EMK4OMLiM9XwgX8tQWLqmoLFgEAdEunjakGLaN3dHZpjVzEaCk2Ure5kgaJmOIqoaD89MALRSuSC1+9OXTLKiXy8fJkwVxzv8fu0qwDR+frmXqDHJi7U9i3wZKH+h6lJtXcihmvUAx1qabRtabu2kh1fxWhTsOP3oMb/thVC3rG5tSUJRhJWzJitsuM2m7SZXmECPUKEdsvRBEQogjxcb6QxLhCxIRCIc2HHGnMgQcHljc1TVDqd8HoakBgzTt6l/lWnIOOv18HrWkvjK5GyBXO33Hs2dsROvPDvcEJI9IMqWQuiORGx9+vQ9FFX8jLMTAATImkrdnHaAT2PwGcSwh5AU5HiVtzjLkZTiedj8CJDF+eYwzghO3/nM2l7gbwQTgdeo53e6PlAhzLl9kG4L/geBr2Pa4PwInO900R+S2l9K4T3HcueixmemECO78899xz8Pv9WL16NVRVhcs1OGXNsiz8/e9/xznnnINQKAQAMAwD7e3tqKqqQnNzc6+Q7u7uRmFhIVRVdYp9GLMKQRRkiJCdQkwTGSTQhkTv85ZpWaaiW5KJpGhQiBbnK3AFCmoDp6RX8OdakkXi7ekGoy5VJ7XH7lTilEspCy4qCLet7HrE+guZ62lxh2MJu3GvDy+d94o7VejcAaM2tSTFipUoRmahplunGLq40dYCS4nth5N6B9OGpdhES9u8dsgSU3FbNuLUZcdsrx3tdboIcRES5COkQIiSsBQjYSnGhV02EY9Fk2dRbvJso+xyp+meu2Y13DX9i7SFYAlKLvsBtKZ9CG25AoRzbikUXfTFfuN6ItoAUPmJ303wjBkjwD6peYBM9y9/4vS6H8oDaCel9POTOJ1RsXjx4pvhJPX35hpVVlaWnn766dfmb1azG0VRcM8998A0TZSUlGDdunXYs2cPzj777N4xr7zyCrZt24bS0lIAwNq1axEOh/HAAw8gFothzpw5uOyyy0ApRVNTE6qqqnDrrbfijDPOwNKlS/N1aIxpCLVtmxpGylQ02TTdppeXkqYa97hNI6ImMsWCfARvuTW8VZUSCtOWVQ6SWEy41DyDCmn4EKE+OE4XIT5CQnyUFIhREs42F/GzCDKDMbv4bt31F30/35OYbUx7gT3dWLx4MQHwRzhekL1UVVWVbdmy5Zr8zIrBYOQbaqs2aJTyQlLzutWoLKQs3UwVmjIlHp9m+mWFdJhB8cHM2/m1rz1uPP2f9oSKjq72kPmMJpHOkfcwcIeUE4BCjtJCDggJlPp4IMBTKsmUplyUJj2UpiSKiMu2uyQgORG32SgFsUHcNoiLOj+yDeICIFNAssGJFETs+Z+CSBQQnP8JtcDpFjjDpJxhgddN8KYB3jAhGDaIboHTLPCqBU61wCsmOM0Er7K75owZSDmAbZlDL0/EnXfGGGF11VMEliLCYMwsqG2BIGlxJGkIfEoXpLQmSWmd4zIugddcssvgPF7L8vosyLLtFsTe8r1+/tGWDfy78xTlcft8dFad4qp94SnjI8V75folcxOPdbXcTzkyvNMRpeCBME9pIQHCAqV+AfBxFF4JVHHZNOGhNClTWi9T2uWiNEYGpLCNeKwUcMQwcdngXBRwUed/GSCyDYgUnGiDiLYjkvv8gLfBGRY4w6LO/yYEwwSnGxBMC7xig4s5ApnTTHCKBV4zneUT4fLEYExnWDrIFIEJ7Mkn5x8/ZbcSGIxpQMYASZocSdo8l6Y8nyaCoHCyrFGXS7PdboO43RbndluC5KIiIb2+F2P2oY1pLvPutnPSzwXe7rPKytwAwHVE6Gea/2yvKDfFwtqgNU8rDR9OdzhV8ZSCA7w8pcUcUCAAfp5SH0fhF0ENF6UJt02TLkpbZUq73ZR2cwP8+CkFl40muyk4mQJuCiJTQMpGlnsiyYITVSYSgGyEmdhZoayblDMt8LoTSeYNE4Jpg0v3iORsNFk1wasmOI1FkxmMcYGCCewpAxPYk0/ObxLLslgkhsGYZCg1LJ5PZTg+qQlCWhfFtCWJGVuSFEiyysmyLsiyKcqy5ZIk6uZ59DQgmTBe66jV701sRUP1JonWuoJ9n6t89sXM+0rrZABoK6kLn9a87G0tybY6kVI/B/h4SiFTmnLbVHFTqKKNqESRIeA4CiIDnGwDIRtccapXLCObdkFECnD9o8m9Itk0wRsW+HRWIGs2ONUElxXJvELB2bmPiMFgMGYfTGBPPjkFtmEYRq7lDAZj9FBqU47LKByfVAU+pQti2pTEtJUVzESWNF6WDVGSLVmWbbcoQgLgz/7kDdUUcF/jadrTrgu5VMUCCaWDxwjPvqp9CvdQiXPO27bbCgd4yX+6p9LbFGlJcJRYAE8BErZBQgZ4W3UiyYYJLhtJ5s1sbrJiOWkXvfnJJnjNOv5o8mS3YmYwGIMRwW4HTRmYwJ58hhLYg4zXGQwGAKg6x6cUnk9pgpAyJDFjiVLaliSVyLLKybIhyrIpOVFmuAnpn8M8lWlIFap/jW3N7Cs8y2/P8w8pUklHt1kSNegHwkfcPcsW2iSm+o7a84RT1Vdjrz+dMIniCGjOpOBYyhmDMfvoBHA035NgODCBPfkQ5Cgg0nWdRbAZswJKTZvn0xmOS6qCkNJFMW2JUsaWJIVKUk9ahiHKsuWSZermeRzzXp4B2JTi8Y5VmX/TrXZH6cle+PkR87Pll5qjP/PdtdfF48yeZed61abrt+hzrn56yaGSVbHuL931j29M6MQZDAaDMWqYwJ58WASbMaOg1AbHKQrHp1TBiTKbopixJDlDnSizk5Yhy6YsSbZbkiAD8GV/Zg1xw63dnbiw7QXPhUG9rCA02vWkp17RA0QsOpvbsa7v8tWaVhEtISWhyDa+s3zpuhsv27riS3c9uGfcJ85gMBiMMcME9uRjIYfINk3TopRSZtfHmBroJselFJ5PqYKQMkQxbYpShkqSAvlY8Z8ky7ZLkqib4+AG4B5xs7OQ3ama7rv096aOhtZXoEisGcu6fGe3wqULpKuTv7C5QJ+W5gAqTasclCZ21DZKZcblJIEjPwVw0bhOnsFgMBjHBRPYk8+QkWpKqUkIYV3WGOMOpRbluHSPYNYFMW2IYsaWpAxkSSWSrPOybEiybMqyTN2CABFToPhvuqLbvPXP2Oktj4nvlFOB6hIAhWPeiG3Bvb0l5gIpvrJ4D59riI/SxofWcat+9Lcn971RtcBz42Vbr/jSXQ/+5UTnz2AwGIwTgwnsSebNN9+kixcvNuB4VfaztbJt2+Q4jglsxqggRNEIl1QEIa2LQsoQHIs5KskqZEnjZZcuyrIpSZI97Yr/pitNakHyjvS7u3cHziyxCz1zTmRb3hf3dJpCUfln0z/tDPhoca4xVYYZPeCWlvOZl4ns+kmpYhz61o2Xbf3nl+56MHEi+2YwGAzGicEEdn4YSmAbYLfZZy09nsw8n9YEIaULQsrMFv8RObcnswxmj5Z3bErxdOKU1n/Si+2O4LIKuLkTjvoLre26nQgGvTSpXxHcFRhq3HJNtw7IEv6zjrM3NuzoPBpaatv6vu8B+MKJzoHBYDAYxw8T2PlBh9PdrV+6CKWUFTrOIHo9mbmkKohpPZvLbEuSQmVJ5aTe4j9LlmXbJYqQwdIypg3HihbfFtBDheXjtmHbguuVlowpl4Q+r/66zuNF7VBD12iq91748NjJ5KTLn/pXomnzjzhN37/0xsu2/vFLdz24e9zmxGAwGIwxwQR2ftCRo52pbdtMYE95Ru/JLIpwcxxLy5hpnEjR4mjwPv162pQrQi47Y37Q90rJcGNXq3o5AOgi8XSElJ2hZJPZJa2glr77NwBOP945NH392dsBrDje9RkMxqxhX9X1Wz6Y70lMRZjAzg86gEHet9kUEcYkkvVkVjgupQhCctZ5MjNGx7gULY4CrqVds5ViF3jgs/ofmjyeoaPXADDHNCtAaRqEeB/YwAkfevqu0tiaL5db+p7UCRY8/gHAk8e5LoPBmD3o+Z7AVIUJ7PygIUdUk0WwTxxKbRCiqDyfUnk+pYli2hB7W2UrkKRjnszZtAwXIfAC/S3QGAygb9HiGSV2ofeEihZHgloWdW9vopa7jJds1brS+1LRSOsQgHgobcgQsvS5FeSkTz7cnJFNdb8pr05Z2s4bjrfgser6LU81ff3ZOwF84LgOhsFgzBbskYfMTpjAzg85U0Qsy9LyMJdpwHCezFpPlLmvJ7MLOe4QMBijYSKKFkeD++ldSctdFgCAT+l/avJ56KjSTypNs/uQJMHkiXSkDC/PO/KAvH/xBzZa2q4IQL8P4PPHOaUvA9gKVhPAYDCGxsr3BKYqTGDnBw05BLZhGJk8zGXSOebJnFYFIck8mRlTggkrWhwNrd0JqAV+8IBANfujnmcLRrvqkrTOH5KcrKV/nMr5vnTfy6vfXHR5My+vqbO0Vz9942Vb/3A8BY9V129pafr6s98D8D9jXZfBYMwamMAeAiaw84MGx0WkH7quK3mYyzihaHxP8Z+YMkQhbUmSQiVZIbKTliFIsik7FnNwMU9mxlRhd6qm+279vemjwfXldAKKFkeCWhb1bG8SqKuIAMDV2l+aAiFaPdr1F8fUyn+Fna7zrywiqymxO8vbXjjSXL55k6W91grQIQsez1u4+f0Azhxq2wLHk59e8NVogScYHssxMRiMWQMT2EPABHZ+yBnB1nV9ykSwR/BkJsdaZTNPZsb0Q7d561+x01seFd8ppQLVpZigosXRIDx/sJW6iioAgKeGfY3nydBY1l9l6r252pQQbv8ccmDRkQdOaik/zeBdG45a6ktbbrxs64e+dNeDt+dY/TCc9up1ubZt2hYe2P/4gx9Z894PjWVODAZj1sBysIeACez8MOkCm3kyMxhO0eKd6Yu73wicOeFFi6OBtkQiYtpT3nM2+Ih2Z1MwZI86eg0AK3nTA4ua4IkAAPdsJkXfvVMJBpJ1z8T9G0+11O31gN1T8BgfsPprAPYAqAHQkWv7z9S9cuSMuev2zCuoZrZ9DAZjICyCPQRMYOcHFTlSRFRVHaPAVg3HXi4bZRbTltRT/CdpnCTr4rEoM/NkZsxObErxTOLk1gfouye1aHEkqGnZ8msdgOQnAECoST/lfmzIro1DIRBATlqKFhL8ALC3lltucnb9ooN3lb+69uuC4NrUZKrPbwbwPQwoeHzs0PP2eQs3/wXAD+F8H+R0Mrr1tfse+c7Zn14k8gKzqGQwGH1hAnsImMDODzHkENiKkk5zXDzNcSk1K5hNyYkyQ+pNyzB6WmW7ssV/4qTPnsGYBuS1aHEU8C8caeQkf2/O94e0vzcVhKzjiqoXJUzaHDp2Ot8xnxxdd6jxTFFP7qSudRtN9aWjgPXpbIfHN/qu+9ih55vPW7j5YQAXAmjItf2mRFvqxcYdT51eu+7845kfg8GYsaTzPYGpChPY+SFnpFqSjmY2n3aYeTIzGCdAvosWRwNt7u4W0/Kc3kQxauMzrn/7jnd7NYolNPd5fM9pXNW6QxbmHf2X9ubiy3nBfVqrqTw9F8BvAGzJsYmHssu9GOIL8/YdD7y8umzJyUGXv/h458lgMGYc0XxPYKoyKA+YMSlkkKMwoL2dpPIwFwZj2qPbvHVv5MzGa5K/aL/e//PCI4Wbq6kgTsm7O9S0bGlHBITje8+/79fubSp2mcft1LGKGv26wB4tIws0AYcqWl9YS2yriZdP2QgIhwCcduNlW68cuP5jh57PALgdwJCt2U3btO/b++hDxztHBoMxI4nlewJTFSaw80POCHYsRjTLyp0DyWAwBtOkFiRv6P5o3cesW7X7Cj8zJ+sIMqXhnz/cwIueY64l1MbnXQ+6T2Sb6zlt0MXES0tIMwHly9pffosQwgnu07uzT/3sxsu2BnNs5jUA+zCMyH6m7pX6w5GGMXtqMxiMGQuLYA8BE9j5YchiRk1l+UwMxnDYlOKp+EmtX4h9r/lr8u99O4suqrUl7/Qo3m3s6hIVdz+XkHdr/2oucxknZBO4mtc8sGi/u2L3bubmA8CCw/evBqUKL6/eAAhvAigF8P2B23js0PM2gL/A6YI6ZPrgn16771HDMvUTmS+DwZgxMIE9BExg54cM4Uy3IGhzBVFdJkqZNZKc2uRyJc6Ix61BxY8MBsMpWry5+z31H1Nvjt4c+nZ5R3hFJTiO5Hteo4UapiXuihJCuH7n3S/L/zhhZw6JA+RU/4vztgIyJy1jj2imw/5Uw6uEECJ4zu6x6fuvGy/bumrgdh479HwzgIcBVAy1r56CxxOdM4PBmBHE8j2BqQoT2HlAdiUzPl+k0u2JLfK44yVud9zldicN2ZXqUjUrku/5MRhTiT2pmu5vR77Y8F/crdxTRR+s0T2F07KrIP/c4cZ+qSEAtqoPt1S69XEpGixMDHbLenoF6QaAxQfvKgUAQV6xHhD3wXEx+s0Qm3oYQArAkEWXt+944OWYmsjpm81gMGYVLII9BExg54E3drXooqjvF0XjcUE0nhIE63met17leXuvrtPmkbfAYMxs+hYt/mSKFy2OivrOTlHzDnI0+ap0z7g5OdVkjEHn8/s3kBUUsALJ+kWCkdoFAKLn3J4UteEKHv8MYEjhb9qm/Y+9jz08TlNnMBjTl1i+JzBVYQI7f8QBDLo1HI9bscmfCoMxNZiORYsjQQ3TknbHBUJIv3SW87THW6s96pAFhWNlla0YA5fFglxh3IPdADDv6EMKAPDy0rUgck+h4lAFj68D2AtW8MhgMIaHRbCHgAns/BFBDoEdjTKBzZhdTOuixVHAP3u4iRPdg9JaviHeOa7n3/W8ljMf/cFlznmmsuXZdaBWCwCInvN73IpKAfxg4DrZgse/YlQFj4Z2glNnMBjTl1i+JzBVYQI7f+QU2B0dZmzyp8JgTD7TvWhxVBzt6BB1b/XAxWdqT7fN8yjjGp1fxet+WJQOXP7YBm4BBdUdy75XDwIALy08GcS1MzvkUzdetnX1oPVGW/DYsPOpcTkABoMxHWER7CFgAjt/dAGQBy5sbjZikz8VxmQRjZgwzUEaaFYxU4oWR4JqhintTUgDU0MA4JvCX8b9j8DFEU5OWcmBy5UAJ73lpW0AsODwfStBqQoAovdtPfPiAfz6xsu25rq4eRhAEsMVPO58YDsreGQwZiWZquu3DEpNYzgwgZ0/OuF8sfUjlbJ1XadKHubDyEE0YuKaa5pyPtfaauCb32zF5z/Xgt/91unhkUrZ+MbXW/HVr7Tiu99pg2FQ3H9/HJ/7XDMUxcarrykQhJkVpB0Nus3Z90bObLw2+YuOGVG0OAr4Z480c6I7NHD5Ju2FjkXedPlE7LNYMQYJbAB4dDlcACAZqUJfqulVAODFeatBPK9lh5wGgBU8MhiMscCi18PABHb+iAEY7KsFQFHs2KTOhDEkv/99BLqWO9h4880RXHFFGL/8fxXo7DKxc6eCJ55I4pJLgvjZDeUIF/B45ZUMDr+l47xz/XjzTQ2yPLvEdbZosf5j1p/U+wo/MycZqB63or4pzeG2dtEcnBoCAN/m/zxh3Vpr0kbOfOkXThUKDEoNAFh06K6inuWi98K+d9GGKnjcAWAPRip47GYFjwzGLCOW7wlMZZjAzh9DXvml00xgTwV27FDgchGEC3L3/mluMrBwoaNPQiEe6bSNd70riDVrnfq8eMxGKMSDUsC0KF57VcH69TOmdm9Ynoqf1PaF2PeaskWLNTOpaHEkqKYb0oG0K1dqyFrt1a5lvsSQOc0nymJNz/k6G25O2B20owAQShxdIhiZNwCAF2tWgPheyQ4rwdAFj3cAcGOYgsdbX7+XFTwyGLMLFsEeBiaw80cMQ7z+ySQT2PnGMChuvz2Kj3+iYMgxW0734vY/R/HiC2m8+koGp5zi7n1u314VqZSFZctcWLPWjZdeyqComMe3v92OnTtmZgZQ3HBrt3S/u/4jyk3Rm0PfLusIr6iacUWLo0B45kgLJ7hyRYLxHf6PEypATyL6oLqOHp46me+NnM+tf7i366PkfXvf/OrhCh4fxDAFj82JdlbwyGDMLmL5nsBUhgns/KEA0JEjDzsWs9hVYZ75syeXrwAAlPZJREFU250xvOtdAfh8Q3euv+KKMNat9+Dhfydx3vl+uN3OxymRsPDrX3fhy19x0lbPOsuHq64Kw+fjsWGDG88+mx5ym9ORvkWLTxZdMWOLFkfFodY2wfINaigDAKv0Xd0rvdHKidz9BtEQYQ92EgGAV9ZxpSqoDgAVTU+tA7VbAYATq5aCC2zPDuMB/GaIgsd/YzQFjworeGQwZglMqwwDE9h54sUX0hRABxyf2X60tRmdkz8jRl9ef13BAw8k8MUvtuDwWzpu/J/cb8mCBRI6OkxccokTsDQMih/8oAMf+1gBSkuP1fA1NRmoqBAgigT2DDARmY1FiyNBFU2XDmY8OTJDAADfJbcoQz03Xnh4QsSEqed6zhI5/o1Cx02EBxVKO157s+c5yXtRCEDPX+ZmnEDB4317H33o+I+AwWBMI9rzPYGpDBPY+aUNOQR2XZ3OBHae+cUvK/Dznzs/8xdIuOSSIP74x8igcXffFcMllwThcjkfpX//O4lDBzX89Y4YvvjFFjz5ZArptI2CMI+aGgkPP5Tsl0oy3WjWCpL/0/2RullXtDgKhGePtnKCK5DruWX6nsjJvq4JjV73EE4Y9lDPPbaO6/Xen//WvctBqQYAnFC+iHChl/oMHa7D4x44DWpy8mz9qw1vdde/MfaZMxiMacaRfE9gKkNo7ruJjElg06nedwN4O4Dmgc995zulX5UkMn2VGGNG8VT8pLYH6LvNjuCymdcMZjx4s6XVVUeHtN67y/hc4wZ/55zJmMpVdij++vxAzhxwWDa99WdW2gviA4CX137z+bSvcjMA2GbHYT35l7k4Fnj59ZfuevAzAzdx3sLNlQB+COe8ldMRpTJQ6vvu2Z/+tMiLQ+aEMxiMac+FVddv+U++JzFVYRHs/NKOHDnYAJBKWSyKzcgrrGhxdFBF06S31CHzkhcab8bW+TqqJms+y6HnTBEBAPAcea2Mdvc8nH/wb73pHpxQMp9wBX2j2J88kYLHFxp2PDXGqTMYjOnF0XxPYCrDBHZ+iQHIeTs3FmMCm5EfWNHi2BCeOdrOCbJ/qOe/Q29KcBOdfN2H9cQY9rz+yDou1PN7UeLIIt5U9vQ8Fn1by3HMn//ECh53PPAyK3hkMGYsFEBdvicxlWECO790A8j5xdvdzQQ2Y/LQbc6+L3pm47XJn7ezosUxsK+5WYQ/Z0MZAJhrHEls9rdMWvQaANZCD9JhKmkPrRCCcWLHex6XHflXb8Mrji+aS/jiF/sM3wzgqoHbGE3Bo0UtygoeGYwZS0vV9VuY7/0wMIGdX3pu1Q4S2W1tJhPYjAmnb9HivQWfmZMM1AxZvMboD02rqnRUz53rnOU79HcxjpBJPc/6CBF4xRrWC/K5SvR+Mc5reWYlqNUbaRa9W2vQP7f6pzdetjWUYzOs4JHBmL2w9JARYAI7j7z4QtqEk4c9qJixvp45iTAmjqfjq1u/EPte01el3/t2FG2tnU2dFscL4dm6Tk6QhkyRqDIakqf7GifFOWQgId2MDff8Exu43gsDEZRzNz/fe77h+PAcwpf2jWIP1eGRAvgrABnDdXh87d5HddbhkcGYaTCBPQJMYOefegDegQvb2sykYVA1D/NhzFD6Fi3eFPpOOStaPAH2NDWLxD+sK8i37d9GeI4M3aloAqlWjZzuHj00LRLkNs5O9TxeUv/QPEqp0fNY9G6dB6cRVg+fvPGyrScN3M5jh55vAfAQhil4bEl2pF9s2PHkGKbPYDCmPkxgjwAT2PnnCHJEsAEgmWR52IwThxUtji80pShSvREabkyZ2ZI+x1+fl+g1ACzX9RHP7U/3uTwIGym3FdnfaxfK8cFKwlf0dRQ50YLH7VElwZpSMBgzB+aBPQJMYOefdhzroNaP7m6rdZLnwpghsKLFiUN8tr6LE6RBd5368m3rt10CN3TaxESzztZH9NB/5jRB6vt4Xt2Dob6PJd9FiwD0vYt2KoAPD9xOtuDxNoxY8PjIwyPNicFgTBtYBHsEmMDOP50YQmC3thotkzwXxjSHFS1OLOSNhiaBGz41pNhqy1zgP5y36DUArKVGcKQmYp3VnHSEt3sF9IJkfUhNt/W2KyWcv4wT5rw8YLWhCh53YISCx+fqX2MFjwzGzIEJ7BFgAjv/dMF5Hwbdej16VGcCmzEqno6vbv1i7LpmVrQ4cdBEJiM12QUjjfum+fuOfEavASBIIHKanRhp3HPzuX5NaYoaHuuXuy16L1wGINNnUTGcLo79YAWPDMasQkeODtSM/jCBnWdefCFtAOhAjjzsw4f1LtOkQ3dlY8xqBhYttodXsjbmE4j4fEOE8OKwFy4FZqey1ffmkAV/k0lQMVMjjXn2DF60+kS6T27fXqgb6d6oNuF8xZxQ+8qA1a698bKtJw/cFit4ZDBmDfVV12/J2SSPcQwmsKcGOZ1EbBs0Hmd52Iz+7E1VR74d+UI9K1qcPMjO+iaB84/YMOZr5k3tIg9ppHGTwRzNMEYaEy8i7kMy6fXMFmHzUuuLkb5jRO/bVgDoK9aHK3h8GEACrOCRwZjJsPSQUcAE9tTgEIZwEunqsliaCCNbtHhG47XJn7f/2P+LgiOFp9WwosXJgSYyGamFFo40LmhF1Iv9e8snY06jYZmuj+puxgvLuH6pJKc0bgvYttUbnSKcp5AT5786YLVNyF3wqGBUHR5ZwSODMY1hAnsUMIE9NWjCEIWOLS2s0HE2079o8bOsaDEPiM81RAkvjujK8RXjpjaZhzwZcxoNa6yRnUQA4JnTSNjsUxEZMuI+I3Kgre8Y0XP+SQDiA1ZlBY8MxuyECexRwAT21KAFOYocAeDwYY0J7FkIK1qcIrxe1yDw/hEdQXxWQr/E90bZZExptGywh2/j3kPGT1yHfFxH32WLGx7p1yCHcO4QJy7aOWDVYgA/Grg9VvDIYMx43sz3BKYDTGBPDZJwokOugU/U1RkR1tFxdsCKFqcWNJZOyW0oGc3YLxo3t7iEwZ/ffFLAQSKalRzN2KdX9ncTmZc4XKplOrr7LhO9550MIDpg1eEKHh/ECAWPL9S/zgoeGYzpx+v5nsB0gAnsKcCLL6QpnCtCf67nYzGWhz2TYUWLUxPxhcY44cURRbPHThof8L02KiE+2QRG4SQCAM9tQpkB9CuKLG7Ylu77mBA5wEnLdg1YlcPwHR6HLXj8y85/soJHBmN60VV1/ZaGfE9iOsAE9tThAIYodGxvNxsneS6MCYYVLU5tyKtHR5UaAgCf0//Y4hYwJVN4qlRjVDafuouI+4Ncv7zr1W0vVJqm2tcDG6Ln7LVwvPv7sgnARwZus0/B45AXHz0FjyM1xWEwGFOGHfmewHSBCeypQzOAnL6SR45o9ZM8F8YE0VO0+HHzTworWpyiRFJJqYMb1fsi2xnzCu/2oome0vGydJROIgDwxMmk3/eBCIuX2l7ql5tNiOTjpZV7c6x+/Y2Xbc1152UHgDcwUsFjpGFgZJzBYExNWHrIKGECe+rQgiHejz171CbbpszUfRozsGjRkr2DfM8ZUwPhxeYU4YVRuYH8l/6nZq9Ip+x7ucbUR50Xvn0tyjWgX73HqoZHC21q9zv3CJ4z1wOko//aw3Z4vAMjFjze8xgreGQwpgVMYI8SJrCnCC++kE4D6EaONJFMhhqJhM0azkwzEqZLu6X7Yla0OI0g2480CIJvVF7Woq1ZH/E+P6I/dj5ZByMw2rGWSLhdRVy/fOgCPe43owf71YAQIrp5efX+HJu49sbLtp4ycGGfgschU25ak52s4JHBmB4wgT1KmMCeWhzAEIWObW0GSxOZJvQULX6K/Il7suhDrGhxmkC7Ewmpix+11d61+p+b/SIdsoBvKlBKqAu6nR55pMNja8mgyP2C+v8Mqg0Q3KdvBMjAi/6RCh7jGLHgMc4KHhmMqUscwOF8T2K6wAT21OIAclj1AUBdnc4E9hSGFS1Ob6htQ3ypNUN4YVRtzgWq2Z/wPB2a4GmNC37FTIw8yuGN1ShN92+LjgXxQ6Wa0tXPso8QQeblNYdybGIjhi54vA0jdHi8d+8jD7GCRwZjyrKz6vot7AM6SmatwCaEFOR7DjmoxxAdHd94Q623bfbNM9VgRYszA2770XpB8I06ev0x7Y6mgGSPOv0in1SO0kkEAChHyGvlfPfA5UUNTwyKggvuzRsB0pRjM0MVPO4EsBvDFDw+X/9641vd9azgkcGYmrD0kDEw4wQ2IWQTIeSnhJAwIeRqQsidhJB5hJCN2Z+ek/t/CCFeQkgBIeRsQsiZfX782W3tIIQ8TgjpJIScRgh5qs/PPydg+q0ATOQoBkokbC2ZtNsGr8LIB88kVrV+MXZd01el33tZ0eL0hnbG41JUHLIhykA4atJrPU+MqkviVGCpPmp9DQB4bMPgOpBVbS9UmKbWrwCSEF7iXevrcmzixDo8vn4vK3hkMKYmr+V7AtOJGSWwCSEcHIGqAJgH53blN+FUxv8Czq3LdxBCXAAaKaVpOCf7GgC1AE6HU/HeE5lqppSeC+BlABKAewA8B+Da7D7GlRdfSFtw0kRyRsZaW42j471PxujpW7T4++B3y9vDK6vAcTPqMzTboLYNaXubSjh+1Ok8H9b+1hSW7GkjsE8Zg5MIALy5lJTECYn3XSZTUxDbtw+6wBdcmzYCXK70tWuGKHhsxQgdHluTnenn61/fNpY5MxiMSYFFsMfATBMHbwfwewAfhCOuGwB8HsB6OJ0SH4MjqF8FsJIQsgvAeyilt8Lxaz0DwGZKaXN2e+WEkMcBbMBgj+qJStd4A0MUOh49qtdN0D4Zw8CKFmcu3EtH6nnBN+q0HkJN+l/uR6Z0YeNANtj6mFNZXp7DDWyJjlUN/ymg1O533iOEEwTXplyNsEZT8JjzPAcAf935z1dYwSODMaVIw9FRjFEyowQ2pfRBAPcDeArAS9nFCvoX7aQBPADgagD3AejJ91sP4HZKad8ocUefCPZkcRRDNJzZsUOpsyxqTeJcZi3ZosUmVrQ4c6EdsZgUl0bVrbGHy7V7mwpla1pdYJVz1A3dzow88hiPnkoGifJCLRYwYm81D1zOu9ZtAvhcd9c2AvjowIV9OjwO2aCHFTwyGFOOXVXXb2H9OMbAjBLYWS4BcD6AT/ZZNjAJcQucVI+1ADYTQp6GE+n+CiHkCULIl7LjBjoKXADgNDgpIvPGed49NMIR2PzAJzIZakQiFnMTmUAGFC1WsaLFmQm1LCpt79AJxw+ZCzx4JRufcz00LXPtvWNwEgGAhrko6OLJoGLHefX/GfR6EcLxgnvzUD79IxU8DllYygoeGYwpBUsPGSMzSmATQi6BkxZyF4CnAWyFE0Hpmy8twGno8mMAMUrpTymlZwC4AcANlNJzKKU3ZscuIYQ8BWBT9vEbAD4N4BY4qSjjzosvpA38//buO76t8l78+OfR8h7ZyyEhkAQChFD2CHsUSKG3ty0tpS3tbX9dt4NC97y3LQ1tc7sos0DYBAgjZG9nOHvvOMszHvG2tnSe3x9HBsexZFmSLdn+vl/1C1s6OnrsxtZXz/kO8zJMpzmeJSW+zlpjiThJ0eLAYtl4vNRqzxrencd82vt++fD0QCp2H+rSaE/3iwbXn21p6XjbpMZDI73uujMCb2vapVeB9UgnpxlK5IJHB10XPHrC3S+E6DUSYHdTvwqwgWrg74ALc4f6Ocyq13LM/tLfBGqAzwAfB3KVOnOwAoBSKgvYp7W+EdgQuvmk1nqv1nov8H6oWLIn7CDMQIY9ezydvYiJGEjR4sCkqxoaHM3dSw0BeDj9vZ76fe9x53WzkwjA8mvp9M3EkLKVrR1vU0pZbBk3nApzqkgFjx/QZcHjNpnwKETySYDdTf0qmNBarwUaQp8fxwysSzBTLnzADzELHZ8HHsOsZv9t6OGZnJ77fBOwQyl1NjAkdF/7F+UHOD0NJZGOEaaI8uhR3ymXy2jsoecdEPa1nlX/6/qHSr+tXlBStDiw6GBQO7bWBrqVGgLc6/mgYlS6P2zOcKrrbicRgOrRKrfSrmo63n7xyXWjA0HvGbvKFsfUK8HWWRGUBXgiTMHjYrosePxgS4O7SVqUCpE8zcC+ZC+ir+lXAXZIOpChlLod+B7wIyADsGmtdwP3AAu01q9qrZ8FfqmU+i7wJWBtu/OkAa9j7nZvxCyGnBTqi70cMwB/o4e+hzLC9MMGOHnSL2ki3dSxaPHokOvO0jZHVFP7RP9hLTpWYrVnhZ0mGM6P0t7p0/9WrtS+sAFsJGsnWc5oR5qmA3Zb9dYzOnxYLBZly7ypqePtbUsA/qvjjdEWPL69d8lCKXgUImkKC2ZODyR7EX2N6m9/tJRSdsy8Pjfm99cnu25cfU3Wt4ELgNqO9113Xeakj3889/O9v6q+p9IzqPU1572ndufcPEzyqgc2XVlfl77Lma8sljMKiCO507Ok8sn8F6MeRJOqLioocGO3nDFEJpL8Ou186ulgpkVx2u5zbdrg5t1X/W+OUuqMXWlPwz/3g39KJ6c7BUx6eM7801oA3jbxWgU8BEwCwu5U/+yGb947aej4ad1ZvxAiIb5fMHP6P5K9iL6m3+1ga639Wmun1troq8F1yFbMtJUzbNvmPi7t+iJrK1r8UdozmTuGfkKKFgc4HQgaju11urvBNcBPHXO6/ZhUlNnNTiIAjUNUVmmG5Yygd5i3PtffeLSys8fYM28N1xJwKGZx+WlCBY+v00XB4+ztc5dLwaMQSbEi2Qvoi/pdgN2PhC1mdLu1v64ueKIX19InSNGiCMe6/miZ1Z7Z7RzqW7wrqsZlevpFq8ZRMXQSAVh9vvJ3dvvZJYs7/d2ypp1/GSptT5jT/b9Z9824tOONoYLHeUjBoxCp5mTBzOmSfx0DCT5S1IYiZz1QSZhuItKu7yP7nWPrfl3/gxIpWhSd0RV1dXZ3xthYHvsz2+uJXk7STPL6Y8oHXH0tI4KaM66YTW48MMrnaThj4iOALeO2ToNyIk94XEIUBY/1UvAoRG9amewF9FUSYKe2jUCnweK2be6DvbyWlNK+aPEP2X8bcnTI9HFStCg60oGg4dhRj1Ldv5Ix3buu+twsV9hBKH3NJQFfpy1Ju+LKUWlHss9MEwEYVLay07QTW9qkj6HSd4Y5ZZwFj4tlwqMQvUfSQ2IkAXZqOxDujvJyf1NjY7DTHMj+rNIzqPUvdQ/KpEURFeu6o6VWe+aQWB77C9vL/arO4Uojtk4iACsvUp1GtFMr144JBn2dpp7YMm+P9Pryx1n3zeisz/ZOzI5NYd/YbCjdUV5cV7IzwrmFEImzPNkL6KskwE5tJwA/YQp/jh/37e/V1SSRFC2Kbis9dcruyTgrlode6dtYc15WS5/vHNLeBIuRpQNGTEWC669ilN/8W3SaDO23Waq3dbq7bXOcOxWVGW44RVwFjy9se1smPArR84oLZk4vS/Yi+ioJsFPYhiJnAHM3p9OJalu2uPp1gN0cSPc+V/fJkq+6n5aiRdEt2h8IOnY3WmJJDQH4leXFcDnEfVqmO9jtTiIAvgxl3Z/feZrIBSWLhugwORuWjNsjvRH+eqwFj1Wtp1zrTmyT3FAhepbsXsdBgpXUtw1zeM4ZSkv9DU1NwX5X8NO+aHHl0C+O82YOlaJF0S3WtUfLLPaMTt+YduUS37ZTF2Y3dXuUel8wwh37ru/yi1WnOdwjvXXZvqZjnaarOdImTEZlbQlzyrgmPL6264OtUvAoRI+S/Os4SICd+g6H/tvZixAnTvSPNBGfYTHebbihTIoWRdxO1NbafVnjYn34r9UL/Tb1YJLPF3N14NbLGOaFTn82Y0sWhx3FrjJui9Qe8Qrgax1vXFa83gO8iBQ8CpEsBtJBJC4SYKe4DUXORqAYyO/s/q1b3X26P2X7osW3B39vrBQtinhoXyDg2Ntk62zCYDQu9O2pm5ZdV5DodaWKaQGfPdbHBh1K7RxiOdXZfefX7xvi8zR22rIvLW3C2VrlhNvFhvAFj7uIquDxxM4I5xZCxGZHwczpnf5Oi+hIgN03rCXMpdLjx331zc3B6l5eT9ykaFH0BOvaoxUWe0bMKUW/Uc+6YozN+4Qr4ugkArD0Yyq3s9utSpFVtsIX7nEq7dYxQLit5iGEL3h8DbPgMewbgxe2zV3mC0jBoxAJJukhcZIAu2/Yj5ki0qfTRKRoUfSoYzXVdn9WTF1DAM7z7W+4NLu23+5eA0xWRo4O6LCBcFf2XkKuE1o7u+9jJ9cNCwb9nZ47PePs0QY5OyKc+uuz7ptxWccblxWvr8IseBwV7oFVradc60qk4DHZqltPsfbEVlq9rqiOr2zuc/tCA40UOMZJgps+IDTV8SiQ19n9qZ4mIkWLoqdpr9/v2N+SFmtqCMCvebbF0p+3r0PS3YHGWB+rrYpNIyydRlBZhs8SrNoc/tzpt56lNUaYe9sKHjt7Teqy4PHVXfO21rsaT4Z9bhG1Wmc9n3r1v0+77Stzf8re6sNhHgEHao7y7fd/y9byPXzm9e/iC/rZU3WIz7/xEJ98+Vs8vfkNAB5b8yxffuvHaK0pKo30fkskmRdYl+xF9HUSYPcda4BOL88eO+arS7WhMx8VLc6SokXR42xrj1Za7On5sT7+HH9x01U5VTGNU+9rRnjiS6dYcZkKG+heULYsP1zRYWbG2UMDOndvhFNfTucTHrsseDS0od/eu3ihFDzGp9HTwkMLHsXtd39427v7ljIubzQXjpgU9nGHT51g1l0/46HrvsJZeaMpazzJr5f/nVl3/ZR3H3iCRYcKKW2s5JSznvOHn8Pe6sOMyZVymxS2vmDmdHfXh4lIJMDuO/YRJkUE4NAh787eW0p4ZxYtjpe/oqJnHamqsgWyY+4aAvAb/XTTQNi9Bpjo9ccVhRZPVRkNSnWaJjLWU+twNx6pD/dYa8at47XWkSZkxl7wWLaz/HDdCdkWjYNVWXji3t+S7TBLYhrczfxu1RPkpedQVBJuZhDcO+UWCvJGsOLoBpq8LYwfNIZGdzOjc0eglGJQRh6tPhdaawJGkM3lu7lq7LRe+q5EDN5N9gL6Awmw+4gNRc46zMmOnaaJrFvn3GsYEV+4etSapqlVP2z8jRQtil6lvT6/45AzI57YeJz/RPO12RX9Ove6vWkBb8ydRNqsG60C4e4bVbI0bMu+zMzxuV4jtzjCqYcAf+x4Y7uCRzsRCh5nb5u7XAoeY5eTlkVuWvaHX/97y5vcPflGvjDtHt7eu4SlxeGzBpw+N/MPriQ/PRelFJcVXMTsbXN5d/8yyppOcv6wc5g8bAIVTdUoFP/52ncpPnWiF74r0U0GMDfZi+gPJMDuW9YQJsBuaAi6q6oC4ZPkeoBZtHivWbSY/5uR1YOmStGi6FW2NccqLbb0Tn8novUr48kGq0UNmH+3lxv+uDqJAKy+UmWGu29aw75Mj7s+bKWbI+vjBVrrsAE68LUuCh4jT3gs2SoFjwmyr6aYL3/sPxiePYRPnHcTG0p3hj02Lz2Hv979C9JsDnadPMjMOx7hnCHjeHHbO3z7qi+glOLrl3+WT114Oxn2dO6cdD0rjm7ovW9GRGt9wczpUs+QAAPmRaWfiJS/yJ49np29sYjTixa/JEWLIjkOnzxpC8aXGjI6UNZ6U07pgNm9BjifQI4O6rhGwZdNVo4qi3J2dp9VKdLKVoVNQ8nMGJvtDOSWRTh9pILHJUAjEQseP5CCxwQZnz+G0kazvGdX1SEK8jrP+PvZkllsLNsJQLOnldy0bKwWK+cMNssa/mPKbR8e2+xpJcuRgcNqR4ft3CiS6M1kL6C/kAC7D9lQ5KwFjhNm6MyGDc4jXq/R6YtevKRoUaQS7fb6HMXurHjTpn8VfKrOalHWBC2rT7AoRZo70BTvedaMDf+zv6JqfXog6Au7S52Vc9cIrSMG+ZcTecLjMMLUpEjBY+J888r7mb39Hf7jlW+zuWwX9110N+tLtjF72+kZBN+68vP8qfBZPvXqf3PxqPM5Z4jZLfPPa//Nz278Jm2/p8fqy5gy/FymjTqf2dvmSh526pH0kARS8keob7n6mqxrgK8DJZ3d/6UvDbpj0qS0qxL1fJWeQa2vO++t25Vz09BgWrbkVYuUYF16sNSuc2LueQ0wIlDpXJ/5SJrNgi1R6+orPp4zrKxiaEZcXVOGlxq+x181wr7J/uDczzmzCqaH/ZtRU/VsRW5ay5gIT1EHTH54zvy69jfeNvFaBfwAmAxUhXvwT2/4xj2Th559SYTzCyFOt7Zg5vTrk72I/kJ2sPue3UAQ6HTXbfNm185EPEn7osXtQz8xToJrkTIOVlTGG1wD/CL4dO1ADK4BzvX44i6IrjnL4jhuU2FbeU0tXxXxykBu/j2Djci72JEmPL5OFwWPL2x7WwoehegeSQ9JIAmw+5gNRc5WYDPmJdIzHDzorY51dLoULfZ/wfo6dCCu9Nuk0i6P13HU22k/+O4YEqh13ZldHGn3tF+bFvDF3UkEYN3ZYQfHMM5Tnd5SfzhsgJuePiKj2ZdfF+7+kK/Num/G5R1vjGbCY3VrnWttyVYZ9yxEdCQ9JMEkeOqb1gFp4e48eNAbvmFpJ6RoMfUET1bQ8LPvUv/9r9Ly5KxOjzFaW2j46Xdo+NE3afzVD9F+f6ePc737BvXf+wra7ca3dQPKlpDYKilsa09UW2zt+ojF6GeBJ2vs1vC7n/3d5YYv7p8hwNrrsRkRKtUKyldF6hZC/qB78wwj4i52XAWPr+36YJsUPAoRFekekmASYPdNh4FWoNN+s6tXt+4KdtEloK1o8VtStJiSWp75O1lf/DqD//48wdoafDu3nnGMZ8UiMj/9RQb9+Sksg4fg3by+08f5jx4i/ba78R/ah0oP26I49e2vqLQTf2pIfrDec0/OwbCt3gaCCwjk6mDEVnlRaRxuTTuUhjfc/dPq9mS53PVh/xalpw3NaPYPDjuYJuQyzLqT00Rb8PjW3sULpNZIiC5JekiCSYDdB20ocgaAFYRJE2luNrylpf5OW/pVega1zqr78omvBV5wvz34e2ObZdJiSgqWl2CfeD4AlvxBGM6WM47JvPezpF1m1rMaTQ1YBg3u/HFaQyCAd+sG0q64tve+iQTSTo/HcdwXV7/rNj/xP1XlsDKg30zalFIOTzDuTiIARZPCB9hWpVVG+dqII5cHD/5kbtAwuspbenTWfTOGdHL7bmAHEPbv2MaynRWHTx2XCY9ChCfpIT1AAuy+awsR/v/buNG5pf3Xa5suale0eM94KVpMbWnX34rzpafxFhXi21KE42NXhj3Wt28XuqUFx5SpnT4u7bKr8W5ci3XYCBp/+QN8O7aEPVeqsq09UWuxOeL+N5sTbPR+Kmdv2LzdgWSo2x92GEx3rL1BZQQipIlcVbU2LRDwhs3VdjgGZbQGhnWViz2Y8BMeuy543C4THoWIQNJDeoAE2H1XJVBKmMmO+/Z5T5acSjvRVrT4VP5vpWixD8n+4tdxXHEt7oXvkn77J7BkdD44z2huouWfj5H7o9+EfVz6TXeQ/eA3Udk5OK6cjmdNH6v72ltWblc5cbWUa/OI/9mTadbw9QsDyTlef9ydRABcuVbHvgzCButZQXear2bHmZdg2hk85JP5gWCXu9j/Neu+GVd0vDFU8Pg+UvAoRKwkPaQHSLDVR20ocmpgGWGGzgA8duCunVK02HfZzp1MsKaKrM880On92u+n6X9/TPbXvod15OiIjwuUlWAbXYByOECH3UxMObrV7XaUBAYn4lxZwRbfZ7N3SEpUyNSAL2EtCtdfZETcHZ5Wviri4+22vHRncFRtF09jAf4VpuBxKdCAFDwK0V2SHtJDJMDu23YCAei8l2/+6hf3Kq+rRyY7ip7nmvMimZ9+AJWeQeDEUVqf+9dp97sXvov/8AGcr/6b+oe+hmfVkjMeB2A4W7EMHop13ATc8+dGTDdJNfa1JacsNkfn2/fd9JD/2coMGxmJOFd/cEXQm7A0saJrbbleHb5lX4GrPK+18XhrpHMMHnLPEH/Q8HXxVJEKHl8ChiIFj0J0h6SH9BCZ5NjHXX1N1peA6zBTRj4UxOJoIef8hru/dzXXfFx27USfo3aVlqdVWQsSca4Mw+nf5vi6P9NGQoL1/sCvtb5k/FmGStCo+J/809dwaasl7NWyXUMvq6q78CsjI52jtmZOWY69oqt0oHpgUoQJj+cBYQOGn17//+6ZPGyCTHgUwvTdgpnTH0/2Ivoj2cHu+9bQrrjHQ9qwaoZPP8GE/6hi9NDWjRtXacPoOzkBQgC62eVyVBiddY2IyXd9z1dIcH06u1LK7k5MJxGANR8L300E4MLabSM8nqaIxwwaPGOEP2hEPAaz4HFmxxtDBY+vYV7Ri1jw6A34InY2EWKA8AFzkr2I/koC7L6vRENpC9nTyhl7Zynjrj/FcG8LOQvcZK0I1DUcClaU7U/2IoXoDvu60npltSckncNheIJfyto4NBHn6m+GeBLTSQRg8xW24S4dvre2VWmVfXJjxDxrmy3L4dXjq6J4unAFj9XAe3RV8Hhi68oonkOI/m5uwczpXdU+iBhJgN3HbShy6ipGb6hg7OgGBh11kvOuj/TNGuuH+Y7eDWs2JXONQnSH2llSZrPmJCQ1BOA7vtnl2XadkMmF/c2EBHUSAQjaLZY9g41TkY75WPnyIcGgP+IVtfzBM8b4AkZXO8yK8AWPyzALHnPDPfj13fOl4FEIeCrZC+jPJMDuB6oYvcpN1tYAjhJQZ7x4+XdtLTca6iuSsTYhukM3upyOSt3pAKVY2A1v8KuZaxPShaQ/usjvS0j+dZuVV0R+SckOujKMUwciBrY2a7rNp86pieLpLgP+X8cb2xU8DiFCweObexZJwaMYyPYXzJy+JtmL6M8kwO4HPEWFXmAxMDzcMb5d22QXW6Q8e1Fpo7LaEzbP/eu+VypyHDps67aB7vKgL6EDp3ZOs45o0ZFb9l1QurDL/38HDbqrwBcwoumA9IcIEx53EmHC46byXRWHTh3fHsVzCNEfPZ3sBfR3EmD3H+sxd2s6/f/Us3rJPu3xRGyTJURSbT9RZrPmjEnU6azab3wjc1V+os7XH03Dn6eNxDVG1xaL2jXCqI50TIGzbIin5WTEvE+rNc3qV5MjppuEdFXwGHHC4/Pb3paCRzEQuTCv8ogeJAF2P+EpKqwDNhNuF9vvN/z7d23o1UUJESXd6GxNq1Jhr8DE4ive1yryHEbYPFwB6UpZbJ7EdRIBWHq1rcvi1IKy5V11CiF/0B0FvoARcQJkyH/Num/GGc3d2xU8jj7jESG1znq3FDyKAWhOwczpjcleRH8nAXb/sgwIe/nVvei9LdrrlcEzIuXY15c1K6stYSPMLTqgv52xXFJDojDEHUjo34SDU2zDmzCaIx1zQfWmMT6fM+IVNavVYfVbptRH8ZRdFTzW00XBY52rsTLc/UL0Q1Lc2AskwO5fjgElhBmfrl0uv2/vjvW9uiIhuqC2Hi+12XLC7jLG4gHvm+WD04L5iTxnfzXe6wvbWi9WWwuMiIGxVWmVdXJjlykg+YNuH+sNGNHssF9K+ILHF+my4HHhAi0Vj2Jg2F4wc/rmZC9iIJAAux/xFBVqYD6QF/aYRe9t0V7JxRYpor6lxVFjSeykUW3w3fTF0pYvSonuJAKw+Fpbl6k508qWDjeMYMTg3mqxWYLWqdGmsPxh1n0zOut3vgfYToSCx83luysPnTq+I8rnEaIvk+LGXiIBdv+zC3ASJlVEu90B327ZxRapwbahsjWRqSEAn/POLR+WHgg7sluc7rIEdxIBKJlgG1yvgnWRjskJtGYadQe7TM3Iz795rDegG6J42kgFj28gBY9CNGMW/4peIAF2P+MpKvQBi4jQss+9+L2t0lFEJJvadKzUZssOO3EvJtrgB+nzEzIBcqC4VPvzeiI9omi87rJA8fySBV2Or7dYbCpomxbt36uvxlnwuCLK5xGiL3q1YOZ0ee3vJRJg90+FgA/ofGfQ4wn4dm9b26srEqIdXdfc7Ki3jkz0eT/lnVcxMt3fWV9kEUaGRVmtnqjynLtl6XRblwN+xraWDPW21kRs6weQn3dTgceve6PgcbsUPIp+TIobe5EE2P2Qp6iwFfiACDmH7sXvb9MedzQtsIRIKG0Y2DeedCmLzZHocz+S9l5C000GikFuf8K7C1WNseVWWYNdTmQcXbbM19UxFotFaftlriif+lLgGx1vlIJHMcBtKJg5fXeyFzGQSIDdf60m0i621xv07ZJdbNH7LJuPl9hs2QnfvZ7hWVg5OsPXWZGb6MJ4r9/fE+ddN5Euc5ovqN44xu93d3nZOi9veoHHryPmdbcjBY9CnE52r3uZBNj9lKeo0AnMI/Iu9nbtdkXsVytEIunapiZHgz2hLfna/CTtLVtPnHcguNCX+E4iAMum24YaXewG2zAsGVG07LNYLOC4MuIY9nYGIQWPQrSpB95M9iIGGgmw+7fVgJdww2d8vqBv51bZxRa9QgeD2rGpyqMs1rCBTazu8C47OTbDm9BJkAPJZUFfl8WGsWgYas0qT4s8Oh1gWumS4YYRDHZ1XH7+dWPcfiKOWW8nroLHNSe2SMGj6C+eLJg5Pdo3pyJBJMDuxzxFhS7gfSJ1FFkyb7vhdiW8wEmIjqybjpda7dmJ7Xkd8hP7G/K3LA6X4euRTiIAq6fQZY51bqAl06g/HFVxoSXt6mjTWRTwRKwFj2/sXrC9ztUgBY+ir3MCf032IgYieVHq/9YAHsLtYvv9hn/HljW9uiIx4OjqxgZ7k2NMT5z7Rm9h1YRMd48E7gNFtlI2qzfyePNYrbzWNjyodZe705NLFnT+N6qDvLyrR7v8qsviyZCPAd/seGP0BY+LpOBR9HVPFcycHm3tgkggCbD7udAu9rtEysVe+sFOw+Vs7LVFiQFFB4PasaXGryzWHsmR/rntFQmAEiDfHeiR/riuXGv6sUyjqqvjxrUcH+Z11kYVOFvTp3cZsLfz+3gKHg+eOra9G88lRCrxALOSvYiBSgLsgWEd4AY6H8Dh9xu+7ZtlF1v0CMuG46VWe1aP5Edf4y2qmZTlTOywmgHqLI8v4tjyeKycqoxojhtZttwbzXF5uZeNcvksXQbtIYOAxzreGCp4fB2wEaHg8YVtc1dIwaPoo54vmDn9ZLIXMVBJgD0AeIoK3cA7RMjF9iybv8twOqMZRyxE1HRVQ4OjJa2gp87/S+tLPRYUDjQX+H099nqw9mrbyIDWXeZOX1hVNMbv90TVk9uWeUN3lvCVWffNuKrjjcuK19cgBY+if/LTyRtL0XskwB441mEWO3S+ix0IGL5tGwt7dUWiX9PBoHZsrQ0oi6VHWsBd7t1cOyW7uUda/g1ElwV9PTZi3pdhsR/MDXa542zHsKRXbYqqS0huziUjnT5rtLtzcU14fGP3gu2nXA0VUT6XEKng5YKZ00uTvYiBTALsAcJTVOjBzMUOv4u9fMFuo7Wly360QkTDuv5YidWeNaynzv8r6+wuu1OI6F2u/Xk9Wc+3/BJLVK8300oXDzO0EVVKiSPr5u68eQtX8OglugmPC6XgUfQRQeCPyV7EQCcB9sCyHmgFOu95Gwxqz8rFC3t1RaJf0hV19XZn+tieOv/Fvh11F2U19EhXkoEqT2G39FAnEYBNV9hGebXushdvnr85K1hfHNVucU72RcOdPlt3Wun9ftZ9Mzp709dlweOW8j1S8Cj6ijkFM6cfSfYiBjoJsAeQ0C72O0DYXUXfpnXHAxWl+3tvVaK/0YGg4dhRb/RUagjAb9RzbqU63WwUccjroU4iAEG7xbJncLDLoTMAk0sWRtWyDyAt+7buDC6Kq+Dx+a1vS8GjSHUaeDTZixASYA9ERUAL4XaxAfe7byzWgYBcfhcxsa4/Wmq1Z3bWFi0hpvj21l+SXddjhZMD2VivP9ohLjFZdoU1LZrjxjcfGeZ1nYoqFzs76/xhrT57d/KjH4y14PGUq8FdeHzz8m48lxC97b2CmdP3JXsRQgLsAcdTVOgF5hJhFzt4sqLFv3u7tO0T3Vd26pTdnXFWTz7Fb9SzTtm97hlTfL4e/cHunGYd4cKIapd8eNnKqEc7Z+Tckd6N9OiuJjzWIQWPou/6fbIXIEwSYA9MG4FmICvcAa55b26QgkfRHdofCNp3NSiloitmi0ag+fRNzIn+Q42XZ9fI7nUPubQHO4kAaItFbR9uRDVVburJdaP9AY8rmmOzMicNcfrTy7uxlEuAb3W8sV3B41DCFDxqNFLwKFLUooKZ06VOIEVIgD0AhXaxXyNCRxH8fkMKHkW0jNYWGr/xoO/U3EeH1Lzze3Sw80yDoLOBqld//OHX3qojVL/xC6pefoTmze8A0LDmJWre+i1aazylu097/G/0My0W2b7uMVcavryefo6lV9uiCuLtBK1pJ7dEOxKdzJw7M7sZ9IYreNwLbAVGhnvglvI9lQdrpeBRpJzfJXsB4iMSYA9cW4CDRAiyfZvWHQ+Ul0oul+iS+43XW/Mu/2zaiM/9HmvWINydxB5BTyunFvwV7f9oWF/D8qcZctcPGPHAn3EdKsLfWIXhbMQ+fDy+6qPYcj+Kf872H2u+JqdSOof0oMEWHMobbOnJ5zg4xTa8GaMpmmOnlS4aGm3LvszMCYOd/szu7GLnE77g8Y1WrzOXSAWP26TgUaSUVQUzp29I9iLERyTAHqA8RYUG8ApmsWPYbg/u995YIgWPIhLtDwQHjbzZnznhUguA4WrCmnnmRqhSFobd+xOU46MNzKC7BVvuMJRSWDJy0D4XWmswDLzl+0gbe9GHx/5aP9VgUUr+ZvWw3B7sJNJmS4ER1dTYfH9TdrDhaJf5zs2uev76/vfJyr07u7Nd7KBh8NzaLfxzxXo2HysDoLyhiadWb/xKhsO+Wyn1MIBS6g9KqQXLjxTVHm8oP4kUPIq+43+TvQBxOnmxGsA8RYVlwCIivIhIwaPoinXt0TKLPWMQgLfiAIa3lbQx551xnCUtE0va6Wn/6QVTaN72Ac79qwk01WAfdjaOYeMINNUAiurXfoL/VBkF/tKW67PLJPe6FxR4/D3+hnrxtbawRYQdTTyxyBHpfpe3hZdX/QlvwENGxlmDnP6sso7HrCs+QcGgPL57y7XsP1mNxx/gve37+NwVF/O7T94eAP5TKXU2Zh/s3cAl9a6mRURT8OiUgkeRdAsLZk5fnexFiNNJgC3mAy6k4FHE4nhNjd2XNQ7M3ej65U8z5M4fRP3wwXd8B/uQsbRsm0/uVZ9GKUXu5Z8k68KbUPY0Middg+voFn5tPFlvtage66stPnJ+D3cSASiZYBtcr4JRFTtOaD40wuuqD/v3RykLX731l6TbzT9h2Xkz8rTWp6WVHK2t4+KxowAYP2QQ5Q2NuHw+8jMzUEpdMiwnKwczkFaYvbCn+43AcrqY8KjRzNmzcIEUPIokCgI/7vIo0eskwB7gPEWFTuBlIkwww+83PCsWScGjOI32+gOOfc12pZTSQT+n3p9J/vVfxpYXvna2I2WxYh9splVnTbnxw9sNjxOLIwNltZMTqPfeknNCdq97yaUBX9RDXuJRNF5Hnes9rHxl2G4iGY4sMtKyP/w6Pb0gr9Wfc1outi8QJC/D/LbS7XZaPD7GDx3MuuITbC+pwKLUlD986o5KzALHcZjDOtasOLIhAGwjQsHj1oo9Jw/UHt0W7fciRIK9IH2vU5ME2ALMivn9RCp43LxeCh7FaazrjlW0pYa07l6Gr+oITRvmUPXaT2lc9xoNa16O6jyNa18m/8YHaWsO4q+vwDH8bByjJtG87QP+e9Q+2b3uRZfjjzp9Ix5Lp9sGR3vsxZVrxwQC3qha9gHk5N+Tb2gdbPs6zWbDHzS/bHS70Vrz6UsvYnhuNuuPnODm88+xpNlsf9Ja/xVzw8EFvKPRdwNvYNaphC14fGHb3JXegC/q9QmRIE7g18lehOicBNiireDxVSADKXgU0ThWXW33Z304UCbnkrsY+4M5jLx/JiPvn0n+dfcz6PovdvrQkffPPO3roXf/kPSxF374tX3wGBzDz8aeP5JpX/2t64fnVYcdiiQSb4TS6fgMZ08/T9UYW26VNRixDd+pQIAHSkuwE7A6qraecWwwGODJRT9n1nvfpdllZpyU1R7m2WWzcv+6bGNg9aFjALh8Pv69dgtaa45U1zE4KwOLRTE8x0wr+dhZYwC+POu+GVdjdhdpAbyAJTTh8V26Lnhc0f2fghBxmVUwc/rJZC9CdE4CbAF8WPC4mC4LHrcV9t6qRCrSXr/fsb81XfVCP+qfB56usVmw9fTziNPluAM92qqvzdpJhG1z1xQM8vOTJ3GHuvRNLV08RHdo2bd637ucNWwyD3/ynzg9zXh8Ll5aNZNzR03lh/c+7t9ddlLXtbrITU+nyeXm1Y07cPp8nDV4EACL9hzi7qnnt109UScbm/+dZrPuATYD3wXa/t4tRwoeRWqpAv6U7EWI8CTAFu1FUfD41kYpeBzYbGuOVlrs6T0+kGRwoNY9I/tQ2Dd8oueM8bRrVt6Dlk63DTPCFAhagVmjR5MdGgw62FefE2g4Xtn+mOLKXXzsnBsAuO2Sz1NaewhDa+689ItkpI/ItlkzPN5AgDS7lYvGjsJmsfDdW67BYjHfG37+ymlMGPZRpsqo/Nwpf/jUx6/TWh/XWp+vtd4Ep014lIJHkSp+UzBzeo9faRKxkwBbfKhdwWPkCY9S8DhwFZ+ssgWzx/XGU/008HS13UrEFm2iZ5zv651MsKYh1syyNKOqs/uyrVZyrKdnrJ1Tsui0PGif30N+5lAADCNIs7uBCSMvoHDve2wpXoHTb00fnpPtH5mbg8vrZ8ygPF5Yt5Xq5ogb9L+bdd+Mzv4G7kUKHkVq2AM8l+xFiMgkwBYdbQUO0FXB44ljO3ttRSIlaLfX5zjsyuyNSeV5wXrPJ3P2j+rxJxKd+lgPdxIJNAU49qiZH104BX/H+/1a863yMu4vKaE2EABgv8fDo3uXjHjs7W8EVux6E4AGZw3PLvstWmsq6o6itebz0x9iRP5Y1ux7jzsueUC5jWEV10+ewKXjx+CwWblozEgOVEZM/c4nwoRHzM31sG/8QhMepeBR9KQfFMycHuz6MJFMEmCL07Sb8Bix4NH5+guLDJczqmlson+wrT1+0mJL75UOEz/yP1PlsJLWG88lznSl4eux/5+DziDlz5ZjeM106pXX2oYH23X8AHi1oYEL0tN5bdw4GoNBnEaQP1RX84eRo/jdRbdX7jy+llPNJ0mzZ5Buz6T8VDFObwtDckZisVgZkT8WgMsn3kpe/j3Dg4bh8/j8pNlsWK0Wosjh+PKs+2Zc0/HGdgWPYd/81bkaPauPb5IJj6KnvFMwc/rKZC9CdE0CbHEGT1FhOV1MeNStzT73wnff1YYh+YYDweGTJ21G76SGZAebfZ/O3h32MrzoeaMsOgOf0TO7sBYY++2xWNLNlx9XrjX9WObpaSJbXC4+nmPG+NlWK3s9HqoCfla2tnJx1drRGY4sw+N3MTx3DEdP7uHtDU/g8jYzfrg5QfSDLc9z75VfRymFwzEo80RDWs2o/FzGDs5nffGJ0/Kuw1DAv2bdN6OzTYblwCkgbB3CnN0Ld0jBo+gBHuCRZC9CREcCbBHOAswem2ELHv07tpT5D+xZ23tLEsmg3V6vo9id3RupIQAP+5+pTLfRK8NORHhZ7kBzT5zXmmHFmnl63LpyqjqtO4hLG4ywmc1jvjZ4CHWBINdkmX+KljWdstXVHw+OGTyB8SOmcPaIKQzNGYVFWalpMufLfOmmn3LuqKkfnm/S+C8NHZGb7R2SncmP77yRcUMGRbPUacC3O97YruBxMBEKHt/Ys0AKHkWizSqYOf14shchoiMBtuhUqODxFSIVPAKuN18qNBrqZaemH7OtOV5tsaXl9MZzZRot/s9lbw8/VVT0mtG91EkEYO3VtpEBrT/Mxc60WPCEYlOXYWCg+e2IkZztcPBaQyP/NSg/AFrfPPXTXHv+3Zwz8kI+ds6N7C3d1On57ba8dLcxutNiyi6EK3jch1mvEvZKy7aKvVLwKBKpAvhjshchoicBtoikbcJj+Mv1gYDhmvvqOzoQOKNQSfQDByoq7eSc1fWBifF93/OVGTYyeuv5RHiTE9RJJNAaoHVvK4GWwJn3NQXQAY0vw2I/mBv8MAC+IC2d7W4zQ+WQ18MYux2rUpztMGsLv5BpzfA3nqgAcPucpNkzsVntaG2c8Rxt8gZ9YmTAMDzdXH4enfQaloJHkQQ/kbZ8fYsE2CKsUMHjbMx/J2GDnsDxI/W+zeuX9Na6RO/QTo/HcczbK0WNAGmGK/BA1uahvfV8IrKPBXwfFpkGXUFOzDrB8T8fp+QfJRiBMwPZupV1HPvjMY798RhHfnWEitkV+Bv9lPy1BNcxF8cfO06gOUDd8jqO/eEYaGjZ24LzsJO65XUsv8Ty4evRvXl5PH7qFI9WV3PU52Nquvnn5x+navnhsGEopZhQsthW3VjGmCETGDf8PAr3vsfEUReH/X7stpw0jzE2ll3sL826b8a1HW9cVry+Fil4FL1jfcHM6a8mexGJopQaH+PjfqyUiqr4XSmVp5Q6482vUmpCLM8dCyUpYqIr6dfccA3wTeA4hC/Az/nvH3/OOmrM5F5bmOhR1iUHS3tz9/phz79Kvpu/vlcKKUXXyrRy3TVhbCZA3Yo60kakkX1hNpUvVpI9NZvcS8K/96p8uZJB0wcRdAaxpFnIPDeTk2+cJPuCbJq3NJNxdgaOkQ6CrUHyLjdrBa1+w5j956AvTal0gJqAn20uN9dlZZ3RD7vNoqv+UJ+Wnt9lxWKbQMDp8zQ+GbRZLd29SrILuPThOfNP63Zy28Rr04DfAzagqbMHKhR/+viP/mto1uCCbj6nEABeYFrBzOkHk/HkSqlHgBat9dOhrx8CGrXWL7Q75lFgrdZ6kVJqLDBTa/2FMOf7CVCstX6nm+u4DnPa9NZ2N1cDX9Ban3F5TCn1FlCjtf5Oh9u/D9RqrV/rzvPHQnawRTQ2hD4iTtVzvvHCPO31yCWs/mBfeUVvBtcOwxP8SlbRkN56vlRS3WrgD6beRsdYpTPxG26AIbcMIfvCbAACLQFsOeGn1/sb/ASaA2SMzyD7gmwyz83EeciJ+5ibzHMz0Vqjg5rWfa3kTP0otT9ot1j2DA5Wt3093GbnztzcsME1wJCy1d0a6W6zZTk8jK/u+sgzXExcBY8LF0rBo4jR/yQxuF4AfBX4llJqvlJqPvA14CGl1CuhY6zAHcA2pdQnATec2ds+dOx4YGwMwXUO8CiwBbhXa30jcAJ4q2NwrUwzgbWAVyn1fdWuQl9r/Xfg7tA5e5QE2KJLnqJCjVnw6ALCblsZp2pdnhWL3uutdYmeoVvdbscJf35vPuc3fC+VZ9t1dm8+Z3cdbzC4+zUX019w8vCSzlN5G9yau141j/nmfPdp91W3GlzydCsAj2/2cd3zTpw+zdKjAezW3unQ0l2ZHTqJuI64CDqDZJ6bGfYxdSvqGHzzR5vKWmuaNjWhrAplUeRcmEPLzhbsg+yU/L2E1gOtHx677Aprt3qfX1y5enQg6OtWXnX+oLvH+IMxtSCMVPC4BSl4FIm3Hfhzsp5ca3038AxmV7GZoY/lwP9prR8IHfZZzFotBdwfuq1AKfWYUmpOh1N+EXg8hqX8FvglZovC95VSLwNHtNZvtz8olP7xNmZsWwS8htkNaKlS6j/apZe8AnwyhnV0iwTYIiqeosIW4GlgCBEG0HjXrz7iP3JoS68tTCScbV3JKYvNEbY9Y8KfT3uNr2euiapvWjL9ZLmHX13vYO1XsihvMVh94syivZd3+3hgqp21X8mixafZWvlRRsEjy7y4Q/s6O6uCfHGqnS2VQTLtqRlcA4xq10kk0Bqg8pVKxvzXmLDHa0PjPOAk+/yP3isppRj9pdFknptJy84W8q7MY/h/DMeaaSXn4hyat34Uw++cZh3hwmjt7NydSdN+u616Z7d2pG3WDLuXc2q785iQPDoJdkIFj3OIouDRE/BKwaOIija76ny1YOb0M//Q9L50IDv08eGb4FDA+ghm6uhU4HLMKzq5mIFux/qEc7TWB0OPtYZ2vzsVut8CoLV+GNgJXIq5O54NjFJK3ayUGhTatb4J+AvwY8wr7leFPtYCXwGuC30NsBG4JKafRDdIgC2i5ikq3I/5TjZiLqHrjReWGq0tp3pnVSKh9pSV21XO2N58yv/yvlae6zB6rZgyVofrDD42ynw9GJ6paPKcecV/SIaFQ6eCNHo0ZU2as/LM4Hnl8QBZdhiZbX6tNfgNWHo0wJ0Tw6dbJNskr18DGAGDsifKGPnpkTiGho0hcR12kTnho93t2gW1NKw3B74GXUEsmeZLjrfKi2O4A2VTp1V1aItFbR9u1HVnjReVLBzU3fSLQYPuGuMPRh/It/PFCAWP79BFwWPhsc1S8CiiopR6rGDm9F3JXkfI3cBPQx+3trv9CuBNzJjgP4AdwJcxd7R3ApHGuf8caFFKNXb2AbQA/xUKohcA/8BsVfgsZvOFZ4HbQ89/n9Z6FfAvYCnwE2AKcDbwLWA+Zt51Yei53URo3JAoEmCL7nofqATCdnvQbnfA/f6bc7VhhO+ZJVKObnG7HKWBqAvGEsGiA/qbmSvCTsRLJZ+eYud/Vnv54JCfxUeD3DLhzMD4urOsFNcb/GOTj/OGWhiUrvAFNf9b6GXmrR/Nzrn9HBvzD/spyLVwz+suVh1PhU2qM10S6iTSsKYB9wk3NR/UcOyPx6h5r4bquWduHLfsbSFz8kcB9uAbB9NY1MixR82uIdkXZhN0B7Hn2UkbnUbD6gayppx+sWTp1bZuvfAN89bm+ptKKrvzGKs1zeZlUrcC+ZBIEx5X0NWExz0Ld5xy1pfH8LxiYNkH/C6ZCwjtILddXpuptb4xlPv8eOh+C7AeeA4oBX4NtPX2tGFe8e6YFuVWSmUDaK1/p7XO1Frnh/nI1Fo/C6wGjgDjgIeA/8HMx/4L5o70Rq31G6HzB4Engc8BBuZu91eAHwDt/8ieDZTF9QOKgnQREd2Wfs0NYzFzoqr56BfqDJmffuA6xyWX39Jb6xLxsS06WG6z5PRqp4Ovel4p+3X+wl7dMY/HutIAfy7ycfloK7+8/sx04S+84+LJuzPITVP83wYv2Q5FVavm/KEWPnOBnRtnO1n9oBlQbioPcLRBU91qcLTB4PG7Uq/991FtcX5yQkGvpQu1+fcffU25WKJ+43Vo0EUnKy7+Ztjd484Eg76gs/4fLofNEkux0/cfnjP/Hx1vvG3itRcCP8IswOr0xfXS0ReM/M5VD/y/9oVXQrTRWgeVUtcUzJy+OZnrUEp9Bfg05r9jxUf/nts+twJPYKZj/AUzVeRxzGB2FvDd0DEerXVL6JyfAAZrrV+MYT2TMQffXYA5Mr4SM7hubnfMjZi/f3sxp1C3YuZbTwLGaa3/GjruN8A7Wus93V1Hd8gOtug2T1FhGfA6ED4ZE3C989r6YF1tSe+sSsRD7Sop6+3gWumA/k7GkpQubOxo2kgrpU0GP7y68zQJlx/2VAcJGppNFUEUsPxYgH9t8XHjbCc7q4J8bZ5Z/Hi4zuCcQYo0m8JI0X2Oc5SRpQNGr010bLOlwGjozvGTG/aM8nmauvUYq9Vh9Vum1HdvZR/631n3zehs4mjXBY+V+6r21x7dGu5+MbAppf6W7OAaQGv9QqjIcSmwR2s9Q2s9A7Nt4Hyt9Z1a6w/aPSSIefWmBnhQa12PWfT4SLtj5mN28Ig4IbojpdQ9mDvidXwUt6YDS0KdS9qvYS1mcWMR5puB8cA3Qs+NUmoSMKang2uQAFvEbhWwhwg5hxiGds156V3t772Ry6L7dLPL5ajQvT7g5X7v3PIhacGUL25s78/rvfzwKgeZdsX+2iC/XHl6A4ufXZfG/5vvIW9mC/VuzecvsrPmK1msftD8mDbSyr/vyaDZqxmZbWHKMCvPbPNxayfpJqki0x3stL9zT1p8ra3bOfmDygubuz7qdPmDbh/rDRixfH+RJjx2XfC49e2VUvAoOlEM/CrZiwBQSqUrpd7B3DX+Rbu77gcuVErNDn3tANK11g3AYWAJsEgptRyYjpkXDUCoVuKHnJ7H3dU6sjB3rT8OnIMZsO/XWs/DzMH+cHCM1nqt1nqm1npXqM+1HTihtb5Da10cOuxmTg/6e4ykiIiYpV9zwxDMIQutQNj+12k33n5++q13fVauiKYm28KDFTZrTsSrEQmnDTarB+uHp/duzrfovk9kDS09MTyz13qit3nqMW/9YMMa9b8Pj3L41173J8NqtXer1V99/ZLSTLUvlu9PA9c/PGf+uo533Dbx2ruAzwBhr+B97qK7L7lj0vR7Ynhe0Q9prbVS6saCmdPXJHstbZRS47XWJ8LcN0JrHUtP+XjWo/pSP3nZwRYx8xQV1gH/BkYQ4d+Sd/XSA/4De854ERIpYMeJsl4ProHPeN8tl+C6b5jk8yXlBa1oPN3akU7XPrulZle3R6Hn598y1hvQ3UovCemq4LGWLgoea6XgUYQopZ5MpeAaIFxwHbqvV4Pr0HP2meAaJMAW8duOWeUbOR/79RdWBqtPHumVFYmo6EanM+0kw5Lx3D9Mn5fe9VEiFUwL+OzJeN4l06PfvW4ztWRBfndfhC0WmwrapsXSsg/M3r/f6XhjtBMe5+xesMDQqZqBL3qL1roEs7Wc6EckwBZxCU15nAM0APlhDzQM3fri03MNZ2usRUUiwexFZY3Kau/1QPdezwcVo9L9vZ7zLWJzheHr8ZHCnakebcutsgZruvOYYZ6aPH9zWbda9gHk591U4PHrRBc87ieKgscDNVLwONAppf5fwczpsb7JEylKAmwRN09RoROzwjcfs/9lp3RTg8f19itv6EAgbGs/0TvUtuNJSQ0B+FHaO+EnlYiUM1kZOTqgk/I7u3YS7q6POt34ksXdLvawWCxK2y+NtegwzgmPc6XgcWCbXTBz+tJkL0IkngTYIiE8RYXFwHtAxJ7GgcMHaj2rl77fK4sSndKNzlZHtaVbbZIS5U7P4sqCDG9S0lJE7NLdgV7vJAKwdLptmNHNlI9JdbtG+7wtjd19rry86ws8fh3L8BkwJzxe1/HGaCY81rsbPauPbVoW4/OKPkxrfQyzb7TohyTAFok0H9gNjI50kHfVkv2+/bul6DFJ7OvLm5XV1q1OC4nyU8ebnRWEiRQ3wuPv9k5yIjQNsWaWpRndKly0KMgvX9PtNwQWiwUcV3q6PjKscAWPy+mi4PHNPYt2SsHjwKK19iqlPlMwc3pS3ryKnicBtkgYT1FhAHgGaMYs7glLih6TQ205VmqzZUd8A9RTbvGuqBqX6eksV1WkuIlef9IK8Qqn4O/uYy6uWDEqGOx+Klp+/nVj3H5qu/u4kKnAf3e8cVnxeh9S8Cg6UEo9UjBz+vZkr0P0HAmwRUJ5igpbgH8AmUD42c+GoVtnP/W20dpyqrfWNuDVtzQ7aq1hC6562s9sryfrqUWcpgW8SekkArDyWtvwoNbB7jwmw/A6VO3uk7E8nyXt6m4H9O38z6z7ZnT2O7Yf2EyEVBEpeBw4tNZvFcyc/niy1yF6lgTYIuE8RYWlmEWPozALfDqlmxu9zteef037pMCnp2nDwLah0qmstqQUGF7vXVt9bpYracG9iM/lhj8pnUQAXLnW9GOZ3UsTAbiwZEFuLG1z8/KuHu3yq251L2n/cCJPeLTQdcFj2KFdou8ztHFcKfW1ZK9D9DwJsEVP2Qp8AESckBYsOdbgnj93jjaC3dqhEt1j2XyixGbLDj/Wvof9wvaykaznFvE7n0CODup4dnbjsnKq6va/n5HuqkG+5vJut+wDsKZPj+fv0Rdn3TdjescblxWvP0UUBY+rjm1aHsdzixRmaO2zKMunC2ZO79YQJdE3SYAtekSoP/a7mEWPEdvB+bZtKvWuL5zfKwsbgPSp5mZHgy0pedcAV/o21kzOak1acC/iZ1GKtCR1EgFYe7VtZEB3P8AfV7okppzmvNzLRrl8lngm1f1r1n0zOmtZ2mXB41tmwWNZHM8tUpSCH0re9cAhAbboMaGix2eBJrooevQsfn+n/8De9b2ysAFEGwaOTSddymJNWg7trywvJm3nUyTOME8gKZ1EAHwZFvvB3GC300TOO7VjjM/bEtMbA1vmDfEUHF5E5ILHIUQoeHxj9/yFUvDYvwSM4Nyxj13/r2SvQ/QeCbBFj/IUFTZjFj1mYBY+huV87bkVwZMVh3plYQOEZdPxEqstO2m5z5f4tp26MLspKQNtRGKd6/UlNc1n+SWWbr9eWRTkVaxrjOX5cnMuGen0Wbsd1LcTqeBxExFSRbZX7q/aX3N0SxzPLVJI0AiesFmsX032OkTvkgBb9LhQ0eO/gBFA+J1Uw9Ctz/9rrtHUGM+LmgjRNY2NjkZ70lJDAH5jed6bzOcXiXOx3xd2Smtv2HSFbZRX6273qb64fPnIoBHb9FhH1s3xvEbmEnnCoyJCweML2+aukoLHvs/Qhs9qsX5K8q4HHgmwRa/wFBXuBF7HnPQY9t+ddjn9zpefec1wu6T5fhx0MKgdm2u8yUwNuci/q/7irHrZve4nrjB82cl8/qDdYtkzONjtvOhMw5OmavfG1LIvJ/ui4U6fLaZCyZAHIhQ8ziXCUC4peOwfFOqhgpnTdyR7HaL3SYAtetMSYCVdjFMPnqxocb787Iva42ntnWX1P5aNx0ut9qykDnX5Nc85leo0zVT0QRcQyNVBHUjmGpZdYY1pAukFJQtyY33OtOzb4n2TGq7gcSVQQxcFjzWtdVLw2EeF8q6fSPY6RHJIgC16TaizyGvAQboYpx4sOdbgnDP7Je3zJa2wqq/SVY2NjmZHUneOz/Ptb7g0u7YgmWsQiWVTSjk8waReWdo5zTrChdHtN96jXJWDvM0VMe1iZ2edP6zVZ6+I5bEhXRU8Rpzw+IZMeOyTQnnXX0n2OkTySIAtepWnqNAHPAk0AkMjHRs4fKDWNffVl7XfL3m8UdLBoHZsrfEpizWp+bK/Uc+2WmT7ut8Z6vYndSiUtljU9uFGXSyPPat0acxFmhk5d6THMrSmna4mPIYtRN5xcn+1FDz2LaG86/8omDm9JdlrEckjAbbodaHOIn/DLHiMmNfp37vzpHveW6/pYEBavUXBUnSs1GrPGp7MNZzrL268MrtKdq/7oXO8/qQPhFp6tS0jlsedV7tttM/njKnQLCtz0hCnP708lseG5AJ/6Xhj9BMe35YJj32ENt+Jfalg5vSdyV6LSK4BHWArpdKVUnHt9CmlpimlLkrUmtqdN+yI8Z6glEpTSp3TW8/nKSqsBP6O2Q82PdKxvu2bSt0L33tDB2XaYyS6sr7e0Zqe9MD21/rpZtm97p+mBpLbSQTg4BTb8GaMbqeqWJVWORXrGmJ93sycOzN1fNvYX5h134zrO97YruAxbNu+BneTd9XRjcvieG7RS/zBwP+c9dgNc5K9DpF8AzrABv4KPN3+BqXUIKVUpVJquVJqXei2nyulPqeUel0pNaTdsWMw/zBer5T6ZIePuzuc9w9KqbNDnzuUUnPDLUopNQhYppSK+P+PUmqBUmpw6PM1ndx/fugNwDSl1P8opR5r9/XUDoffD/wz0vMlmqeocD/wDOYLS9jdGwDfxrXHPMsXvKUNQ0Zud0IHgoZj+6mgslh69Y1ZR+P8J5qvza5IepAvesblweR2EmmzucBojOVxl5QvGxE0Yrsalpk5YbDTnxHPLjbA4zEXPO5dvEsKHlOb0+d+c8Jfbv6fZK9DpIYBG2ArpR4CKoEapdTX290VAJZqrW8FKpRS7wB+oBkIAi8ppaYopfKAV4ES4DDw/4DLgeGYBS0d8wQvDR0LcBvgUkqdF/pwKKVsbbvpWusGYBXwsXbrtYY+LlVKrVZKLQ493xuhzy9QSi1WSq1USn059LDLgBuA64AJwLjQ5zcA17Y79zDg90C2Umq+Umpb6L8LlVKrYvn5RstTVLgBeAEoIFKPbMC7ZsUhb+Gyd+PcReqXrEVHS632rGHJXsevjCcbrJbIbwxF33Ux/jxt6KRfSVp8nS0nlsdlBt3p1O6Pue1eVu6M7Dj//lwEfLfjjVLw2Pe1ep3bsxwZDyR7HSJ1DLgXQqWUXSn1VyBNa/074OfABKXUC0qpEYANuEIp9TdgGFAPjAfcwDSgQWu9X2vdBDwCnAf8EPMP593Al4ApwEOh57MopRow0yC2K6V+D3wLsAI/Bd7BDH6/hLlrXaWU2gbcAfxNKVWrlNoOrAfu0lpv01rfqLX+OLALuCf0+W6t9ce11jdrrV8MfbvHQmuaEVr7RaHP7wbK234emG8U/qm1vl5rPQPwa61naK3v0lrflKiffTieosLVfNQjO+IlaM/yhXt9G9bM7+k19SW6oq7O7so4K9nrGBMoa7kpp1R2r/sxu1LK7k5uJxGA0rNtg+sswZiKHaeULoh5Fz4j46xBTn9WvLvIvw1T8HiALiY8mgWPR6TgMcU4fa4qq8V6a8HM6VIrJD40oAJspdQNmDvDx4GblVLzgQ8wd3rXAUuB6zGD27OBe4DvYO48e4BDhNotKaUygTKgEPhm6PH/Bn4HbAT+WymVp7U2gO1a6xuBHwCTgJPAN7XWD4bW49NaPx8KZv8B/EprfZ3W+rrQsddqra/SWn8Qeu7vKqVWYwbp74V2sAntbE8NfX4B8GlgO7AT2AAUhT7fDtyklLoRGBNa78jQrvV8YHJo93qpUuqM9lI9ZDHmm42zQt9XWO4F72z3btmwpFdWleJ0IGg4dtSjVPfHSCfar4JP1VstvVs7IHrfEE9yO4m02TCemDo0jHGWD/G2nIx5WmxW3oy2v+uxilTw+CZdTHh8ftvclR6/FDymCk/A66pzNd48cdZtMef3i/4p6S/KvWwL8Fngca317aFd2hla69sw0xSuxAxA/whkAH8CLgEexgywbwfa+lqOx9x1HgX8F7ANc5f6Isyf64N8lOJxcSgg/htmW6aZwCuh+9JC527zJnAfmDnUwDGt9Wm9oLXW/wztYt8cOrYMaAC+r7XeHTpmn9b6IeBGzDcQEzDfNFyG+SbiDa31aq31Ca31r4GpwCdDO9iHQrvXt2utH+/GzzdmoR7Z7wMLMIPsiP823e+9sdG3e3uPpq/0Bdb1R0ut9swhXR/Zs0YEKp235hyXqY0DwIQU6CQCsGS6dXCsjx1bujTmgTkZ6QV5rf6ceHOx4yt4PCYFj6kgaASDFc3Vn73mqfsOJHstIvUMqABba+0CHgMWhHZrj7TbtV0APAU4MfOwm4FZoY91mAHsPOBKpdRIrfV+YAVmEH09MAgzGJ+Bmd98L2ZAD7Cz3Q42WuujQCC025xBuwBba30EUEqpqzCLMGeG+35ChZQfAHO11p/SWu/q5DAb5s56+49KQv/ft+V2A53m9YVSXHplVzIUZL+FWfAzjjC5iG1cc15c4z+4t6g31paSSk+dsruTnxoC8Ivg07U2S+T0HtE/XOT3pcRViurRttwqa7AmlseeX7NlTKwt+wBy8u/JN3TcuehdTXjMD/fAUMFjaZzPL+KgtaasqeqhG575woJkr0WkpgEVYANorb+otb4T84/YWsw0igVa6ztDKRvtlWDmK48FqjCD0Pu11lWhgsQ/YO44L8TcRa4JBdIrMHeOI00h/G9gH5AJZ1zq/GHovLVa640dHxgKev8CPADcrbVe3O6+yR26jwQwA/j2H4HQB5jFmQtCa32vXYpI+zce/xXh+0goT1Ghgbm7v54ogmzny88u8x89vLU31pZKtD8QdOxusKRCasjQYI3rzuxi2b0eIC4P+rKSvYY2aydF/BsbllVplV1ZVB/r86anjcx1BfLi3cW+kMgFj4OIUPD4+u75C6XgMXkqmqufuO7pz/Vq5y3RtyT9xbm3hXZsf4lZwPhVzA4hFyil/jd0SCZwPubO9BzgLsz8ZTD/2N2glPqu1joQCtTnYga6LwDDQqkgN2MG8G2dOi5plyICgNa6Ups7IEO11h8WRiilLgaeAB7HrCn6l1JqSodv437gXOCLWuuWdo+1Y6ZZXNDu2DGYwXz7jyvarePJUHFkW7rMDOBwu6/v1Fo/0/VPNnE8RYVBzJ/nNsx0kYicLzyxIFB6fHePLyyFWNcdLbfYM2O+RJ5IP/M/VWO3Ru4AI/qPaWYnkZRol7l0um2YEWNXj2llS0cYRjDmVJHsvHuGGIaO+fEhv51134zO0kG6LHjcefJA9b6aI5vjfH4Rg+rWU8uuevIz30n2OkRqG3ABNvAfmIWLVwOLgLcxpwneqpT6dOj+nZiB9e8xO338DvBhduJ4CjiqlMpQSr0I3ARcr7X2aq0fCO1gbw115FgTSq/YFrr9W4ALQCn1ZaVUMXAi9PU0pdQmzB2NX2it/6S1/hzwLjBTKXW4rY82sAMwMLuOrG77AJYA72it97T7fg9orW9t+wAeBSoIdREJI+m9bj1FhX7MHtl7Ma8ghKc1rf/+53uB8pK9vbG2pCuprbV7s1IiNWRQoM79iZyDo5O9DtF70pWy2DzJ7yQC0DTEmlmWZsRUsJgddGXoU7G37EtPG57tDAyuiPXxIXEVPL6wbe4qKXjsXfWuxgOYqaBCRKSkpbBJKZWN2c3D1+62dMwd5ngvBXb2fIMAm9a6NvS1ArK01q1hjne0X1scz6v6Uh/p9GtuyMBseTiByG8KwGJRWV/+xsft5553RcTj+jDtCwTSlp5osdgzBiV7LQB/9Dx64vP5e8cnex2id92cO7y8dkjyp4YCzFjkLf3STmtMbzjLs8bWHb78pzEXCXt9da5Ay2y71aLivYJz48Nz5hd2vPG2idfeAXye0EZMZz5z4Z0X3zX5hk/G+fwiCi1eZ02Ns+7CG575Qm2y1yJS30Dcwe6U1rq1YwCrtfb0RHAdOndDW3Ad+lqHC65D98cdXLc9TyLO01s8RYVuzNaF5US4XAqAYWjnC08u8u3a1m+7i1jXHq1IleA6J9jo/VTO3sj/n4h+6WyvL97UiIRZea1teDDGgsMCZ9kQb2tVdazPneYYkukKDo15F7ydcBMeVwHVRCx4XCQFj73AE/C6ap11t0hwLaIlAbZIeZ6iwlbMjiqngM4GNJzG9eZLa7xFhfO10c8KgI7X1Nj9qZEaAvAj/zNVaVbSkr0O0ftSpZMIgCvXmn4sM7Y0EYAxpcviGg6Sl3/PsKBhxLsBciHwvY43RlPwCEjBYw/zBnze4w3ln7j+mS8MjDREkRASYIs+wVNU2ITZMrEZcxx9RO4F72zzLF/4pg4GU6Jnb7y01x9w7Gt2hFKJki4r2OL7TPbOLv9/EP3TZSnUSQRg5VQVc9HlBdWbxvj9rpiG1gA4HIMyXcGRidjFjlTwuBEpeEwKX8Dn31118HO3PffgymSvRfQtEmCLPsNTVFgP/BnwYnaBichbuOyge95bL2u/39vji+th1rXHKiz2jPxkr6PNQ/5nKzNsZCR7HSI5LtX+vFRKN1t7tW1koF03pu6wKq0yKzfENHa9Tf7gT4wMGka8f2dyiLPg0e33hk0zFN3nC/oDRaU7vvkfr3znvWSvRfQ9EmCLPsVTVFiLOXzHRRTpIr6tG0qcc2a/oL2evvvCc6Sqyh7IGpfsZbTJMJz++7O3yu71AJZhUVarx0iJTiIAvgyL/WBuMOY0kWllS4fH07LPbstLdxujT8b6+Hbun3XfjBs63riseH0dZsersB17GtxN3pXHNsiExwTxBwOB5UeKfv7Am488n+y1iL5JAmzR53iKCqsx2w3WAF12Mggc2Fvd+uLTzxvO1pgHSySL9vr8jkPOjBTJDAHge77nKzNtZCZ7HSK5Brn9KdUebvklsQ9dygm0Zhp1B+NK88gb9IlRAcPwdH1kl8JNeOyy4PHtvYt3S8Fj/AJGIDj/0Kr/e2vvojOuKAgRLQmwRZ/kKSpswBx7f5goJj4GS441tD779+eNpoZE7DL1GtuaY5UWW3pestfRJs1wBb6UtXFostchkm+81x9XcWCibbrCNsqrdcwB7vklC+J602i35aR5jLEx76K3cwHw/Y43hgoeZ9NFweNruz5YYGgjJQYB9UVBI2i8t3/5c/MOrPhlKD1HiJhIgC36LE9RoRP4O7AFGE8X/56N2hpnyxP/NztYW3O8F5YXv8MnT9qC2SmTGgLwbd+LFVl2nVIFbiI5LvSlTicRgKDdYtkzOBhzy72xrSVDva01MT8eIH/QjNGBoBHT+PYOfhOm4PEg5mThsAWPu6oO1uyrLt6SgDUMOEHDMN4/sOLlBYdWf39Z8fqUegMp+h4JsEWf5ikq9GJOfFyBGWR3dmn1Q7q12dfy5F9eDVSU7u+F5cVMu70+R7E7K5VSQ+yGN/jVzHUpMZ5dJN9lQV/KpQktu8IaV9vI0WXL4mq3Z7NlOTx6fFxBekgOZtek04R2VN+iq4LH7e9IwWM3GYah5x9c+foHB1d+a1nx+kSk+ogBTgJs0ed5igoDwCvAO8BZRHjhAcDrDbY+9de3/UcOpewuj23t8SqLLS032eto7+u+VypyHDon2esQqeEyfCnVSQRg5zTrCBdGzIHlBdUbx/j97rgC0/zBd4/xBw1XPOcI+fys+2bc2PFGKXhMPENrvfBw4VvvHVj+/5YVr0/EFQghJMAW/YOnqNAA3sfMURwDXbSQMwztfOGJhb49O1b3+OK661DlSbvOSZmBMgBW7Te+kbkqP9nrEKkjWymb1Ws0J3sd7WmLRW0fbsTccs+GYck4ufFUPGuwWTPsXs5J1LS/mCc8SsFjdAyt9eLDa96bu2/Jfy0rXp+IN0ZCABJgi37EU1SoPUWFK4HHMYfRZHf1GNcbswu9G9bM10ZqFAVpl8frOOLpct297ave18rzHEZK7aiL5Mt3B1IuDWHJ1ba4UlemlS4ZbhjxDagaNOiuMf5g7Dvp7UjBYw/SWrPsyLoFb+1d9OVlxetT7t+y6NskwBb9jqeocAvwJyCXCDs8bdzz525zv/vGi6nQK9u29kS1xZaWUmkYFh3Q38pYLsG1OMNZHl/MvaN7yqEptmHNxN6jOzfQkmnUH46rZZ/VmmbzMimu4TXt/GbWfTM6SweRgsc4rTi6YfEbuxc8sKx4fcyTPIUIRwJs0S95igoPYPbKtgFdtpXzbd9U2vL0354O1p8q6/HFhbO/osJOaqWGADzgfbN8cFowP9nrEKnnAr8vJV9DNhcYDfE8fnLJgvR41zBo0McLfAEjEYFbVwWPAGGLO5+XCY9nMLTWS4vXLXl117zPLytenzIDk0T/kpJ/HIVIBE9R4Qng94CHKKY+GtUnW1v+MXO2v/jg5p5eW0fa6fE4jvtSpt91G6UD+rvpi1MuZUWkhkuDvsi1Dkmy+DpbXFdcxrUcH+Z11tbEcw6r1WH1W86PK9Bv53NdFDyG3cVu9DR7Vx4tkoLHkKARDM7du/j913fPv39Z8frGZK9H9F8SYIt+zVNUWAX8AagliqmP+P2Gc/aTizyrl72jg4Fe64NqW3uixmJzpFwg+znvuxXD0gODkr0OkZou1/68FGskAkDp2bbBdZZgXCkaI8tWeONdR/6gOwq8gYSNlI99wuO+JburW0+VJGgdfZYv4PM9v23u2wsPF359WfH6PjfZV/QtEmCLfq/d1MdizF7ZXTaX9iybv8f52gvPGU5nonagwttbVmFXqZcagjb4Qfr8lNyhFKkhX2G3pFgnkTYbxhNXesaFVevH+P2euMbBWy02S9B6UaIC7CnADzreGBqIMpsuCh5f3zV/4UAueHT63M7HN74yp6h0+/eWFa+Pq1OMENGQAFsMCJ6iwlbgb8B64Gy66pUNBA7urW7515+fCVZVFvfUunSr2+0oSc0d4k9551WMSPcPSfY6RGrLS8FOIgBLplvjGopkx7CkV22Ku91efv4tY70B3RjveULiKnjcW13c6+lvqaDR3dz457XPztlTffjHy4rXx5X6I0S0JMAWA0Zo6uO/MXd7RgNd5jzrpgZPy+N/es23e/vqnhiqYV9bcspic6TcRDyAR9Lei2sqnhgYxnr9KTlSunq0LbfKGowrmJpWunhYvLu+FotNBW0XJ6pLRTZxFDy+sG3u6oFW8FjdWlf9+9VPvFXSWPnLZcXrq5K9HjFwSIAtBpR2vbL/AFiJsOPzIa1xzXmx0LPovde035ewEbpqd2m5zZIzNlHnS6QZ3oWVozN8XXZfEWKKz9dlylWyrJ1EXFP58vzNWcH64op415Gfd3OBx68TlfP7uVn3zbip443tCh7DFnQPtILHEw0Vpb9b+fhrda7GXy8rXn8y2esRA4sE2GJA8hQVFgO/AU5g5mVbu3qMd/3qI60vPPmM0dQY9y6Ibna5HOVGXJewe9JPHG91VkwlxBlStZMIwNLptmFGnFeeJpcsjLtln8ViUdp+aSKnBD4+674Z9k5uXwVUIQWP7K0+XPyH1U++6PS7/1d2rkUySIAtBqxQ8eNfgCXAOLoarw4ES441tPxz5nOBkmO74nlu+/rSemW1p2RqyB3eZSfHZniHJ3sdom+40ki99pJtmoZYM8vSjLiCq/HNR4Z5XafizsXOy7u+wOPXiRo+M4XOJzz6gRfpesJjvy543FC6Y8+sdc8/EzACj0krPpEsEmCLAc1TVOgH3sAcrz4k9BGRdrsDrc/8/T3vxrULYxmxrnaWlNssOV23DEySn9jfkL8LImqDLTiUN5iyeb2FU4g7R3x42cq4U8MsFgs4rkxYihlmweOYTm4/RBcFj7urDvXLgketNYsPr9nyzJY5jwP/WFa8Pq4uMELEQ15IxYAXysveDPwP4Mbsl91lXqn7g7e3uOa++oJ2u6JuU6abXS5HpU7Zzhw3eVdXTch0j0j2OkTfkuMOpGSrPoCV19qGB7UOxnOOqSfXjfYHPHGneOTnXzfG7Sfu3fCQBBQ8elL2jVF3BQ0jOGfPwjVz9iz8K/DcsuL1vmSvSQxsEmALEeIpKiwD/hfYjdnKr8s8ZP/OreXN/3jsiUDp8d3RPId9XWmDstpTNmf157ZXU29qiEh5Yz2p2UkEwJVrTT+WGV+aiJ2gNe3kloS0d7OkXZ3In9V9s+6bcXPHG0MFj2/RRcHjiqMbliZwLUnjC/q9z219c+WS4rWPAW8sK14f1xsqIRJBAmwh2gn1y/4X8CYwFnOXKCLd3Ohtffpv77qXL3xT+3zhuxZsP1Fms+Z0dkk3JVzjLaqZmOXsuquKEB2cn8KdRABWTlVx5xtPK100NBF5y3l5V492+1UiezGHK3hcjVnwGLbP/tx9S/b09YLHRndz3WNrnlm4oWznb5cVr18Y2sEXIukkwBaiA09RYdBTVDgf+DOQBURV8OddteRAy5OznuhsMI1udLamVTEswUtNqF9aXwokew2ib7o04Iu700ZPWnu1bWRA67h2jvP9TdnBhqNxt+wDsKRPT+QO6/mEn/D4ImZHkX5Z8Hi0vrT4l8v/Nv9YfdlvlhWvL0r2eoRoTwJsIcLwFBXuxWzlV4vZZaTLXTqjpqq15Z+PveYtKvxABz66bG4vKmtWVnvKBiGXezfXTslu7mxCnBBduhx/brLXEIkvw2I/mBuMu1XbxBOLupwAG4283MtGuXyW6kScK+TXEQoeizAHa3WqLxY8aq114fHNG36/6ollTp/rd8uK1+9J9pqE6EgCbCEi8BQV1gB/BNZi5mVHFSS758/d3vKnP+4LVlTUq63HS23WnJQOXn9lnS0FQSJmI5ROx2ekdMeG5ZdY4n69m9B8aITXVX8qEeuxZd6QyFSGrgoeNREKHp/f9vaqvlLw6A343M9vm7tw9vZ3NgB/WFa8/miy1yREZyTAFqILnqJCD/AC5pj1IUDXXTa8wYt0eWWw9Xe/f9zYvm+/NoIpm35xsW9H3dTsxpTNDRd9Q447kKhx4D1i0xW2UV6t426TN6x8ZUIGxuTmXDLS6bMkcrpguILHeswgO2x9RZOnxbf8aFHKFzzWu5uqHl395Lx1JVt3YAbXlclekxDhSIAtRBRCrfzWAL8CKjCnP3ZWWARBnac8xnkE9AZlGLpl6webGte9+lSwtb6091Ycvd+o5+IaJy0EwGiP35vsNUQStFsse4YE4y4unHpy7ehAwJuQ3xlH1i1dTpDtpkgFjyeJUPD4zr6lKV3wWHzqxJ5fLP2/FaVNJ7cAj4XeOAiRsiTAFqIbPEWFVcBMzC4jo+k4mEZrcAeuIWgcUfDh1DZ/7Ym6uiWPv+A+tm2RNgIp09Jsim9v/SXZdSk79Eb0Hed7Uz/LaOnl1rhzqB06YHNUb0tIF5Cc7IuGO322RO7Cng881PHGaAseX935wYJUK3g0tGGsOFq04tHCp3Z6At53gb8vK17fJ9JZxMAmAbYQ3eQpKgx4igoXAr8FWjALIM2dKG/wYuU3LBjs7OyxLTsWbG4sfOmJQMup47203Ih+o551KpXSHdZEH3FpMLU7iQDsmmYd4cKIOzibWrJosE5QIJqWdWvnV8Ji96tYCx73VB+q3VN1eFOC1xMzj9/rfGbLnPde2TnvOGZgPXdZ8fqUTbcToj0JsIWIkaeosARz+uNC4CyC+izlMSYR0EXKLCrqlL++vLF+6RMvuYo3faCDgaRdVp/kP9hweXaN7F6LhLjS8KV0JxEAbbGo7SOMuIsUB/vqcwINxxOy85ydPWVYq8+ekPZ/bacE/q/jjdEWPL6wPTUmPNY668v/Z+Xj8zaV7ToC/HZZ8fptyV6TEN0hAbYQcfAUFXo9RYVvAY/iDeYSME4qaIrmsa27l2xvWP38E/6Gyv09vMxO/Vo/02KR7WuRIKMsOgOfkZACwJ605CpbViLOc07JooTtPKdn35GmdULno3x21n0zbul4Yyhv+U1SvOBxf82R7b9Y9n+FVa21G4D/XVa8PpFvQIToFRJgC5EAnqLCQxZn4MtKMxszZSQvmscFGquaG1b++62WHQteCnpaa3t0ke2c7T/WfE3OSdm9FgmV5Q40J3sNXTk0xTasGSOqN8GRnNt0YITX3VDX9ZFdy86aNNTpTy9PxLnaCVfwWEgUBY9VLadOJHg9XfIHA775B1ct+vPaf+/1BwNzgCeWFa9P6faPQoQjAbYQCeIq3uR0FW96BbNvdhA4i7bc7C64j207Xrfo70+5T+xY2htpI7/WTzVYlJLff5FQqd5JpM3mAqMhEecZWrYqYcFfZs6dmTqx29jnAR/veGOqTnisaa0r+2PhU2/O3bekFPjLsuL1HywrXp/IiZdC9Cp5gRUiwVzFmw5itvNbAowlwk7RaYyg0bLtgw31K5993F9XtjvBl4w/NNZ/ovn67DLZvRYJN9mX+p1EABZfZ0tIvvjUk2tGB4K+uHtrA2RmThjs9Gckahd7F3D9w3PmfxDm/pQpeAwaRrCoZPuKny39y7LjDeUlmPnWMplR9HkSYAvRA1zFm9yu4k1zgN8DHsy0EVs0jw0217Y2rH7h3Zat7z8fdDfHPd65o18ZTzdYLSrR/XeF4JKAL2zxXCopPds2uM4SjDu9I037bfaq7Qn7Hc3KvSsnzl3sRuC7wKUPz5m/NtxB3Sx47LEBQo2e5prHN778wrNb36w0tN6COTwm4X/zhEgGCbCF6EGu4k1HgF8DH2DuFg2P9rGe0t1ldYv+/oyreOM8w+9NSFX/qEBF6y05J2T3WvSIq3TqdxJps2E8CQkcLy5dOFhrIyGXmzIyxue3+rPKuvs4rXUAeBw49+E58x9/eM78LlMroi54PJL4gkettd518uCGny75y+s7Tx6wA68AzywrXi9Dr0S/oXrqMrQQ4nSZE688C3gAmAzUAFHnb6q0LEfOJXddmzZq0jXKYo1qJ7wz//L+quTuvKPjYn28EF25qKDAjd2Skex1dGVEZaD5ny+SkDcEiy9+uNwxaEJC3ri6PeVNuObkqChrJE61Ok9sOV6+8GRTy/f3VVR1q0f0bROvtQP/C2QCYfPS/3j7I18emTN0fHfOHY7T52p6c8+id9ec2OLFrFV5fFnx+gOJOLcQqUR2sIXoJa7iTaWYUyD/hXlZ9iyiTBvRXqeveeNbqxpWPfdPf115TPnZw4NVrjtyjnY2gEKIhMnsA51EAKpH23KrrPGPTgeYULI45je9HWWkF+S1+nO6zMV2en0ni46UvDRv54EXTza15AFXdfe5QgWPs+lqwuOueQkpeCw+dWLXL5b99d9rTmyxAMeA30hwLforCbCF6EWu4k2Gq3jTZuCnwALMtJER0T4+0FjV3LD6+XebN899NtBaX9Kd5/554KkamyW6gF6IWI3qI51EANZOIiEpCZMa9430ehrrE3EugJy8GfmG1p2meXj9gcZdZSffmbNl9zMHq2rLMes7aoBYe0UfBtYToeBxb/XhuAoevQGfa+7eJXMeLXxqfZOnZRDwEjBrWfH6uIf+CJGqJEVEiCTKnHjlaODzwFTgFHQvLzRz8nXnZZx7xc3W9OxhkY4bHKh1b8r4vtVuxRH7aoXo2o9tuSWLxub3iTSkvLqg6+mnjYxEDFzaPOa2ktaJn0zY911b/e+SHEfzh+fzB4Ou47UN6zYdL93sDxoGMBLzCti7wPJ9FVUxdzO5beK1gzGvrtUBnb5Byk3Ldsy845H/zrCn53Tn3GVNJw8/uem1hSdbagcBJZi51jI4RvR7EmALkWSZE69UwMXAlzBb+lUR5kWuU0qprPOvn5Jx9qU3WtKzh3Z2yJ88vz/x2fz94xOwXCEiep30qkfPHj4y2euI1p9neU+O81nDFvpFy6vs/sLr/hS0WR3piViXx1vTarS+nG5oHSipayjadLxsk8cf8AGDMQdZbQHe3FdRlZA0l9smXnsr8AXMILhTn5py+4WfOP/m/4zmfP5gwLfq2MYlr++efzy03veABaG0FCH6PblcLESSuYo3aWBn5sQrDwA3Ap/CHFBzErMIKDKttXN/4T7ngTX7s86/8YKMsz92gyU968NAOy9Y7/lkzv64AwghonGF9nVrhzPZCqfg/9LO+M+Tpv12W/XOCkZfMT7+s4HdNshxoN6+Ytvx7TudXp8HyMJM4yjFrOM4vK+iKpE7ZIXAzZhv8jsteHxn/9K9lxdcdOnInGHjI52oorn66Ozt7yw8UleSjblZ8LtlxeuPJnCtQqQ82cEWIsVkTrwyD5gB3IrZQ7sGs19tdBRq/Pizv+g7/64hgYwhuX/wzDzxhfzd43tksUJ04sKxBV5ls/SJntiZzUHPc48bdquKvzd8bdqw5t1X/SZHxZFyEgz6fSU1uzYX7X+lqNlV4wYcmOkgrcBrwJZ9FVU9MuHwtonXTgZ+jrmL3WlR44UjJg176NoHv2lRljNquNx+T8uS4nVL3j+wvBQYCiwH3pb2e2IgkgBbiBSVOfHKMcB9mOkjDZhDJLqUR+vZE1XF1BzlnVcz5fMXzTv3nStGZWnpHiJ6zeVDR9V4cuxR93xPtj/8zVsx0W1NyO/I4mk/qnDkj+/2uYJBv6+0dveWov2vFjU5q1yYV7FGYQa67wGr9lVU9XigetvEa78OXA5Uhjvm+9d8+bZpo86/pu1rQxt6X82Rzc9vfXtVo6d5KODGzLXe29PrFSJVSYAtRAoL5Wefj9k/ezRmIWSEoTOaSZTfPVw1Hk1X/oMAFoX67AW28+84xzZ9SKalz+TGir7rE1lDS08Mzzwr2euI1i0rfWXf2GQZm4hzHRp00cmKi78ZdUqW1+8KHC5fX7zj6Lx5re46D2Z3rxGAHVgGLNxXUdWUiLVFI1Tw+EegnggFj3+845H/zrSn55xyNVS8sWv+/G2V+5ow3xBsAF5dVry+T7RrFKKnSIAtRB+QOfFKG3AZ8BlgCGEC7Vyc4yap8kvycL6v1JlpJZ88zzbx7om260dkW2Sao+gxD9tzS5YW9I1OIgAOt+Gf/dcgNqXsiTjf4qsebXCk5w2KdIzX7246WrV3w4aDH5R5PeXXgGceZgFjGmaQOm9fRVVSxobfNvHaW4AvAifCHTNj8k3n5WfkZr+264NthjZGYqaxvQBsDo1iF2JAkwBbiD4kc+KVdj4KtAcDtbSbCDmR8jtHqIaSdOXfH+k8N463Ftwz2Xb1hEGW8xPRokyI9l5W6ZV/Gj88bF/lVPTrxz1lF7bYErKLvangjhLnufd0+gbD6WmuPlS5o2jbkVV7g0bAAJQRbLgDo7kJgh8A7++rqOr2uPRECk14/B/MwsqwEx6BDMz88L3AC9LXWoiPSIAtRB8UCrQvxwy0BwG1ObgGTVJlV+TjfLez3evOTBpiyfvchfYrp46wfMxhVX2iKE2kvkPa0vLpCQV9qpvINUW+yh8UWhLypsCjHP611/3JsFrtH/5ONbTWHttftnnDnpINR0I3KWA4kKF1cL826hftKyvek4jnT4QuCh4tmClrPuBVYMOy4vVxT3oUoj+RAFuIPixz4pUO4ArgPydQcc1oVV+Vrvw7unueQek47r/IccnVY61X5qapiJe2hYjGhWPH+pRN9ZnBRla/Ycz+c9CXplRC+livmPyVEmPEJWOqGkp27Ty+dlPZqeLa0F0fBtbAHsxBMcf3nChKuRfjMAWPgzBHq68G3llWvL7X8sOF6EskwBaiH8iceKXjfFVy12jqblCKQZgT2bo1FRLMgshPT7Gdd8vZtqtG5Vj6TJGaSD2XDR1V682xR5wwmmp+/LSn9LJ6W9z/7lu1alxtG77hXSNrT4u7oa3zR1vxYhqwC5gHHEvFwLrNbROvHYQ54bEeM8d6FOYgrBeWFa8/nMy1CZHqJMAWoh+5Z7LdDnwMc1jNCMzWfo2xnOvKMdYRd0+yXTplmGWqpI+I7rore2hp2bC+00kEYNp2f9XPl6iYOu1oDRXacnR1MG3z/GBasYFqe3G18tFY8w3A4j0nikoTtOQeFyp4/DrmG/a3gZUyjVGIrkmALUQ/dM9kuxWYCnwSOItYBtaE5Diwf3qK/YJrxlovle4jIlrft+edWFmQNz7Z6+gOZRj6hccCzkws2dE+pkXjP2jYN88PpG0/oO317e5qGxBjYE5JXLbnRFFSuoLEI1TweD2we1nx+tqujhdCmCTAFqIfu2eyXQHnAh/H3NkOAtVATDtQl46yDPvEZPulFwyzXJxmS0yuquifZqv0yll9rJMIwPee95y4rto2PtIxWmt9MhA4utHt3vMe+ed77DkfoCyu0N1ZmFMMvcAioHDPiaLGHl20ECLlSIAtxABxz2T7COBG4BbMy9WnAFekx4STacf26Sn2KdeOtX5sZLYaJ53+REf7tLXlcxPG9KlOIgCT9wdqf/c+neaOtwaD9fu93p0rWlt2lfn9zQCu9KE3eNIHuwxr2nEgG/P3aj6wec+Joph+v4QQfZ8E2KLPUkrNBv6ttV6nlPolZkupy7TW+5VS/wdsBO5qO6aLc6VhDkkYCxzUWn89dPv40ONvDX09CpgN5ABrtNY/7YnvrSfdM9meDVwJzMDsBtBM5F63EU0aYsm7e6LtootHWi8anKH6zHhs0bMMrZk67iy/siZmeEtv+vcffU25WPIAfFp7Sny+/Rtdzl0bXK6OudO2oMUxuSW7YFzAnvU25o71/j0nioK9vmghREqxJXsBQiTQTOCHSqmHgenAI5gBdjS+CJzSWt+vlHpJKXWt1np9J8d9H3hOa/2mUmqxUmqk1rpP5VXOO+RvBVbcM9leCFyEGWhPAAKYedrdSh85XGc0Ha7zrQPWXT7aMvy2c2wXXTjcelG2Q+Uleu2i77AoRZo70OTLtg9N9lq6a91ZRt2FRwIVO93uPaucrcVerTsGzNmYE1X9VsP3bparumhdQ9WJ3l+pECJVSYAt+pNSzGKcXwH/0lob3UhduBF4J/T5zwF3mOMqgAeUUuu11h8HUEqNwNzVzgM+0Fr/MbTz/QfMQQxorb/S3W+mp8075A8AO+6ZbN8JFADXYv4c0ohxV3tLpVGzpdK3QsGKm8+2nnXjeNtFk4dapqTbVGYCly76iGGegLsiu49sYAd10FrlP+rY59o3b1/LwfnNQV+HI6yY/asdmBNUZwNbV7W0OOmDlFJfB34AnOzk7gzMVLIngZeANcCfQx/Pa63v7KVlCtFnSYqI6LNCKSIXA03AOMzRvrWYLwrnaK397dNI2j3ufcxguM1rwH9ivnhcAtwH/F5r/V4nKSIK+CbwEDBba/2oUupvwE6t9Wyl1CbMXfMcYDdwu9Z6Y8/8BBLvnsn2dMxd7TuAczCLImsIvVGIhd2C5c6JtglXjrGed85gy+RMu4q6Q4Po2/7bkVdSOCav05HhKSGotbXGf8yx3703fXXzQWtD0NPJUbmYw1WCmGlnhcDRVS0tfXpyoVLqS6FPX8UMpj8GPKa11kqpQq31DUqpszCnxe7EDLT3Yf7N3Qb4tNaf7PWFC9FHyA626Ou+2y4HG8wXgMNa67BpDlrrezveppS6FcjRWv9ZKdWCeQm4MxcCz2HuXi1WSq0HJgNXK6UexOwgMBqzZ+zSvhRcA8w75PcAW+6ZbN+K+X1cA9yMuavdirmr3a135X4DY96hwJF5hwJHFMy/fpy14NqzrJPPG2o9Lz9d9bn0ARG9i/0+W2GyF9GB4Tdcvlpfsf+gq3bIqtYROQ3GO51c53IAwzBfIyuB94Htq1pauj28KYW1vUGYA5yHuWt9r1LqNkArpSYAmVrrWaFNhI9j7nY/rrX+XDIWLERfIgG2EKb1mC8g72Lu0HSWfw3wS+AJrXWhUuowkA4cAt7XWq9SSj2AOfXMjhmQ9knzDvk1ZjrMW/dMts/DfGNxK+abCTCH1zR397waKCwJlheWBMuBFVNHWIbcNN42+YLhlvOGZ6kCi7Qj6VeuMHwpcbUi6AzWequ8h11HXIecB53laDRak+vnUwELw+0GNZiTFodiBpoeYDnmYJiyVS0t/fFSrwUYDHwAHADOBpZg/q6DeZVvtlLqh5i/7/cCmcCU0IaGBdijtX63l9ctRJ8gAbYYCP6tlGoLdh/VWr/TyTHPAC8ppdZivnCEC7B/BzyjlAoAx4BlmGOPn1NK/R44DryBmdPcL8w75PdiXhLeds9k+2DMATa3YKblGJhvKGLKQ91dbdTtrvYVAUUFuSrrtgm2iRcMt5wzNtdydoZdZSXoWxBJcgGBXB3UAWVVvfpaow1tBBoDJZ4KzyHnAedhb6X3zHoCpWjJ0JVZHqbYDdIx3//tANYB+1e1tMScFtVH5GG26WwGNoU+rJj9u9Fa71BKXYVZ9NzYdjtmSh2Y8UNTL65XiD5FcrCFEN0WGmAzArgUuAlzJyyI2QPYG+GhUVHAFWOsI64qsJ4zcYhlwugcNc5m6d0gTSTGx4aPrvNn2Yb09PMEncFa3ynfcU+Z55jzoPNEsDUY7t+hwgwuc+0B7TirhqZ8Fy8De1e1tPTZq07dpZR6DLOweybm7y7AeK31uUqp1VrrG5VSPwKKMVNkNvDRVTkrUKS1/kVvr1uIvkICbCFEXELB9jjgMuAGzDx0A6gjfDeWbsmwYb1hvO2sj42yTDhnkGXCkEw1StJJ+obbc4aVnRyaMTbR5w26gw3+en+Jt8J7zHnIedxf548UHCvMYsW80OdHMDtj7G3e0RxzD/i+TCm1FLOAcW67Iu62wLrtv6uAb2itD7fdFjpuGvCQ1vrLyVq/EKlOAmwhRMLcM9luA8Zj5rFfg9l9AWLM2Q5nSIZKu/Ys69jzh1rGjsu3jB2RpcbYrcqRqPOLxPmWI//EujG54+M9T9AVrPPX+0u8ld4TriOuEl+Nr6t/TzbMKyvpmEH1UczUr93NO5rr4l1PX6aUGgYs0lpfFhrKNTV0V53W+r5QYP1lYKXW+tzQY2owOyOBWQR+UGv9YC8vXYg+QwJsIUSPCO1sjwYuAK7jo7z0VsyAO2FtzmwW1OWjrSMuHmkZe84gy9jROZaxOWkqP1HnF7F70pJZ/sS4od2qSTB8hjPQHKj01/krvFXeCvdxd2WgMRDN2PEMzKDagjk4aRewGTjcvKM5YW/wkk0p9f+At7TWDaGvfwA8qbWOKj1LKXUnMFlr/Tel1LnA/cA/MXvh/x6z8PEd4F6t9W9D7Uk3h27/J+YVq0e01g9E+XyZwGCtdXm7284CKvSZQ3yE6BckwBZC9Ip7JtuHYHYhuQY4H3NXMYDZ+i8hqSTtjc9XOVeMsRacnW8ZOSbXMnJophqZ7VC5iX4eEdlWbWv8yoTR+eHu1wHtC7QEKv0N/kpfta/CXeKu8FX5oi2ea5/6AeYbt42YO63Hmnc097tCRaXUJcBazN14K+ZgrSXAQsyfx0yt9Y52xy8B7tJaB5VSyzv09B8N/AWz7egXgW9qrc9ItVFKjQH+DjzbdhxwN+Yut4HZQ3s7ZjvPMZgF4Hbgr1rrxUqp4cD3tNa/bHfObwK1Wuu5CfrRCJFSJMAWQvS6eybbszDHs1+IWSg5GDM4cGMG3N0a1x6tEVkq45JR1hETB1tGFuSqkSOy1ci8NDXMalGWnng+AX6t9SXjzzKURVkNj9EUaA3UBJoDNf46f42n3HPSU+o5he5Wb/VMzNQja+jr45gFeAeAyuYdzf32RS0U6C4GPo+5k3wLZteTrwN/xQx4T2FeLXoWs93g5cCW0CmuwNyJdgB/0lovj3M9Vsw87isx+2lXYQ7t2qa1Xh065vvApzED8bTQur6JWQzddttKrfXP4lmLEKlGAmwhRFKFUkmGYE6OvAQzHzQ9dHcLZu52j11GTrdhvXiEdei5gy3DxuSqIcOz1NDBGWpoXpoaYreqPjLnO3UYWusGP41VHmrLXJwqbuXUX/0ZNQ0VvlNBZ9jOHpFkYO5QOzDfhNVito08ABxv3tHcn4a/RBQa/nIBZr9uQ2v9olLqdszflxrMvtTO0LEOzDeqTwPfxWxD+Arw7dDpmiIN5IpyPbOAIszUkmbM9K+DwC+AR4FSzN3sszGD6RatdUk8zylEXyEBthAipdwz2W7FvHQ9EXN3exJmTq3C3JFrIgGtAKMxPl/lTBxsGTw2zzJ4ZLYaPDRTDc5NU3lZdpWbYSd7oHYycfu1s8WnG5s8urHerRtrXbpxe70etM5tte51WZa1BuJ6Q5SJGVC3vblpwMyl3o8ZrDX0513qriilcjBTYG7UWpcopR4HtmLubFswg9gWpdTTmAXH+UAO8ARmcL0fM6XjYq11zG9OlFKfwUz5SscMsNuC6IWYb4DuAX6IuUP949B9W7TWTyulNvFRWti5Wut+MzdAiDbSV1YIkVLmHfIHgbLQx8p7JtvtwChgLGZKyRTMHtxgvmg3Ye6cJTzoOtGoW040BlsgeMaum82CGpurssfmWXJHZqvcoZkqZ3CGys1LU7k5aSo3066y06ykO6xk9IUUFENr7Qvidvtxuvza6fJrZ6sPZ4tPO5s82lnt1E1lTUZjcb3R2Ooj0PHxLUoVFDssU1ut3Qqu0zCDvyzMqxQWzB3qtZiB4AkGeEDdid9hpsTcr5Taj5kmAmYaRj7m7nEh8G/M3e4jmL83qzF3vj8Aro0nuAbQWr+llPrP0PP+lI+KS78O/BqYprU+rpQaijnAx4m5ow1mcP1g6POX41mHEKlKAmwhREqbd8jvx3xhLgXWh1JKBmEG3BOBi0Kfa8xdbj9mwO0kgZ1KOgoY6OONuuV4Y7AFc6x8WIPScQzNtGQMyVQZ+ekqIy+N9Jw0lZHtUBmZdtLtFmWzW7HZLG0fymZV2GwWrFYLoc/NQTva/J/WGm2YucvavOGj/wY1QX8Qny+ofd4gPm8ArzeofZ4APk9A+9x+fC6/9jn9eE+5DFdVq3ZWtmiX0b1c6NOka11ngRy0hs439m2YwXTb+HSFmQJ0ADOYLsfMoY5pKuhAoJS6C3NkeSHmv/PvY05S/T7wR+BtrfXm0OHfwPzdGI0Z0E7FTCM5l4+KQuNZy9nAn4AnMa865GPmxZcAt/HRdNdxmHnZYOaLL8fc0b4FMz/84XjXIkQqkhQRIUSfd89kezrmLvdIzOLJiZiFXir0YWC+4LfSQwWUAvY67J+pt1qXGEoFMHelMzB/9grwYfai3o8ZhFUATbI7HT2l1GWYKRlfA/ZhpsxYgTuBs4BbdbsXdaXUTOAkZkrVauBzobZ7C4Eva61r41jLNzBTtoZhdg65AjNP/hZgGWYR5Vyl1E2YqV7/xkxTeQBzyM8vMQdTXQnM0Fr32JthIZJBdrCFEH3evEN+D2Y3ibaOEm1Db4ZiBt1jMXO5z8bcbTMwL2cbgAtzh89DD6SZ9GMWzJ9lJqFAOkPrBmXumB7HzBM+gtlZogaoa97RLEFUHLTWW5VSbfnKWzDTqBzAHzB/3gVAWajv9E+APZhvZi5sO4dS6muYRcVxXSkI5VJfBtyE+Tt2B+bu9HdDX7dNyNTAt4BPhtbyIGawb2C26dwDfBUzABei35AAWwjRL8075A9gBndVwE74sGNJLmaA0RZ8j8cMTNrSTDQfBd/edh8+BlYAbsHcLW37sPNRNxcV+rwKM8XjBFAzKhCsL7Pba5p3NMtVgp7jABxa69VKqbZWfNdhpmL8SSn1AWZf7PeBSszA9e+Y+e5g5mC/pLVORI/wtn8bGzHfqD6PGXDfCDyilKrDjDOeBB4HXsMssPwLZrvAb2G+IZb+9KLfkRQRIYTgwx3vfMxircGYwfdwzEvgQ/koCGj7o9lWuOjFTDvxY+7I+TGDz1T846owA2U7ZqDW9l8r5hsK3e64IGZP5SrMNIMqzEEubR+t8w75U/F7TDlKqd9hpk5UA1/UWrcqpf6mtf5Bu2OmAWitd0Y4z2xgGua/s6e11s92Yw0KuBk4qrU+EeG41R1uatJa39uN57FEk+6hlLLH2yZQiFQmAbYQQkQh1D4wG7NQLzf0MQgzCM8P3d5WxJfJR7vh7YPWtv+2fWjMwLbjR/s/zKrDYzv+14IZILedT3NmcN/+HC2YnVcaMS/j14f+62z30YgE0AmhlLoGsyf0TZgDVjK01v/XyXEPAmitZ0c412zMHekDmK0L79Ja7+7GWn4LrG4bAiOE6DmSIiKEEFEItQ9sCn1EdM9kuwXzknxGh480zGDYFvqwh25zhD7aPrfzUaDd/r9tnwfbfe7FDIo9mGksPj5KafF1uM0175Bf8qB71x3AQq21Do0tvwDMnWKt9Y2hz/8I/Efo8y9qrW9RSv0PcFBr/bpS6jfAobYTaq3rlFILgOuVUqcwUy8UsE5r/YvQaPI5mP+O9mmtv6GUegEzyP+kUmqf1voLvfT9CzEgSYAthBAJFgpi3Xw0TEMMXCMwB8GgtT6G2fnjNFrrnymlDoU+nx26+SXM8eevAx8HHgv9t00d5pWTMZgdOXZiTlX8BTAdc6rj95RSnwmlbXxFdrCF6D0pP/xACCGE6MOaCfX+VkpdoZT6UTQP0lofBXKUUjcCe7XWng6HDMZM7wlgDnr5N2aKEsAiwKqUWgZMlRZ4QvQ+CbCFEEKInrMec/AKmH2fw13VcGPm7rcVJAK8gdmZ46X2Byql8jF7X6/EHEf+R8ze2G0581cDL2utbwNuVkqdE+E5hBA9QAJsIYQQoufMA44ppYowUzdeCHPcMuBTSqn1oeMA3sYMmte1O+6fwGLgJ1rrg8B84KnQ87iUUmMwB/r8SSm1AbMHeUnosXOBnyqlNgLnIIToMdJFRAghhEgxSqkLMIPxp7XWzyV7PUKI7pEAWwghhBBCiASSFBEhhBD9nlLKqpS6Ispj7Uopi1Iqp+ujozpfdiLOI4ToOyTAFkIIMRDcBny7szuUUqOVUvPa3fQEcD1mgWGnlFIPKKXuDnPf+UqpT7d9AIfafX1fKE8apVSaUuqM12FlcnTjexNCpBjpgy2EEKLfUkp9CfgqMB5o6jAKfI3W+teYre48oe4c92MO5WkFnEqpnwILtNZ7Opz6LMxhP535T+A45lCi64HPYnbvuAqz84czdNxsYIxSygBGYm56VWIOjTkOPBjDtyyESAESYAshhOjPxgCPa63fbn+jUmo88JhS6g7ge8B5wOeAzwAHQ4dlAbeGjrMCaVprV+g+K+bYeUK70JmAR2sdwJy0eQEfBcjpmG31zgImaa2/CKC1/ny79TwIpGutn0rUNy6ESB4JsIUQQvRn/gj3aa31EqXUIMxd5zeAA8AXQ/cHgW+GxpyPB15VSgVC952NucP9k9DXacDXMScqKuAE8DIwCXPq4ovAKMxd9CyttTPUi9oaCso/FArmDS1dCITosyTAFkII0d/9Tin1gw63pWH2iwZ4ABiCORHxA8xd66eAG4GJwJHQZMWr2h6slFoBlGqtv9LJ8zmAHcB3AA9wKeaI9DTgGa11W4rIhcBspZQfGGaeVj2I+dp8P3A45u9YCJFUEmALIRJKKTUaOKW19sX4+E539drdbwHo7vhnpdREoAwzzzVXa10Vy/pEn/SrMCkiM5VSt2OOHD8FLAF+hRl4NwKrgM8opUq01vvbPXYKZh71YKXUZK31oQ7PNwhzRHorZi/r7wCvAJMJjU0HCOV1Xxo654NIiogQ/YYE2EKILimlHgFatNZPh75+CGjUWnc2le4PmFPpXovx6cYAbymlvKGvbcBUYHvoayswE1iglPoC5mX8S4HLgbGYU+vGYwZJD2mt94Ye9zjwA2AKcDNm0CNEFvA74Bda61VKqf2YhYiNmMWO36fdeHOlVBrwL8x/S27gWaXUne1ys8HcmT6JmZ7ybcx/lz8L3ffznvxmhBCpQQJsIURESqkFmPmmPqXUJ0I3nw0ElVK3aK0fUEodwtwdBsgApiilvhr6erzW+txon09rXQ5c3e75H8Hs4vDHTg73AhO01j9SSo0A7gD2AfcBRW3BtVLqIqBKa31AKTULGN2hm8SXtNal0a5R9CmK8Ckix7XW7yqlhgEopYZivjF8GrNDyFDg/4XO8Rel1Hmh+17WWu8KPeYJYJlS6kGtdXFoAqNNa90cauM3GzMgvxGzW8klSql6zN1xpbXuNEdcKWXDzBEPJujnIIToRRJgCyEi0lrfHQpOhgGLQjd/BtihtZ4d+jqA2YpsktZ6o1Lqs8ABrfUepdT2jueMllJqHPAb4Cal1DitdUm7+x4ErgWuUko5MduheYGHgTnA8FA6iRWzn/ECpdR1QA3wSczgqQFYJcF1v5ZG+BSR/2t3jB34FLBTa/2PUKpSIeYO9z9DV0sexSx6bPs9QGs9RynlAVYopaZjdgp5Rin1Dcyix0eAKuBHof9eCFRjdh35iVLqtFQqpdTnQp/aMXfWFyfkpyCE6FUyKl0I0aVQgD0WM/UDzAB1Y1uArZQ6C8jBbEvmBXKBt7XWa+J4zlxgIeDDLD77CzBLa/1+6P5fYxaTHcDMbb0eM796EmabNQtmKslIzDcEm4BzgZ9gbi78HvPy/1St9epY1ylSm1IqEwjEWhPQ7jx2IENr3Rzm/qx2xYsopUZiplF54nleIUTfJDvYQoho3U2oIAsoADa2uy8LszjsNcwuDG8SRweE0CX7uZj53HdjXq7/FLBSKeXXWi8EijHTUbzAZsy/Z8eBL2Nelp+utV4Y2sU+BtwYSme5HXPnOgjczkdvGkQ/1CE3Op7z+InQ8q99cB36WopohRjAZFS6ECIspZQ1dKkcYKbW+kat9Y2YBYMopSxKqXswW5rlA/+NmUZyM2b7scVKqbWhS+fRPud5mEHvbztcij+FuXP+uFJqsNb6dcxODWBebr8Xs3/xuZg76RNDjzMwU1gITep7jI8m6bUCf492bUIIIUQ0ZAdbCBHJl4BPAxqzg96nQ7er0G33AU9orW+AD1vsPQqsxswzfaV9EVeoSHJIu9ztzhQD97bPt26jtT6mlJrWyWX648BzgAszyH6Fdu3Q2nkeM92kOXS++UqpbyilbtVaL4+wJiGEECJqsoMthAhLa/2C1vpuYCmwR2s9Q2s9AzMtY77W+k6t9QdKqTGhriHrMMdHP47Zbq9IKfWf7U75n8A3u3jOYIfg2oIZ0Lfd3z64VqGPKzB3t+8HzsEcHPLZTs7xE631EszUkjZfxSxmE0IIIRJCAmwhRFhKqXSl1DvAcOAX7e66H7hQKTU71Bf4V5iFjf+ptX5Ua92qtf49MAO4XCnVFtD+CNjdzWWkEf5qWxowDvgcZp52e36l1A9Dn9sAe6iN2mRgObAeQGtdG65VmhBCCBEL6SIihIhIKTVea30izH0jtNbV3TjXFUCx1rohgetTgKVjv+Bwt4fus4WbFCmEEELESwJsIYQQQgghEkhSRIQQQgghhEggCbCFEEIIIYRIIAmwhRBCCCGESCAJsIUQQgghhEggCbCFEEIIIYRIIAmwhRBCCCGESCAJsIUQQgghhEggCbCFEEIIIYRIIAmwhRBCCCGESCAJsIUQQgghhEggCbCFEEIIIYRIIAmwhRBCCCGESCAJsIUQQgghhEggCbCFEEIIIYRIIAmwhRBCCCGESCAJsIUQQgghhEggCbCFEEIIIYRIIAmwhRBCCCGESCAJsIUQQgghhEggCbCFEEIIIYRIIAmwhRBCCCGESCAJsIUQQgghhEggCbCFEEIIIYRIIAmwhRBCCCGESCAJsIUQQgghhEggCbCFEEIIIYRIIAmwhRBCCCGESCAJsIUQQgghhEggCbCFEEIIIYRIIAmwhRBCCCGESCAJsIUQQgghhEggCbCFEEIIIYRIIAmwhRBCCCGESCAJsIUQQgghhEggCbCFEEIIIYRIIAmwhRBCCCGESCAJsIUQQgghhEggCbCFEEIIIYRIIAmwhRBCCCGESCAJsIUQQgghhEggCbCFEEIIIYRIIAmwhRBCCCGESCAJsIUQQgghhEggCbCFEEIIIYRIoP8P/fiPf652pWwAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "f = plt.figure(figsize=(12,15))\n", + "labels = pd2[pd2[\"life\"] > 1][\"name\"].tolist()+[\"其他(一条命)\"]\n", + "sizes = pd2[pd2[\"life\"] > 1][\"life\"].tolist() + [sum(pd2[pd2[\"life\"] <= 1][\"life\"])]\n", + "explode = (0,0,0,0.1,0,0)\n", + "plt.pie(sizes,labels=labels,explode=tuple(e),shadow=True,autopct='%1.2f%%')\n", + "pass" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "val = {}\n", + "for idx,life in zip(pd2[\"index\"],pd2[\"life\"]):\n", + " if idx <10:\n", + " idx = \"0{}\".format(idx)\n", + " else:\n", + " idx = \"{}\".format(idx)\n", + " val[idx] = life" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "start = 202101081730" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "第 91 轮,攻击被触发,发动攻击的数值是 202101081821 \n", + "被击中战斗的同学是:汤鹏 , 剩余生命值:0.0\n", + "*_* 汤鹏 同学退出战斗……阿门~~~\n", + "还有 55 位同学在继续战斗\n", + "\n", + "第 146 轮,攻击被触发,发动攻击的数值是 202101081876 \n", + "被击中战斗的同学是:小昭她哥 , 剩余生命值:0.0\n", + "*_* 小昭她哥 同学退出战斗……阿门~~~\n", + "还有 54 位同学在继续战斗\n", + "\n", + "第 178 轮,攻击被触发,发动攻击的数值是 202101081908 \n", + "被击中战斗的同学是:ChercherᝰACE , 剩余生命值:5.0\n", + "第 202 轮,攻击被触发,发动攻击的数值是 202101081932 \n", + "被击中战斗的同学是:R , 剩余生命值:7.0\n", + "第 317 轮,攻击被触发,发动攻击的数值是 202101082047 \n", + "被击中战斗的同学是:郭家乐 , 剩余生命值:0.0\n", + "*_* 郭家乐 同学退出战斗……阿门~~~\n", + "还有 53 位同学在继续战斗\n", + "\n", + "第 363 轮,攻击被触发,发动攻击的数值是 202101082093 \n", + "被击中战斗的同学是:金喜william , 剩余生命值:0.0\n", + "*_* 金喜william 同学退出战斗……阿门~~~\n", + "还有 52 位同学在继续战斗\n", + "\n", + "第 380 轮,攻击被触发,发动攻击的数值是 202101082110 \n", + "被击中战斗的同学是:、Fresh , 剩余生命值:0.0\n", + "*_* 、Fresh 同学退出战斗……阿门~~~\n", + "还有 51 位同学在继续战斗\n", + "\n", + "第 393 轮,攻击被触发,发动攻击的数值是 202101082123 \n", + "被击中战斗的同学是:会跳舞的文艺青年 , 剩余生命值:16.0\n", + "第 449 轮,攻击被触发,发动攻击的数值是 202101082179 \n", + "被击中战斗的同学是:HelloWorld , 剩余生命值:0.0\n", + "*_* HelloWorld 同学退出战斗……阿门~~~\n", + "还有 50 位同学在继续战斗\n", + "\n", + "第 493 轮,攻击被触发,发动攻击的数值是 202101082223 \n", + "被击中战斗的同学是:M I AO , 剩余生命值:0.0\n", + "*_* M I AO 同学退出战斗……阿门~~~\n", + "还有 49 位同学在继续战斗\n", + "\n", + "第 649 轮,攻击被触发,发动攻击的数值是 202101082379 \n", + "被击中战斗的同学是:憬 , 剩余生命值:0.0\n", + "*_* 憬 同学退出战斗……阿门~~~\n", + "还有 48 位同学在继续战斗\n", + "\n", + "第 654 轮,攻击被触发,发动攻击的数值是 202101082384 \n", + "被击中战斗的同学是:默溪 , 剩余生命值:4.0\n", + "第 916 轮,攻击被触发,发动攻击的数值是 202101082646 \n", + "被击中战斗的同学是:柳好肥 , 剩余生命值:8.0\n", + "第 926 轮,攻击被触发,发动攻击的数值是 202101082656 \n", + "被击中战斗的同学是:虫虫 , 剩余生命值:0.0\n", + "*_* 虫虫 同学退出战斗……阿门~~~\n", + "还有 47 位同学在继续战斗\n", + "\n", + "第 940 轮,攻击被触发,发动攻击的数值是 202101082670 \n", + "被击中战斗的同学是:城城 , 剩余生命值:0.0\n", + "*_* 城城 同学退出战斗……阿门~~~\n", + "还有 46 位同学在继续战斗\n", + "\n", + "第 1015 轮,攻击被触发,发动攻击的数值是 202101082745 \n", + "被击中战斗的同学是:周浩 , 剩余生命值:1.0\n", + "第 1030 轮,攻击被触发,发动攻击的数值是 202101082760 \n", + "被击中战斗的同学是:HelloWorld , 剩余生命值:1.0\n", + "第 1187 轮,攻击被触发,发动攻击的数值是 202101082917 \n", + "被击中战斗的同学是:筱䓉^_^薇諒 , 剩余生命值:1.0\n", + "第 1279 轮,攻击被触发,发动攻击的数值是 202101083009 \n", + "被击中战斗的同学是:孙宇 , 剩余生命值:16.0\n", + "第 1346 轮,攻击被触发,发动攻击的数值是 202101083076 \n", + "被击中战斗的同学是:锅醋姜就是我 , 剩余生命值:1.0\n", + "第 1457 轮,攻击被触发,发动攻击的数值是 202101083187 \n", + "被击中战斗的同学是:别来无恙 , 剩余生命值:0.0\n", + "*_* 别来无恙 同学退出战斗……阿门~~~\n", + "还有 45 位同学在继续战斗\n", + "\n", + "第 1483 轮,攻击被触发,发动攻击的数值是 202101083213 \n", + "被击中战斗的同学是:会跳舞的文艺青年 , 剩余生命值:15.0\n", + "第 1654 轮,攻击被触发,发动攻击的数值是 202101083384 \n", + "被击中战斗的同学是:Bing , 剩余生命值:0.0\n", + "*_* Bing 同学退出战斗……阿门~~~\n", + "还有 44 位同学在继续战斗\n", + "\n", + "第 1698 轮,攻击被触发,发动攻击的数值是 202101083428 \n", + "被击中战斗的同学是:夏天 , 剩余生命值:3.0\n", + "第 1710 轮,攻击被触发,发动攻击的数值是 202101083440 \n", + "被击中战斗的同学是:直到世界的尽头 , 剩余生命值:0.0\n", + "*_* 直到世界的尽头 同学退出战斗……阿门~~~\n", + "还有 43 位同学在继续战斗\n", + "\n", + "第 1940 轮,攻击被触发,发动攻击的数值是 202101083670 \n", + "被击中战斗的同学是:其实,不懂你 , 剩余生命值:17.0\n", + "第 1951 轮,攻击被触发,发动攻击的数值是 202101083681 \n", + "被击中战斗的同学是:周浩 , 剩余生命值:0.0\n", + "*_* 周浩 同学退出战斗……阿门~~~\n", + "还有 42 位同学在继续战斗\n", + "\n", + "第 2233 轮,攻击被触发,发动攻击的数值是 202101083963 \n", + "被击中战斗的同学是:Mr_wu , 剩余生命值:0.0\n", + "*_* Mr_wu 同学退出战斗……阿门~~~\n", + "还有 41 位同学在继续战斗\n", + "\n", + "第 2302 轮,攻击被触发,发动攻击的数值是 202101084032 \n", + "被击中战斗的同学是:兔子州 , 剩余生命值:0.0\n", + "*_* 兔子州 同学退出战斗……阿门~~~\n", + "还有 40 位同学在继续战斗\n", + "\n", + "第 2305 轮,攻击被触发,发动攻击的数值是 202101084035 \n", + "被击中战斗的同学是:孙宇 , 剩余生命值:15.0\n", + "第 2376 轮,攻击被触发,发动攻击的数值是 202101084106 \n", + "被击中战斗的同学是:XYQ , 剩余生命值:12.0\n", + "第 2430 轮,攻击被触发,发动攻击的数值是 202101084160 \n", + "被击中战斗的同学是:人海 , 剩余生命值:0.0\n", + "*_* 人海 同学退出战斗……阿门~~~\n", + "还有 39 位同学在继续战斗\n", + "\n", + "第 2616 轮,攻击被触发,发动攻击的数值是 202101084346 \n", + "被击中战斗的同学是:YYL , 剩余生命值:0.0\n", + "*_* YYL 同学退出战斗……阿门~~~\n", + "还有 38 位同学在继续战斗\n", + "\n", + "第 2775 轮,攻击被触发,发动攻击的数值是 202101084505 \n", + "被击中战斗的同学是:孙宇 , 剩余生命值:14.0\n", + "第 2902 轮,攻击被触发,发动攻击的数值是 202101084632 \n", + "被击中战斗的同学是:七度十二分 , 剩余生命值:0.0\n", + "*_* 七度十二分 同学退出战斗……阿门~~~\n", + "还有 37 位同学在继续战斗\n", + "\n", + "第 3134 轮,攻击被触发,发动攻击的数值是 202101084864 \n", + "被击中战斗的同学是:蓝袜子-UP , 剩余生命值:2.0\n", + "第 3285 轮,攻击被触发,发动攻击的数值是 202101085015 \n", + "被击中战斗的同学是:孙宇 , 剩余生命值:13.0\n", + "第 3347 轮,攻击被触发,发动攻击的数值是 202101085077 \n", + "被击中战斗的同学是:浩阳 , 剩余生命值:7.0\n", + "第 3463 轮,攻击被触发,发动攻击的数值是 202101085193 \n", + "被击中战斗的同学是:其实,不懂你 , 剩余生命值:16.0\n", + "第 3487 轮,攻击被触发,发动攻击的数值是 202101085217 \n", + "被击中战斗的同学是:Berton , 剩余生命值:0.0\n", + "*_* Berton 同学退出战斗……阿门~~~\n", + "还有 36 位同学在继续战斗\n", + "\n", + "第 3556 轮,攻击被触发,发动攻击的数值是 202101085286 \n", + "被击中战斗的同学是:雪落香杉树 , 剩余生命值:0.0\n", + "*_* 雪落香杉树 同学退出战斗……阿门~~~\n", + "还有 35 位同学在继续战斗\n", + "\n", + "第 3569 轮,攻击被触发,发动攻击的数值是 202101085299 \n", + "被击中战斗的同学是:夏天 , 剩余生命值:2.0\n", + "第 3913 轮,攻击被触发,发动攻击的数值是 202101085643 \n", + "被击中战斗的同学是:会跳舞的文艺青年 , 剩余生命值:14.0\n", + "第 3917 轮,攻击被触发,发动攻击的数值是 202101085647 \n", + "被击中战斗的同学是:ChercherᝰACE , 剩余生命值:4.0\n", + "第 4021 轮,攻击被触发,发动攻击的数值是 202101085751 \n", + "被击中战斗的同学是:XYQ , 剩余生命值:11.0\n", + "第 4080 轮,攻击被触发,发动攻击的数值是 202101085810 \n", + "被击中战斗的同学是:含信 , 剩余生命值:0.0\n", + "*_* 含信 同学退出战斗……阿门~~~\n", + "还有 34 位同学在继续战斗\n", + "\n", + "第 4108 轮,攻击被触发,发动攻击的数值是 202101085838 \n", + "被击中战斗的同学是:默溪 , 剩余生命值:3.0\n", + "第 4293 轮,攻击被触发,发动攻击的数值是 202101086023 \n", + "被击中战斗的同学是:LS , 剩余生命值:1.0\n", + "第 4440 轮,攻击被触发,发动攻击的数值是 202101086170 \n", + "被击中战斗的同学是:ChercherᝰACE , 剩余生命值:3.0\n", + "第 4607 轮,攻击被触发,发动攻击的数值是 202101086337 \n", + "被击中战斗的同学是:Lilly An , 剩余生命值:5.0\n", + "第 4645 轮,攻击被触发,发动攻击的数值是 202101086375 \n", + "被击中战斗的同学是:浩阳 , 剩余生命值:6.0\n", + "第 4672 轮,攻击被触发,发动攻击的数值是 202101086402 \n", + "被击中战斗的同学是:文献综合征患者 , 剩余生命值:0.0\n", + "*_* 文献综合征患者 同学退出战斗……阿门~~~\n", + "还有 33 位同学在继续战斗\n", + "\n", + "第 4917 轮,攻击被触发,发动攻击的数值是 202101086647 \n", + "被击中战斗的同学是:浩阳 , 剩余生命值:0.0\n", + "*_* 浩阳 同学退出战斗……阿门~~~\n", + "还有 32 位同学在继续战斗\n", + "\n", + "第 4975 轮,攻击被触发,发动攻击的数值是 202101086705 \n", + "被击中战斗的同学是:阳光的丹尼尔 , 剩余生命值:0.0\n", + "*_* 阳光的丹尼尔 同学退出战斗……阿门~~~\n", + "还有 31 位同学在继续战斗\n", + "\n", + "第 5015 轮,攻击被触发,发动攻击的数值是 202101086745 \n", + "被击中战斗的同学是:HYL-GISer , 剩余生命值:3.0\n", + "第 5172 轮,攻击被触发,发动攻击的数值是 202101086902 \n", + "被击中战斗的同学是:默溪 , 剩余生命值:2.0\n", + "第 5229 轮,攻击被触发,发动攻击的数值是 202101086959 \n", + "被击中战斗的同学是:CityDast , 剩余生命值:1.0\n", + "第 5429 轮,攻击被触发,发动攻击的数值是 202101087159 \n", + "被击中战斗的同学是:CityDast , 剩余生命值:0.0\n", + "*_* CityDast 同学退出战斗……阿门~~~\n", + "还有 30 位同学在继续战斗\n", + "\n", + "第 5468 轮,攻击被触发,发动攻击的数值是 202101087198 \n", + "被击中战斗的同学是:筱䓉^_^薇諒 , 剩余生命值:0.0\n", + "*_* 筱䓉^_^薇諒 同学退出战斗……阿门~~~\n", + "还有 29 位同学在继续战斗\n", + "\n", + "第 5636 轮,攻击被触发,发动攻击的数值是 202101087366 \n", + "被击中战斗的同学是:Hi~我是蘇小美 , 剩余生命值:1.0\n", + "第 5845 轮,攻击被触发,发动攻击的数值是 202101087575 \n", + "被击中战斗的同学是:柳好肥 , 剩余生命值:7.0\n", + "第 5860 轮,攻击被触发,发动攻击的数值是 202101087590 \n", + "被击中战斗的同学是:浩阳 , 剩余生命值:5.0\n", + "第 5876 轮,攻击被触发,发动攻击的数值是 202101087606 \n", + "被击中战斗的同学是:会跳舞的文艺青年 , 剩余生命值:13.0\n", + "第 5936 轮,攻击被触发,发动攻击的数值是 202101087666 \n", + "被击中战斗的同学是:浩阳 , 剩余生命值:4.0\n", + "第 5996 轮,攻击被触发,发动攻击的数值是 202101087726 \n", + "被击中战斗的同学是:A^Hundred^Flowers , 剩余生命值:6.0\n", + "第 5999 轮,攻击被触发,发动攻击的数值是 202101087729 \n", + "被击中战斗的同学是:孙宇 , 剩余生命值:12.0\n", + "第 6356 轮,攻击被触发,发动攻击的数值是 202101088086 \n", + "被击中战斗的同学是:轩仔 , 剩余生命值:0.0\n", + "*_* 轩仔 同学退出战斗……阿门~~~\n", + "还有 28 位同学在继续战斗\n", + "\n", + "第 6421 轮,攻击被触发,发动攻击的数值是 202101088151 \n", + "被击中战斗的同学是:夏天 , 剩余生命值:1.0\n", + "第 6427 轮,攻击被触发,发动攻击的数值是 202101088157 \n", + "被击中战斗的同学是:ChercherᝰACE , 剩余生命值:2.0\n", + "第 6664 轮,攻击被触发,发动攻击的数值是 202101088394 \n", + "被击中战斗的同学是:Yang , 剩余生命值:1.0\n", + "第 6750 轮,攻击被触发,发动攻击的数值是 202101088480 \n", + "被击中战斗的同学是:柳好肥 , 剩余生命值:6.0\n", + "第 6871 轮,攻击被触发,发动攻击的数值是 202101088601 \n", + "被击中战斗的同学是:XYQ , 剩余生命值:10.0\n", + "第 7210 轮,攻击被触发,发动攻击的数值是 202101088940 \n", + "被击中战斗的同学是:默溪 , 剩余生命值:1.0\n", + "第 7284 轮,攻击被触发,发动攻击的数值是 202101089014 \n", + "被击中战斗的同学是:HelloWorld , 剩余生命值:0.0\n", + "*_* HelloWorld 同学退出战斗……阿门~~~\n", + "还有 27 位同学在继续战斗\n", + "\n", + "第 7400 轮,攻击被触发,发动攻击的数值是 202101089130 \n", + "被击中战斗的同学是:炒饭没了? , 剩余生命值:0.0\n", + "*_* 炒饭没了? 同学退出战斗……阿门~~~\n", + "还有 26 位同学在继续战斗\n", + "\n", + "第 7462 轮,攻击被触发,发动攻击的数值是 202101089192 \n", + "被击中战斗的同学是:夏天 , 剩余生命值:0.0\n", + "*_* 夏天 同学退出战斗……阿门~~~\n", + "还有 25 位同学在继续战斗\n", + "\n", + "第 8112 轮,攻击被触发,发动攻击的数值是 202101089842 \n", + "被击中战斗的同学是:Pz , 剩余生命值:1.0\n", + "第 8127 轮,攻击被触发,发动攻击的数值是 202101089857 \n", + "被击中战斗的同学是:会跳舞的文艺青年 , 剩余生命值:12.0\n", + "第 8267 轮,攻击被触发,发动攻击的数值是 202101089997 \n", + "被击中战斗的同学是:会跳舞的文艺青年 , 剩余生命值:11.0\n", + "第 8282 轮,攻击被触发,发动攻击的数值是 202101090012 \n", + "被击中战斗的同学是:孙宇 , 剩余生命值:11.0\n", + "第 8367 轮,攻击被触发,发动攻击的数值是 202101090097 \n", + "被击中战斗的同学是:Snow , 剩余生命值:0.0\n", + "*_* Snow 同学退出战斗……阿门~~~\n", + "还有 24 位同学在继续战斗\n", + "\n", + "第 8396 轮,攻击被触发,发动攻击的数值是 202101090126 \n", + "被击中战斗的同学是:蓝袜子-UP , 剩余生命值:1.0\n", + "第 8576 轮,攻击被触发,发动攻击的数值是 202101090306 \n", + "被击中战斗的同学是:XYQ , 剩余生命值:9.0\n", + "第 9029 轮,攻击被触发,发动攻击的数值是 202101090759 \n", + "被击中战斗的同学是:默溪 , 剩余生命值:0.0\n", + "*_* 默溪 同学退出战斗……阿门~~~\n", + "还有 23 位同学在继续战斗\n", + "\n", + "第 9042 轮,攻击被触发,发动攻击的数值是 202101090772 \n", + "被击中战斗的同学是:Lilly An , 剩余生命值:4.0\n", + "第 9095 轮,攻击被触发,发动攻击的数值是 202101090825 \n", + "被击中战斗的同学是:Hi~我是蘇小美 , 剩余生命值:0.0\n", + "*_* Hi~我是蘇小美 同学退出战斗……阿门~~~\n", + "还有 22 位同学在继续战斗\n", + "\n", + "第 9397 轮,攻击被触发,发动攻击的数值是 202101091127 \n", + "被击中战斗的同学是:Yang , 剩余生命值:0.0\n", + "*_* Yang 同学退出战斗……阿门~~~\n", + "还有 21 位同学在继续战斗\n", + "\n", + "第 9548 轮,攻击被触发,发动攻击的数值是 202101091278 \n", + "被击中战斗的同学是:LS , 剩余生命值:0.0\n", + "*_* LS 同学退出战斗……阿门~~~\n", + "还有 20 位同学在继续战斗\n", + "\n", + "第 9558 轮,攻击被触发,发动攻击的数值是 202101091288 \n", + "被击中战斗的同学是:期待灵感的hm啊 , 剩余生命值:0.0\n", + "*_* 期待灵感的hm啊 同学退出战斗……阿门~~~\n", + "还有 19 位同学在继续战斗\n", + "\n", + "第 9716 轮,攻击被触发,发动攻击的数值是 202101091446 \n", + "被击中战斗的同学是:HYL-GISer , 剩余生命值:2.0\n", + "第 9836 轮,攻击被触发,发动攻击的数值是 202101091566 \n", + "被击中战斗的同学是:一一 , 剩余生命值:0.0\n", + "*_* 一一 同学退出战斗……阿门~~~\n", + "还有 18 位同学在继续战斗\n", + "\n", + "第 10300 轮,攻击被触发,发动攻击的数值是 202101092030 \n", + "被击中战斗的同学是:R , 剩余生命值:6.0\n", + "第 11029 轮,攻击被触发,发动攻击的数值是 202101092759 \n", + "被击中战斗的同学是:白桃大魔王 , 剩余生命值:4.0\n", + "第 11084 轮,攻击被触发,发动攻击的数值是 202101092814 \n", + "被击中战斗的同学是:壳乐乐 , 剩余生命值:1.0\n", + "第 11358 轮,攻击被触发,发动攻击的数值是 202101093088 \n", + "被击中战斗的同学是:其实,不懂你 , 剩余生命值:15.0\n", + "第 11466 轮,攻击被触发,发动攻击的数值是 202101093196 \n", + "被击中战斗的同学是:ChercherᝰACE , 剩余生命值:1.0\n", + "第 11541 轮,攻击被触发,发动攻击的数值是 202101093271 \n", + "被击中战斗的同学是:浩阳 , 剩余生命值:3.0\n", + "第 11655 轮,攻击被触发,发动攻击的数值是 202101093385 \n", + "被击中战斗的同学是:其实,不懂你 , 剩余生命值:14.0\n", + "第 11666 轮,攻击被触发,发动攻击的数值是 202101093396 \n", + "被击中战斗的同学是:锅醋姜就是我 , 剩余生命值:0.0\n", + "*_* 锅醋姜就是我 同学退出战斗……阿门~~~\n", + "还有 17 位同学在继续战斗\n", + "\n", + "第 12224 轮,攻击被触发,发动攻击的数值是 202101093954 \n", + "被击中战斗的同学是:柳好肥 , 剩余生命值:5.0\n", + "第 12308 轮,攻击被触发,发动攻击的数值是 202101094038 \n", + "被击中战斗的同学是:🇭 🇪 🇷 🇴 🇮 🇨 , 剩余生命值:0.0\n", + "*_* 🇭 🇪 🇷 🇴 🇮 🇨 同学退出战斗……阿门~~~\n", + "还有 16 位同学在继续战斗\n", + "\n", + "第 12910 轮,攻击被触发,发动攻击的数值是 202101094640 \n", + "被击中战斗的同学是:浩阳 , 剩余生命值:2.0\n", + "第 13142 轮,攻击被触发,发动攻击的数值是 202101094872 \n", + "被击中战斗的同学是:XYQ , 剩余生命值:8.0\n", + "第 13279 轮,攻击被触发,发动攻击的数值是 202101095009 \n", + "被击中战斗的同学是:浩阳 , 剩余生命值:1.0\n", + "第 13847 轮,攻击被触发,发动攻击的数值是 202101095577 \n", + "被击中战斗的同学是:ChercherᝰACE , 剩余生命值:0.0\n", + "*_* ChercherᝰACE 同学退出战斗……阿门~~~\n", + "还有 15 位同学在继续战斗\n", + "\n", + "第 14068 轮,攻击被触发,发动攻击的数值是 202101095798 \n", + "被击中战斗的同学是:孙宇 , 剩余生命值:10.0\n", + "第 14321 轮,攻击被触发,发动攻击的数值是 202101096051 \n", + "被击中战斗的同学是:R , 剩余生命值:5.0\n", + "第 14636 轮,攻击被触发,发动攻击的数值是 202101096366 \n", + "被击中战斗的同学是:A^Hundred^Flowers , 剩余生命值:5.0\n", + "第 15140 轮,攻击被触发,发动攻击的数值是 202101096870 \n", + "被击中战斗的同学是:柳好肥 , 剩余生命值:4.0\n", + "第 15601 轮,攻击被触发,发动攻击的数值是 202101097331 \n", + "被击中战斗的同学是:白桃大魔王 , 剩余生命值:3.0\n", + "第 15746 轮,攻击被触发,发动攻击的数值是 202101097476 \n", + "被击中战斗的同学是:A^Hundred^Flowers , 剩余生命值:4.0\n", + "第 16350 轮,攻击被触发,发动攻击的数值是 202101098080 \n", + "被击中战斗的同学是:浩阳 , 剩余生命值:0.0\n", + "*_* 浩阳 同学退出战斗……阿门~~~\n", + "还有 14 位同学在继续战斗\n", + "\n", + "第 16363 轮,攻击被触发,发动攻击的数值是 202101098093 \n", + "被击中战斗的同学是:壳乐乐 , 剩余生命值:0.0\n", + "*_* 壳乐乐 同学退出战斗……阿门~~~\n", + "还有 13 位同学在继续战斗\n", + "\n", + "第 16779 轮,攻击被触发,发动攻击的数值是 202101098509 \n", + "被击中战斗的同学是:孙宇 , 剩余生命值:9.0\n", + "第 17301 轮,攻击被触发,发动攻击的数值是 202101099031 \n", + "被击中战斗的同学是:孙宇 , 剩余生命值:8.0\n", + "第 17628 轮,攻击被触发,发动攻击的数值是 202101099358 \n", + "被击中战斗的同学是:R , 剩余生命值:4.0\n", + "第 17748 轮,攻击被触发,发动攻击的数值是 202101099478 \n", + "被击中战斗的同学是:Pz , 剩余生命值:0.0\n", + "*_* Pz 同学退出战斗……阿门~~~\n", + "还有 12 位同学在继续战斗\n", + "\n", + "第 18895 轮,攻击被触发,发动攻击的数值是 202101100625 \n", + "被击中战斗的同学是:白桃大魔王 , 剩余生命值:2.0\n", + "第 18941 轮,攻击被触发,发动攻击的数值是 202101100671 \n", + "被击中战斗的同学是:柳好肥 , 剩余生命值:3.0\n", + "第 19342 轮,攻击被触发,发动攻击的数值是 202101101072 \n", + "被击中战斗的同学是:孙宇 , 剩余生命值:7.0\n", + "第 19704 轮,攻击被触发,发动攻击的数值是 202101101434 \n", + "被击中战斗的同学是:Lilly An , 剩余生命值:3.0\n", + "第 19786 轮,攻击被触发,发动攻击的数值是 202101101516 \n", + "被击中战斗的同学是:蓝袜子-UP , 剩余生命值:0.0\n", + "*_* 蓝袜子-UP 同学退出战斗……阿门~~~\n", + "还有 11 位同学在继续战斗\n", + "\n", + "第 19968 轮,攻击被触发,发动攻击的数值是 202101101698 \n", + "被击中战斗的同学是:孙宇 , 剩余生命值:6.0\n", + "第 20781 轮,攻击被触发,发动攻击的数值是 202101102511 \n", + "被击中战斗的同学是:柳好肥 , 剩余生命值:2.0\n", + "第 22120 轮,攻击被触发,发动攻击的数值是 202101103850 \n", + "被击中战斗的同学是:其实,不懂你 , 剩余生命值:13.0\n", + "第 22202 轮,攻击被触发,发动攻击的数值是 202101103932 \n", + "被击中战斗的同学是:白桃大魔王 , 剩余生命值:1.0\n", + "第 22259 轮,攻击被触发,发动攻击的数值是 202101103989 \n", + "被击中战斗的同学是:R , 剩余生命值:3.0\n", + "第 22264 轮,攻击被触发,发动攻击的数值是 202101103994 \n", + "被击中战斗的同学是:R , 剩余生命值:2.0\n", + "第 22513 轮,攻击被触发,发动攻击的数值是 202101104243 \n", + "被击中战斗的同学是:会跳舞的文艺青年 , 剩余生命值:10.0\n", + "第 22531 轮,攻击被触发,发动攻击的数值是 202101104261 \n", + "被击中战斗的同学是:柳好肥 , 剩余生命值:1.0\n", + "第 22859 轮,攻击被触发,发动攻击的数值是 202101104589 \n", + "被击中战斗的同学是:白桃大魔王 , 剩余生命值:0.0\n", + "*_* 白桃大魔王 同学退出战斗……阿门~~~\n", + "还有 10 位同学在继续战斗\n", + "\n", + "第 23539 轮,攻击被触发,发动攻击的数值是 202101105269 \n", + "被击中战斗的同学是:HYL-GISer , 剩余生命值:1.0\n", + "第 23645 轮,攻击被触发,发动攻击的数值是 202101105375 \n", + "被击中战斗的同学是:会跳舞的文艺青年 , 剩余生命值:9.0\n", + "第 23651 轮,攻击被触发,发动攻击的数值是 202101105381 \n", + "被击中战斗的同学是:XYQ , 剩余生命值:7.0\n", + "第 24135 轮,攻击被触发,发动攻击的数值是 202101105865 \n", + "被击中战斗的同学是:孙宇 , 剩余生命值:5.0\n", + "第 24233 轮,攻击被触发,发动攻击的数值是 202101105963 \n", + "被击中战斗的同学是:A^Hundred^Flowers , 剩余生命值:3.0\n", + "第 24729 轮,攻击被触发,发动攻击的数值是 202101106459 \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "被击中战斗的同学是:R , 剩余生命值:1.0\n", + "第 25251 轮,攻击被触发,发动攻击的数值是 202101106981 \n", + "被击中战斗的同学是:HYL-GISer , 剩余生命值:0.0\n", + "*_* HYL-GISer 同学退出战斗……阿门~~~\n", + "还有 9 位同学在继续战斗\n", + "\n", + "第 25735 轮,攻击被触发,发动攻击的数值是 202101107465 \n", + "被击中战斗的同学是:XYQ , 剩余生命值:6.0\n", + "第 26457 轮,攻击被触发,发动攻击的数值是 202101108187 \n", + "被击中战斗的同学是:R , 剩余生命值:0.0\n", + "*_* R 同学退出战斗……阿门~~~\n", + "还有 8 位同学在继续战斗\n", + "\n", + "第 26619 轮,攻击被触发,发动攻击的数值是 202101108349 \n", + "被击中战斗的同学是:XYQ , 剩余生命值:5.0\n", + "第 27033 轮,攻击被触发,发动攻击的数值是 202101108763 \n", + "被击中战斗的同学是:柳好肥 , 剩余生命值:0.0\n", + "*_* 柳好肥 同学退出战斗……阿门~~~\n", + "还有 7 位同学在继续战斗\n", + "\n", + "第 27427 轮,攻击被触发,发动攻击的数值是 202101109157 \n", + "被击中战斗的同学是:XYQ , 剩余生命值:4.0\n", + "第 28500 轮,攻击被触发,发动攻击的数值是 202101110230 \n", + "被击中战斗的同学是:孙宇 , 剩余生命值:4.0\n", + "第 28582 轮,攻击被触发,发动攻击的数值是 202101110312 \n", + "被击中战斗的同学是:其实,不懂你 , 剩余生命值:12.0\n", + "第 28644 轮,攻击被触发,发动攻击的数值是 202101110374 \n", + "被击中战斗的同学是:A^Hundred^Flowers , 剩余生命值:2.0\n", + "第 28749 轮,攻击被触发,发动攻击的数值是 202101110479 \n", + "被击中战斗的同学是:蔚蓝天空 , 剩余生命值:2.0\n", + "第 28820 轮,攻击被触发,发动攻击的数值是 202101110550 \n", + "被击中战斗的同学是:会跳舞的文艺青年 , 剩余生命值:8.0\n", + "第 29021 轮,攻击被触发,发动攻击的数值是 202101110751 \n", + "被击中战斗的同学是:XYQ , 剩余生命值:3.0\n", + "第 29735 轮,攻击被触发,发动攻击的数值是 202101111465 \n", + "被击中战斗的同学是:蔚蓝天空 , 剩余生命值:1.0\n", + "第 29778 轮,攻击被触发,发动攻击的数值是 202101111508 \n", + "被击中战斗的同学是:XYQ , 剩余生命值:2.0\n", + "第 30490 轮,攻击被触发,发动攻击的数值是 202101112220 \n", + "被击中战斗的同学是:XYQ , 剩余生命值:1.0\n", + "第 31624 轮,攻击被触发,发动攻击的数值是 202101113354 \n", + "被击中战斗的同学是:A^Hundred^Flowers , 剩余生命值:1.0\n", + "第 32394 轮,攻击被触发,发动攻击的数值是 202101114124 \n", + "被击中战斗的同学是:A^Hundred^Flowers , 剩余生命值:0.0\n", + "*_* A^Hundred^Flowers 同学退出战斗……阿门~~~\n", + "还有 6 位同学在继续战斗\n", + "\n", + "第 33505 轮,攻击被触发,发动攻击的数值是 202101115235 \n", + "被击中战斗的同学是:孙宇 , 剩余生命值:3.0\n", + "第 33662 轮,攻击被触发,发动攻击的数值是 202101115392 \n", + "被击中战斗的同学是:Lilly An , 剩余生命值:2.0\n", + "第 33871 轮,攻击被触发,发动攻击的数值是 202101115601 \n", + "被击中战斗的同学是:其实,不懂你 , 剩余生命值:11.0\n", + "第 34754 轮,攻击被触发,发动攻击的数值是 202101116484 \n", + "被击中战斗的同学是:孙宇 , 剩余生命值:2.0\n", + "第 37277 轮,攻击被触发,发动攻击的数值是 202101119007 \n", + "被击中战斗的同学是:XYQ , 剩余生命值:0.0\n", + "*_* XYQ 同学退出战斗……阿门~~~\n", + "\n", + "\n", + " 战斗结束……恭喜以下同学获奖:♪(^∇^*)\n", + "蔚蓝天空\t 剩余生命值:1.0\n", + "Lilly An\t 剩余生命值:2.0\n", + "孙宇\t 剩余生命值:2.0\n", + "会跳舞的文艺青年\t 剩余生命值:8.0\n", + "其实,不懂你\t 剩余生命值:11.0\n" + ] + } + ], + "source": [ + "flag = 0\n", + "while True:\n", + " flag +=1\n", + " h = hashKnife(start + flag)\n", + " if h[0:1] == \"0\":\n", + " if h[-2:] in val:\n", + " val[h[-2:]] -=1\n", + " name = pd2[pd2[\"index\"] == int(h[-2:])][\"name\"].tolist()[0]\n", + " print(\"第 {0} 轮,攻击被触发,发动攻击的数值是 {1}\\\n", + " \\n被击中战斗的同学是:{2} , 剩余生命值:{3}\".format(flag,start+flag,\n", + " name,val[h[-2:]]))\n", + " if val[h[-2:]] == 0:\n", + " del val[h[-2:]]\n", + " print(\"*_* {0} 同学退出战斗……阿门~~~\".format(name))\n", + " if len(val) <= 5:\n", + " print(\"\\n\\n 战斗结束……恭喜以下同学获奖:♪(^∇^*)\")\n", + " for v in val:\n", + " name = pd2[pd2[\"index\"] == int(v)][\"name\"].tolist()[0]\n", + " print(\"{0}\\t 剩余生命值:{1}\".format(name,val[v]))\n", + " break\n", + " else:\n", + " print(\"还有 {0} 位同学在继续战斗\\n\".format(len(val)))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/~$\345\212\240\346\235\203.xlsx" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/~$\345\212\240\346\235\203.xlsx" new file mode 100644 index 0000000..c5ee44d Binary files /dev/null and "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/~$\345\212\240\346\235\203.xlsx" differ diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\345\212\240\346\235\203.csv" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\345\212\240\346\235\203.csv" new file mode 100644 index 0000000..74d041e --- /dev/null +++ "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\345\212\240\346\235\203.csv" @@ -0,0 +1,58 @@ +index,name,朋友圈加权,留言加权,广告加权,虾神点赞 +01,锅醋姜就是我,0,2,1,0 +02,蔚蓝天空,0,12,1,0 +03,XYQ,0,111,1,0 +04,Hi~我是蘇小美,0,0,1,0 +05,LS,0,2,1,0 +06,HelloWorld,0,0,1,0 +07,Yang,0,2,1,0 +08,壳乐乐,0,1,1,0 +09,R,27,2,1,0 +10,浩阳,24,2,1,1 +11,Lilly An,20,2,1,0 +12,孙宇,76,2,1,0 +13,Pz,0,0,1,0 +14,默溪,9,1,1,1 +15,Pursuit,88,5,1,1 +16,A^Hundred^Flowers ,23,1,1,0 +17,夏天,14,0,0,0 +18,蓝袜子-UP ,6,1,0,1 +19,ChercherᝰACE,20,1,1,0 +20,柳好肥,36,1,1,0 +21,会跳舞的文艺青年,70,0,1,1 +22,HYL-GISer,7,3,0,1 +23,其实,不懂你,85,1,0,0 +24,白桃大魔王,0,36,0,0 +25,CityDast,0,14,0,0 +26,筱䓉^_^薇諒 ,0,11,0,0 +27,周浩,0,6,0,0 +28,Berton,0,4,0,0 +29,阳光的丹尼尔,0,4,0,0 +30,城城,0,2,0,0 +31,Mr_wu,0,2,0,0 +32,汤鹏,0,2,0,0 +33,浩阳,0,2,0,0 +34,Snow,0,2,0,0 +35,含信,0,2,0,0 +36,别来无恙,0,2,0,0 +37,郭家乐,0,2,0,0 +38,M I AO,0,1,0,0 +39,期待灵感的hm啊,0,1,0,0 +40,🇭 🇪 🇷 🇴 🇮 🇨,0,1,0,0 +41,直到世界的尽头,0,1,0,0 +42,HelloWorld,0,1,0,0 +43,小昭她哥,0,1,0,0 +44,炒饭没了?,0,1,0,0 +45,七度十二分,0,1,0,0 +46,人海,0,1,0,0 +47,兔子州 ,0,1,0,0 +48,YYL,0,1,0,0 +49,雪落香杉树,0,2,0,0 +50,憬,0,1,0,0 +51,文献综合征患者,0,1,0,0 +52,金喜william,0,1,0,0 +53,一一,0,1,0,0 +54,虫虫,0,1,0,0 +55,Bing,0,1,0,0 +56,、Fresh,0,1,0,0 +57,轩仔,0,1,0,0 diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\345\212\240\346\235\203.xlsx" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\345\212\240\346\235\203.xlsx" new file mode 100644 index 0000000..9c5e9fd Binary files /dev/null and "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\345\212\240\346\235\203.xlsx" differ diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/1.png" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/1.png" new file mode 100644 index 0000000..71aa2e1 Binary files /dev/null and "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/1.png" differ diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/10.png" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/10.png" new file mode 100644 index 0000000..f9c3e3c Binary files /dev/null and "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/10.png" differ diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/11.png" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/11.png" new file mode 100644 index 0000000..4cf71ca Binary files /dev/null and "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/11.png" differ diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/12.png" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/12.png" new file mode 100644 index 0000000..32a7e27 Binary files /dev/null and "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/12.png" differ diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/13.png" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/13.png" new file mode 100644 index 0000000..474fef5 Binary files /dev/null and "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/13.png" differ diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/14.png" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/14.png" new file mode 100644 index 0000000..981501d Binary files /dev/null and "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/14.png" differ diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/15.png" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/15.png" new file mode 100644 index 0000000..33b288f Binary files /dev/null and "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/15.png" differ diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/16.png" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/16.png" new file mode 100644 index 0000000..48bc46c Binary files /dev/null and "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/16.png" differ diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/17.png" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/17.png" new file mode 100644 index 0000000..277398d Binary files /dev/null and "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/17.png" differ diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/18.png" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/18.png" new file mode 100644 index 0000000..7569755 Binary files /dev/null and "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/18.png" differ diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/19.png" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/19.png" new file mode 100644 index 0000000..3157bb6 Binary files /dev/null and "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/19.png" differ diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/2.png" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/2.png" new file mode 100644 index 0000000..7da9a5d Binary files /dev/null and "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/2.png" differ diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/20.png" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/20.png" new file mode 100644 index 0000000..58c073b Binary files /dev/null and "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/20.png" differ diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/21.png" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/21.png" new file mode 100644 index 0000000..88d0dd1 Binary files /dev/null and "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/21.png" differ diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/22.png" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/22.png" new file mode 100644 index 0000000..c4a84be Binary files /dev/null and "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/22.png" differ diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/23.png" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/23.png" new file mode 100644 index 0000000..0d77ff2 Binary files /dev/null and "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/23.png" differ diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/24.png" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/24.png" new file mode 100644 index 0000000..2a5abd5 Binary files /dev/null and "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/24.png" differ diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/25.png" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/25.png" new file mode 100644 index 0000000..a01f589 Binary files /dev/null and "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/25.png" differ diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/26.png" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/26.png" new file mode 100644 index 0000000..6fed5a3 Binary files /dev/null and "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/26.png" differ diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/27.png" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/27.png" new file mode 100644 index 0000000..c2c8f39 Binary files /dev/null and "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/27.png" differ diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/28.png" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/28.png" new file mode 100644 index 0000000..df1068e Binary files /dev/null and "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/28.png" differ diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/29.png" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/29.png" new file mode 100644 index 0000000..6da2947 Binary files /dev/null and "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/29.png" differ diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/3.png" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/3.png" new file mode 100644 index 0000000..89b7f1e Binary files /dev/null and "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/3.png" differ diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/30.png" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/30.png" new file mode 100644 index 0000000..8615346 Binary files /dev/null and "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/30.png" differ diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/31.png" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/31.png" new file mode 100644 index 0000000..366af77 Binary files /dev/null and "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/31.png" differ diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/32.png" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/32.png" new file mode 100644 index 0000000..6f408d5 Binary files /dev/null and "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/32.png" differ diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/33.png" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/33.png" new file mode 100644 index 0000000..30d26fb Binary files /dev/null and "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/33.png" differ diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/34.png" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/34.png" new file mode 100644 index 0000000..29c1b69 Binary files /dev/null and "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/34.png" differ diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/35.png" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/35.png" new file mode 100644 index 0000000..c3f5818 Binary files /dev/null and "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/35.png" differ diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/36.png" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/36.png" new file mode 100644 index 0000000..cee531d Binary files /dev/null and "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/36.png" differ diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/37.png" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/37.png" new file mode 100644 index 0000000..8ac0b4f Binary files /dev/null and "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/37.png" differ diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/38.png" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/38.png" new file mode 100644 index 0000000..1fd8683 Binary files /dev/null and "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/38.png" differ diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/39.png" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/39.png" new file mode 100644 index 0000000..28ae2e6 Binary files /dev/null and "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/39.png" differ diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/4.png" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/4.png" new file mode 100644 index 0000000..30ea844 Binary files /dev/null and "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/4.png" differ diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/40.png" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/40.png" new file mode 100644 index 0000000..e95ec08 Binary files /dev/null and "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/40.png" differ diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/41.png" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/41.png" new file mode 100644 index 0000000..a5f6062 Binary files /dev/null and "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/41.png" differ diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/42.png" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/42.png" new file mode 100644 index 0000000..12f3b06 Binary files /dev/null and "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/42.png" differ diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/43.png" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/43.png" new file mode 100644 index 0000000..111fb28 Binary files /dev/null and "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/43.png" differ diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/44.png" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/44.png" new file mode 100644 index 0000000..130e9f1 Binary files /dev/null and "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/44.png" differ diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/45.png" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/45.png" new file mode 100644 index 0000000..c09fe7c Binary files /dev/null and "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/45.png" differ diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/46.png" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/46.png" new file mode 100644 index 0000000..c50de8d Binary files /dev/null and "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/46.png" differ diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/47.png" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/47.png" new file mode 100644 index 0000000..4189399 Binary files /dev/null and "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/47.png" differ diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/48.png" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/48.png" new file mode 100644 index 0000000..7b834af Binary files /dev/null and "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/48.png" differ diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/49.png" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/49.png" new file mode 100644 index 0000000..651483b Binary files /dev/null and "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/49.png" differ diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/5.png" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/5.png" new file mode 100644 index 0000000..b27fe94 Binary files /dev/null and "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/5.png" differ diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/50.png" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/50.png" new file mode 100644 index 0000000..c911130 Binary files /dev/null and "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/50.png" differ diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/51.png" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/51.png" new file mode 100644 index 0000000..131f7ba Binary files /dev/null and "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/51.png" differ diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/52.png" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/52.png" new file mode 100644 index 0000000..6992f13 Binary files /dev/null and "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/52.png" differ diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/53.png" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/53.png" new file mode 100644 index 0000000..a1544c7 Binary files /dev/null and "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/53.png" differ diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/54.png" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/54.png" new file mode 100644 index 0000000..1fc5b25 Binary files /dev/null and "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/54.png" differ diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/55.png" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/55.png" new file mode 100644 index 0000000..3143581 Binary files /dev/null and "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/55.png" differ diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/56.png" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/56.png" new file mode 100644 index 0000000..1df121f Binary files /dev/null and "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/56.png" differ diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/57.png" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/57.png" new file mode 100644 index 0000000..2fb35ef Binary files /dev/null and "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/57.png" differ diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/6.png" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/6.png" new file mode 100644 index 0000000..f709d35 Binary files /dev/null and "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/6.png" differ diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/7.png" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/7.png" new file mode 100644 index 0000000..cc50f15 Binary files /dev/null and "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/7.png" differ diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/8.png" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/8.png" new file mode 100644 index 0000000..5f0b753 Binary files /dev/null and "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/8.png" differ diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/9.png" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/9.png" new file mode 100644 index 0000000..0ddf182 Binary files /dev/null and "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\212\275\345\245\226/9.png" differ diff --git "a/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\227\245\345\216\206\346\212\275\345\245\226_\345\214\272\345\235\227\351\223\276\347\256\227\346\263\225.ipynb" "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\227\245\345\216\206\346\212\275\345\245\226_\345\214\272\345\235\227\351\223\276\347\256\227\346\263\225.ipynb" new file mode 100644 index 0000000..9520a5c --- /dev/null +++ "b/027hash\347\256\227\346\263\225\346\227\245\345\216\206\346\212\275\345\245\226/\346\227\245\345\216\206\346\212\275\345\245\226_\345\214\272\345\235\227\351\223\276\347\256\227\346\263\225.ipynb" @@ -0,0 +1,1498 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import warnings\n", + "warnings.filterwarnings(\"ignore\")" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import hashlib,pandas" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import matplotlib.pyplot as plt\n", + "plt.rcParams['font.sans-serif']=['SimHei']\n", + "plt.rcParams['axes.unicode_minus']=False" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "def hashKnife(i):\n", + " sha256 = hashlib.sha256()\n", + " sha256.update('{0}'.format(i).encode('utf-8'))\n", + " s1 = sha256.hexdigest()\n", + " sha256 = hashlib.sha256()\n", + " sha256.update('{0}'.format(s1).encode('utf-8'))\n", + " return sha256.hexdigest()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "4 \t 033c339a7975542785be7423a5b32fa8047813689726214143cdd7939747709c\n", + "21 \t 053b22ca1fcea7a8de0da76b0f4deaef4aa9fb1100bff13965c3c0da76272862\n", + "31 \t 028f917950de90c724f3dacb96792258929510f54bfd4866dd6dba26e0b4414a\n", + "33 \t 0cca79f951e82323381375324442d5fe77e5bcb5899b87cb2f0bebff1bc0244a\n", + "83 \t 0401167548c0ed9abc4ef94cc0b43b1942030903ca05abf1e938c822d492f8a3\n", + "98 \t 0a23001d74edbe05d7e79524a918f077b3928eb3ee34b3ec13d990f9a4b43e45\n" + ] + } + ], + "source": [ + "for i in range(100):\n", + " h = hashKnife(i)\n", + " if h[0:1] == \"0\":\n", + " print(i,\"\\t\",hashKnife(i))" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "pd = pandas.read_csv(\"./加权.csv\")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
indexname朋友圈加权留言加权广告加权虾神点赞
01锅醋姜就是我0210
12蔚蓝天空01210
23XYQ011110
34Hi~我是蘇小美0010
45LS0210
56HelloWorld0010
67Yang0210
78壳乐乐0110
89R27210
910浩阳24211
1011Lilly An20210
1112孙宇76210
1213Pz0010
1314默溪9111
1415Pursuit88511
1516A^Hundred^Flowers23110
1617夏天14000
1718蓝袜子-UP6101
1819ChercherᝰACE20110
1920柳好肥36110
2021会跳舞的文艺青年70011
2122HYL-GISer7301
2223其实,不懂你85100
2324白桃大魔王03600
2425CityDast01400
2526筱䓉^_^薇諒01100
2627周浩0600
2728Berton0400
2829阳光的丹尼尔0400
2930城城0200
3031Mr_wu0200
3132汤鹏0200
3233浩阳0200
3334Snow0200
3435含信0200
3536别来无恙0200
3637郭家乐0200
3738M I AO0100
3839期待灵感的hm啊0100
3940🇭 🇪 🇷 🇴 🇮 🇨0100
4041直到世界的尽头0100
4142HelloWorld0100
4243小昭她哥0100
4344炒饭没了?0100
4445七度十二分0100
4546人海0100
4647兔子州0100
4748YYL0100
4849雪落香杉树0200
49500100
5051文献综合征患者0100
5152金喜william0100
5253一一0100
5354虫虫0100
5455Bing0100
5556、Fresh0100
5657轩仔0100
\n", + "
" + ], + "text/plain": [ + " index name 朋友圈加权 留言加权 广告加权 虾神点赞\n", + "0 1 锅醋姜就是我 0 2 1 0\n", + "1 2 蔚蓝天空 0 12 1 0\n", + "2 3 XYQ 0 111 1 0\n", + "3 4 Hi~我是蘇小美 0 0 1 0\n", + "4 5 LS 0 2 1 0\n", + "5 6 HelloWorld 0 0 1 0\n", + "6 7 Yang 0 2 1 0\n", + "7 8 壳乐乐 0 1 1 0\n", + "8 9 R 27 2 1 0\n", + "9 10 浩阳 24 2 1 1\n", + "10 11 Lilly An 20 2 1 0\n", + "11 12 孙宇 76 2 1 0\n", + "12 13 Pz 0 0 1 0\n", + "13 14 默溪 9 1 1 1\n", + "14 15 Pursuit 88 5 1 1\n", + "15 16 A^Hundred^Flowers 23 1 1 0\n", + "16 17 夏天 14 0 0 0\n", + "17 18 蓝袜子-UP 6 1 0 1\n", + "18 19 ChercherᝰACE 20 1 1 0\n", + "19 20 柳好肥 36 1 1 0\n", + "20 21 会跳舞的文艺青年 70 0 1 1\n", + "21 22 HYL-GISer 7 3 0 1\n", + "22 23 其实,不懂你 85 1 0 0\n", + "23 24 白桃大魔王 0 36 0 0\n", + "24 25 CityDast 0 14 0 0\n", + "25 26 筱䓉^_^薇諒 0 11 0 0\n", + "26 27 周浩 0 6 0 0\n", + "27 28 Berton 0 4 0 0\n", + "28 29 阳光的丹尼尔 0 4 0 0\n", + "29 30 城城 0 2 0 0\n", + "30 31 Mr_wu 0 2 0 0\n", + "31 32 汤鹏 0 2 0 0\n", + "32 33 浩阳 0 2 0 0\n", + "33 34 Snow 0 2 0 0\n", + "34 35 含信 0 2 0 0\n", + "35 36 别来无恙 0 2 0 0\n", + "36 37 郭家乐 0 2 0 0\n", + "37 38 M I AO 0 1 0 0\n", + "38 39 期待灵感的hm啊 0 1 0 0\n", + "39 40 🇭 🇪 🇷 🇴 🇮 🇨 0 1 0 0\n", + "40 41 直到世界的尽头 0 1 0 0\n", + "41 42 HelloWorld 0 1 0 0\n", + "42 43 小昭她哥 0 1 0 0\n", + "43 44 炒饭没了? 0 1 0 0\n", + "44 45 七度十二分 0 1 0 0\n", + "45 46 人海 0 1 0 0\n", + "46 47 兔子州 0 1 0 0\n", + "47 48 YYL 0 1 0 0\n", + "48 49 雪落香杉树 0 2 0 0\n", + "49 50 憬 0 1 0 0\n", + "50 51 文献综合征患者 0 1 0 0\n", + "51 52 金喜william 0 1 0 0\n", + "52 53 一一 0 1 0 0\n", + "53 54 虫虫 0 1 0 0\n", + "54 55 Bing 0 1 0 0\n", + "55 56 、Fresh 0 1 0 0\n", + "56 57 轩仔 0 1 0 0" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "pd[\"life\"] = round(1 + pd[\"朋友圈加权\"] * 0.2 \\\n", + " + pd[\"留言加权\"]*0.1 + pd[\"广告加权\"] + pd[\"虾神点赞\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "pd2 = pd.drop(14)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
indexname朋友圈加权留言加权广告加权虾神点赞life
2223其实,不懂你8510018.0
1112孙宇7621017.0
2021会跳舞的文艺青年7001117.0
23XYQ01111013.0
1920柳好肥361109.0
89R272108.0
910浩阳242118.0
1516A^Hundred^Flowers231107.0
1011Lilly An202106.0
1819ChercherᝰACE201106.0
\n", + "
" + ], + "text/plain": [ + " index name 朋友圈加权 留言加权 广告加权 虾神点赞 life\n", + "22 23 其实,不懂你 85 1 0 0 18.0\n", + "11 12 孙宇 76 2 1 0 17.0\n", + "20 21 会跳舞的文艺青年 70 0 1 1 17.0\n", + "2 3 XYQ 0 111 1 0 13.0\n", + "19 20 柳好肥 36 1 1 0 9.0\n", + "8 9 R 27 2 1 0 8.0\n", + "9 10 浩阳 24 2 1 1 8.0\n", + "15 16 A^Hundred^Flowers 23 1 1 0 7.0\n", + "10 11 Lilly An 20 2 1 0 6.0\n", + "18 19 ChercherᝰACE 20 1 1 0 6.0" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd2.sort_values(\"life\",ascending=False).head(10)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "e = [0 for i in range(26)] + [0.1]" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtgAAAKsCAYAAADWYMrSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3gc1dUH4N+Z2SptUa+2JPeG3LGNCy5geoeEEggkkIQSIJBGEpIIAgT4AilAQgnFEFpCTejudGyMDe5dvdftbeZ+f+wajLGllTSr2ZXO+zx6pN2dnTlqu2funHsuCSHAGGOMMcYY04akdwCMMcYYY4wNJpxgM8YYY4wxpiFOsBljjDHGGNMQJ9iMMcYYY4xpiBNsxhhjjDHGNMQJNmOMMcYYYxriBJsxxhhjjDENcYLNGGOMMcaYhjjBZowxxhhjTEOcYDPGGGOMMaYhTrAZY4wxxhjTECfYjDHGGGOMaYgTbMYYY4wxxjTECTZjjDHGGGMa4gSbMcYYY4wxDXGCzRhjjDHGmIY4wWaMMcYYY0xDnGAzxhhjjDGmIU6wGWOMMcYY0xAn2IwxxhhjjGmIE2zGGGOMMcY0xAk2Y4wxxhhjGuIEmzHGGGOMMQ1xgs0YY4wxxpiGOMFmjDHGGGNMQ5xgM8YYY4wxpiFOsBljjDHGGNMQJ9iMMcYYY4xpiBNsxhhjjDHGNMQJNmOMMcYYYxriBJsxxhhjjDENcYLNGGOMMcaYhjjBZowxxhhjTEOcYDPGGGOMMaYhTrAZY4wxxhjTECfYjDHGGGOMaYgTbMYYY4wxxjTECTZjjDHGGGMa4gSbMcYYY4wxDXGCzRhjjDHGmIY4wWaMMcYYY0xDnGAzxhhjjDGmIU6wGWOMMcYY0xAn2IyxQY+IKojo4iM89pfD3LcmnvviPHYWEXmIyNKX5zPGGEs9nGAzxoY0IcRPEnyIpQDMAI5N8HEYY4wlCU6wGWNDWl9GponoFiK6MPb174nogm42PwnAA7HPB0bTbyeitUS0iYgK+hI3Y4yx5MUJNmOM9d6TAC6MfX0SgFe62fYYALcBOO6g+0YLIRYCeAbAkkQEyBhjTD+cYDPGWC8JIfYCsBPRIgBbhBCBw21HRJMB5AB4AUAZEQ2PPfRk7HMzAFNio2WMMTbQOMFmjLG+eQ7AY/gqWT6cEwHcIYRYBOBvsdsA4E1saIMHEVmI6HEiWkxEMhHdS0SFRPTmIds1E9EaIuogorlEtOKQj+FHOgZjjGmNE2zG2FBxKxF9Gvv4sQb7ewGAAPB+N9ucCGBV7OtViNVhs/jFrg78HsB0AIsAnA9gGYDpRPQGEb0S23Q9ohNKPwAQBvCpEOJ4IcTxACoBGAY2csbYUEZCCL1jYIyxlEJEkwA8DuAhIcSjesczmBHRSABpQogtsZaKjwJoAHC/EOKCg7Z7DcCdABYDeBPAeUKIm2KP/RPAbUKIygEOnzE2RPEZPWOM9ZIQYiuAWXrHMUQ4ATxBRDcC6ARwJoA0ABOJ6GZEr8Rujm27GMAGPYJkjLGD8Qg2Y4yxpEZEVkTLPqYACB7ysAFAF4D7APwCQAWAuxEt4dkT22YCgHk8gs0YGyg8gs0YYyzZ/RjAbgCvAvgIgCd2vwzgQyHEb4gIQohtRKQAyALw3CElIowxNmB4kiNjjLFkdwqAbSJ6yTVw0OTFGwAMO7AREV0BYDK+OcrNGGMDikewGWOMJS0iKgEwXAixK3bXRCJaEfvaBmBH7GsJwLuIloaMBXAREc2JPTYOwB0DFDJjjHGCzRhjLKllA/gXABARAdgZG70GEU0F8LPYduYDSTgRtQC4UgjxRuz2yYjWaTPG2IDgSY6MMcZSBhE5hRCcLDPGkhon2IwxxhhjjGmIJzkyxhhjjDGmIU6wGWOMMcYY0xAn2IwxxhhjjGmIE2zGGGOMMcY0xAk2Y4wxxhhjGuIEmzHGGGOMMQ1xgs0YY4wxxpiGOMFmjDHGGGNMQ5xgM8YYY4wxpiFOsBljjDHGGNMQJ9iM6YCIJCLq1f8fERUnKh7GGGOMaYcTbMb0sQDAu0T0LhEFDtxJRGu6ec4tRPSthEfGGGOMsX4hIYTeMTA2ZBHRnQC2CyGWxW6/JoQ4Lfb1aADPAuiKbZ4OIAIgGLvtBHCREGL3wEbNGGOMse4Y9A6AsaGKiLIALBJC3EREfwCwJnb/iQAmAHgNwAoANwshlEOeKwO4DQANaNCMMcYY6xGPYDOmEyKyA9gC4GUAIwBcBeBhAD8A8G8hxIJYIv0egBCAAgBGALUAzACOF0J49Iid9U7ZTa9nASgEkAPAEfuwH/JhA2A96MNy0NcGAOpBH0octxUAAQAuAO6DPlyqw9gSOibPD6A99tEGoL1x8dRIAn8MjDE2ZPAINmM6IKKzANwMoAPArwG8LYSoJyIIIRqIyEBE6UIIL4C5sedcBiBHCPGn2G0iIkkIoerzXQxtZTe9bkH0pOfAR+ERbucDMOkU5uGF1E8AzD707oLVm9z4KuFuA1APYD+AfbHP+wHUNy6eyiMzjDHWDU6wGdPHKgArAfwPQBGAmkMe/wTAXCL6PaJ110BsBJuITovdNgO4CcDaxIc79JTd9DohmiSPBjAq9nHg65EAsvSLrp+MdKSR6gOj6aXdPDtYsHpTFb5KuL+WgDcuntquZaisd4joCQBTEL16UYvoPI2wrkExNgRxgs2YDoQQLiKyxG5OAfD2IZu8CyBdCDH/wB2HjmAzjVQ4jQDGABiPaO37BAATNprTlWnBR47WNbYEEQapP6UgZgBjYx/fULB6kwtfT773A9gJYFPj4qnN/Tgui9+1Qoj3iehxAMcDeFPvgBgbajjBZkw/3wcQFkK8CABEdBKATAAQQrx08IaxntlWAHxpvj8qnMMAHANgGr5KpkfhMK+FTng7Bja4AWRKaIdWB6InjVMOfaBg9aYGAJtiHxtjn/dwyYn2iIgQresP6R0LY0MRJ9iM6ScA4KcH3R4L4DdH2PYWRCc/XpzooAaNCqcJwHREE+oDH8PifbpEyMyEq6MDjswERagbIev22l8Y+zj5oPs8Bas3fQFgA4B1sY/dnHT3y32IljD9D9FyNMbYAOMuIoyxweGr0ek5sc/TES1n6LPvBG/a8oGYfJQG0SWVQLa/ETNHF+gdRzc6AHyK6FyEdQA+4fKS+MRqsP8JYD6AoBDiz/pGxNjQxCPYjLHU08/R6XgVe7blIn2y1rvVn9Wc7O34MgEsjX0AAApWb6oG8D6A5QDeaVw8tV6n2FLFQwDeI6K/HdpHnzGWeJxgM8aSX4UzB8AifJVM93t0Oh4T5ZpAz1ulILNB1juEPigBcFHsAwWrN20F8A6iCffaxsVTfTrGlnSEEB1EtArAuQD+rXc8jA01XCLCGEtOFc5JAE6PfcwBkNCZeYfzvruo9mLjnzQfGddbYKK5FcNzcvSOQ0NBAB8gmnC/g2jHEn5zY4zphhNsxlhyiLbLW4hoQn0aor2mdVXtt7YdS49m6x2H1vzTbZ2U68zQO44EagGwArGEm8tJGGMDjRNsxph+KpzZAE5BNKk+EdEWb0kjqFB4XPhpo95xaM0/L8tHNmua3nEMoG34anSby0kYYwnHCTZjbGBVOCfiq9KPY6BD6UdvzPLc42k2FNr0jkNL/uPyFTKkZB22FoKIjm7/B8ArjYundukcD2NsEOJJjoyxxIqWfhyLr5Jq3Us/emO0ss87mBJsoSoRMhiG8mu/GcCpsY9QwepN7yA6CfDVxsVTXbpGxhgbNIbyiyxjLFEqnDKii4lcDOAkAE59A+q78WJf8EPM0zsMzQihBMGv/QeYEK33Pw1A8JBk261rZIyxlMYvsowx7VQ4xyG6BPwliK7Yl/LGoGaQ1dGpIQDpekeRhMyIXWWZLT5YsXLVuZ0A/gXgjeOW7A3rGhljLOVwgs0Y658Kpx3AtxFNrOfqHI3mRhmaB9XrpIDKyWIPzsNzYwCUAjgPQNvKVaP+DeCp45bs/UjfyBhjqWJQvXEwxgZQhfNYRJPq8zCIR0RLjF1pGERj2ELiVf26YxG+bUWon3jQXdkArgJw1cpVo/YCeBrRZHuPLgEyxlICJ9iMsfhVOIsBXArgMgBj9A1mYOQYgw4KKkKQTHrHogVOsLs3H++2dPPwKAC/A/C7latGvQ/gfgAvHrdkb7IvPc8YG2CcYDPGulfhNAE4E9HR6hOQ5G31tGaQIA+L1LhqjGVJ1aO7z2SoeoeQtIRQz8BL4+Lcen7so37lqlEPAnjouCV7mxMXHGMslQypN0rGWC9UOKegwvk3APWIdlY4CUP0NWOMss+jdwxaEQbiBPsIbHBtzkZbQS+fVgTgVgDVK1eNenLlqlFHJyA0xliK4RFsxthXoqPVFwO4BsB0naNJGuOwP7xK7yA0IgyDotIlIea2/DsPuX1+uhnR7jmXrFw16hMA9wH4N3cgYWxo4gSbMQZUODMRnch1LYDejuANemOpVu8QtGMaHLXkmlMV9XTnexka7W127ONPK1eNegjAg8ct2duo0b4ZYylgSF7uZYzFVDhHxMpAagDcDk6uD2uEocWodwxaEZxgH1a2a1djlslr1Xi3BQB+j2j5yDMrV42ao/H+GWNJikewGRuKKpyzAPwMwDkAZJ2jSXrDjG7boJkaaDbw7/swjlVWJrK7ihHAhQAuXLlq1KeIlo88d9ySvaEEHpMxpiMSYhA1eGWMda/CeQqAXwI4Vu9QUokqIMb6n1Ajkinlk1P/WGMTjcjL1zuOpKKEww+p34XNEBrIKxXNiLb5+9txS/Z2DeBxGWMDgEtEGBvsKpyECuc5qHBuAPA6OLnuNYlAZZH9Lr3j0ITZwFcuD1HYtbVxgJNrAMhDtPtI5cpVoypWrhqVMcDHZ4wlECfYjA1WFU4ZFc7vANgM4EVwV5B+Gavu8+kdgyasxkFTT66VJViu53thBqJ12pUrV426ZeWqUZk6xsIY0wiPZDA22FQ4jYiutngToivPMQ2MRWX4Db2D0ILFZNY7hGRC4UDweOf6ZJjc60R0lcifrFw16m8A/nzckr3tOseUUERkAjASwIGVMK9EdML167HbBgA7hRCCiIwA0gDkAygBMAHADAC/FEI0HbTPuLZjLNE4wWZssIgm1j9EtMZ6uM7RDDpjpPqUv+InhADMRk6wD1Lq2tRkylJK9I7jIA4ANwO4PpZo/+m4JXs79Q0pYdIBHAcgGLtdErvPG7ttAbCbiBYAeBrA5wA6AXQB2Bi778uJokS0KJ7tGBsInGAzNhhUOM8GcBeAMXqHMliNMLSmfmIqlCBJUup/HxpaKi9P1pIZO4DfALh65apRdyM6GXJwlCnFCCE6iCiM6AI9fgDFAAIARiCaXP9BCKEQUQGAvwshbieiowFcL4R4+DC7jHc7xhKOE2zGUlmFcyaAe8ATFxOu2OhJRyIbuQ0AIZQQoisOMgBSyOubb/88GcpDupMJ4I+IjmjfBuDhwbI6JBHZAfgAPHKETQpjJR/liM4lAYAwviopOVBmEhbRlmjxbsdYwnGbPsZSUYVzOIA7AHwHAC8cMkDG+x4OByRbso549khR/O3hU0Zn6R1Hshjbuqbq99n3leodRy/tB3ALgKeOW7I3pbuzE1EZgFcA/OUIm9wEYCqANxEd0Q4CsAEYBmBHbBsDgAuEELVEtDqe7TT+Nhg7LB7BZiyVVDhtiL7p3AhA61XnWA9GR/Z1bTFNztE7jj4jdVCMfGrlZNM7qfg/NALAEwB+sXLVqN8ct2TvK/qG0y9dAO4WQjxDRG8gOjkRALqEEGcSURcAVQixmIimIJow1wH4CYBfALAJIfYd2Fm82zE2EFJ+0g5jQ0K05d4PAexBtC4zFRODlDdG3efXO4b+ECQiPW81NBgCXa5Z9p15esfRDxMBvLxy1ai3V64aNVbvYPpCCNEhhHgmdjNNCLFICLEI0Q4gEEK8LIQIEVEOgGUAWg96eiGA12IJNQAg3u0YGwicYDOW7CqcJwDYBOAhxN54mD7GoSqlL8kLedAs+N5vEz0fDpYWeCcA2Lxy1ag/rlw1Kq3HrZMQEZ2D6IjzAYbY/VcQ0WQAbyE6YfGTAxsIIT4HcDGAl4gom4gc8WyX+O+GsShOsBlLVhXOiahwvgngbQBH6R0OA0ZLDSld784J9ldONS+36x2DhkyIlo7tWLlq1Ll6BxMvInIQ0V5Eu4j87KCHrET0IYBrEb1qd4EQYm0sEb8bsWRcCPEZgDlCiDYhhCue7Qbsm2NDHk9yZCzZVDgPLKF8BQBZ52jYQfb4bM3HSw+nbFlByOqrVI8dU6Z3HHoze1s6Hku7cjCvmPgOgGuPW7J3l96B9ISIMoUQHXFuWwggG8A2IcQRTxbj3Y6xROJJjowliwqnBcANAH6FaA9clmSKTD4HUriKWRhTegBeM1P873chDYM5wT5QNnIPgNuSuX92vMl1bNsGAA1abcdYInGJCGPJoMJ5IqLtpO4AJ9dJK82gWpyRjtSd6GiS+TUfwBlpywdzcn2ACdGT9e2pVDbC2GDBL7aM6anC6USF8zFEJ+ekWj/eIWm0stejdwx9JUyGIT+EneauaxlhbXLqHccAKgHwwspVo95auWoUr/TK2ADhBJsxvVQ4TwWwFcD39A6FxW+c2BfQO4Y+MxuGfE3/zODapC2XSLATAWxZuWrUHanabeRgRPQPIjo59vV1RPQLvWNi7GCcYDM20CqcmahwPgngNQDFeofDemcMqlN3wXSLIWVXodSEUMUZ6SuHcqu2g8tGztE7mH66G8D1RCQD+C6Af+gcD2Nfw5McGRtIFc6zhBD/IKICvUNhfTNabkzZ101hMQ7pGhGHq6qp0NHJ/3vRspEXV64a9TqAHxy3ZG/KTQgUQuwnohZEl41/DYCIrQZpAVAlhPgeEVUAMAKYD8AJ4CREV498CdEuI3sBbBZC3KHDt8AGOR7BZmwgVDhzUOF8FsDLnFynthJDp0XvGPrMYjLpHYKe5kZWh/SOIcmcimjZyIV6B9JHdyLaeelviK7Y+ACAkwGUEdGBRblGCyEWAngGwBIA4wHUApgHYBQn1yxROMFmLNEqnN8SQmwFcIHeobD+KzD5HXrH0GcWk1nvEHSjKuqptjW5eoeRhLIAPLNy1ah/r1w1KkfvYHoj9rraIIRoBxBGdO2ApxH9nqyxzZ6MfW5GtESmDsAMAO8C+OuABsyGFE6wGUuUCmceKpwvAPg3EaXs4iTs68yyMOVFGr16x9FbQqgqmQwpW97SXzmuXQ1ZJq+15y2HrG8hOpp9ut6B9NHlAF4AcCGAg/8/D/1fPQnAH4QQxwghnh6o4NjQwwk2Y4lQ4bxQCLENAPefHYRGKXvdesfQW0IoQb1j0NMCZSWv6NezfAD/Xblq1OMrV41KtSs1yxGdwLkqdvtIE8g3AriPiFYR0XNEdNSARMeGHE6wGdNShbMAFc5XADxDREO5W8GgNl7sT71aXqGkXsxaUcLhkxwf8NyH+F0WiRjfqKioWKx3ID0RQoyOfX5XCHGUEGKBEGKuEOIDIUSFEGJN7PEnhBBPAJgDYBeiJSU2AClVFsNSx5C9XMiY5iqc3xVC/IWIhsIqcUPaWKoResfQWwJqWO8Y9FLYtbXRlhkarnccqUIIhLduXZwJYEVFRcU9AG6uqKgYFCdoQohHADyidxxs8OMRbMb6q8JpQ4XzOQDLOLkeGkbJTSk3OCFIDNkEewmW83tdL7S0lH3g6sqfiGiO8HMAH1dUVEzQOSzGUgq/6LCEI6IKItpORO8S0UoiKtI7Js1UOCcIIdYBOF/vUNjAGW7sSrmV8IQkUneBnH6gcCB4vHM9l4fEKRIxbt65Y96CQ+6eBmBDRUXFD/SIibFUxAk2Gyi3CyGOBfA4gGv1DkYTFc4LhBDriYhHdoaYXGPQAaGkVpmIjCE5ya/UtanJJClDfon4eAgBz6aNJzsA6XA/LyuAhysqKp6pqKiwD3RsjKUaTrDZQMsE4CeiNbGPYMqNaFc4TcrvHPcDeJaI0vUOhw08gwR5WKQ2pTqJCJmGZIK9VF4+tJeH74Wa6vKNfr+ztIfNLgTwWUVFxfSBiImxVMUJNhsovyGidxGdwf1XIcQiAP8CcL8Qol7XyHqjwjk8rIiPZImu0TsUpq+xyl6P3jH0hjAOvUXSpZDXN9/+OZeHxKGmJq2lqmrqoaUhRzIawIcVFRVXJjImxlIZJ9hsoNwuhDhWCPEdIUQXEU1FdGXDX+ocV9zU3zuWRlTxhVEmHrlhGCv2p9akQaM05DLs0a71LQZJDLnvu7cCAfgr95/Q26txZgD/qKioeLqiosKWiLgShYieIKL5sa9vJqLLutl2TTz3HfSYiYi+IKLpRLSBiI4hoif6EONhjxGLvay3+2MDjxNsNuCIyAngHwAuFUJE9I6nRxVOCv/WcQsBbxskytA7HJYcxkp1eofQOyZ5yCWaJ5ve4ZUb47Bl84x2wN7XibsXAVjPXUaihBAhAARgDIAyRBe8qdQxJKYTTrCZHq4GMAzA07E67IV6B3REFc6sYEQsN8r0OyIacgkKO7KRcotJ7xh6Q5gNQ+r13hDocs2y78zTO45kt39/ZrXfP/FIqx7GazyATyoqKs7RIiYd5BPRm0T0IRH9qjdPJKJsInqNiN4jor/E7nYBKAewGcBUAFWH246IyojoaSJ6nIge7+YYI2KxrQAwsQ/fH9PBkHrBZfqIrab1r4Nu/1EIMVwIsSj2sVbP+I6ownl0WBGbzQY6Tu9QWPIZZnKlVqs+syHlenf3x0TPh+16x5DsPG6pq6Z6aaFGu7MDeKGiouKOioqKVMgt7ouVYVyO6BLrzwsh5gI4q5er8P4KwLNCiAUAnER0EoAqAAsAvAPgWERHsA+3HQCcDuAhIcT3ujnGLwDcDeAkRH/OLAWkwj8BYwMu8jvHNaoQHxrlFOtwwgZMljHsMKih1OktbTEOqQT7VPNyTkS6oaoQW7bODxGZteyyQgB+Vaxk3V9703sZGu43Ea6NTbZ/FNF68qtiCXc6gN687k8E8Ens608ATEA0wR4J4AsAc2O3D7cdALwjhPi4h2OMAPBFrKRyUy9iYzriBJuxg1U404I3O54zSHS/RDSkEhLWOxKBSiOVLr3jiJewGIdMuzqzt6XjKFtVb0Yhh5zdu4qqwqHSXK33axKGzSeEp1wO4JPam94br/X+EyQI4KZYwn0ngN5c/diKaHcsxD5vRXTEugrAXkRPOmqOsB0AxNONqArARCKSES09YSmAE2zGDqhwjg0pYqPZQLwqI4vLWHWfT+8Y4mY2pVTNeH9M8b/fpXcMyay93dDS1LSoROv9kkDjucE5+TIkE4CxiCbZp2p9nAS4E8DPiOgDRMswmnrx3D8CuICI3gfQKYR4B18l1/sB1AohwkfYLl7/B+BmAMsBhHrxPKYjEiK1FiNjLBHCv3UsJsJ/DRKlVLsppq+/dB5b9RfLlT0tzJEU/McVqGSQh8Sgym2+q7tGWJuceseRjCIRRD755ES3quRlarpjgeAp4Wl7itSsSYc8ogK4adidC/5P0+MxluSGxIstY93x/NrxPYnwDifXrLfGUF1KdJYRqhIeKsl1mruuhZPrI9u2bXSd5sk1gOmREesPk1wD0Tzj7tqb3nu49qb3uOyODRlD4gWXsSNp+4X9rnQjHpMlrrdmvTfC0JoSZRdCKEG9YxgoM4NrU6dsZ4A1NlrruzqP0fyKS57ieH+6MnJ+D5v9AMCbtTe9xyc/bEjgBJsNSXuusxuaf25/JTtN+gW3t2Z9VWzypMRVDwEltVad7CuhijPSV+ToHUYyCgYR2LP7BM2T24gr6D4lNG1unJsfD+DD2pveS4myKsb6gxNsNuR8ckV6lt2ET/PSpTP1joWlNqdRsVlUTwokryIFYuw/p6uyqdDS1dslv4eELVumtgrh0PRnEw6EghfIC2QD9WoRo4kAPq696b0ZWsbCWLLhBJsNKR9fkT5mTLa8Od8mTdE7FjY4jIrsT/pWfUISEb1jGAjHRFZzh4XDqKpyVvu85cO03KeiKOrS4GR3htynJdYLAKxNkQ4jjPUJJ9hsyJj9m7L5O/PS3sqy8uIxTDtj1H1+vWPoiZBE6iyI01eqop5qW6t5X+dU5/WSq7rqhAKt9zveld8w2lzcn3KcdACv1t703hVaxcRYMuEEmw0Js39Tdq6/LH3FPaPyhq9RjS16x8MGj3GoSv7RYRmDvh9rjmtXQ5bJa9U7jmSiqkJs2TzPD1g0nYyb3iHXL7ROKdZgVzKAR2pveu/XGuyLsaTCCTYb9Gb9dsS1vlG254VJMguDZPzJ8Pz0rarMC1EwTYyRGpL+dVQYSNU7hkRboKwc9N9jb+3ZU1gVCo3I13KfqivU/i3LgkIt9wng9tqb3vtz7U3vJfWMcyKqIKKLD7qdTkQvE9FaInqKeMY8O0jSvzEw1ldnjDPSrJtH3OUfmf5XyCQfuF8xSWnfLcpHvSBu58X6rdTQZtE7hp4I4yB/qVfC4ZMcH2heBpHKOjsMrY0NizVdrTHsDwUukI61GkhORCL5k0r3ljvvOf+0VGqZegmAj4QQCxFdbn2mzvGwJDLIX3XZUHXGOKPcdF7xY/7R6b+A9M1RhZDV4DwvN9/bpWJIdFdgiVNk8tn1jqFHpoQkREmjsGtro80QMuodR7KIRKBs275Ept519+iWElHUk8NTfQ5DekLKcNqCDe990vr6LwC8eM/5pyX9SWtMHYCziWiMEOIKIcR6vQNiyYMTbDboOKY5THvOKl7hG2u/DN1csXPbTbnnZOa1hITgS8usz9INqtUR6QjoHUd3hEka1K/1S7B8UH9/vbVj+8haJZKv6WqNR7mLG8tMhVla7vMAd7jjoxX1T86L3TwDwBv3nH9a0veYF0L8D8CfAbxERH8j+upKKWP8osQGFcc0R3remXlvyRPti+LZvjnLUnShLac2wWGxQW60utetdwzdMhkG7Rs/hQPB453ruTwkprnZ3NDeru1qjc52Y90866SEdF/yR7wb3qr95wx8PR9ZDGDVPeeflpCEXitENAbAWwCmAsgFcHG3T2BDCifYbNBwTHNk5J2Vt9I6wrq4N8/blZdecpUpozJBYbEhYJy6P7lHsC3GVKpr7ZVS16Ymk6QM2hOI3ggGEdi960Q7kXZv7aIr3HaudX5CkuuwGtz6eu1D41Woh+tycjSAlfecf1oyr8x5BYCzhRAKgC0AUqW0hQ0ATrCHICKSD57tTESO2GcDEWUR0XgiOpGIbiSiW1JhZrTzaGd+3tl5a6xl1tl9ef77xY6y2yRbldZxsaFhDKqTu8+0xThoE9Cl8nKuvY7ZumVyq6o6NSutCPtD/gsNC20SSZq/B3QFulr/V/1gkSLC3a0uORXRkexk6m9+KxF9SkSfAvACuIyI1gCYBeApXSNjSYWEGPTtUYcsIjoTwF2InlU3AnAKISYQ0bcAjAWwTAhRS0RPA9iA6CWu0QDaAbQC+ADAQgC/FUIk7QppGXMyhuWelvu2ZbhlYr92JIS4sbK17nvwa7riGRv83nUX137X+H9J+3cTmO10I8OW/JMxe0kKeX2Py5daDZJI+kGARKupdtRUVp45XKv9KeGIcop/mmu4KU/TWm4AaPd3RFbUPxkRUiDeEd9tAI776fOvNWodC2OJwiPYg1sQwOcA3gbwMoBdsfsjAMIA/k5EFkRbDe0F8CSALgB3AggByASwM5mTa+ds54ic03KW9zu5BgAiurckp+AN1dSkQWhsCCk1dCT1pWFhMZr1jiERRrvWt3ByDfh85KmsPCFPq/0JITDVW9KUiOTaHfQqqxueDfYiuQaAiYiOZGva05uxROIEe3CTAWwFkAUgAMBDRIsAzACQB+BVAFMAXCeEeFUIsR3AiwDuAfAEABXA7gGPOk6OmY7RuafmvmEdbh2v2U5lMvyqJM/5qWpo12yfbNArMPkdesdwJEIIAZNR05X8ksXJpneG/MqN0dUaj/EAVs1OorI6LHWzLRM0r7v2hwPqivpn/BFyd1cWciQTAKzmJJulCk6wB7fd+GokugjAx4iOXtsApCNaNrIHwAQiuoyIzgbwWmzbxwGMQ7R0JOk4ZjjG552W9z9rqYbJdYxqlCw/KM437lMlj9b7ZoOTWRam3EijV+84DksoIRqEXfoMgS7XLPtOzUZtU9XevfnVweAo7bqodEVaz7bO1WIZ9K8JKWGxvPZ5Twjt/akRnwAeyWYpYvC96rKDqYj2FB2NaC31FCHE+4hOzIAQ4nUhRBuAKwH8G9FZ0DcDeBPAjxEtMblGh7i75ZjmmPTHQNYLCxtkZ6KOEbHI9gsK8kNtAsFEHYMNLqOUfUnZqk8IZVD+DU/0fDjkrzJ1dcntDfVLNKv9D/uCvosMCx2Shl1IAEBRFbG8+gW3H41aXOmZiGh3kWwN9sVYwnCCPbh1ALgewHsAXgJwoEvGZAAHj3hcBqAE0SQ8O/bY3wE0ACgioqRpk+SY5pj8h1Dmc0sU66Qb1lL+vPdDCeth7U83Zp2dnd/hV0Vyd4hgSWGcuj8p5yoIqINytdJTzcsH3aTN3lAUKFu3LhZE2nSIiYQjyhnKrFCabNG0nEgVAiuq/+v2oFrLMqpJAN6+5/zTkrY0izFOsAe3owB8G8BKRJPrTiKajOjyruuI6PjYdqcCyAFwPqKj3TNin89CtEzkhwMb9uE5pjkm3xzKWHaCknYUAMgg6dr3qHjhmlBNoo7Z4TQXnOfMbYhwux3Wg3FSdVL+jQgafAm22dvScZStakiPYO7YUVarRAo1+RkIIXC0d0RzsTEnQ4v9HWxNzVuuTrErEYnwDERXfExLwL4HFBGVEtEaIrqAiCYQ0dFH2K7Pk6ljbXiPOCGYiIx9XYmSiDIP+lrTRY5SGSfYg5sJQDWA2QBORrRd330A/gjgIQC/JyInAIcQ4n0hxFIANyI68n0/gC8QbaJ/hx7BH8wxzXHUz0POx05X0qcefL8Eoqs+omHHrQhWJ+rY1Tlpw75vzUrY/tngMEpqTs7FXKTBdwVmiv99l94x6KmlxdTY1jpPs0QmryOtdoZlbKFW+zvgg9o17hbli0SOMs+TTBPufeDKVaneJWcCou/RRYi21v3iwANEZCKi04joIgAPEdGcWLOCryGidiJaccjHZwdtcj2At2L31xPRW7GPBiJ6C9HS0OMPs9+biej8IwVORIUAniciiYjyADxORMn5WjjAOMEe3EKI1lY/CeByRMs//i6EqBJCtAN4FMB1AP5LRKNi/2S/B/A9IcSdiLbuW01Eui7/6pjmmHRl2PHQeYptxuEel0D0w/VSyYnvJC7J3lhoL/2lwVGZqP2z1Dfc2JmUI2lCgqp3DFo7I215ht4x6CUUQnDXzhPStVqtUeqMtJyZNlfzHu7rGz7x1IY/SWgZj2yatMaUfvKPADz7wJWrknIxJSJ6gojmx76+OdZQoICIbjqwjRDiLSGEXwhxrxDiDCFEkIhGENGbiDYa+A6A/Yi21w0CuJmITj7kUJ0AVhzyETroGPcA+AmijQzOFEKcJIQ4CdEr2FcCuEcI8fZhvoUAgMOepBPRMwCeB+AA8CmiV8sdAFYS0c/j/ykNTnyWMYgJIdbGvmwCACL6TWxJ1wOPP3Hw9kR0jhDCd9DjywAs03Mlx8V2+/hLM9Je+G66bVx32xEI398glRgjwarXTjEn5BLVG8OcZcVVkerrhK8kEftnqS3PFHQgqAiQnFR9mYU8uBLsdHddywhbUzKt7Degtm6Z1KyqmZosKBP2Br3fMx2focW+DvZF8xfevf7VtgS+daiyeeb7xrRjF8Vunw3gkQeuXHX5NQ8uScpSrYMJIRoRXW+iO9UATkN0nQoIIT4iossAuBEt/RxGRCS+Kl/0I5pUH+y8Q27/EUApgHNiCfq9AIYBsAJ4+OD9EdF3APznwBOJaDQAuxBi40H7uwbAdEQT8PMQPQnYgGiL4Hd7+P4GPU6wh5CDk+sjPO47wv26vGAttttHT7VY7/p+WuYYGT2/UhMI3/1cLjVFgpUvnWEu0zwgIjxSkj2sqFJpOI+Cml9OZanNIEEujtS56owlyTXxyiglfcLRGzODa72wYUgm2LW1thqPZ7omyXUkFI6crc5RLEaTpkvN72zb5d/medOawOQ6YrAu+MRgOfrYQ+7/HqKrEP8sUQfWChGVAagQQlzWzWYXALgY0bIRQUTnIVpKMhHRBeGMAH4F4EAZSCeAPx2yj+0HHfMMAIUA/otoQ4MTEe0WNg7R5Ph5ABQ7ViaA3wghnj7o92hGtHR03sHfCqKVEIfmFpxbgktEWJJabLeXjTaZbrs0M/MEQy8nXlywVS47/6VgZUICk0i6tSQ3+33V0JqQ/bOUNlbZm3S9sIVRSqoR9X4Rqjg9fcWQTK59PvLs33eCJt+7UFUc4xvTWmDM0vRksLKzKrCp61UjUWJyCyEQNKQt/cxgOXreETb56QNXrvppIo7dT/cR0RpESzXjIoR4WghxMoA/A/gLgG8BWAbgdwCuAvCFEOIzIppHRPcC+AjRMo2DP5qI6M9EVC6E+C+iJyDZiC4odwWi6128jGgjg/8i2mEMsWM9e0g8WwHsIaLTAYCIFgB4DtFR7J8AGI9oDfdPYvG9TURZ8X6/gxGfZbCks9huH15gMFT8KDv7FLMk9WnW9Lk75TLDvwOVT3/bUqZxeBAGyfTj4flpz9Y0uiZISnKNVjJdjRWVodV6B3EoU1KWpvaJ01XZVOjo0m5RlRQhhMCWLXPcQLomV86KOh21U9JGaVp3Xe9uDK1rf1ECqQnJKyKqqijGJR1Wc/msHjb9vweuXFV3zYNLnktEHH10rRDifSK6Od4nENEoAIsQHV0uQjSB3Rj7/F18lQB/BmAbgAsBvAVgaez+pxHN8YwADkwKtgM4cAVEFUJcTEQvApgP4EIhhCdWEnoVgDMPE9b/AXgYwP+EEO8R0akAIkIIEUvynxNCrIvFbxBCROL9fgcjHsFmSWWx3Z7vkKTf/Dg759R0Se7XBJkz9xrKLns2MSPZiklOu7gwX20QdNiyGjY0jZUS1pa9z4RJHjQZ9jGR1UnZazzR9u3LrQoGxmiSXBs61aZT02Zrmly3+trDH7Q8rwgKa9pD+4CwooaC8pKI0zE9npMrArDsgStXLU5ELANoJAAnojXNfxZC3ARgNaJlIR1CiHcAQAjhB+AB8GtEO4AFES39eBHRGuoJQogDi01lAhgL4BgASiyJDyCamB9I/ksArBFCfKNpgBBiC4DH6KsZtq8DeI2IXgPwAwAvE9GB23/T7CeRongEmyWNxXa700T08+tyck/LMhg0WdzmlEq5zPivYOUjF2tfkx1KM2Scm5vf8nZLo9FO0LSOkaWmkXJz8v0dmA2DI8FWFfVU29ohVx7icsnt9XXHa7J0ecQTdF9iOl7T/uFdAVdkTeOzYZUCCemiE4qoQdVyCmXbJ/amFZ8JwMsPXLlq/jUPLtmSiLgSTQixHMByIvoeonXRBQDuRjSZ3kpECwGQEGINoiUeOwD8D8DniHYEeeLg/cUWjLsJQAuANAB5AG5DdFG54wC0ENH82GrPNxz0VAPw1URpIcQ/D/r6hNiI95UAPkZ0hLwSwIN6zd1KJjyCzZLCYrvdSsD1P87OOavIaNTkzeSApTVy2dXLAlU9b9l7brsp95yMvOaQEIOqUwPrm2FGV7reMXyDxTAoBlJyXLsaskxeq95xDCRFgbp1y0IVMPb7dxgJhcPnYi7MkkmzvwdvyK+srH82oJAnIcl1IKz6YT1HyrBP7MvIuBPA6w9cuUrXCelCiMtiSSuEELcJIZ4QQlT2MMERQLSzF6KTNvci2m73eQBTEC0DWQbAS0QzER09PhvRGm8CcA0RrSOibUTUTETfBXAGgJ2IrosxHoAN0cTYDcAghHjgQJwHHb8C0cmWB3cOOfBYJhH9CsCq2PNvE0L8MvbwJ0T019hJwZBFfJLB9LbYbjcCuOaKrKzLp1ujqzQmwvv5kaq/XmYqJUn788rxTd7q//jauH3fEKcKiDGBJ4RCpqQZvPBPt3VQrjOz5y2T29lt99ecl7Vakw4aqWLbtpKqttaF/W47qqqqmOce0zLJXJanRVwAEIwE1beqn/YEqCUh81D8IdVnsl9gTE8b1t+rQp8BOPaaB5ck3QTknhCRA0A4VgZy6GOZQoiO2AhylhCibYBjI0TbCK4WQngOeSwN0frxN4fySHbSvAmwoWmx3S4BuOQMh+P8RCbXADC/yVD600fD1VBVzf/hd+Snl1xjclZqvV+WWiQClYWrkmuVQbMx1Ve5A5Rw+CTHB0NqNKy11dTU2rJAk5P20q7MOi2T64gaEe/U/CdhybU3qHqtGZeaNEiugWif5ucfuHJVyuU7QgjX4ZLr2GMdsc9ioJPrg477v0OT69hjPiHEG0M5uQY4wWY6Wmy3E4Azj7ZaLzjBZu9pZrgm5rTKJb98JFRLivZJ9rvFzrI7JFtCSlFY6hijJlmrPosp5RPswq6tjTZDKPnq2xMkHEZo547jrUT9b7Fo6hCNJ1pnajapURUqlle/7PahLiHJtTsgPLasKywWc66WpU2nItoBg7EBwwk209PCEqPxu9/JyJwvabXubxxmtBuG/+rhUB1FVM3rpp8tySxZBmud1vtlqWOcqEya1lRCqAqZUn+S4xIsH1LvVVu3TmhS1ex+J7ARd9B1gXmRphNDV1W/3uUS+xKSXHf54cnIvTLNbMpIxN/sjQ9cuer7CdgvY4c1pF60WPJYbLdPs0vSD6/OzllgkqQBn7g0tdMw7OaHQvVyWO12dcteI6I/leTkvy2MTZrul6WMMVK93iF8SahKsOetkhuFA8HjneuHTHlIfX16rds1s9+15uFgOPQtmiebJO1OsN6tWeFqU7c5tdrfwTr8sjs7/+p0oyE9kXnJPx64ctX8BO6fsS9xgs0G3GK7fQwBP74uJ3eOQ5Y1bRnVG+Uuw7DfPRRulEMaJ9kyGX4xPN+5UTV0aLpflhJGGFqTqCRDSfm+0aWuTU0mSUn5Ufh4+P3w7dt7Yr9fE1VFFYsDE7uyDU7Nutp8XP+BuyGyISEj1+0+kzsv/2qbQbYkdtVRIaThNSt/tX38BJ6QzhKOE2w2oBbb7XkAfnJFVtbkYqNxhN7xTHDLxbc8GG4yBlRNL+urRslyeXG+XKVKyVWPyxKu2OSx6R3DAQJqWO8Y+mupvHzI1F5v2XJ0pxDp/b6iN8qVUz/eXKJZacjGxs88VcH3+7Xw15G0+dLcBYVX22XZmOjkuuOorf/8Yszel04B8Mr28ROGVMtHNvA4wWYDZrHdng7g+hNs9jHTrGkz9Y7ngLFeuejWB8OtxoC2yUjYIju+nZ8faBdI+cv0LH5OQ8RmVn1JkdgKSu2liqWQ1zff/vmQKA/Zty+rKuAfX9Tf/Vg6qOE46zTN1hLY3rrdt8u3PCH93dv8Ge7i4ivtUgJapx5MUsJ7Z6//gyuvddP02F3TADyW0IOyIY8TbDYgFtvtMoArJpjNE09zOBbpHc+hRvnlgtv/EW43+1VNL6n7bMbss7PyOwKq0LYMhSUtImBUZF9StOoTUmr/3Y12rW8xSCKxI5tJwO2WOutql/Y7KVbcoc4LLMfmaxETAOzt2Of/ous1Mwia/w7a/Pme4qLvJ2RU/GDmQMe6+R/+Mi/d13RoP/ELto+f8ItEH58NXZxgs4SLteM7N1OW51yelb3YQJSUl3zLAnL+Hf8Id1o9qqYjzu0Z5oLznLn16tBuCTqkjFX3HrZ3LQAofjf8+zdC8XVpdjzF2wGhHGawWkZKrzB6sumdQX8ZX1GgbtmyIAz0b4XFcCAUPF+abzKQQZP39dquuuCGjpcMkFRN69+FEGgLlnqLi76T8FIqR8umj+d+/NuZBiV4pET+ju3jJyxJdBxsaOIEmw2EYwCcdnV2zsw0SUrIDHStDA/KeX98KOyyupWAlvutykkb/n1rVqWW+2TJaxyqD1uaEfG0o/mFCoQadqHp2V8fNslWg140/fv3aHruZjS/dBuEEoYS8KDpP79H49O/QNvb9wMAXBv+h8Z//QJqKAD//o0g+Zv5mTBQyibYhkCXa5Z9p2aLoySr3buGVUfC/auXVhRFXRqc7M6Q7ZosWd7saQl91PZvCFI0HQxRhVA7I+N9xQXnJqTk5MvjqEokfdu/2mdufWQOQXSX58gAnt0+foJmJTWMHcAJNkuoxXb7SABXXJKRObzYaBytdzzxKArJuXc9FPGmu5QjjkL2xYZCe9mvZDsvRDMEjJbqDzvqF26tRtaSH8A593xYR0xHqHHPN7bxbl0Dx9FnIf+C2yCnZ8K/7zN4t6yCbdJiFHznbqghP4INuxFu3o/0oxYj1LgLdITFGoUhdasrJno+bNc7hkRrbzM2Nzcf2++l0Me78htGm4tztIipw98Vebf5WUWlkKbdcFRVKG5larAw71RNTgKOJBz2e8o+uzcwu/mjrDifkgfg39vHT0jKK6ssdXGCzRJmsd2eCeC6mVarbXZa2rF6x9MbBWE5+66HFL+9Q/Fpud/XhmeU3k9pNVrukyWfMkP7YZMTa9lUmIvHI1CzBcGGXTAXT/jGNvbpp8I6YhoAQPV1QU5zQrLaEW6rgxrwQHG1wuDIhRACQonAv38jrCNnHD4Qk6xphq26uhD89GOoXfF1oFTa2yAifZvveap5eUJawiWLcBjh7TuONxP173eU3iHXL7RO0WQE1h30Kqsbngkq5Ne0NEdR1YiX5oTzc49LaMlP0NvcMnPdrebRnsrelp/MBa/0yDTGCTZLiMV2uwnA1VmynHlBRuaJA7lSo1byIlLWXY8oQWe7ol2rPSI8VJJd9JIwN2i2T5Z0Ck3eI07eEkLAu/09kCwD3fxbBOu2Qw16YC4eD8uwSQh31MO14X8wZg+DZLHBOmIa/HvXw2DPQcuLf0Cg6otvHsvUu6W2lfY2tP3wgsM/1taCzl9fi/COLei48YdQO9vhe/XfaL/hCrTfcAXafnA+XPfeBt/Lz6H9uu9B+P0IffoRyND7gUGzt6X9KFtVvCOQKWnbtnH1qpLTr5I51RXq+JZlQaEW8QTCAXVl3bO+MLk0Ld+IKGo4IC1ScrPmWbTc76FCLVvql6y/PSc77OrrSPT128dPOEfToNiQlnJJD0t+sUmNFwIYfXV2ztw0SUrZkagcRcq8659KOLNFcWu2U4nkipLc7A9UQ6tm+2RJxWZQrY5Ix2Hr+IkI2SdcBXPRBPj3rjvs8xW/G+0rHkL2yT8BAHS8uwzZJ16DjHkXwpg1DJ7NK5A+4VhkzP8OJEs6rKOOhm/XB9/ckdnYqwlqngf/DBE8/BzfSOVe2K7+GWwXXwHTzGMQ3r0DaWd+G1l//iey/vxPGMunwXraOQjv3QnL0lMR3rkVZOlbTjXF/15SdGFJlIaGtDpX16x+lYaE/aHABdKxFkM/R8ABIKyExTu1z3uC1KZpV49QRA2GTSer2ZkzE7b4khCqMO59vfGkrf8oMiPS35/FY9vHTxipSWBsyOMEmyXCMQCOuzQzs6QoRequu5OlSBl3Paao2U0Rzd70hUEyXTMs37pDlQd1IjGUjVK/2aqv6+MX4NmyEkB0MqNk/uZgoVDCaH31TmQceykMzugcPxEOItRSCaEqCDbs+nLbcHsdDBmFINkIcZguNcIc/zLZoc/WgawWSFmHX0jQPGMOTBMnI/T5BoR3bIFx4uQvH1NamqF2tMM4diIgBBCJIPjpRzDPmhfv4b/mjLQVmX16YgoIBODfs+eEfn1/SkRRTw5P9TkM/V+URlEV8U71i24/GjUdCAmG1QCsZ0mZjkkJS64jSjiY9/nDnQtq3tCqV7oTwH+2j5+QRKuxslTFCTbT1GK7vRjA92dZ06SjrWmL9I5HKxmq5LzrCZXy6iOa9VZTzHL6xYX5SqNKmk6mZMlhnLLvG0PBtqknwbtlNRqf/iWEUCHbc9Dx7lNf28bzxXKEGveg66Pn0fjMTfBufxfOOd9C+1v3o+Yv50P1u5E+cSHUoA9yeiaM2cPh/vwtWEunfiMGMhviav0mwmF4nnoYth9c3/12QiCw5h2QwQiSvsrdfa8+j7QzvgUAMM88BsGP34Ocm4/Om3+C0Mb18YTwpXR3XcsIa1NSdxvqjy2bZ7RD9K/bx1Hu4sYyU2G/S2iEEFhZ/V+XB1WaJtf+kOoz2C6QHbbRCZs4GAq6Oieu/6Na3rlZ65Ox6eB6bKYBOtyoB2N9sdhutwL4bbYs5/0qL/9bqVwaciRuUj03f0eKNAw3ZGi1T4cr1Px2a2OWjdCvPrgsuTzWOaPqVstP+90hoj/8Mx0uyrb3+H/oefIhGEpGwrJoKdpvuAJZf/5n99s/9gAMI0bDsvhECFVFx3WXIev+J798PLx9MyL1tVDb26DU18Jx/U1xx7yw9ZnKH2a/WBb3E1JIZWVmdU31aSX92Yejw1D3betCTSY1rq5+y9WsfK7p67Q3qHrTMr5rtlryEvZ6Fuyqbpz/+V9z7WpA0x7dhzh1wo7tbyRw/2yQ4xFspomD6q4LrsrOWTgYk2sAsAvJdsfTqrG4KqJZCzGXw5R3TkZeU5jPdgeV0XKj/q+vVqMpns1CGz6B79Xn0X7DFYjs2YmuP93yjW28zz4O/zv/AwCoHjfIFi3XDW/+DMbx5V/bNlJTBUPRMJDJBIhetOIWqjg9fUW/ekInK49H6qquWtqvCYnCFW47z7Kg38upA8AHdWvdWifX7oDwpGddbklkcq3WfVR/wmd3FyQ4uQaAJ7aPn6BV6QkbgvR/A2CDxTEAFl2UkVE8GOquu5MupPTbn1Utw/dF2rTaZ0OWpfg76dnVWu2P6a/U0KHrKoRCCMB8hAbZh8j662NfTlY0jB6H9PMuhufRB762jfW0cxFY/jrar/8+oKowzTwGABBc/xGMk6d/uZ3q9UDKyoFcOhL+116EafrsuGN2uiqbCi1dCV2ERA+qKsSWzfOCROY+l0yE/SH/hfJCm0S96wxzOJ82rPPUhj7WdEJjlx8eZ84P0yymzIQkvqqqKOnbnm05fve/imQakLGIXIXwSPmy8tRtJs90xSUirN9idde3jDebxTXZOZfJREOi1MEPEaj4Fnn2jzZossADACyu7ar8W7irTKv9Mf0EFAqNDz8d1whyIgg1EgqeXKrb8fvipLZHqy/JeqNfJRTJaOeOosrm5uPK+vp8JRxRTvFPcw035fW73nhz82bvVs/r6UTa5Y2dfsmdk/cjm8FgTUgyGg4HvCM/f0Ad49mn6UlBd4IG7PztJbKhsoDu23zp5r8O1HHZ4MEj2KxfYnXX1xiA0CWZmacNleQaAKwgyy3/EfbROyPNWu1z9TBn2Z1SOo9kDwIWWZhyIk2aLlTUG0KoIb2O3Seqop5qWzvoykM6OgwtTU2L+nzSIITAVG9JkxbJ9a623f6tnjetWibX7T6TOzf/moQl10Ffa+uMdbcaByq5FoD4fASt/d6N8ojKAhoF4M7yZeUTB+LYbHDhBJv12cF115dnZZdnyoYhV69mAZl//5JwjtsWbtJqn0+XZA1/CpY6rfbH9DNa2atd//ReElBSKsHOce1qyDJ5dS2r0Vokgsi2bccZiOQ+v9dmdVrqZlsm9LvuuqqzOrix6xUjkdDsfb/Nl+YuKLzKLsvGhCTXoZbt9UvW/yE7J9w1IFdiFELjn8+SNt5+gbwwItOBY1oA/Kt8WTkvpc56hRNs1h/HAFg0umCyOi7NMUvvYPRiBpl/+yoyJ24ON2qyQyL6v5LcvOWqUbORcaaPcer+w6/aMgAE1L6tUa6TBcrKXsyGTA3bto2uU5V+jDx3hVvPtsztd8eQBndT6JP2FwikanaFsdXvdBcXX2mXJO1LroUQQt7/dsNJW+8vMot+Lx4Tl0YH1v/wOtn08QRp+mEengbgmzN/GesGJ9isTxbb7QUAvmc02ZonzPvZ2WtnV/iqbGVDNiE0gUy/eQ3ZkzeGNVkCXchk/FlJvn2TaujUYn9DRZNHRVhJnnklY6lGv6RREopux+4tJRw+yfHBoLoC1tRoqe/qPKbPbRrDvqDvIsMih0T9e5tu87WHP2h5ThEU1mwUuC2Q5xlWdHlCSjYUJRzM2fzPzoVV/9VkCfieRIQIP3lUpPG6awxHu9Oou97ivyxfVt63lZPYkMQJNuu1xXa7AcAVAMKz5/10vtnizDJaMjL2zPhp7rsjzquMgAbdSFQ8jCDjTW8hd9qnoXot9qcaJev3i/OlKlXyarG/ZLK/Q8Wpz/iw4HEvfvr2YVcUR1dA4OSnvVj6lBdnP+9DSBGHfd7960KY/5gX3pDAO3sjMPZ/5WjNjJabdLusLCSkTIJd2LW10WYIDZpL8MEgArt3n9jnxXIi4YhyhjIrlCZb+pUUdwXckdWNz4YUCmhSeiOEQHugxFNceLFNi/0dKhR0d4379C5lSvumAVnJs1lSWn7+HfK+drolnpM7CcBT5cvKB2yiJUttnGCzvjgRwJiyUUut+YXTvuzBRSRRpHRx2cqjf9/RYC3UrE90KjGADL9YTvmzPg5pUkMdtsiOb+fnB9oFdCs1SIRfrgjgt8ea8N730lHrVrGmMvKNbZ7eHMaNc8xYfkk6CtIJb+2JHPZ5mxoVXDLZiPX1CtISUwraZ8ONXfrVFMtImRPdJVg+qN6LtmyZ2iqEo0/tBoUQONo7ornYmJPRnxh8Yb+ysv6ZgEIeTdoeCiFEZ3isr6jwvIQk10FXTdPcdbfaSvwN/VrlMh5CCLG6KFJ5/Q3G7LrSXi0aNgLAHxMUFhtkBtWLGku8xXb7CADnmcyOpvJp3z3zcLPRjem52VuP/pXzo+GnVKoCyXO9foDIIPmG1VR4zAehWi3257MZs8/Jym8PqL1ZsSO57WpTMb0wWruZl0boCnzzz+Tqo01YOipaMtriE8hLp8M+TwggrALv7I3g5DHJ1cQm1xRwQOhTsyKMUkr871E4EDzeuV6z8hCXS8GGT33o6opvAL+jPYJIRLsfVVWVs9rnLR/W1+fndaTVzrCM7Vd5RDASUpfXPOcNU6cmybAqhNqlTPYX5p+ekORXqV9Xv3TDXfkOxZfoxWPgheq+42Q0/eNSS5likvqSA11Vvqx8juaBsUGHE2wWtynDj7YETI7fCVBg9ryfLjKbHUe8jCdJsuwfdWrZ8pm/bm41ZXcNZJzJQAZJ171LRceuDdVosb+2DHPhtx25deog6Vt/3kQjblkTxP92hvHWXgXHjTxyYvxRTQQdAYE5wwyHfd4Jowx4bVcYwxwSznjWh9X7vzkarhejBENRpE6XTiIiyUbzj6TUtanJJClxJ1Yd7RH86EeHP3dta4vgN79uxI6dQfz0p/Xo7FTw3/+6cOON9bjxxnr86Ie1+PO9LXjllS5cf30d/H4Vn27ww2DQ5mfl9ZKruuqEPp8sSJ2RljPT5vY5OQeAiBoRy2v+4wlQsyarNCqqGvGK2aGC3KWaJ9eqqirWHf9pXrprWZFhABaP2WaL1F5zjWz6fJqxPyd0EoCHuasI60lyDfewpKbKxjN91oJx+cOOycsrmDIqnucY7cX5m2b/Npyx99WqmfWr+zzhJxXJIOnqDzHMoASrVy0x93vxjP25acN/EM6qejTYkfI/x5uPNeP96gj+78MQLp1ihM10+ASn3S9w7ZsBvPjttCM+7/yjjCjLIOztEDh1jAEvbg9j8YjkeWkbq+7z1qNE0yWp42Lse2u4gbRUXt6rROWhh9oRCh4+GausDOGqq7MxcaIFHreK3buDOOMMB844I/rjv+++Vpx4oh3/+68LS4+3Y+fOIMxmbZLr2GqNfsDSp9912Bv0fs90fEa/YhAqVlS/4vKits/13weLKGo4KC9ScjNnWrTY38HCkYCv7PN/KOPce/K03vc3jiVE6F8z1MY3T7RotYhROYCfArhTo/2xQSglXoCZ/srL5o4BcLLB4lgzb/ol+b1ZqECSjUbX2PNK35n6s/pOo8OTuCiTjwSiH34iDT/xnWCVFvtbV2QvvVm2V2qxL71NLZBR3aXixmMOP48rpAh8+z8+/PE4C0ozpG6ft6tNxahMgtlAUJNskH+c2K9LP2phTqLZnkcghby++fbP4x5N3LjRD4uFkJl1+AHvGTPSMHGiBV984ceOHUFMnPhVXtjaEkFHh4KxY80QAogoAhs+9WPWLG0GZvfsKawKhUbm9+W5kVA4crY6R7FIpn6Niq6qfsPVJfZqklyHImowbDpRzU5Ach30tbVN++Q2eZx7T8InDDbKSvNPv0uBN0/s/yDHIX5Xvqx8pMb7ZIMIJ9isR+Vlc60AfgCgc+FRZ89NM9v7VNdnyBhRtH52heHz3NmalE2kCglE398glZ76pjZJ9qvDM8oehDXlf4b/90EQN84xIc1I2Nai4OZVX+8m8uhnYWxoUHD7e0EsesKL57eEv/E8AHAFBQpsEibmynh4QwjHd1NuoocxpEkpfu+ZDAmvZ+2v0a71LQZJxHUiEA4LPPVUB674QXed1KKTBNes9sJgAA6usH31VRfOOD06uDxjphUff+xDTq6M3/62CZs2+vv+TQDo7JTbGhsW9ymBE6qKY3xjWguMWf26yvFezUpXm7pVkyslwYgagPVMynSUm7XY39f23bazftH6P2TlhTs03/fBVCHE2yVK5U9uNOY2DjMk4gqSFcCDCdgvGyRIDJKaTpY45WVzLwBwQkFGifuMWZdfLUlyvzMYpXVb7THbH8u2Kf5BtXJbT545Sql85XRzWb93pArltsqmljMpNKh6Bw9Gn3my688x3Nfvlfh6yz/e1EyluQm//N4f17t+3TzLvjOuGJ96sgMlpUYsXGjDjTfW4957u/+RPv54O8rKTFi82AZVFbj+unrcd/9Xa7Zs3x5AfX0EHR0RNNRHcO11OX36HiIRKOs+WdqlKAXdZ/5HUNhuqzs1bXa/FpP5pP5Dd2XwPU1Gg/0h1We0n2+0pQ3XtMZYCAG5amXDosqXE97f2g3Vde+pFNg62TgQf/+XbL50878G4DgsxSRsBJuIRhPR74hoQPpZ9hYRzSSim4gooWfRqa68bO44ACcDqFsw6YyTtUiuAUDOmTjswzm3qjsyJw+pJcEv2iKXnfdKsLLfO5JI/m1JXubHwtDW/6hYIg03ujVpk9ZrZkNyDeUfwuDvdMWbXAPAZ5/58eqr0QmLe/eEcM+fWr6xzXPPduKdd6JzSj0eFTZb9C1u8+YAJkz4+kt9bW0YRUUGGI39KyvasX1kbV+Ta7lTaepvcr2paaN3f+BdTZJrb0j1WpyXmLROrhUlEsra8lj7QCTXXzgiNT/+sWwZoOQaAO4tX1aePUDHYikkIQk2ERUD+AOATwDcR0QJ6ZvZV0RUDuBaANsA/I2Ikv5Sqh4OKg3pmDpiwehse8EYLfdvMKal10/5UfHK8ZdX+yWTLnWqevj2drnsohcClf3djzBI5iuL8827VMmlQVgsQbJNIYcsQgPfYtFq0mzlvkSY6P2oV73y//yXItx7b/Rj1GgTzjvPicce+/ouTj3NjhXLPbjhJ/VQVWDmzOgFsk/X+1E++auLZV6viqxMGaWlJrzxuhvTp/ftQlpzs7mhvb1vqzVGPEH3RaZF/UrMtrdu9+30vpPWmzkxR+IOCE965vctVku+pidmoZCna+ynd0emtX3Wp5OQuI8jRPChWWrNbddYhvvt8kD+7ecC+L8BPB5LEZqUiBBRFoBqADlCiMMuy0ZETwD4pxDifSK6GUCtEOKJPhzrCQAVQohKLZ8be2wKgAMt5e4XQrwQe2yNEGJRb4+X6g6UhpgMlvqLjr3xGospLSNRx4oEXa7RWx/zjXTtHjIlD6+NUCqfvKD/5SIWX6Tj9YYGS54khlS5TSpZ4r6lc59xTMZAHtO/KDdM5v5NmkukX7tvaJ9kq05o0pVIoRCC6z45PSxERq8HkCKhcPjc0JxAriGjzyPP+zr2B9a3v2CEpPZ7gKgrAE9mzg/STEa7poNuQXd90zGb/pKdoXgTejWlzqg03fEdOa2l0KDnKotLNl+6ebWOx2dJRqt/pqUAzACO1Wh/erlWCLEo9vGC3sHoqbxsbgmAkwDULTzqrPmJTK4BwGB2OPZPu75gzeiLKkMkJ08j4wQ6bb9cdvnT/R/JDqQZMs/JzXd7BIbEzy0VjVH2Dehy90KoajIn12ZvS0on1wCwZXN5c1+Sa1VVxXz/uPb+JNe1rvrg+o6XZC2S6w6/5M7OvSpd6+Q60rChfumGP+YnMrlWhVDfGBGpvPEGY57OyTUAPFi+TPtJoSx1afUPdRKAB2Kf40ZETxBRWezrCiJaFLvvd0T0HhF9SERWIhoR+3oFgImx7cuI6GkiepyIHo/dl09Eb8a2/VXsvm88tz+IKJuIXovF9xciMhDRR0Q0i4jWEdEcIvr7EWI5XMx5RLSaiN4noof6G58WysvmSgAuAeArzCx1jMibMG8gjktEUIfNK1s9q8Jdmza8dSCOqbcTqw1lP3oy0O/uIl0OU965ztymMM9aTkrjcJi14BNJKEldcjXF/15KlzXVVDtqvN6pw/vy3JLOjLqjzCP61M4PAJq9reGPWp4XoEi/T6DafUZ3Xv7VNoPBqllLR1WoqmXni80n7HysyIDEVUa5oHb9/ixqe+ICS5mQpWRoSTkWwG/0DoIlD60S7GMA3AbguB62u4+I1gC4vIftbEKIBQA2AZgG4BcA7kY0gT/4LPV0AA8JIb4Xu/0rAM8LIeYCOIuIsrt57hHjI6LfdbPNrwA8G4vPCeB4ACFEy0uqAUwG8NkRYjlczAsAbBZCzAewgoiSoXXiLERfLJrnTzxds4mN8TJaszJ3Hv2LrPfLzqqMgAbN8uBHclydofTax4NVQu3ft1qfbS2+JD27WqOwmIbGUN2AJgBCqMGBPF5vnZG2Iiknv8fD5yNPZeUJfZpAZ+oQjSelHd3nlRo7A12Rd5uejahSqN+9qdt8VndB4dV2WT7CKk99EIkEfcM23ueZ27AqoRMMP8uIVF9znSF950RDbiKP0we/LF9WPl7vIFhy6HcyR0STAeQAeAFAGRF1d1Z/bayW+dHDPHZw/eiy2OdmACYAIwB8IYSIIJp0H/COEOLjg26PA3BVLIlPB1DUzXOPGJ8Q4tZutpmI6ORNxD5PALAdwCkAVgM4A8CGI8RyuJjfBCAT0XIAk4UQuiaU5WVzbQAuBtA0dcSCcVpPbIwXkSSFypaWrZz527YmS36HHjEMpAWNcumNj4WqofZvmZSt+bbSnxgdlRqFxTQywtA6oBMOBdTwQB6vN9LddS0jrE2aLIYy0KKrNc7xANZelwJE3EHXBeZFfU4IPSGvsqr+maBCvn7PtWjzO9zFxVfZJUm7+f1Bf0fb5HW3yeNduxK2amlQiMADx6i1d15lKQmmS8nYJccEnvDIYrQYLT0RwB2xxPlvsdvxCgGwx7p4LD3o/kPrFasATIxtV37Q/YeuCrgTwE2xWO4E0N7Nc/tqK4A5sa/nxG5vBDAe0a4kiwFsOUIsh4v5GABPCSGWAlhCRHEtQZ5ApwOwmg2W0NSRC3pV8pMIRlt+7uZZv7Z/MuyEKnWQVz8c02Io+fk/QzWk9C/JXjkso+z/KJ1HspNIsckzoJ2UBKlJW48/M7h2QOvRtbR3b351MDi61xOxw8Fw6Fs0TzZJfVv8JxAJqitqn/WFydXvlo+t/lxPcdEVmtYrB9v3NCxcd2tmQag9YTXINSal8SeXk7J2kanPVwAGyGnly8oX6x0E059WCfaq2Ner0Ls67OcA/BXAPwDs6Wa7/wNwM4DliCblR3IngJ8R0QexOJp68dx4/RHABUT0PoBOIcQ7iJaE7AewC8AOIUT4CLEczl4AdxPRR4iO2Guy2l9flJfNLUX091l/7FFnzbcYEzuxMV6SZDB4R59Zunz6TY3tpsyUrt3sydFthpJfPhKqpUj/6kWeLMka9oywDKke48kswxCxmVXfwI0qS0IZsGP1hlDF6ekrku2yfly6uuT2hvolvU7uVEUViwMTu7INzj4lx2ElLN6pft4TpLZ+JcVCCLQFhnmHFV2i2cmeEAKoWt1wwud/LkwToYSUNypCKK+MUSp/eoOxoC3foE9P+d77U/my8mSoC2c64pUcGYAvJzb+CkBRYWZp5PSjv6/Jio1aU5RQKHv3S43TG9/r07LEqWKzU6m9/QfGItUo9flNixQR/ktVY8cSCif1an5Dxcmu37RtN00akAUpwpKnRlk6rk+T8BLJ2bWv8e+On6dcK05FgbLuk+O7IpHCXnc+KevIrJ0YLh5W5Oj9vEZFVfF21X+63KjsV0mNEEJ0hMf4ivLP0CxBVdRIOHvbv1zTW9cn7G+6k5SOu86W1b3jDKm4kMt3N1+6+Sm9g2D6SYYJdSw5HJjY2KLHxMZ4ybLJ1Dn+gpJ3Jt9Q5zLYfHrHkyjlXfKw3z0UbpDDap9HIoVMxhuG5du/UOVODUNjfTRW3ecfqGOJRLZv6IdjIquTursJAHS0R/CT6+u/dt+O7WW1B5JrRVHwzDPP4NFHH8XGjRsBAA0NDXjyySfx6KOP4sMPPwQArFy5Ek8/9lTwOMu0YR9Wb+x1HEIIrKz5b7+Ta1UItUsp92uZXIdCXvfoT/8USmRyvS47UvXj6432FE2uAeD28mXl/Z6MylIXJ9jswMTGSwA0HVUyZ5ReExt7w5A1uviT2bfQluwZtXrHkigT3XJxxT/CTYZg3+tpVZNkvawoX6pVadCejKSKsQPZqs8oJd+lSVVRT7WtTeryELdbwV13tyAQ+Or8pKXF1NjWNu/L1RrXrVuHoqIiXH755di1axeCwSDefPNNnHnmmfj+97+P7du3o6OjA672rtDxRbNNW5p2obgPo9dra95xdag7+5VcK6oa8YhZwYLcE9L6s5+DBd0NzbPX3Wod4atJSLlGQKi+vxyr1v3ph5bSkDUpJzLGaziAG/QOgumHE2wGRCc2WgDyTR254Hi9g4mXbLRYm8u/P2zFpCtrfLLlsCuIprpxXrno1gfDLcZA37tChK0Gx3l5Bb4OVZM5CKyPxkgNA/Z6KwxJ0Rf4a3JcuxqyTN6kXm1Ukgg335yPtPToryoUQmjXzhPSDu6eWllZiUmTJgEAhg8fjvr6evj9fjidThAR0tLS4HV5QiMoXxJC0LraLzBn+NRexfFh3buuJmVTv7pxRBQ1HJAWRvKyF2j2Mw83bao/bsMduZkRT0IS3/1mpf7aH8r4cJ6pOBH718FN5cvKk/qkkiUOJ9hD3METG48eveQom8WZcvWRUm758Pdn3xrZlTGhvuetU89on1x4+z/C7Wa/2ucE2Ws35pyTld8WUPVtAzmUjTC0DdzlYrOcdAn2AmVl0v/tpadLsNm+elvcumVSk6pmfi3RDYfDsNuj8w3NZjO8Xi+GDx+OdevWYfPmzejo6MB3nMe7puSPN9R1NYFAOPeZa7G7tTKuGDY0rvfUhD7qV3IdVtRQ2Hiimp15tCZ/c0Koqnn3q00nbn+kyARV878tRYjIf8YrVb/8ibGoK0fWbLQ9CTgAVOgdBNMHJ9hDWGxi48UAvLJkFJNKZi/RO6a+MpjSbbVTf1y0atxlVUEyJm0P4L4qC8j5t/8j3Gnx9n0BkdZMc+EFjty6wd7uMFkVmrwD1qpPmOTkem1XwuGTHB+k1Ml7ba2txuOZ/o2JoiaTCZFItNonFApBCIHTTjsNOTk5WLduHc6cvLRjjGVYzg+O/jbOOeoEWI0WnDz2WKzc+1GPx9zSvNm327eyX6UXwYgaEJYzkOnUZtnuSCTkL9z0d/e8unf6vPpkd9pJaf/Vt8n1n7PNpej7nO5k9sPyZeXj9A6CDbxB+dfM4jYbsYmNx4w/aYbFlJayq6t9qfDo0jWzK3yVtpFHaouYskqCct4dD4ZdVo/S53KYvblpw39kyazUMCwWJ5tBTbMrnQNTymTuW7/lRCns2tpoM4T6vbT3QFEiUPfvO+Gwl/YLCwtRXR1tM9/U1ISMjAxIkoTs7GwgpIZ+N+NHX76OugIepJusMMlGCHR/Yru7fY9/i+dNCxH1eYTYH1b9ctq3ZYdtrCYLGwUDne3l62+XJnZt13xhICEEPsyNVF37E6OzcrSh191ZUogB0dWk2RDDCfYQVV42Nw3AdwA0WYxpxrFFU4/VOyatGC0Zzr0zbsh7d+S3K8OQkrMfcB8NC8m5dz4Y8aS7lD53pPi4yFH2O9muW7/1oWy0ss89IAcyG5MqmV2C5SnzXiOEgMdjiwDplv3792PdunVfe3zKlClYs2YN3nzzTbS0tKC4OFouvOKtd0L3HPdL44H8eF97DSbmjcbUwgl4YsOL3dZhr6/dGPys82Ujkejzz8kbUn0Wx8VGW3qJJr/7YMe+hoXrbs0oDLZqvniMX6jee5eI+r9cYSkNWzRcTjJ5nVG+rHyh3kGwgZUyL3pMc4sBpAHwzZtw6hyTwTygK80lGpFEkZKFZatm/b6zPq24Te94tFQYlnPufDjis3Uqfe4M8vLwjJKHyTpoO7Akq7HKvgEZwRYWY9J0X6BwIHi8c33KlIfs25tbddll15gAYMSIEZg1a9bXHjcYDDAajSgpKcEll1wCSZIQ9ocCz596jzK3ZBqFlQgue+GXuPH1O/B54w6UZBThb6f/Fne/+wjOeuoqPLTuOQDAXe8+gkv/8ws0uBpD/961TAKpff6deYLCk575fbPVUqDN773m3foTNt1TmKYGNc8R9lgjdddeKUufzDEVab3vJMeLzwwxnGAPQeVlc50AzgTQaLNkWEbkT5ynd0yJYkzLyd4285cZH5acXqX0dI02heSH5ey7HlGCjnalb8tOE9F9JTmF/xWmRo1DY90YS9UDc0XFatKkREALpa5NTSZJSYlRSpdL6qivP/6IHSz8fj9eeeUVqKqKSZMmwWKxQIko6onhqV6HId0KAI9veBGTC8bhlUv+gZV7P4Qn6MPvVvwV95xyE16++O94c+daVHfWo9XbjtKMIvXZXQ+pGemmPo86uwLwOLJ/mGYxZfX7Z6yokbBj61OtS/Y+X6T1NNmIEOFnjlKqfv0TS7ErS07qbjIJMhPAhXoHwQYOJ9hD00kAZAChueNPnmuQjZpfAkwmkiTLgZEnla6Y+ZuWZnNOp97xaCU3ImXe9U8lnNmqePq0A4nkm0vyMtephkE1wp/MRkuNA5NoWpLnf3qpvDxpkv3uKArUrVsWKsCRR/8lScJ5550Hs/mrH+8kd1HDSFPhl4uhfFSzEaeNj84Xn1F0FL5o3IFOvwtFjnwQETKtTnhCPgQjIbHfvUXZ19ZgGZXbtxLkTr/kzsy9Ks1ktPf7vTwc9rlHbrg3OLPl45z+7utQrZLS+suLyPvK6ebSnrce1H5bvqyc864hgn/RQ0x52dxcACcAaHBYs6yleeNm6x3TQDHai/K+mPXb9PVFS6oGSyeNbEXKuPNRRcluUlx9eb4wSOYfDcs371GlgakNHuJKje0JH7kTqhIhQ3JMcpSDXu8Cx6aEdJ/Q2s6dJdWRyLBuk0uz2QyL5avOd44OQ91861FfG/H2hwMosEd3Yzeno8XbgZnDyvHEhhfx8rblqOlqQFlGkaoa2kLtfrcRAP6++iM0uXr3L9jhM7pz86+2GQ3Wfr+PBz1NLUd/cqtllLdK01JBIQTWFkaqrrvBmFVTZsjQct8pajyAc/UOgg0MTrCHnjMAKAAicyecMk+WDCkxuqQVSTYY3WPPLV0+7RcNHUbnoEgqM1XJeecTCnIbIl19eX7ELNsuLCiINKs0KBfrSSYFJr890ccQQulzK0etjXava5UJSV932tpqamptWdCr0VXhCredZ1nwjTriNKMVgXD0V+AN+aFCxZ0n/gyjskuxbMNL+MHR3xbL6573LhhfaJ5RVgyTQUZ5cQG21zfHfew2n9WdX3i1XZZN/f7Zhps31x/36e05WRG3phNjfVA9d56Ixgcus5RGTIOz/14f/UbvANjA4D/6IaS8bO5wAPMBNGak56QPzxkzq6fnDFbGjLLCT2f/3rQp75gavWPRglOVHHc+qcr5dZHOvjw/kG7IPDcnv8srxGGX867pSvo1QlKCRRbm7Ehzgpet7/uCRFo72fRO0tfahsMI79xxvJUo/tUvVUVVL5QX2qTDPGdywTisr90MANjesgfDHQWQJRmjsoZDAEizdboCaLYDQCAUhtlggCxLcU8QafM73MXFV9mlfjbfEEIVxj3/azxx24NFJiiangTtSIvU/vgq2bBxhjFlJrcOoCnly8pP1zsIlnicYA8R5WVzCcA5AIIA1LnjT5kvS3JStfIaaLLBbG6fePHw5eXX1nrktAQnPYlnVyXbH59SjdlbA5377th3xO1ERKDqz1XYe9tedLzbAQDwV/qx8aG6/KLHQ+rdHwYFAPxmZQCnPuODEAKrKw+bd7M+GKPsTeiVEwE1KRZaMvg7XUfbd+XpHUdPtm6d0KCq2XGvnKhEIkqmmq7aZKv5g6oNeGLDi197/LyjTsK97z+G36/4K3a1VmFa0UQAwN3v/hNLxo33+KjWCQAtbg8KMxwYnpWBD3ZXYmQ3ddidvmhXzjZ/jqe46Ip+XwWJKKFA/ucPdS2ofUvTBDgsROjJqUr17663DPNkyAO3cmnq4VHsIYAT7KGjDMA0AE1ZtnxbcfaomTrHkzTk7PHDPpxzK7ZlTanTO5b+UiIiPfBAvV3uUo7YraJtRRssZRaMunkU3J+7ofgVNPyrAcWXF2P4raNNd20Tof0dKpq8ApPzJGxsVFHi5JcKrYwT+xJawiEkkRS93yd6P2rXO4ae1Nen17pdM0vi3V4IgamekqbXL3nYAADzSmfgshlfL6k1G0ywmqyYWVyOZy+4F3JspPn0yVNdBbkBm6KqePS99Xhu3eeobe9Cti0NF82Zhrc278R9Kz/Amp3Rk+M3N+/AP99bByEEdje1oi1Q7Cku+m6/a6SDga6Oo9b9EUd1bsno774O1iQrLT+/mPyvnWyO++c5hM0uX1a+VO8gWGLxu+YQEBu9PhuAH4CYM+7EebIkJ02f3GRgMFrTGif/sHjlhB/U+CVz0tSw9pYM4G9FxfJol0RleyKth9vGu8ML56zowmxpo9Pgr/RD8SowZZtARAjnmM2/CaXVCwFEVOC9qggWlibFnLlBYQxqElpvkywJ9mnmd+IeFdZDwA/fvr0nZve85VeyOi11sy0Tjti/uTPgxg2v3wFFjeD0CUvgiC0v8F7tKnerssUBAO/vrsSwTCeuPW4etjU0IRCO4JXPtuL8WVPw4yVzsbm2AW0eH9yBEIqcDtR2dAnZNCpQXHh+/5PrzsrGBetudRQFmzUbXRZCiJXDIpXX32jMqS8xaL7i4yCm6yg2Ef2AiG6Lff1vItpORCfHbl9HRL8gIhsRvUxEHxDRMiLivKEXOMEeGkYCmAKgOd3sMBdnjZyud0DJivKnDn9v9i2hPc6xKdkf2ibLsMsyDIB063+EbdTOSMuh26hBFcbMaHWQZJUQ6YogbUwa2la0ofOjToTaQvhidm5RY7alo6pLBRFw7BM+bG9Jirwt5Y2WmxJbmiVD94J5s7elfZKtOqmXv968eWanEOnx14h3hVvPtsw9Yo9sAJBJwt/PrIDNlP7lfevqP3bXh9d/Wdaxt6UNU4YXAgDKsjNR29EJXyiEjDQriAhpJhOCkQgAgYiqiq1NpvAxk67pd0Ks1n5Qf8LGPxXY1IBmZ8seqO7bT0HzQ5dYylRD/DXsDACwsHxZ+Xwdj/8EgJOJaCKAHACnALieiGQA3wXwDwDXAtgthJgHwAzg2zrFmpI4wR7kYqPX5wLwAhCzxh4/Q5aHVueQ3jKY7faqqdcVrBlzcVWIDClbfGwBWSpeEo6x2yNfa08gWSSooWgOpgZUQABFlxXBXGhG28o25J6SCyJC9XdKnMWT0trTjIRzxhvw+u6U/VEkleHGroRO/BMG0j3BnuJ/r09tIwfKvn1ZVYHAkUeiDxX2BX0XGRY5JOr+LdNuTv9y1BoAPm/a5N0XWPO1mulQRIHTGs2XLUYj3IEQynKy8P7uSnxWVYcOnx+FTjty7Xa1xWtRM+wTTX/570/Q2FHVq+/xAFVVIrZtT7ccv+eZIpm0a0+61Rap+fGPZfMXU40p0YYxSd2s14GFEGEADwN4HcBtQoj9AFoA3ALgNSGEG8BsAO/GnvI+gKP1iDVVcYI9+I0BMAlAsywZpLK8CUOm73V/EBHU4mNKV8+qcFenl8bfPyvJmEHm370iMiZsDn85Im8ts8K3OzqnM1ATgCnHBJIIpoLoeZfzmNhVXomkFxx2537J4DIbCOrgaB2uuzxTwCFE4nJgYdB/IPGMtBWZesdwJG631FlXu7TbkeiDRcIR5QxlVihNtvRqYGJH6w7/du/bVqKv/z7MBgPCsSkSwUgEQgicN6MceQ4bPthTicXjR0JRRfjo8ZeEjj3qItlkMGPKiAXYUv1Jbw4PAAiH/Z6yz/4cmNX8YW6vn3ykfQoRfHSmUn3LtZbhPrvMgzX9c2L5snI950OtBJAH4OPY7TsB3ADgb7HbdkQH5xD7nNRlX8mGE+xB7KDRaw8AzBi1aJLZaOV/kF4wWjMzd8/8We57I86tjED/kcHe+tjrxX86Ok03v4bs8s/DDQCQMS8DzS83o+HpBgTrg7COig6oNr/UjIJvFeBAQhBsDMJSZpVfnFVgvPuTkMp12NowSjAUR2oTN8Jr0nqR695Jd9e1jLA2JWUtrqpC3bJlQRgwxVVLKoTA0d4RzcXGnIzeHMcf9qufu/5nIvrme2xxphP7W6Pde+o7XchKt0KSCHn2aFlJeXFhKGw8Qc3JnG3xh7wwG9NgkI3o7UlZ0NvSMmPdrebRnv2aLR7TYFCabryMQm8v5YmMGtJtFBvAzwD8F8CVACCE2AqgQQhxYIKyG4CNiM4EMB1An9ZaGKo4wR7cxgIYh+hlH4wtmnaMvuGkJiKJwqVLylYe/bv2BmtB0ndGAIBlJdE1M+akp+M7mZkwgow3vYHcqRtC9aYcE8p+Xoa0MWko+3kZDrTyHfaDYUgf91XtqLnADMtwC4zFFmv2bWPdxUXGlG9lmCzGqPu8PW/VN0LnBHtmcG3Cvrf+2rmzuDoSLol7NDevI612hmVsYW+OUedqCLkjrQRS5d1NrXh/d+XXHp9ZVox3tu7CKxu3osnlQUlWdLD/zc07sXTiuJCwnIFM52RzU2cNirNHojRvPNZueQVjCqfEHUOoZWv9kvW35eSEXZrU+6tCqG+VRqpuuMGY11RkSPhiSUPMGeXLyssH+qBEVILo1e3vA7iUiA5XurYOwCIAnQCuAvDhQMU3GJAYJEtGs28qL5t7A6IlIs0Ths0sXXjUWZfpHFLKU1VFse1/o2ZW9VulUgqsUHeoCIRy73Gi8dNZprgvkR9gc4db32pucDgl8GXhfrqj84Sqhy2X9WrlwHgFSlGH8cW9/v1qQqjiT4ErfIWWrvSeNx5Y7W3G5i1bvpVLFN8JiNQZafm+5cRelVa0eFvDq5v+pQgKdjspscsfwP7WdozLz4XVFM2BA2HVb0g/z2BLL+t1UtzhaUamLQ9CCGHY/1bTwurXNOtv7Ybadc9pFNpWbtSszIR9w3ObL9184UAekIgeBLBcCPEiEf0GgFcI8Rci2iOEGB3bxgHgX4hOghwPYK4QYsdAxpnKeAR7kCovm1sMYDJio9dHlczm0WsNSJIs+0adXrZ8xq+a28xZST2R63AMIPmnK6nwmA9Dtb19rsduzDknK681lMgC4iFiLCVuAVFhNurWSsvpqmxKxuQ6EkF4+47jzfEm12Fv0HuRaXFGb47RGeiKrG16LtxTcu0OBPGvjz7D1OFFXybXvpDqM9m/Y7SllxkVJYJ/vPlr3PPKtfhox5sAgJqWXbjvtZ/jnleuxcrP/w0A+O+6R/GPN38NIQR21W+CooSDuV883Kllcr3JGam55lo5jZPrhPt2+bLysoE8oBDiSiHEi7GvbxdC/CX29eiDtnEJIc4QQswFMAvAzoGMMdVxgj14HQcgAkAUZY3IyrIXjNM7oMHE6BiWv3HW7ywbChdW6x1Lb8kg6bq1VDT/3VCvs7zmTEvRBbacXifn7OtGyi2Ja9VnNuiWYB8TWZ00y7QfbOvWsQ2qkhNXXXgkFI6crc5RLJIp7t+RJ+RTVtU/G1TIm9bddr5QGM+t+xyhyFctLz1B4U3LuMycZi00AMCarS+jJHccfnrWfdhS9TECIR/+88H9uHjRz3HjmX/Dpv3vodXVALe/A0VZI1HbuhvpxjTP+PV3qpM7vtBkcmlIiOCDs9WaO662DA/YhvaKvwNEAnCN3kF0RwixR3DJQ69wgj0IlZfNdQI4FkATAEwfteiYQ2eys/6TZKOpa9y3S96ZcmN9l8GetHWnhyODpB9/QMMWr+p9kr07L73kR6aMygSENWQMM7oSN8prNeqTEKmKeqptbdKNdDY0WOtcXbPjmpQnVBVzfGNaC4xZcU8GD0SC6oq6Z31h6nnkXiLg4jnTcOAigysAjz37B1aLOefLGcS76z/H9FELAQAjCiahumUnvEE3Mm15ICKkmx0IhH2AEFBVBVv2rnZdVvOydXigUZP2j7VGpfGG71F41RLTcC32x+J2efmy8m5P0Fhq4QR7cJqP6O82YrdmWgszy+KfHcN6zZA5qmjdnAr5i5yjE3fdvxc6FQUfer3oiHyzb3VrJIJwbBBCAtGPPqFhS1cEez0K/2Gxo+xW2da3xrwM2aaQXRLhxJTaWEzmhOy3BzmuXQ1ZJm9Ce3z3ViAA/549J8Y9qlvU6aibahkVd4lFWImI5TX/9gTRGtfEP4vR+GVZSKdfcmfmXpVmNjq+9j4cCgeQkZYT2z4NLn8HRhZMwtotr2D97pVo8zShOGskCrNGoLlps/+o+rWOqyt3ynuD/VuAVhVC/d9IpeqnNxjzWwoNmnUeYXHLBHCx3kEw7XCCPciUl801I7oiUzMAzBpz/ExZ4kt8iSYbLJbWoy4bvnzS1TVeyerv7/7cioIf1tbg8ppqXFtXi9Bhrsw919GBS6urcGl1Fc6u3I/fNzaiJRLBVbU1+CLgx2U1NWiPRPB0Rwcurq6CT1XxodcL40FXMyQQXbFeKjnlrWCvk+X/DM8s+SesXC7SBzJBKo1UaV7DL4QAzEZdEuwFysqkq83fsmVGO4Q9rlFBuVNpOjVtdtyTQxVVxfKal1w+1Pe69WlYgZKbf7XNaLB+4z3YbLQirEQrbYIRP4QQuHDBDcjPGI53t76CpVPOhxCqcppRabnS4LKmS4SlNjvWej29DeNLXaR2/u5san/qfHOpkHlFRh1dq3cATDucYA8+MwCkAQgYZJNcmjdult4BDSVy7qThH8y5Rd2ZMam+P/t5zeXCZZlZeHR4CXJkA94/zJvnBZmZWFZSimUlpZhhteLbGRnYHQziprx8XJmdg3np6dgWDGBHMIDTHQ5sCfhhOcx7J4Fw2Ua59IzXeplkE9FfS3IK3hCmpj5/o0PYWGWf9m0PhRIkSYeXdSUcPsnxgWaT67RQWZlZ5fdNjCthjniC7otMi7J7s/9VNa+53GJ/r/t9t/ksbrN5mCzLpsMmsiW5Y7C3cTMAoK5tL7LtBZAkGfkZ0YqNqWXzvSWf/dU3p+ndXLeiIl2SYCJCX6tjN2RGqn98rcG2a4Ihp297YBo6qnxZ+WK9g2Da4AR7ECkvmysBOANAOwDMHL2k3GSw8KW+AWYwpafXTb26aNW471UHJVOfJn1dmJmJuenRks4ORUG2fOR5a03hMNoUBZMsFsxNT8cUqxWf+nzYHPBjqsUKASAigA+8PixIP/Kfw8Wb5dJzXwlW9ipQmQw3Dc/LWK8aUqI/eDIZi/1hrfcphKLLJMPCrq2NNkMoaa6UeTxSV3XV0riWQo+EwuFzxVyYpfgWnwGAtTXvuNrV7b0euW7z2dyFhVfaEevwubNuI9ZueeVr28weeyJe/3QZXvjgfjR2VKMsbzwA4H/rH8NJk8/rmrH+NuNYz157ZSiEcWYzyi0WPN3ZgZlpvSvfDQrVf/88tfauKy0lwXRJt4mx7Bt4FHuQ4AR7cJkAoADR1ZcwpnDyHH3DGeIKZ5asmV3h328f3ecR3k1+P7pUBVOsRy5tfaazExdkZHx5WwiBN90uGIggEWFeWjrWejwoMBhwTV0tPvEdeT7m+dvlsgte7F2SLYyS+YfD8k17Vcndm+cNdWOpXxc5DktA1Txpj8cSLE+a9xJVFWLL5nlBInOPCb+qqmK+f1x7rjEj7sVTPqp7390Y2djr5LrVn+0pLv6hXZIk/OSMewEA44qnYeFRZ31tuyx7Pn586t0YWXAUrj31bkhSdP7jBeVn1V9R87IjN9xpAoAykwnjLBYMM5nw2oiR3b5GHKrKpDRcf4WsvnusaVhvvw+WcGeULyvn38sgkDQviqx/Ysuin4bYsujji6eXpFsc+fpGxYxmp3Pf9Ovz1o66oCoMWen5GV/pVBTc3tSE2wqOvJCcKgTW+byYnfZVAwMiwm/zCzDNasVajwcnOxy4JicHdlnCwnQblru7z4PP2SWXfff53pWLRMyy7cKC/HCLSoHePG8oG2Fo0b5WmgY+waZwIHi8c33SlIfs3l1UFQ6X5cWzbUlnRt1R5hFxv05+1vippzr0Qa9XMmwLFHmGFV0a99XEjPQcTB+1CFazDUIIIe1/p+GkLfcVWUW41/XRDeGv/iQUIZSXxipVP7/BWNieJyddv3IGAJAB/EDvIFj/cYI9eAxHdKWlNgAYP2zGdH3DYQcQSaQMX1C6atbvu2rTilvjeU5ICNxYX4cbcnNR3E3XtQ1+PyYfNHL1z7Y2vNrVBQBwKQrscvRfvCoUwnCjCSYixDMT7bR9cun3nglUxhPrAf50Y9a5OXldflX06kRiqCo2ejRPcASJb7aOSbBS18Ymk6TIPW+ZeB0dhpamxsVxteQzdYjGk9KOjnukcGvLVt8u34pe/c6EEKI9NNJXXHhBXMm1y9eOP796/Ze3FSUSytn8z45FVa8WAkBYCFxVW4OLqqrwYlcnAGBbIIDv11TjoqoqPN7eBgD4S0sLrqytgRAC63zRUv8OUjt+8y3qeu5ccyn0qNNnvXFF+bJyLttJcfxfNngcDyAMQKSbHeZc57CJegfEvs6Ylp21c+Yvsz4oPaNSEeh2StJLnZ3YFgjgobZWXFpdhQdaW/HXlpZvbPe+14uZ1q9qL7+VkYH/urpwSXUVVADz0tLhURTkGAwYbTbh312dOCYtvhzh5CpD2Y+e6l2S3eE055/rzGuI8IIEPcowRuxm1a9pQizkuM6fNHWCvDwpaq8jEUS2bTvOQCT3+L4WcQddF5gXxd2ze3f7nsAW9+tm6sWCAqoQaldkkr8o/6y4iqN9QTeeWn03gpHoRaBQ0NM17tO7IlPaN2Ud2Obpjg5MsljwTGkp1no88KrRq1y3FxTi6ZISLHd7UBsKoU2JYKzZjO3BIAqNBnycE6m69nqDY98YQ9YRA2DJpAjA6XoHwfqHz5AGgfKyuVkA5gGoB4BpI48t59Z8yYkkWQqOOLFsRe6UlmmbHzTmBVsyDrfdBZmZuCCz5/a9N+R+PUdwyjIeHf71ATybLH85YfLlshG9ive4WkOZ4YlA1f3fNZXG252iJsc67LJwVtW/Ah2lvTrYEEMEjIjsc+0wTdIs6RnoBFsOer3zHZ8nRXnI9m2j61Qlr8e/uXAwHPo2zZNNkiGuUffqrprgZ52vyCAR9yi9ogrFI2aGCvIWxj3zkEjC94+/GQ+9/TsEXHVN8z7/S7ZT8X3tPXq9z/fl//xUqxVbAgF0qQoKY1e5MmQJHlWFAKAI4EOfN+Q6K6P143lm/l9MPVcCeFnvIFjf8Qj24LAg9lkBgLK8CVwekuSMtoLcL2bfbFtXvLRKTfLB3oUNhtKfPB6qEmr8udvnhfbSXxgclYmLanAYq2rcqs8gDegf02j3ulaZoHvf5KZGS31n5zE9JpGqoorFgYld2QZnXJdxGj3NoY/b/gOQEveARURVw35pXjg/Z2GvFt2xmtJhNdugBDpDJ3x2Z/6hyTUA+ISKfEP0bpskoy2iYJrViqc7OvCaqwt14QjGmc0YYzJjuxL0v3wM4Zm1dUWBep4akYKWli8rH6l3EKzvOMFOcbGFZU5EbGGZsrzx+Tar88iz4ljSkCSDwTPmrNLl03/Z2GHK0HzRES3NazaU/uzRUDVUNe4E7s1hzrK/UlpSrG6ZrMahStsSEePA5ronm97RfeXGYBCB3btPjKsf9UhXdt14c0lcpSHt/o7we83PKoLCcU9GDStqKGQ4Xs3JnGOJ9zkHqKqqWHe+0JwTaDYZjnAhIk2SEIidkPtUFSoEKvILMMJkwjMdnbg8KwsqELHOd1bVfy/bGsw2mBwzHPB83vdFaJhuCMCP9A6C9R0n2KlvEgALgCAATCqZw6PXKcboLC34dPbvzRvz5/V6yfKBNLvVUPLLR8K1pMSZZBPhnyXZxf8WZu370Q0SY6R6bV+DTT3XH2vF4O90HW3fFVe3jkTasmVqqxCOHkekLR3UcLx1elyTGt1Bj7K64dmQSoG4TyBCETWgmk9HlnNqr7vDRCJB37BNf/Me07C625/nJLMFn/mjFz12BgMoNhohE2GEyQQAmJuR3nbT+eR+4UxzqeJTIFtkkIHAUyJS1iXly8o5T0tR/ItLfccD8AKAUYKcJjfmKmok6ZYsZt2TZZO5Y8JFJe+UX1/nktO1X+FPIzPa5eG/fihcR5E460Ukkm4ryc1Zqxri6p4y1JQZ2no90tkdYTIM2BD2RO9Hui8uVFXlrPZ5e+4ZrLhDXRdYjo2rHZ8/HFBX1D3ri5A77o4hgbDqp7RzJad9nCne5xwQ9LW3TfnkD/J41+6v9db+2OvF0x0dX9v2TKcT97e24o6mJuwNhTDZEs3//9ragsVjMhuvu8GUUTXKkBlsDMJaYoV1pBXtK9qRPo478qWoQgC8smOKIj6zTV3lZXNzAdwNoBqAmFJkmTBteNq3wwp8QTW/xWqfZ0u3lvVq+V+mPyXs9xXteLp9UtvGpF1sYKtdqbvtR8YCxSjFNfFLDim+Z2oawxMlpddLSw9m7ojsK4881bsl+LoRGCHVY2xhXCsY9tev3Te0T7JV69aVwusl12cbzrMAlm6T2nAgFLxQma9kyPYef84hJSzerHraHaCmuBeS8YVUn8VxkSnNWtTrpgHBtl0Ni7b8Pd8qwnEPdjVHwtjg82N+ejrssgy/UL33HwfX+tkmLg0cnB7bfOnmy/UOgvUej2CnttkAVCDa8q00yzQFAIwy0mzGplI58FJ2R/NfW9va3qgKR9w8yyVFyEZrWlP5FcNWTPxhtV+yBPWO53AmueXi3z8YbjIE1bhqiBWTnHZJUT7qBSXt6Lwe7AYlzaZ0afc7thgGpHuQ2duia3IdXa1xrr+n5FpRFHVpcLI7nuQ6oipiefV/epVce4KqNy3jMnNvk2shBKhyZcPJm/9a2JvkGgDyDEac7HDALsvYlRap+/GVssTJ9aB2bvmycu0XpWIJxwl2iiovmysDWAqgFQDsZiktI00ec+h2VqOSky7tKA27Hja2Nj1U29W1vl5VI3zZIgVIeVNK3ptzS2i3c3yD3rEczniPXHTLg+EWYyC+JDtkNTjPy833dqnQZTnvZDVa2avZBFdhMQ5I69Up/vd0nZS7Z09BVSg0sseSj3Gu/IbR5uKcnrZThcDK6lfdHtTEnVy7AsJjz/6BxWLO6dUiO4oaCWVtebxtceVLfU6KI0KEny5Xqm++3lLszpJ1n2jKEsoJ4FS9g2C9xwl26hoHwAHADwCTCi2TJKIj/j4lItlm8g4zq+8Vedv/5m1tebbS56/uONL2LDkYTDZ79dQfF64e+92qIBmSLjEd45ML//BguNXki2+JbrfdlHtOZl5LSAieJxAzVt2v3dUli6nXNcB9cUbaip6btCdIZ6fc1tiwpMfVGtM7pPpF1inF8exzTfWbXZ1id9zJdaef3Jm5V6aZjc5eJdehkNc19tP/i0xr29Dn0r0WSWn9xUXkffU0c1wrVrJB4SK9A2C9xwk2ACIyElE6EVmO8JFORDIRGYjoGy+osfsHdNEeVem6UKj+XCFUAwAMyzBOife5Rhk2m6GhTAq8kNnR/LeWtra3q8IRT1KWIjCAiCCKZpeumX2Lt8pW1qx3PIca6ZcLbn8o3G72KnEl2c1ZlqILbTm1iY4rVYxFtXYnGxZTwi8lp7vrWkZYm3SppY9EoGzbuoSIDN2+d6muUMe3LMfGNUL8fu1qV4u6Oe7vp8NncOfkX20zGtJ79f4ZcNc3z/nklrRSX22fau6FEGJ1UaTquhuMWbVlhoy+7IOlrFPLl5XHfQLIkgOv5Bg1A8DFAA5c6j4bwEoABy6DGgDcD2A6gOuIKALgwOXJptjj/wfgxYEIdlJxgR2QxgoYskGGczJtji6bOSuukZpDWY2RXGArwq4tka6Io8ZomWGw26YWSJKk++IR7OuMloyMPTN+Kqqq11bO3f9iiQEiaU6QSwNy/h8fjDT/5ofI8NvlHkdRd+Wll1xVp1T+I9RZNgDhJbXRcoMmv0chVJVMhoS/ps8MrvXChriXGdfSjh0jaxWloNsFZcL+UOA70rEWA8k9voatr//EXRdeF3fi0u4zu/MLf2SXpd79mCONn9WfsOPxoiP1t+6JF6rnryeRd9N0C6/IODRZAJwD4Amd42C9wF1EYoioDMB/AbQDKEG0MwcAZAC4XAix4ZDtrwAAIcQ/By7KqEnFBfMAXAGgCoB97qiy08cX5nyj/rqvQgrcIVHclm6fn2G1FGdotV+mnbC3pW3yloeo0N+g20Szw6k3Ka2/vsLg8Dl7TrIB4Pyq9qqbVc+QThr2+9NbFtMj/U5YVTXsD51clth6XKGKPwWu8BVauga871tzs7lhx/bzCruphIMSUdSlvvKOkabCHkswvmj63LvN+2Y6UXxjCW0+m7uw8Aq7JMV/PqQKVbXufrVlXv2KuFoEHs729Ejt3Zcac71OmSe6DW0rNl+6eaneQbD4Jc0IWBIgRJcafw3A32OfXwPgQfL9nJYA6Ip97R6Rk6HpaJJJht1mqCsj//MZ7c33Nbe1L6+ORHwhLY/B+seYnpu99ehfOT8afkqlKpA0Z8lFITnnzkciblt7JK6/l+dLMkseh3VIl4sUmHzaXPoVSsL/R52uyiY9kutQCMFdO0+wd5dcA8Akd1FDPMn1jtad/m3et6xxJ9f+LE9x8Q97lVxHIkF/8cb73X1NrsNChJ6YptT8/jrLME6uGYDF5cvKC/QOgsWPS0S+IgAUAzjtkPtHABBElANgNWIrJgLRS6REdGXsthnAxUKIzxMZ5KTignwAIxEdvcao3KxhZmPi6vHSjOE8YDOCXV+EOxVntcl6tMmWXl7QmzcalhiSJMv+UaeWLc+b2jRj80OWnFBbUvSYLgjL2Xc9qrT/6nuwuXIM3Y9kE9G9JTkFhVVNTSdRqM+jfKnMKgtzVqDF1y7n9qsftkB8E03745jIal1OtLdsLm8WImN4d9s4Ogz1861H9Vgqt7+zKvC5678movgGTtoChZ7iogtt8cYKAEF/Z/u0jfemF/Txf7JJVprvuEi2NAwzd/s9syFFBnA+gL/qHQiLDyfYX1EBfASgFsAe4MtRwWMARIQQrQDKD2xMRG8DMAkhBnqVpRmxWAEAI3Kyxg/EQWWJjDbJVYLISnjaV7pCYni7zT4/y2Ip5IkXOjPai/M3zf5tOGPvq1Uz61cnRblFbkTOuusxtfOmyyLoyushyZbJ8Mvhec68msaO6RTRrTuFnsZE9no+6W+CTSKxCbaqqKfa1g547XVNjb3G653abaIpXOG28yyLe5zUWO9uDK1vf0ECqT12/xBCiI7QSF9x4dm9S6479jYs3PxAfpoa7PUohCqEWFmiVj96gbFENfA8GPYNF4ET7JTBw5AxQohqAGsQ/QM+E8BZsY/tQohNB29LRJMRTXI3ENE5AxXjpOICCcBxANoO3JfrSB+QBPtgJhkOm6GmTPiecbQ339fU3rGqOqL4k66F3FAiyUaja+x5pe9M/Vl9p9Hh0TseAMhWpIy7nlD9mQ09l4uoRslyRVG+YZ8qJUXsA22s2NfvVn1CEooWsRxJjmtXQ5bJO6A9l30+8lTuPzGvu23C/pD/QnmhTaLuE9JWb1v4g5bnVEGRHucHqEKonZGJ/qKCs+MuhxFCANVr6k/YdG9hX5JrD1TXbaei+ZGLzaWcXLMjmFW+rHy03kGw+HCCDSDWgu95ADkAPgbwcwDfR3QRlwcO2TYfwHMAfgvgdgC/IaKZAxTqCACZAHwAUJzhyLEajbothU5ESDOG89OwqSTY+XfR2vxYtcuzuUmveBhgyBhRtH52heHz3Nk1escCAFmK5LzrSTWYU9tzkh22yPYLCvKDbQJDrmXkWNT0v1Wf3McWFXFaoKwc0N7lQghs2TzHA1iPWH+sRCLKqeHpAZt85G0AoCvgiqxpejasUtDS03EVVSgedXqwMO/kuK8oKGoknLH1ybYl+/5T1HPvkm/a7IjUXPNj2bJlinFIlkmxXuGe2CmCE2wAQggFwGUA/gjgYQBvAlgP4BUAhlgCLhHRtwC8D+BmIcSnQogOABcCeIyI7iCiEQkOdTaiEzEBAKPysgd89PpIZIlMNmNniSm8PL+r5c9drS0vVgaCTbqu9jZUyQazpW3Sd4cvP+qaWo9s9esdT4Yq2f/4tBrOqwr3mGT7043Z52Tld/jVxI7GJpvRclO/y/WETIlLgJVw+CTHBwM6wWrv3vzKYHD0EY8phMAUd0lTiSm/27Iib8inrKx/JqCQt8eEWVHViF+aF87LWRz3SH045HOP+vSe0IzWdb0e7AgJEfzn0WrNH66xDI+nvSVjiLbrYymAE2wAsRHotwH8C9EVEmcDGI3opII7ALyH6LLk3wJwshDipQPPFULsAjAXgBtAwkaTJxUXGAHMB9By4L4Chy1pEuyDmQ3CaTNUlQnvv+ztzfc3dnSsqYkowbiW02bakXMmDvtwzq3qjszJdXrH4lSl9DueFUrh/nCPpUTtGeaCbznzGtQh1EK0xNjZr/prABDGxFUVFHVtabQZQsaEHeAQXV1ye33dkm7rrrM6LHVzrBOKutsmGAmqy2uf84apq8c66rCihoLycUpO5pweR7m/3L+nsXnWulstI33Vve6sUm9Qmm68jELvHG/iiYysN6aULyvv07oXbGDxJEcAQohPARx7mIeWxT4OePsIz/cgOvqdSCMRbTYfAoCsdKs93WxK6n8yIqI0Y6gA+AzBzg3BTiWrzpw222q3Tey2ppJpx2BMS6+f8qP0usbPqufueqrAqoZ0GyVzCMl62/Nq4HfnhUTd6O6X9K7KsQ77XjiralmgIykmbSZaringEEEVPbWh65YxcXW7S7B8wAZjFAXKtq2LQWQ88kTErnDr2dbF3b7+RdSIeKfmP54gtfQ4ETsUUYOq5RTKsk+Mux1euOnz+uO2P1pogtKrn7sqhPrWCKXmyW+ZeCIj66tTADyidxCsezyCnTqm4qDykHH5uePi7eGaDGSJzDZjR6kx/FZeV8ufO1pbX64MBFsH5YQ2b8CF7bWfwuPv6nnjOJ/n8rVDUfp+EYAKppe8N/uWwD7HmMY+70QDdiFZ/vACULIz1GOd9WeF9tJfGhyVAxCW7kwSDEWRenf/dtKX6t+eUTgQOM756YCVh+zYUVobiRQecQGlsC/ou8iwyCF1t+CMqmJ59ctuH+p6TK4DYcUP6zmUYZ8Y18mnEKpq2v3fphO3P1zU2+TaBbWr4kxqe+JCC09kZP1xqt4BsJ5xgp0CYt1D5uKg7iGFGfakLA+Jh9kgMm3y/jLhXZbe1vxAfUfnezWKEhwUNbdd3jb8481fo6p5J/762k/h9nd+Yxtf0I2/v/Er/PnV6/Hsu38+4vPWbnkF9756PYJhP3bUboAs9++Ck8HscOyfdn3BmtEXVYZI1q1kxyYk0y0vQRqxPdRj54w3hjnL/kZp1T1tNxiMUff264RTmA0JeT0vdW1sNklKj23ttNDSYmpsa51fcqTHI+GIcoYyK5QmW7pNhlfXvN7lEvt6TK59IdVntF1kcNhGxpVcR5RQoGDTP1zz697u9WTEjRmR6h9fZ0jbMcmgyzLzbFA5rnxZOdfsJzkuEUkNwwHYAHQAgMVoMDmsljJdI9IAEVG6MVgEsR7+znWBgJJTa0mfk2ZLH5eyb0ANHZU4d+7VGJE/Eb6gGzWtuzFx+NFf22bdruU4eszxOHrMcXhi5R2oatkJf9DzjefVtu3BrDHHo6plJ4wGbRZyIyKow+aVrc6e0DFp88PKMF9NjiY77qV0SMbfv6LS7ZGgb3e5+cj1x0R4pCR7WFGl0nAeBXvsc5zKxon9oXexsO87MBsS8np+grx8QGqvQyGEdu08IY2O0G5PCIGZ3rLmYktOt38Ha2uWu9rUbT0u8OIJql5b5mVmizknrp9bMNDVMWXjn61FwZaMeLY/ICRE4J9zReuaRZYjnjgw1ks2AAsBLNc7EHZkPIKdGsoPvjE2P2eERDQgI0oDxSCRxWZsKzWEXs/tbPlLe2vrq5XBULtP77h6a/ywGRiRPxF76r9AVfMOjMif+I1t0i0ONHfWwBf0oMPTjCxb3uGfJwQUVcGOmk8xafgsTeM0WrMydx79i6z3y86qiiCB3Se6kQbJcPNrZJ6wKeDtdkOJpFtLcrPfVw2tAxSaLsZSP1eMtxg1T7DloNc73/H5gJSHbN06qUlVM4846pzXkVY70zKu2+T647oP3I2Rz3ocuXYFhMee/QNL3Ml1x/7GY9fd4iwKtsQ9ARIAaoxK408up8iaRaZhvXkeY3E4Re8AWPc4wU5yk4oLCMA8AO0H7ivOcIzRL6LEsxjULJu8t0z1PG5pa/pHXUfnB7WKGk6ZEhIhBDbsXQ1ZMuBwdaKjCsrR7KrD2i0vIT+jBGkm+2GfN37YTGyp+hgZtlw89PZvsatuo6ZxEklSqGxp6cqZv21rsuR3aLrzOFkhyb96U7JO3hDstv5YGCTTj4fnp21X5UHb+nGk3NyvBFlYjJqPNI92r2uVCQmvFa6ttdV63NOP2E1D6oy0nJk2t9skdWPjBm9V6H17T8fq9JM7M/fKNLPRGdcghah5r/6ETfcUpPdi8RhVCPXVUUrVz24w5rfmG3q1EiRjceI67CTHCXbyywOQD+DLUb4sW9qgTrAPICIp3eQvtopPhvk77gu1Nj9V5fHtSfpRTCLC+Quux8iCSdjy/+ydd5xcZdn+r+fU6WV7y+6m9wRIJ4ReRKKiIigiWAF97V1fC3aUF/Xnq68KKCIKgoCggNJCb6EkIZWEJNv7Tp85/Ty/P87sZstsS3Z3tjzfz2eTnTPPOec5MztnrnOf+77u+pcGPf/P7X/A+7d8HheuuRKl4Tl48c3/5FxvzYKzcNHaq+CWfFhevQE7jz47IfMVfaXFu9d/0/9y1QX1+bDGc4HjvvIo5zvlFW3YqlBL4j0fKi+1WymZdnc2RsMcMTFmq7d+yMM7sxwPF0qPTnjnRkUh6aNHzh8yVclIa+nLpbNCw21jX+e+zMHM4yNaHUYVPllU+imfKHhH/O6zbcv077u965zDf6vgyeg/F3FiR7/9HhL566VyDeVZISNjwljIujpObZjAnvr0yzGoCgdLZEEY8RboTEPg4PaJnTWC9s+iWOcvu7u7/1Wv67EpJ7Qe23knXj74KAAgo6XglgcHr3RTRUvkKGzbQn37ARBChlyvI96E4kAFBF50WjFPEBwnCOkF76x5bM032rqlgkmPEssg5EuPc4ENL6qR4cZpHiH03qLSVJJiRD/t6UahpAc4ahx/uo5LHJ9E/SyCEkus8x+cUEtNp1vj+gTgzZl6YeqGebG90XJx0pDR+bcih9XdyQdljBBpj2TkZEnZf/kFXh5R9BpGJlX72o3quo6XxlSj8EqB2fBfnxP8h5YIealtYMw6WBR7CsME9tTnVAC9gmduUXhWRK+HwyXYhV7uUI2Z+oOru+N3zbHYS82WbeYlj3ggm5duxfaDj+EXD3welNoIe4vxr+1/7Dfm/JMvx53P/BxfvvWdSGsJrF1w9qD1llathaKn4feEURauwfP7H8LiylMmfP5iYE7Z6xu+7Xq9bMukO3eIIOSzT/Hh055TO4cblwxIJe8JlXQYE3nFkQd4Aq7abDiuixtqWwYR+HE9ny9Lvzjsxc54cORIcb2qLsqZV01tGxszC7rKxYIhAwqN8Sbt9dg/eBA6bLpHd8abLCv/pJ/nRs7C0dIdnWu3/0BekK4fdWqHSm3lV1vs5huucVXr7lHshMEYH5jAnsKQGfYdNaNYXlnmA/ArAI0AKABcsmbFhwNu16xovjEWDAsZ1S7p8Pg2B7yeuUN66DJGjxl5q3njvptDATN1YqkLY8QCxU2nWm1PnuEatrhuSXu64e+Z7hnlzHB17MMtj7rOH7Y7YS5sS0/pb587rrm+30x+IbLc1zBhn6VEgovu2nmpH8hdnFkW8TZt9WwcMu+6PdWpP91xO6XEGDZy35UJp6oqPzKq10bv2NNy1r6by2WYo07tqJOtlh9fKYRiRfwJd+NkMMaIBqBw91W7hy8UZ+QFFsGe2vTkV1EA8Eii7HfJrK1uDkQeHr/YUctr/yiIdvy/ru7uh+t1I6Hke17TGaFgQeXLG7/H7Slcc4L2FmODB8HVL/Bl529TW4Ybd6DUW/1pMVg3SdOaFBahTj+e9SiscU2ZkdOdEyquLQv23j1nWEOJaz5mtQ8nrqNKzHy2405rJHHdrZaNSlxTalPx8ENtb9v324rRimuLUuvexVb9Vz8vVjBxzcgTMoBz8z0JRm6YwJ7anIxsa3QAWFhaNI+cUC/l2YFbtIq83IEaM3mz1NXx+6Z4/JUW2zbZrZrjgBdc7o6VH616fPm1jWneNWJjmHHbLwg++jJfcdGj6rDi/umqYO1POG/9ZM1rollEmo+zKI6Oq8BerTw7oXn4B9+c02CaVTnzlM2UlrxcOrNwqHWTWtra1nqHZhFlyAJMSimNaLXpyvLLRxTXpmVoJbtuim9pfHjUdoQRYkW+cSmJ3/UeuQYcOyUz8gqz65uisDPDFCXbvXEN+tjzlQV8tXmb0DSEI4T3iekq2X62Ih35Vaar8476jNKQFzu66Q5XvHLO8xu+bx4MLR02qjyu+wTBh17jqy7+tzpsPvgd1QXVt8HdPFnzmkjmCl3HVahIOTqunTnf6Xk8PJ7b60t3l9je2Xl6zjQ3UzeM99JTIXNSzsi2Yqj24y13KCZJDpm2ZFNqx4ylSkXZe0ZMbdLVRHT59p/QlbHdodHO/4Vis/4znxeDdQsElorGmApckO8JMHLDBPbUZQ4AN/pEsMMeN8u9Pk5EHl6f0FbDqfeEox3/r7O7+z/1hpmctIjsTECQvL6mkz5dsW3xh+s1Ik6KiwcHgvfv5KsvfVAdOkpNCPmf6qLSR6jYPhlzmkgqxaGF43BQjo6bT7w32dw5190+YifE48EwYBw4cJ47V7dG27bpacriSLEYyullrVsGfazprpSOyJBRadumVtI+WSsvffuIKRtavL5t8/bvBSq19lE1j1Gonfn5mXbLLz/uqjFc3Ixq9MWY1tSsvG0la2Q0BWECe+qyBDhmO+WVJZdbEifUMmu24BatYi+3r8ZI3CR0td/UGE+81mLbNkshGS3l62qe2vC9TJ1v3qQIWg4El+wWaj54v1o35CCeCF+dUxrcYQvT+g5FWDT9kq2MPRrNY9z+ftdqT09YwdS+vUtbbbswpytIdSzUvEKeW5rrOcu26GMN9yQVtA3pKGLZtpkmpxqlRWeP6N1tN73Qcv7rN5T5bXVUQvmwy2z+zLU8eWmTNOYC1JmG3n1cZQKMiWVzvifAGAwT2FOXDQBiPQ/mFoXnEEJY04JxhCNE8EmpObL1dEUq8st0V+ff6hW1OZbveU0HRFcweHjNF0qemXdpnQFuUrpsvmu/UPvhe5S6oZ63Rc71scpSvt7mpm1FPSHAPOvImPOfqTBO7e6pTd/hfbx4XLY1gJYWT1MisTan64sUpW1v86zLGYWjlOLxhn8mU2gYUlwblq2r/NlWccGmYaPRtm2Zvv13dJ771l9H1TzGpNT823Kr/htfcFUmCvgJb7oznnRv68aRnxzBkZ8cwVvffgvNf8qdRWXGTRz58ZHex9SkqP9FPQ7/8DCizzjXq+33tKPu53WglCJ9YNp+vGYyp+V7AozBMIE9BVleWRYAMBdAb/vosoCfpYdMIBIPn09oqSHKXaFox686IpFH600zw0I1w0AIR8zqM2q3rf9urMVT2T0Z+3z7IbH2E3cpQ6aLGC4+cGlpqRqh0CZjPhPBQuvomBsoUXF8TuXBRF17uSs+7raMqoLMkcMX5MxZNpNa4v3ymUOK+icb/5OI0YNDimvdtDVLfjsKQ6cMm79uGEqq5vVfqOvbnx/VBUQXZ3V/7QMkdd875Wl57i08uxDzvjEP874xD55FHhScOfjlt9IWmm5ugq0duz7rfrwbrloX5n9rPpK7krAUC2bChGuOC2q9CrFgyJ4/jPzBIthTECawpyZz4Vjz9YZYwl6Wfz1ZuEWzxEP21Gjx35KujlsaE8mdrbY9JfrYTElET1HhvrVfC71Q/Y46i45fqsJQnHdErPnkHUNHsjM+sfDdBaVR1R6/vOTJZDHqxz5viR+Xu1ubzCcn5KJy9+61MUp9g/KiDc3Q30c28xIn5EzVeL7pqWSn9caQ4lo1bAXu93Ah/7Jh28Rrma6uNdt/IC1MHR2FZR/FM2Vm/We/IIYb5wqhkcZPdYyoATNhwl2bIwDPAXM+NQec65gUSB9II7jeScH3LPBAqVOcLrIWkD6YhnfJpNriM0bHqpW3rRxXH3zGicME9tRkMYDeL1lJ4AWvzHL/JhueI6JPTMyRzG3lqcgvE12dd9erams83/OainAcz6vz3lb7+NpvdXbIRbGJ3t9Z9WLtZ/88tMiOhOSy9wWKW+xp2EhrAdcyZrFMpXHwirMt6yLf0+OeHnL0aEG9qi4ddP6yLZuepS6LFwrBnIrt1dbtqSbj5ZwFjwCg6HZG9L1fCPjmDRtS1bv2tZz9yg8Ki4z4sCIcADKwUz87j7b9+iOuGnM8XtMpQPcT3Sg4O7fhCe/mwXv6X9vYmg0x7LyknJuDGTfhqnJB79ZBCMHRnxyF2sLqw6cYPICN+Z4Eoz8z4gQyA1kFoFfIzS0KV3HM/zqvSDwCPqGphmbuCEY6/rc9En2iwbSUSXHSmE6I/vKSN9Z/27u94pz6iRa3pzWLtV+6VanHEHcX6oo9cz7mKph2Htlzhe6xW/XJ4gm7WhQl3mwrkNLjmmecTHKxpsbzcgYH5iUKm5fI1TkF/e6O3em3lG1DRuTSmp12h66SvJ6qIcU1pZTyRx5pe9ue31TIdOTmMW96zKZPf5IXXlsnjdoPe6pDbYr0/jR8S0cf3ORcHGzd+UzZqg1QoOiCIoRODYFIBIE1AaR2pSZqyozjh+VhTzGYaJtiLK8s8wKoANBbSTI/XFvGUWHa5pTOJAgh8IhGqQe7qrXY/9Gujj80JJK721gKyTE4XhBTi95T89jJX22NisHkyGscPxvaxJqv3aoNKbJfrfDX/Lfgr5vIOYw3FVJ6yKjtUFA5d4rFWDjdemJc/4htG/bePVsMQBokgl1R0nqu+5ScRY0Huw8qe1MPu4eq6U6qNOUr+LjLJRfn9MoGAMsytKI3bo6d0fDPEcWySalx+2qr4dufc1WlQvyoLPumC5mDGXjmja3JpLvWjcwhpwxAbVQhFTmBfytjgXfxIAJxUkYYUw2Whz3FYAJ76lGDAfnXFy+4fP57535BOq/sE5GV/gsbSsSljSL8LFUhz/AckXxivFoyHytLdf8y3tV5T72qtU9oB7zphBiqLX91w3elnSWbGidyP2s6xJr/vkVrIENYLf6zKlT7f8Q9oXMYT/yC5fFaibFdULtytxwfNZZhXBB4YVwjtwffrGw0jMERaiupx9/vOj2nHV9drF7dEX9AJCT3d1NcQSpUfK1HlkJDXlDoWjK25JXr7dXRXSM2y+ngrM4vX0Ey/3q7nNPdZLqT3JOEZ7EjsNVmFe33juysGdocQsc/OtD611ZoLRrc893Q2jS4q91wz3Mj8ngE3sUsD3sKsnHlbSuZP/sUgrAr0anF8sqydwC4GEAjABAQ3P+B27/qEuRBt24VQ8m0pVui7UqD0a03uFNWRxGIzT5geYRSCsWU2yAu1wOBUysEXj4x4TNDsLoPNG3a94cCn5UZWzhtDOwNG40/+IRcZfODm5jAptYP6jo6LiZa+UTtfzx5V/wrXbvkk3O2Es+FuiGYRMg35sh3DxWRHY03hH8453jXH0gkInbs2f2+YkL6F18aqq693zrNCvP+QX8Hrck2/dnOO0CJkTNXOqrwyeLSa3wC7xoy3UNLNLZv3vWrooCVGfY8SCmlT1ZZDTe/X5pjzZBc6/HEiBrIHMrAt8I3KEebMaU5ZfdVu3fkexIMB/blP/VYDaA3CrqqbHlhLnENAG7R7Zkbmu+ZG5oPALBsy+pSujraMo1Kp1rPx4ymsEVUFmqYRJwUEr0M2AEt9roWswpaZM962e9bnjNiN1vgC5dUvbDx+5mq/bc3L4vsqpyIfSyPinOu+73WdN3VcoUtDBBNHOG/U11cUFLf1n0qZxZOxP7Hk0X0iLILJ496PHWJ8onYiJyNx8ZNZJomjAP7z5UGimvLsuxztZXJsOwfdOHQlYkYz3XeZVFi5DzXRTJSsrTsGh/Pi0MeptX8cst5B2+vEEbwt07BTv7yQpJ542QXc2YaAjEs9jqJMKYVmwEwgT1FmLICmxDCUUqHzQkkhAgA7JHGTReWV5bJcCz6ejsCrC1fPeoWqDzH86Xe0pJSbymAtQCApJZMtKWb4+1qvd2tN/pUu7sABKxhzSTAc0T2cdFqGI8g3vlozCA1cZ9/S4FLLj7uSON0RhDdnrZVV3ta23c2nvrmn0vctjb2Yr4RWBIXq37wO63pu9fI5abYv501FTj5U1Wl5t+a2hJLOGtI67epwCI0jNqqj1JKIYkjOmQMBTFU9Zzgq+OWHrJ376JWyyoalHKxOFHautBdNejiKq4mzafa7jRsoua8u9Gd8STLy6/2c0MEmm3btrwH7+ne1PZ0xUhntn0+s/FnV4klmQA/Kz+DjBnPaQB+ne9JMBwmTWATQj4C4Ao4ucVLAewHIANYAGAvnLbgd1JKb8mucgch5DpK6YHs+o9TSs8dsNkPAvggIf26mBUAWAfgMkrp3RN2QBOAQKT5HOFKTGrEbWolAGBh4fxRC+xc+GV/wC8vCSzEEgCAbhl6Z6Y90pZp0Dq1BilhtRRQGOMudBj9kQUaklEXoumjtDvuauXElWYgsKGcn4UpJKT0pDnPhuYn5+37Y3RB/OC4OzYsTIpVP/qt3vzf10plptRfZFsy772ivDT6YGurUsbRKduZbyHXOvr78tTSCMcdd3FeTWJHh1RgjUsOcmuruzkR3zBoW94o13Kme/UgcZ3WFeuJljtUi6Ry2lx0KaFkVeVHhxTDhqlmanf91lqcfKtkuHkZlOq3r7Hb/3OBa9zSYBiMKQgrdJxCTFoONiFEBGBRSm1CyO8AfBJACYDPUUq/mY1Gi3D8n5cDCMJJlfgqgDIAKwHshuP3+E1K6bM59nE2gB8A+Aml9MFh5vInALdQSp8jhFwH4C0A58JJz0jBaVH+AUrppHoRnTV//VYK+h2bml6b2rZp69Ffbf3Bqgp/6YTdq7OpTWNqPNqWaUx1KA2IGo0BHYnQRO2PcQzTpppqFbW5vBs8Pu+SCWlPPZWhlIJvean+1Lf+VilRc9wvNBo8Zus3r5GKdRc3aNuBhN7xSFdbgY9Mzbt4RxRv59nk5lH9TdiWltDfPu+4I/JXx77fekZw1wnnpqsqlFdeuZiC9s+vthJ69GPi+SFhQMqIZur2fxr+mlJJR865dyulqcqKDw7pL6dlurvW7vh5oNiIDRu9b+Otjh9fzrvaqoQpfdeCwRgnanZftbsh35NgTGIEm1JqEELOJIQchpMCUQ5gCbLtwCmlJgCTEBKAcxW2FkATgCsopSYh5EFK6VbieDcNuhGYjZC/B8BFlNLYcU7zM1nR/S040fHfH+d2jguBE+cBeJlSsZvCDvpFf1Wpt2hCvxQ4wpECd7igwB0uWIZVAADFUDPtmZZoe6bB6NIb3CmrvRDEnpJCZDojcET2cd010B9GLPPvqEnmxf2BLcWyVDAr8uYJIbArN9U8WbAkunTPzUZ1un7YKORYqc4I5df/Vm/7+ielQt3F9bOKSwSkkveYJc0PxdorxKH84PJIuZQJYJQu6xT2cfux81o6fVpg17jcRdizZ00E1N8vSm0ouno5d7proLg2bZM+1nh3TnFNKUVUr01XVrx3aHHd/WbLmXt+W+6mxpDvnU0pfazGbrj1MrHaFnIUvjIYM5O1AJjAngJMtmg6E06EeD4ci8BPAphLCDkDgAfANZTS/YSQWwFcAuA+AF8lhJwPYCUh5CkAOqX0/Bz518UAbusR14QQFwBQSo+n5VQYk/wHet7CzQROB8cYIQQEfPzkyhVenhufFshjwS26PLXBeZ7a4DwATvFkt9LV2ZZpzHSo9XzMaA5bRJkVInCycAk0DBwO26m3aLfpbuak1TQQWF/OcyfeQGSqI7rD4UNrv0zrG56q23T0vmoBdNwK7qpUoeyG/9Pbv3aNGFa9fL9IZ2uBq/KDRmH93ZnIlCt2c/NULlQ7M9188YiuK5Qcv8BekNzexRfihI+/ri7UoGSW9UsNsUzLvsA4KR2UvP2KSm1q4/GGfyTSaB50Z86m1I6bS9SKsotynl8opeDrn2i9sO4fw3a2TcJO/HwrUfeukqfce8tgTDCr4WgnRp7JR1SyRzCeC8AF4MsANlFKfwL0Fi7+Fs5V2CcBvA/APgD/gJO8/8/s+lcCuIyQ3pLxWgAKIeTjffb1O0LIhXCEaw/bhpnb/xJCUgD2ALjzuI7u+CkC4AbQ2bNgfrh6SjhP8BzPl3hLi0v6Fk/qqWRbujnWrtTbEb3Rq9hdhax4cmzEMgpCnv5pwIQQ4hXVStCXoURfVlSrqMPl2+T1eRaO2rJtOkIIR4yas2ufKFrRtWrP77lypS13b+fjoFwTSm/4ndHx9WsQTPv4fvUG+0t9NZ9tsup+ZcRrx2t/48V880hyNAIbHB11QeRALpQePeE89FSKizc2nDcoCr48WdE6z10+KO96W8NDiTg9Mlhc29RK2ifp5SXn5DxmyzL14n23pU7qfn3YdJY3Ambj/1wllqk+nqWEMGYjq/I9AYbDZAvs5wF0AHgOwCsAHqOUNhNC1hFCCHUSwq8C8CicFBIbTtHil7LjPwHgfgCglP4RwB97NkwI+TKAOkrpPQP2ef/ASWQj5H3pEemfoZQ+dyIHeAIM+iKqCJZOCYGdC7/k8/ulxf6FYefaxbAMvSPTHmnLNKpdWr0UN1sKKDFmRFc0RTfwl5d2wKYUssDjio2nQOAHB1mTqoY/v/Aa/uvsUwEATdE4Htq1H7plYWVVOc5cPA//3n0AzbEEPnbaOrzV0Y21tUPXsAoc3D6uqwbavxBLc90WNz/l928plqTQhHlJ5xvRW1K0d903rfqjD9etb/hPDTdOF22lulDys98ZnV+7Bv6Uv3+3viergrU/rTfrv2anp1S0cxE9om3HhhHHUQ7HJbAFJZZY5z94Qmk5tk3pnt2bNcDVTzAHokLLae4Vg85pzzQ+nui29w0SvpZtmxmyySwt3pxT8Ot6Kr5sx/+TqpWWIS+8dEq1WzfQjifOYYWMjFnN6nxPgOEw2QJ7BYAb4QjaLwAAIcSCky6SAPB7Sukfssvfn825/jmA2wG8E8DDAG4ihFydzdk+XtoBzIMj9OcBGFQwmQfmA/2/KIs9BVNWYA9E5EWp0l9VVumvArAJlFLEtFi0Ld2U7FDqETGbAjqNh/I9z+Ph9YZmnLFoLhaVFePe13bjzbZOLK/s/9ZkdAN/274LunnsLbz/9b24YtPJCLpd+PW2F7CysgxJVUdFMIDmWGJQ9Ho4XIJdCBwqNFMH7aThbebl1fAH1pbznDjjmmRwHM9n5r+j9rHik9vX7v29u1CLjEskstgQim/4ndn9tU/AToT4fhcpf6kuqK6ss5qvgDohHt3Hw2I0jMp+lPI4rkr1ZekXI3DhhF7bQ4cq6g2jtrbffBJG9yWuswZFmV9qeT7Zar42aH+mZRuacJZdHFqT84JcSzS3n7rrl4VBKzPk91WzaLX/+IO8p7NcZOKaMdupXXnbysDuq3azrsJ5ZrIFtgHg+wBMAKHsshScVJGBcyGEkI8CKKOUfpEQcjGl9P8IIb8C8A44KSN9EYFRf9H8DsBfCSGfANAK4EkAHxrrwYwzy9GnwQwAhN2BaSOwB0IIQdgVDodd4fBSrAQAqKaqtKdbI21Kg9Gt1btSVnsRnQbFk5sX1Pb+ntJ0+FyDTQs4Alyx8WTc+vyrvcsyut4roj2SBM00AVBYlOJoZwSnLawdtJ2R4AjhvFKmEvRFKJEXM6pd0un2nerzeuZN+eYpY0UMVJXuWP8dPfzWPxrWtD49LjZyhSZfeMNNZuRrnwBi4T4imxDys+rikvL6ts5ziDElHF3m8+2j+2yI3HEJ7K3yoyckrqNRoau97azqviWihqIrV/BneDnSv6hwZ9vr6XrtuUF2e7ppa5Z8IQoDy3NahZqtrzaf9+ZtlQJyX2vYlNr/nmc1/vl9UjXN1cGTwZh9EDhpIvm6G8/IMpk+2F+D44OdgSOEe/bdE8GWCCFFlNL/yS73ArgHwB19HoNS+tkc2/4lgPMAvGs0c6GU1mGwX+SHR3ck4895CzcLAKoBtPQsqwlVBGRBmrI+vceDS3C5a4JzK2uCcwEAlm3Z3Up3Z1umMdOpNvAxszFkQhnSOSDf1HVFoegGagrDg55zieKgZbVFBXjuUB08kohoRkF50I+ygB913TGE3C7835Mv4pK1K1EaOL6eFwIPj4/vqIF2P2IpvsviF6T9gdNKJDE4Y/5uOF6U4osvrX60ZE3Lhr03B4Nm8oSLa8MWX3DDzWb0ax+jNFIo9G6P8kT8YlWp78+NrdHVnDX4TZ5kqsXYqFKBqDh2YSmnOyPLfQ3HnedumjD37ztHIORYrpRlmtZFximqX/L0e+32d+3PvJl5zDMw2UczbJV4LubDvgWDPjw2tW3PwX90ntq6bcg7CnHYsf+5mDPeXMY6MjIYA1gNJrDzzmTa9P0UwE/HMP7MAY/PGGbs5497YlODIjhXnb1hmsVF88bVsmwqwnM8V+ItKS7xlgBYAwBI6alkW7ol3q7UW916o1exOwtAkPc0iIym4/4de3HlqaeMep1L1qzEW53deGTPmzhryTwQQnD64nkobGlHStWwsrIM+1s6jltg98UlWkXAm0Vm8oCVMH1NgnwyCfhPqeA4YUZE9YTw/IrtG69TSw/8rXFV1ysnnAYQtPjwz26xYl//CJJdJULvG2BLnPsjlWXG/c2t6WrOzqtTTomkBqhmg5AR/vylsQvs1cqzCXhw3AJ7/74FzZZV0itsKaVYnaxur3aX9nP3OBw9orwRf1AG119eK7qdkfzvF72eqkHi2jS1TPWu35lLkgeHvIP3eths+MWHpArNO9jjnMGYdVCa8Nu0ocY0oqtVzd6kTJ1Ut9kMOzlNDQZ9kcwJls14gZ0Ln+TzL5AW+ReEFwEADMswOjMdHceKJ5vDNjEmNUJrWjZuf/F1vH3lYhR4R19fyHEEJX5Ho51Sfex8p+oGZEGAaduwzOM2gMi9T0J4n5iugv0c0pHn0qpd1uX1b/Z73DXj5sqRL3jB5epa8eE5j3Wuazx1/61FXls5ob+DgM2HfnarlfjmVUi0lR1rQmK4+MD7Sku7/9PeKoY5HHcL8hNF4iBUWK3JVqFy2CswKgljvgB9p+fx447Qt7e7WmKxTf2ixgVRV/NGz9J+X+pN8Wbtteh9Aji7n9VkWrPTntCVsttVMuj7R1Oi3Sfv+LmvTI/k/KBplKq3bKZdT5/hGpeUIQZjOkFtakmKFStWjMxCVbdX65rnAsHQqy2rEk6NWw8z3t51OsAE9tRgkJVEia9wSuSB5huRF8UKf2VZhb8SwEZQShHX4tG2dFOyXa1HVG/yqzQansheIduPNqIpGsfj+9/C4/vfwoKSQlg2xYUrF4+47r93v4mLVi1Fz/w6kymUhwKQBQF/eHY7Lls/cQXfIg+vyLd5od6LaJLvtPnFmUBwc6ko+Ke1uwtfvHzO88HvpWv23dayOLZ3WD/kkfDZfOAnf7KS//0hxFsqhV4njIxPLHyPUdr670hbqYsbKYQ8cSy0DqdGEtiQhTF9mXqTzZ1zfe3HdX7RNKiHDp7f32IvbnS9231WP3HdkerUX+y+G5RY/SLUSZWm/IUfc7uk8KA5a5FDrWfs/r9SD9Vzvt4NktX6kyv4QHepOLT1DoMxA6CUUl61EwWKkZyr6tZJhs5vsHTvSTCCMiGFAJyaGwIM4SG0bPJmyxiKSWuVzhia8xZu/jwcN5NIz7IbLvzax4s8YXabZxSopqa2p1u725UGs0trcCWt1gIQe3BSNAM2pVbG9LeIrjWC33dyGcdN88Kw1lcbNh/6a5ls6ycUac4QO/XtD3Jm4xwh1Hf53M5M4/3Jzjlcnpo9/jB6Qf0t7quGzTFWl0mdmFM8asF8RtcddVcX3lt7PPN57dXVTZnMql6Ba2S0zFX0bMHDH6v8jSpx84nW2wyL9L/DEFeQChd/wiOJ/n4CmlIK0vBk6xlH7i3P1VbLotT61yK76Y73iDXg8p4txmCML7qdCmSMZLVqaCt1nV9vae4N1Aj5yQkHQMtxXbxtXObIOC5YBDvPZDs4zoPjptJLUPazCPYocQmyqyZYW1kTrAXgFEh1K91dbZnGdIfSwMfMpqCJ9IknOs8AnBSS1BxYTyMdeTql0Your/+0oNtVlfeivuOifG31UwUL44v2/DE6N/nWcbvueCjn+9Ff7fR3329GjtYKvek0R4s9cz5hFNT/QYvmpZBuEdc44hjqkkafaE9t+g7v48d1bmmoDzZmMqt6899Nw7Teaa3XPaKrN50jpaetJ1vv0AZ2eo0qXLK49FqfwLv6TdWyTaNw3+2JU7peLc/leB4jVvSn7+Htw4tZR0bG9IaatubNmLEKxVCX6jrWmrprk60HyjnqA9C/uH98rueXAWACO48wgZ1/ej5cvdHr2lBlQOSFvOV+Tnc4wnHFnuKiYk9xEeAUJab1dKot0xJry9RbEaPBk7E6C6dC8WQ+EXn4RLT4oNyNaELooMIS1R/YXCoK3pyWaVMVUQ4Gj5zyuUBD0/P1px7+e5UI67jyD12U837/Tptcd6nRfXi+2Gt7uL3CX/OtBrPuh1aydtwmPUrm8x0j34mRpVG/X8FEXXt5ID6o6+JIpNMkWV9/Xm9dCKUUa9O1HZWuol6/a9VQ7cea7sgYJNHvYjaSkZKlZdf4eF7sJxt0PZ1csvNXfG2mKafF5PZCs/5XH5IqdTcrZGRMH6hFTVkxYyWKmVmk6fYaU5M32bp/IbF9GFhvNbHfQMswfOfqKU22qzeltH+n2uxy5OqFQggJARAopV2TMskRYCeu/FMM9Dd5XVhUy6LX44xX8vrmSwt980MLAQCGZRpdSkdnW6ZR6VTrxYTZXGARfcbY240Vt2iWAHtgxHebcSvYKLnWiD7f6jJumtySJ4Qj1pwtNdsKl0WW773Jrko3HVdreRmc53t329z3LzG6Di4Ue7fxwJxQbVWd2XgtlEltZFIlJjwjuvu7xVEL7FPNbdpY55Dt1pgB3L3CuSTmaV7rXtybwmZYBn2s6e6UTvo3BerOeJLl5Z/wc1z/ax4t2dqxcdcvC8JmatB3kErtzO/OQPSFzcx+jzF1oZRSQbFihYqZnqfp5km6Lmy0Nd9qmEGBkP7nn/xkmE1qHjYh5GoAH4Rjw3wSgJ3Zp1YD2JX9/a8A3p8dsxTAfgAygAUA9sJ5pe6klN4C4FIAnyWEmDh2YdIOR7feAODeHNO4HMAiAJ8ftwM7AVgOdp45b+HmDQCuAdDQs+zKk9+9/qx5Gy7M36xmJ3E1HmtNNyU61AZE9AafSqMFE1k8OdXRLSR1WtXt858WdrkqgiOvMTWgtmW76h9v2FD/r2oB9LiuEHTY2k/eTRJ7l4jHLnZtav2wrr3zXUQfcwT4eLFs2Au122CT3B07KbUt7W1zRhexty3rN+aHjZCYGVOR68GDpXXtbefX9jwmMbPzY64Lel8Xy7boI/V/TyZR319cK6FkZcVHB6VmGW07Ws468MdyCfagD9dR2Wr58ZVCKF7Ej96uh8GYYIhmJYMZM1mj6vpKXec3WLp7PdXDHo5MZbeOJ3Bd/NzJ2lk2smxTSm1CyPcopd/NLr8BwDfhiOR2AFZ2zO8AfBJACYDPUUq/md2GSClVBmz74wCQFd4D97k/u13AEd8cAD37uBjAeZTSBuQBFsHOP1UYUAdc6AlNz3zYaU7QFQwFXcHQEiwHAGimprZn2iJtmQajW2uQE1ZrIQa4IsxkJB5+CU1+mrkTkYTUDmGpFgieWibwnimdvkQ4ntPmXlD7RPHqzpN3/04s0TpDY92GBE7+5j/swE/fobe/sUJyoicc4b9dXRIubWjr3kjMSemcyXPg5piNsXpxXijX89S2NACjEqNFiTfbQsHMmAqnYzG+u6317N5ujUZaS39YOqd3LpRSPNHwr0QS9f0uwLqV0lRlxQf7iWtKbdt16J+dZ7c8Nsj5xaLUvG+p3fz3d7FCRkYeMWzFq5iJSsVQl+s61hmaaxP0UBGBH8Cxv2cCYOoHX+ZO5s4opSYh5GZCSBRAhhDyJwBPU0q/QgipAPBNSumnCCFnEkIOA2gGUA5gCYBkzzbgdPoe9W4BaAAughOo/H9wxPXFAB4C8MC4HNxxwgR2/pkLIN13QcjlD+VnKoy+yILsqg7UVFQHnDvVNrVpRIk4xZNqPRczmkMGUjO+eJIQAo9olAJvQIvtMmJWqEFyr5N93hWlUzmFRPSVFb+x4Vtm4PCD9WubHq0ZqxOICE7++r9o+AZbb9uxSioDACpw8rWVpcbfm1oTCzn7hFqNj5ZF1uHMUAIbsHSMUmCfbj2Ru9/4EJgmrH17zyaEOD7bpm6YF9sbLbco915kPtX0SCJK3+wV15RSRPWadGXFJb7+29KVqt036cvi+wcVokaI1X39pTypm88KGRmTA7Wo4VLMWKliKIs1na41dGmTrQfmOs2ljqUKTnkNPSzVuC7I47r4+DZbGB4dTpdsA0AIQIQQ8kL28XxCSEd2XArAfDjR5k8CmEsIOQPOuewaAJ0AnoQjngEnEg1CyLXZxzKAKyiluwghX4WTa34nnGClDCdF5ccAfo0+HbInGyaw80jWQaQaAxxE/LKPRbCnIBzhSJGnqKjIU1QEnAzAKZ5sz7TE2pQGK6I1eFJ2ZyEhx5eWMB3gOSL6uHg1zMeR6n48rqM66gucVuCSyyZFbI4VjhOE1MKLax4rOblt/d6bPGE9NqZ5CiDSVx5C4S9MrfWVU+RyALBk3nd5eVn0odZWpYSjE563v5jWGY8N8RyFbYxqI5ZhXBB4YUypLQcOzGuyrLIaAKC2jY2ZBV3lroLebbzQ9HSyw9zV+3pSSmnMWKRUlL2jn4OIpsQiJ+34ubdc7+4X5aaU4oVSq/43V0hVpsxN5VvtjGkKtaktqlasUDEyC1TDPNnQxI227lsJM8gR0r/WaeadtQU4d8jrJ3GfHJz85yo4lyfPAagBcBTAdZTS6wgh1+HYpcu5AFwAvgxgE6X0J322tbLnF0LIIwAkSulZfXdGCAnCEeQfAbCbOjnPJiHkewD+nJ1LEED3uB7lKGECO794MMBBBAB8kocJ7GmCV/L65kkLffOyxZOmbZpdmU6neFKrF2Nmc9iGNiPzSSUBQQkNQZr+KyJxuQ3iciMQ2FQm8K4pl0YjBmvKXt3wXa3o4D0NJ7c/P6YugAKI+MVHuOJfWVrLi+vkCgBQPUL4PUWl7f/pbhN9J+5XOywLueYhn6NkcCV9Lirie9p8YX3UBZodHXJrpHtTTU/QvzzubzrJvaDX//q11ldSjcZLx1rMU2onrdVqeem5/f7WteiR1jN2/7rUY2v95ItC7fRvzkF8+wZWyMg4cSil4DQ7EVLM5FxVN1fpOrfB0rxrqBF0c6QAwLFOtqT3n9nAXEyuwPbDSfHgsz8inILED/cZ8zyADjji+xUAj1FKmwkh6wghhA4oDCSErIJjBPEaIeQ9lNL7ep6jlMYJId8GcBMAjRBSCieC3ZD9/2pKaV7ENcAEdr4pwgAHkWJvgZtZ9E1fBE4QynzlpWW+cgDrAQBxLRFvSzfF25V6RIxGn2pHZlTxpJNCopcBO6DFXtdjVrhB9mxw+X3LS0Zee/LgeUmOLr28+tGStc0b990SDljpUV/48CDC5x7nSkVTa35mk1wJAPGgVHqJWdz8r3hHhTiBb+g8oXPI8wHl6Khu/56Nx0Ydn9N1aAffPN9Psg0s+ZjVsdW9sVdc7+7YnTmkPOHtOWTLts0MNpqlxaf1ez1p4zMt5791V8XA5jGH3Gbz9VeKBckC/oS6cDJmKbqd8SlmfI6q68s1nay3dPdGWw+GOQQAHLtDNT3ypCeauQCemsT9lQL4HIAz4NyZvwnAX+BEkXtYAeBGOPnTXwAAQogFJ/qdAPD7noFZwfw3AFcCOAzgcUJIA6X01Z4xlNI3AGzMjv8wgCpK6Q8n5vDGBhPY+SWMAZfSFcHSoG6blsSNrf0xY+oSlAPBoLwsuDjrmqSZmtaRaY+0ZRr0Lq1BTlotBZRYM+KiiueI5ONi1TAeQbzz0ZhBamI+/5ZCl1w8ZXLVhcJFlS9v/F6m4sBfm5Z37xh1220OhP/UU1y5YGpN27bIVQDQXOiuvNIorL9TiUxYJLZSTPowVPY0P+QzvRBDVc8Jvjrq9JA9e1Z2UBqaAwBmSkt+SDq3N/p3sPuQsjf1bxfJqmvTsg2NP9MuDq/tdSaxbNMI778jsbbz5Yq+ZzeTUuPulXbr/e9wjekOAmN2Qk2quxUzVq4YyhJNx1pTkzdRPTCHUA8G1h3MvPSO8WLSCh0JIW8HcARADMCtcN6VZkrpfaS/baEB4PtwIt2h7LIUnFQRIbstDsB74eRRf61HUBNCPgDgHkLIgwBuppQeneDDOiGYwM4vYQw4NXQXqOHb3E/x1LTTxKBpyeI1jyVbQXhIAXxiEReUS/iQv29rYsb0oCXRjopAKWRBlucEqsvnBBydYVObRpVod1umKdWu1HExsyloIDUlc5rHgizQkIy6EE0fpd1xVysRV5jBwMZynpfzft7hRbenfeXHPa0duxo2H/hzqdtWR+UlzYFwVz/HVYqW2vjIma45ALCnzFfzhSaz7hdGonYi5hoWTb+kKKbOuQe9blQgIwrsmsSODqnAGpWobWz0N6ZTJzniWjeM99JTIXOSAAD1sQZtR/x+safGQDdtzZIvRGFgee9rZxiZ5MKd/0vmpRv6uax0cVbXTy7jhcZamYlrRj+oTS1JsWJFipFZpOnWyYYubbR1/1KYfo6Q/nfBZn1AesxMZgqWDOB2OLnTlwD4AYDqrJXeTwE0E0K+BuAKABk4Eeyec1pPBFvKivE3ALwPwIWU0rd6dkApPUgIORXAZwAUEkLWw4mYG9ntlQGQCSE99oQcgNcppZ+fsKMeBuaDnUfOW7j5gwC2oE870/kblm4oW1D1tpHWtU1LhUHTosWpbksy/bYbYeLli7iAXMyHvGHePyPzfieLznQE19z/Hdz3wV8PO+4j934dXzrto1hRuqh32YHOI/j+tl/jjst+jp8+czP2tR/Cny75Ke7d+wguWTHiWwsAyBiZdFu6JdquNFjdeoM7bXUUgtBpf1fDsqmmWIVtLu8Gj8+7dEo0VDL1VGru3luTC+MHykce7UBB6W3rrcaHzzkWjb2yrrvhKzQ9IQLygsS3Im9KywoGLtd8Sh3dvKB2uHWvjn2/9YzgrhGPLZMhqddefa8IuGXbtumpyQUdK+S5pQDQmmzXn+38KygxJADQTFsl7ov5gG9Bb769lmrv2LjzF+GwmexdRimlz1RYDb+/XJpjSlPYcoYx4VBKKa/aibBipOaqhrFa1/iNtu47GUZQ7slHYow323Bd/JzJ3GE2+rySUrqrz7KFAI4M7Mo4DvvqCTQaA3O3s8/zcIojlYHPTQZ5jyTNcioBqH0XSG55VA09OIF3QYDLApCCiRSSaEUSPVrdtm0Thp3kTaK6TFH3UxcNwssXEr9YzAU9hULQL5CB2ZEMAIipSXzhoR9DMYb/TP5j76OoCVb0E9eUUnx/269hWE7tWVc6gqUl87Gn/SAqA4McyobEI3q880ILvPNCCwAAlm1ZnZnOjmznST5uNRVY07B4kueI7OMiNdD/jXjmP1GDzI37A1uKZanQO/LaE4Mg+XwNJ33a19S6vX7ToTsqXdQc8bxIQMhV2/k5kqnW33+BU6j35+qCqso6q/lyoo7Ja3o0LLCOaG/maswmcsN+hnktnT4tsGvE9BBKKfbs3pgC3GUAUB0PNa9wz60CgO5MxHi+828WJYYbABTdzoj+y0SfZ06vkNY73mg5Z98t5RKs3vmkYad+dQFJ7VjDChlnHbqdDmSMRLVq6Mt1nWwwNfd6GKEgQRB983FnV8FhPpjUzrMAQCm1caxzY8+yQxO0L32E5y0AeRHXABPY+aYUA9580SWNS2oAx3ECZC5MZUCBDQUZdCCDQ+gE4EQTqGEnORMZyeR1ny1bQXi5AviFIi7gKRZCPlf21vBsgycc/u9d1+Fj935zyDFRJYEfPPl/+NBJ78IL9a/j1JpTAAB37X4Yp1afgqePbgfgCBfTtrC96Q18dM0lxz8njufLfGUlZb4yAOsAAAktEW9LNyfalXoaMRp9it0dJtOoelIWaFjGkbCdOky7TXcLJ62yA/515TwvT3qknhACWrGh5umCxbGFu2+i89L1Izr5EBDygdf4GsFU6++5yFUDjnDX1xSXlNW3dZxNjHEt8FxI63PeaqTS8AJ7QXJ7F1848m3iw4dL6zRtYS0AiFHa9jb3uioASGhJ88m2O3WLqF4ASOt22hP8kOx2lQoAQKlNpcMPtZ/d9J9+BYsHvGbTz64Ui1IhftK6XjImH2ramidjxSsUXVmq61hn6vImWw+Wc9QL4NhF87Q5K804Rl1jwhh/ZqWAmgqct3CzYMIqB9DBgzMInFxKUR4fgT0ShBBCJN4PCX4dQAQaItBwtI9joG1aGWLQtGjymseWLD91owA+oZgLysVcyOcXPGNquTxd8MsjB1NveeVuXLT4THzwpHfi+qdvQkrPYF3VSvxj76P4y6U39grsxcXz8HrzXlT4S/DeOz6Dn17wZSwsqh2XeQbkQDAgB4KLsBQAoFu61pFuj7QpDXqXVi8lzdYCm5ijyi3OJ4QQ4hXVCtDtUGIvq6pV3OTybvL6vAuLRl57fBFdodDRtV+m9Q3bWjcffaAsVzvvvhBCcOkbQo1oqnV3vstVS3kifqGq1H97Y2tsFWeFxmte87mW3BcdsjjsxciF0qMj+nTH43ykpfnsOYQAZlJLXCmfXwwAGUOxHm++Q7VIygcASZWm/IUfdbukAh4ATEtXK964RV0R39srog1K9TtPttsevJAVMs4kqE1NOWPFilVDWaTq1imGJp1Kdf8iYvvhtLo+Bkv2mEq4cV2wCNfFu/I9kdkIE9h5opVEQwSkigArCYhEQHSechnCkyljbcYJvAcCPCaABAwkYKAZCfQ0RrItW4dhpwSTU12WaPipi4bh4wtJQC7hg54w7/dxMzS1bm/HIXzrrE+hxFeIdyw5C8/UvYrH33oBXz/jGoj8sY/VJ9ZdisfCz6MrHcWFi07HE4dfHDeBPRCJl+SqwJzyqsAcAJud4kk12t2Wbkp1qPVc1GgKGEiOKgUpXwgccfm4rhro/0Isw3Wb3LxkwL+lRJLCk5YOQwhHaM255U8UrYwt3vM7zzylY8SC4nfvE2olU6m77b3uWlvi3B+uKDX+2dKaqeLouMy7VojknAOVhSHzvAQllljnPzjs+cSyYO3beyYlROQNzdAvJZt5iRN43dLtx5r+ljFIzA8AcRWpcNHVHkn0cwCgqfHo6h2/dFdoHaGebbXzVudP3s9LLdWskHG6QimlgmrHChQjPV/VzZN0Xdhg677VMIJifycIFpWePlQBYAI7DzCBnScMYvkBHATQBAoOgJ/nuKAoS+vyPLVRw/GcBJ4rsAFkYCGDNNqRBtAOwKkOp4aV4k2iyJag+2yXHYSHKyR+sYgLeor4kG+62hHWhirREGvBgsIa7Gp7E1XBUtz2+j9wNNoEANjX8RZ+9szN+Orpn0BCTcEruaFbBjL2qPqCjAsc4Uihu7Cw0F1YuByrAQCKoWSyxZNGt97gTlkdRSD2lHwPXIJdCLxVaKUO2d2mp5mXTqL+wNoKnhMn5apN9paGjqz7ln3k8P3ps5q2eXgyvKS46KBYK9yt1P3hUnet4RYCl5SUdf27o1UIczhhx58qKeXJZchHXOKQTX2WpV+MwIVh74gdOFDTaJoVtbZt07PUZfFCOVhs2iZ9tOHvKRUdAQCIKlyyuOQanyC4CQBosbq2LW/8b7HPVnnAEWVPzLEabvmAVG0Lw6esMKYORLNSAcVM1CiGsVLXuA2W7l4HPeQjJAzH4So7sPcfxvRkDoCd+Z7EbIQJ7PwRQM9Zi8AGEHf7PDrHzZwvKMIRnshCkMoIqqBQoaALCg5nu5ZSSik17RQxaEayBM1rSVYAHlIAv1DMBd3FfNA3FewIn69/DYe66vDhNe/tXXbthsvx1f/8FP/74u1wCy7c9O4f4mNr39f7/Pvu+Cy+evoncCTSiGUlC+CV3Ljq71/Fzy8aOq97MnCLbs/c0HzP3NB8AE7xZJfS2dGWblQ6tQYhZjSFevJtpwqEEM4rKpWgL0KJvJhR7ZJOt+9Un9czr3DktU8MjuM5LHyv96Gi1eraN2+zK9TIsBHpCw6LteKdSt3vPuCuTfvFoveYpa3/jrSVuk7wVk5YsmRPKm5lhGC/iyEqi+JQJ4yt8qPDiuvOTqmtu+u0GkKAefHC5iXu6iqb2ni84f5EGk1BAIhkpGRp2TU+nnd2Yzc+13L+W3+r4ImTEp6Cnfjl24nyxkmskHHKYtiqRzFjVYqhLdN0stbS5FOpHiom8MHpJOzAhPRMZcrcFZ9tMJu+PLF48eLTAXwEfdqYFhcXF5x77rmfyd+sph4D7QgDtpuGiU8oIgG5WAh6Q8yOcNxJaMlEe7o53q7W2916o0+xuwqmYvGkanDdFr8g5fdvKZak4IT/HZimZktH74uc2fzciLnhz1YZdf/7IXctAMzvyDTcl+qs5k7wJbwo9uXUXtcpvr7LlC2FKvG4BtVCyOnOyB891w6y9etB16Fvf/kindICnyuK1ivc55QDwOP1Dya67b0BAOjOuJPl5Vf7OY6HbVtm4MDfYus7Xug99r1+s/GGq8TSjJ/P+0UwA6AWNVyKGStVDGWxptNTDF061dYD8zg7rxfMjXEbc4IzM1VwmvB1XBf/ab4nMRthEez8UQynk1EvHo9nxIKk2UYuO8IWJAG0AgBs2zZg2Cne5BSXJZh+22UHqZcr4gJyERd0FwoBZkc4RgKyPxCQlwQWYgkAQLcMvSPT1t2WadC6tAYpYbUWUhh5L550iXYhcLDQTL1pJU1vMy+fDL9/TTnPCRPybS4IMmcv/EDRA8WnxLbs/5NQoCV8Q43d0iTWCn9S6n/xYXfN4RJP9TVmuO5mLVZ7IvtfYB8x9uKU3seUUkAWc74Pq5VnE/BgSIG9d8+yDkoLqqykHn+/67xSAHi28Ylj4loJJCsrP+4HAMNQUvN3/RoLUnVFAGBQqv15nd3xyHmuSbcAYwDUpragWvEixUzPV3XzZEMTN9q6bwXMgEBIf2/5MX4S2lM2Lvm7gmc/Mrwmf+edGXzvTBknlx+7obKnw8IXH1Hx6Ie8+O8nVOxst/HgB9x4ss7ElavZNVgemfRicYYDE9j5oxQDPLBdLhcT2GOE4zgxa0cYHsKO0M7aESqyyWteW7aD1EsKiF8q4oPuEj7ok2epHeFokXhRqvLPKa/yHyuejKmxSFumKdWhNCBqNAZ0JEL5mh9HCO8VM5Wwn0cm8nxGs0s7PP7NAY+7dkiBeSL4Q4tD29d9xyg88vfGdS0vDykyN7WKNcIflPobPiLXvFQRqL2uwaq/zkoedyrFAtLUv0kDtXTC544ev9Pz+JA2g01NvqZUak2Voera+7nTRIEI3MstLyRbzFcDANClFKeqKj7kBwAt3dm1bufPg0VGQgSAVsFq//HlvKe9UmbieoKhlILT7ERIMZO1qm6s0nV+g6V711I96ObGP086qlBcdb+CtD78Xe2/vmFgXpjrJ64ppfjiIyr07F9oe5piVQmHHW02qln0Ot8wgZ0nmLDIHyUAtL4LJEmakbZ3+YQQwhGJD0BCQAOgjWxHaAaom2T9wF3FfMjr52emHeHxwhGOFLgLCgrcBQXLsAoAoBhqpj3TEm3LNBjdeoMnZbUXgNiTfn4ReXhEvr0W6n2IJvlOm1+UCQRPKxUF/7i+h5LgFpOLrpzzUOm6ps27/1AaMpWcxYbrOsSab/5Ba/jJx+Q5984JVVfUm01XU+W4vGkX8G39HlNq68DgAkpvsrlzrq89Z5dMRSHpI4fPL6W2Rc/VVibDsr9oZ/uO9FH1GT8ARLQ56aqKS30AoHfubTl7703lMkxiU2o/Ums13HapVMMKGScAw874MmaiSjW05ZpG1lm6a5Othwo4BIA+haoEwARla/EccNclHrzrb5khx0QUii89quKTayU8edTEWXOdj/itOw2cVSvgkcPOTVlKAdMGnq038dkNLHqdZya8VoWRGyaw80cIQL8zmSzLLIKdB3LZETYhAaAZAGBbtgbDTgsmp7gt0fTbWTtCLiAX80FvmPd7Z6od4Whxiy5PbXCepzY4D4BTPNmtdHW2ZRozHWo9HzOawxZRJjUX1C1axcB+GIl9Vtz0N4nyKZzff1I5xwnjplDcwaVVL238frrwwB+VdV37cxYVntQlVn/7Zq3hhx+X5/xvdVF5eV172zuIPuYGLPPESD8RT2Hl7GK2TnsqgxzJK5RS7Nq5TiPE612YKGpa6K6q2t91QHkz/agHAI0aCzOV5e/0UmpT8cgj7Wc3PlgBAAnY8RvfRfT9y121Y50zoz/Uoro7Y8bLFENZout0reMnHZxDqAdA/zqCST6lBOSRPxa/eFHD+5YJuGatiG88oSGpU2yew+Mvbxh45ApPr8BeUcLhxSYLc4I8Tv9TBjdtdWFp8ZQ0K5oNsAh2nmACOw8sXryYwKneTvRdLkkSE9hTEI7nZPCcbANIw0IaabT1syO0LWrYKd4kGdkSDJ/tskPUyxcQv1jMB93FQtAvkInJC56q8BzPl3hLi0u8pQDWAgCSeirZlm6OtSv1dkRv8Cp2dyFGsL4bDzhCeJ+YqoL9DNKRZ1IaLe/2+k4Lut1zQuOxfUnweJMrPo37O55PnPfm371eyxikJFZExOrv3qQ1fu8TcuV/zykJlza0da/nzDFFlqqkjBvGsccUtjFoELXpVu8TOb9Q3zpU1GIYSyq8Ua7lTPfqqiPROvWN+L8km1CasFapFaXneU3L0Mr2/DGzKvpGGQDsDJoNP79KKle93JT2T59qUJtaomLFixUjvVDTrZMNXdxk6/6lMAPcwDzpaXQ/YEebjf85X0aZj8OlywQ8dsTCv9408ZNzZIh9Sl2+sEnGgjcNtKcp3rNEwEOHTCawJwFKqU3BRU3wCQ1iJg2X0kFDbavyPbFZChPY+UEEwAP9nW1FUWQCexpCOI4nMjfIjrDH2/+YHSEycrYrZpB6SAEJiEVcwFUihPxuTh7Sz3im4Jd8fr+02L8wvBgAYFiG3pFpj7RlGtUurV6Kmy0FlBgTmo4j8vCJaPVB/TuiSaHD5hcrgeDmMlHwnXDRZqBkc2BbcImxYP+tmaWxo/6Bzy+NiXO+/zut6bvXyBXXVJXKf29qTS7g7EHjhsLL21JY7cpE+SIn0slRa+CYYOJoe3kgPig6nkhwsdbWc8vtpB59n+v88qZEi/ZK9F7egknTdINeVrzFo2uJ2Iod/0+uUtvCGqXarRtpx7azWUfG4aCUgtfseDhjpOaqhrHa0Pj1lu49BUbIRUgB0KfQdAbY4C0o4HAkamNJEY9XW2zUBAl+84qJQxEbgIadbRa+tU3FD892IaZS+CUC3QJSI+R1M/pjWNBVi2hpW9BTlmgkbZcZp247Rr00QgPoRgARBPkuEua7SViMkAK5mwvLSS4ggnCF6J8WUluXp+OY7TCBnR/cwOC2EUxgz0wIIYSIvA8ifDoAHTpi0FGPWO+YrB1hSjQ5zWNLZrYtPV9EAq5iPuwJCt4ZZ0co8qJU6a8qq/RXAdgESiliWizalm5Kdij1iJhNAZ3GQxO1f7dolgB7YcT3mHEr0Ci61gp+3+qyE/Gi98qFYsvqL4qNrU91nXno/pBErX7n2EVJsepHv9Obv3WNVPaBsrLEQ22taglHR31RscA+knwlK7Aph0EC+1TzSW3gMsuCvWvnFtlUoX2AbHFHM1Hzha67qWnr0PgzzJLwOrcWb2g77Y1fFfsthW8UrfbrP8h7O8tFVsjYF91O+zNmolrV9RW6TtabunsD9FCQIAjgWIR/BghpANh21MS+ThufXn8sh/qrmyV8/J8qfvSsDo8I3HepB5/beOza9Mw/pfHDs1042G1hdRkPv0Tw9jsy+NO7Zl8Zi02prVpEVSxeT1uinrIlM267rRj12FH4EKEBRBDkuhDiu0lY6OIKpAgXlqJc2GUSWUJPfQWf/Tl+2N2nPMF8sPPA4sWLywD8EEBT3+UXXnjhB0Kh0KL8zIoxlbEtx45QMIniskTTR112iPr4Qs4vlXAhT1jw+2aiHaFqqkpbujXSnmkwu/R6V9pqL6QTWDypW0jqtDLi9Z8WdLsqQyeyLU3tSK3a+we1Mtk0KGWj3mO2fPNaqcSrmt3/6W4t9BIyqmP678S7Gv4qXVYNALqQarDPWXwswmxb1m/MDxshMdNPzezaURWNxk4PnptaniikPt/jLX82FCvFWfIFCAdWylbzSy1nHfxLBYFNH55vN/zlErGa8rO3kJGatubJWLEKVdeWaDpdZ+ryJlsPVnCUBUBmIboFXbU4NWPzRtKSjKQtm3HqsaPUa0epH90Ict0Icd0kJHSRAiFCwlKEK3Cl+MBUqu701V1/UTrfk5htsAh2fsh5ouZ5fvZd5jNGBcdzIngubAPhDGxksnaEQAeAPnaEBjKyJeheW7ZD1MMVcH6xiAu6ivmgfzraEboEl7s2OLeyNjgXAGDZlt2tdHe2ZRoznWoDHzMbQyaUIf2ox4rEwy+h2Q/lLkQSYjuEpVogeGqZwHvG/GUpu0p8B075qre+eVv9+rcemCOA9ubh12SEip/+Vm/9+rVS0XuDJW0PxjsqhVE081lMGo5FRDiz3/miKPFmWyiYqey7rL1Nisfip4eXxsvaSoVw8aPNf1YzVoon7neRoGce793/t84N7c9WRIid/vnFnHJwqTxrOjJSm5qSYsVLFCO9SNPpKY6ftH8Jsf1wbFSPMasqKGYelk0tzeI0xea0lCUaKVs247bLilGvHaU+2o0AiSDIdZEw342QEOEKpG6uQIpyYZdFxPGMJueLEIBJFdiEkEJKafcQz/EAbEopzTYx4ymlZvY5Dk7w1xqwzqcA/JFSqhJCLgfwIqX06IAxyyil+/o8Xg1gH6V0cL3K2I9HBqDTMUSlp90X7gwhp5AWBIFFSBjHRX87QgoNKiJQcSRrR0gpBTXtDDFpWjJ5zWNJVoB6UEB8QiEXdJXwIZ+Pd+e9ecxI8BzPlXhLiku8JQDWAABSvcWTDXa33ujN2J2FZByKJz2iUQq8AS22y4hZwQbJvU7yeVeWcdzo1RYhPFGrzqvZVriyc/Xu3wulmY5e7+IqRSj/2f/p7V+/Viq5yihs+KsSGVHczufbe7/eKWf1e79Ot57ol3am6zDfPHC2JxiT2tZLi0v+03B7OmFGBdF7KS9JRUbN67/UFqaOFL8ctlr/9yqxWHdzee34N1FQSimv2vECxUjNV3VztaELGy3ddxKMoEhI/3zVWRu3n/pQSmHYRFMsTktbgp62RTNuu8w49Vgx20sj8PdNueC7SVjsJgVSlA+70pxfhOPS4gGH2XjBFECPLdYkQAg5DcCnAbyfOJ+x7wC9JdotACiAy4hTpwAA9xJCfgHgt9mfuYSQP1JKLULIuuz4kwF8hBDyGoDrAHycEFIK4NUecQ7gU4SQpyil92Qf/wjATwgh0QHCez8Gvx5LKaX9AhTZC4EtAJbBuejeSQhJU0ofHc3rwAR2fnAjx6mcCWzGREEIARF5D0R4DABxGIgjjkbEMaQdIXXTcG8eeMgT4r1T0o7QJ/n8C6TF/gXHiieNzkxHd0u63mxT6vxpu80HbrCzx2jhOSL6uEQ1zCeQ6n4ioaEq5vFuLvV6Kkd9QSK4y4p3r/1vs77hofq1Rx+p6WmbXqEJpT/7rdHxtWvdZV8yA/U3GolhRXa1EHX3VG8QAWJvKMUyjAsCL/Qrbtz52iKNJoP6xfKmkkcb7k5FjE7eE7xCJBafWLP9Rz6PHpV/dRptfe50uXwML8eUhmhWKqCYiWrF0FcZGr8umyftIyQEJ4qXHdj7D2OSsWxqqRanZixeT9uCkbRlI2G7LaeAz0cjCJBuBLkIQnwXVyD2FPFF+bDLJoIMQAbBdI4m54PJvnj+MoBqQsjfAXwJQJBS+mEAIIQ8TSk9gxCyA8CZAEApvY4QciuAdXCErBfAYQDbAGzIbnMXgPkALgXwKwCrAMgAdhFCPgTgkuy4BYSQTwD43+zjFgC3EELOo5T2BCFUAI8PmHOvuCaE+AH8DU7H7RiAG+AULKsAPkYIqaaU3jLSi8AEdn5wI8c1NEsRYeSTwXaEKbQhBcBpcJK1I0zyJlFkSzD8tov2dMUs5kOeYiHgmwp2hCIvihX+yrIKfyWAU0EpRUSJJBuSdXZbpkFM2+2cSWKuUWRkDEISEJDQFKDq39CVECMmWeAqKjzDJQjeEY+b4wQhVfuumieKTm5bs/smT4EWDQBAmS6U3PBbo/Nr1/hLf95tNnyRZoZ07igV1ADVbBDCgXMJVs+3RUV8T5svrPcWJR497EmlEicJ7yeb/Y833J9q15o5f8FHXSTe1nX2vt+X1Il6+luf4LloMT8txTU1bdWbMeOViqEu03WsMzX3RmoESgn1AX1cwJmQnhAopdCz0eSMJehJWzKStsuKUY8Vtb00igDpRoA4uclhoYsLSxFSIEW4AlnhvCIcAeWdpdHkfDBpRfKEkA8CSMG5xcgBqIATkb4+OyRCCDkbwDfgRNZtQohGKf0IIeRPAP4EoJZSui07/k0AX4cTAQ8CKAewFc7l1a2UUgXArYQQDceOsxWAH8AcAOcA2AmgBkDflJKBAvvyPr+nAVwMYDOAMymljxFC1mbncCWAUwghXB/BnhMmsPODF84tj36QURY6MRj5IGtHGKIyQj12hJ057Ag5g6YlU9C9tmwFqIcUEr9YxAXcJULY5+KkSbcjJISg0FPoL/QU4lhaSdpqSDTqnWqLmjTbrLTdEgSxRj03Qgh8slkAHIAa228lVG/a71+v+oOnjOhtzfuqy17f8B296PC9DSc1P1cNACWGUPw/vzO6vvaJUEFl1G65DGpFrnUljorldmuyja/0E7fUm1d4Nh7rlSnpNDEa6s4Vz1VX0Vc6nsy0qHVcsOgTblfjC12n1f+r5L6Fdve97xWKMIZUl3xBLWrIihkrVQxlsabTNaYubrL14HxiezEw1Y7p6DFj2jA1i2gZi9dStugU8DlOFzRK/YgggG4EuS6E+QjnpFx0kwIpxgddlEWTpxOT6UJlwMlZbwbw/yilPwVwBiHkOwBup5QeJYS8H07k5jE4keGLCSFvg/OZ/i4AiRBSBeBGOCL9u9ltLwNwLpwINgDIhJAApTQB4OM4JpJ/BydyHsnO42kAnX3meATA/wyYd3uf38+GE4UPAijMiutaAO/NzlvIzuHh4V4IJujyQxCA2XcBz/Pc8UTUGIypwmA7Qg1RaKhHtHeMbVoKDJqWTF5126Llp25aAL+QTUPxBgXvpKRJ+SQvv6xoiRtY4gYAy7bQnu5KdqntsS6tgcSM+qCB1Kg8qgWe8AXejBf2U95Y+zaForLDEzyzQHaVD7k+x0lSZOEHqh8vWdu8fs8toYCR8haaQtENN1ndX/9Ygbcg0pk4TzBydoZcYB/OtPGVfup1WwBADFU9J/hqb3rIrtdPNhbH5lnN0b30aPogCRV+1FW+/65kSXRn+FvvReroYmnKdXajNrUF1YoXKWZ6vqqbJ5m6sMnSfCtgBoVp3JhlMrAppbpFNMV2oslZOzgzTt121PbRKPykG0HShRAfIWGhixSIPQV8KucR4OiACY0mm4lOCIHikQcyJorJFNj3AHgNwBcA/JIQci2AlXCiwTWEEDeAHQDmAvgnnFSPAwBuyo4DnHjN7wkhPgBVADQ44vszAH4KR+wCzmXdzuzvc+CkdQCAQSk9TAhJAfgKpfRsACCELAVwNZxIdr8CyezzPwfwT0rp4wAeJ4ScCSeN5acA3pfd391wLhyGFdfADBDYhJDHMfRxNFFKr5jM+YySAAYIbEEQpv17wWCMBCfwbghwmwCSMJFEEi1IwkmT62tHyCkuSzA8liQEbLergPjlEj4sl8phkSfjHyrjOR4V/lJ/hb/U75zvgbSupNoybbF2pcHq1us8GautEGR4CeKSODfQWmNn7qCxGN9KxOWmL7SlnOddOT/fXHBh5csbv6dUHPxr0/L216vCFl/40z9Y0W9dUcSFU136WtEY5F4yzzrCPyeeDipLPADUJHZ0SAVWNQDs21OQcbevMMVkgtuV3EOCwQ8Iy3f+Wn/L0yre8HmON1zcqBvbTASUUnCanQwqZrJW1fVVus5vsHXPWlsPeTgSBtBbBDrb0jtMG6ZqETVj8boTTXZlo8leO0p96Jty0Y2QEOELpG5SIMe5gEyJ4ALgGo9ospWOovP+n6Dsgz/L+Ty1THT+40ewlSR8q8+Hb9X50NreQuypW0ENDZ7FpyKw/j2IPvNnGO1HUHzJd6E2vAHfinOOf1KME2Uy009XAPgFgHlwRPReODnM8wB8C8DX4OROHwHwDwA6gHfDyaF+EE7E+ffZn7cBuAKOwC6Fo52ugKP5KJy/dFd27FfgNPFbCeB1Qog3u17fk8hhAD8A8HYAe+Ckm2wB8OPstiQAKUJIBZxI+dvgtCKugRMVfw+cyPbLo3khRiXqCCE/gJPH0p6d4IOU0qdGs+4otn0dgKdOYHvXZ682cm374j6/FwBoAFBEKVWzy/oe14fgvHCX4ditgs9TSnce57yGww+gn22MIAjsBlueURQFLS0tKC8vh8czPhf8qVQKbrcbPM/e3tEw2I5QRRdUHEEUQAOoTW1LN1Wi2ZZgELhNkQ8Sj13EB2mpUMCVS0UumRPH5cX2Sm7ffGmub35oLoAzYNim0ZWJdLZlGpUurV6MG40FFlFzRtwJIcQl2+XAbqjRXZpm+Ft415rCYHjtoGIjnne525d+rKq9dF3jxr23FYcsNfyj2634f7+30L7Z7sxUc1a/P8a5tEkGANvtkgDgHPqIHwAi3ZzR9dbp9klpH/9K7CUacL+NrNn5P/jLxoz96hZh3KwMR41hZ3wZM1GpGtpyTSPrLd21ydZDBRz8cM6Bx5ghtts2pVSziKpanJ62e5qLuMyY7bFj8NEIDZBuBLhuhB2hTMJiN1cgR7gCl865BPTkj+cpN9lSU+h66BegxqB+Rb0kX/sXpLIFCJ32QXT840fwLD4N0cd/j6J3fhW8vwjtf/kK3ItOhZ2OQSyphd5+mEWv88+kCWxK6RuEkI/B0VM/hxMxXgpHvN4KoB7OX/caOHnQHJxosgHgmwAUOMWMyLqB3JNNF3kRwKfgCPbbAHyAUtoE9EamPw3g/wFoBPBFOIL+AThuJRIAi1Kqw8kB/yKAq7L7ujQ7FwLgFkrp3dntzQHwEoCD2SJMMTv/vZTS743mtRhRYBNCToWj8DcDuBZOqPzB0Wx8inEenKum0wE8muO4rs6O+xGl9C8TPBc/BkewmQLLI8lkEnfffTcWLlyIRx99FFdeeSW83v5aSFVV3HvvvbBtG5Ik4ZJLLoGu67jvvvug6zqKi4uxdetWbN++HXv27MEVV1yBw4cPY/Xq1Xk6qpkH4QgnuEQPXE74IgMgAwWtULAbbaCUwtQMi+qWJppE81BJDRGfUUgCfDEXcpcKYa+P9xyXHaHICWK5r6S03HfMIjCuJWOt6ZZEh1KPiNHgV+2u8MBUL57nZA+frgaeQbRtm5KmpXY4fI7sdVX1P/8WrJrz/MbvpWr3/6llYWR/xbfuscxPvbes7c+0VS7g7d7zw1y+UwAA6pJlXktlTg/vDlsWsP+1jfrqRBXZHnkFhfYKWnHwf7nvfITyiSJhQr9cqUV1V8aMlauGuljV6RpTk06lerCGUMcWrS9TP+0bAGDYMFSLaBlL0NK2aCZs2YzbHitGPTRC/TSCINeNINfXDi7CheU4F5RBODcA93TMTSaEQ/G7voaOe38w5Bi1cTdCZ3wYACBXLIXe9hYsJdkrojm3H1TPgFIK2Da0pr3wr3nnZEyfMTSTbcHqAnARHFEdhRPJ/hCcM8BXAFgAvkspvYcQ4gJwS/a5j1FK6wghD/VsKOuLrcEpivwMnFuMDQD+ixDyV0rpHjiFlN+A4zgSh6PpboYThf4InNzppQC+Qwi5CI6w/gMcgf8XSul1fSdPKX0dThT8LACnE8eF6NvZeR/ICvCVlNK7h3sRRhPBvgDAw1lD8EfgJJKfRwj5Hpxc4rcBSAD4M4ASALsppf+VfWGeAvAKgFWU0guyL+Sf4OTUxOBcOeB4tzeKufflbQB+k/3/0RzHtRw935oTjwvo3+aYCez80tnZiQsuuABVVVVQVRWtra1YsGBBvzG7d+/Gxo0bMX/+fDz44IN46623EIvFsGrVKqxcuRL33XcfWlpa0NbWhlWrVqGlpQWiOOk1fbMaQghEl8TD5XjeKgAUZNCKDHrcUCzT1KhhpwQTqssSTL/tpmHiF4pJUCoRwr5CITjq2xdB2R8KyotDS+BYBGqmrrZnOiPtSqPRpdbJcau5mBCz97PtlgW3G92wM3ehKWarXnlVMhA4s4DnZR4AeNHna1z1aV9zx8v1G/bfOeeb9xrhqy8sj//F1xx2cc6tzvlSjIDaNmRJnN/4uCpUAW+8UpmpbVuOV7veQFXKSxsDd/G3fYEf17xLalNbVK1YUcZIL9R0+2RDFzbZun8ZzABHSEm/wVMgIN0TTVYsXkvbgpG0ZCNBXVbM9tjRrB2cYwkX4rtIgdBNCqQIH5YjpEA2OFmEc7vZN5ucLjh55D8ZaqgQ/IW94610FK6qZUi89i/wbj/MeAfE4rmQimugNR9wotp3fA2FF3wGYtGcEbbOmCAm26GsHMD/UUpvyOY1P0wpbSGEnAvgVDgFgt8jhHwazqerFc7n7Q+EEAU9eXoOf87+fxBO6sk2ONHuMwF8gxDyCUrpE1m/7JPhCOGtAD5LKVUIITfBEde/IYTUwCluPA9OjObzAM4mhLwdjrtbEYDfUEp/mPXy/gUcz+0/wMnN/lLWr/thOBH6YRmNwC4F8CoAUEqPEEL+BceQ+wxCyFfhVFuWANiTDaPfRwhZRSl9A8BGAL+ilH4lu62rAeyilL6fEPIROLk6ALDgOLc3FjYBOA3AE7mOC8ARQsgaAP9NCPl4dsw5A7sJjRMigH72LjzLIcgr8+bNAwDU19ejubkZZ5xxxqAx69at6/09k8nA6/VC0zR0dXVBVVXE43EEg0FQSmHbNg4fPozTTz990o6BMTp4QZAhOBEdFYAKDZ3QcDDrhmLbtmnrZoozqSKbguGzZTsEH1dEAlIxH/IWCyGfyIk5JaQsSK7qQGVFdaASwEbY1KZdmWisLn5EiKj1NENbYXAZP0cIimTeBex1KbE3dNMONsmezR63d3kxANglG2qeCszX5u673fj8vw/7Pnt+RcdN4ZZSACiXDIlXVAWA91zxabm1WdKFA6fjza7DqIx2kgfPOio1LeSP+8qOUgpes+MhxUzNVXVjta4LGyzNcwqMkMtJtSvoHTwJedKGBV21iJa2BT1lZXOTqduOUp8dpX7SjQAiCPJdJMx3kbAYJQVyNxeWklygfzSZVbmMC0R0gxo6IHtBdQWQXCi44L+gNuxG/Nm/ILDxEhBCEFh3MTLhl2GlY/AsOhWZw68gyAR2vpjUtu2U0icBPJn9/Yt9nnoawHo493Xu6KuvsjnTykDru2Hq6LZlf3rGvQInAAs4BZM9y//WdyVCyBZKaVf24XBa8lUAp2cdSu7vs70vEEK+TymNDrlmltGcchLI5oURQtZnJ9QTee6A88YtBnBqtuIyBMew+w04Ivm+PttaAuDe7O9/yv7/dhy7Qhnr9kYFIWQVnCuTewDUEkLm5DiuHkU1GSkiApxbHr1wY2kPx5gQKKXYs2cPeJ7HcI4ujY2NUFUVVVVV8Pl8OHToEF5++WUUFRXB5XJh/vz52LlzJxYvXow777wTW7Zswdy5cyfxSBgnAsdxAueSQgBCBoAoTEQRw1HEADSAUkotw0xCs3ROo7xs8GKQ+OwSsdCsFApJiRjyup0IKDjCkRJvYajEWwinhwKQVJNqd6a1qyF5yNNpNPlsLia5hFQN9EeQzPw7YnPVSY//7GLZVeRpPvlz8oHm5+Ifevxe//fOLqn/bmFHjcCBm2cfSh2IB+S1obfE3Q+cnc60tYOz93G3XBlzm64xJDTrdtqvmIk5iq6t0HVufbYxS4ggCOeOosMJCmnTpjRpEjtu8nbKEsy0LZkp22Wm4NETCBhxErD6dOETurgCKcKFpSgXdplEngmtqmcMUtkCqE174V1yGvTOo/BVLAHheIgFTp8O77Ize8faahqc5IZtmaC2kqcZMzBF7sH0aVlu5nhuUlq59xHXI41z4i+5nxtRXAOjE9jPw4k8/xKOCFUwuKf9mwC2U0pvJYRshZMfAzhm4305AOdb5gk4yewd2eXHu73RcgGAH1NKf54tbLxgiOOarG5HYnZ/vRDm0Zd3CCG46KKLsG3bNhw8eBArVqwYNEZRFPz73//GpZc615jbtm3D1q1bIcsyXnzxRezcuRNr1qxBKBRCNBrFwoULsX//fiawZxCEECJIoh+SCPide5Vd0NGFVuxDKwDANEwNJpKiyatuSzQD1EMK4OMLiM9XwgX8tQWLqmoLFgEAdEunjakGLaN3dHZpjVzEaCk2Ure5kgaJmOIqoaD89MALRSuSC1+9OXTLKiXy8fJkwVxzv8fu0qwDR+frmXqDHJi7U9i3wZKH+h6lJtXcihmvUAx1qabRtabu2kh1fxWhTsOP3oMb/thVC3rG5tSUJRhJWzJitsuM2m7SZXmECPUKEdsvRBEQogjxcb6QxLhCxIRCIc2HHGnMgQcHljc1TVDqd8HoakBgzTt6l/lWnIOOv18HrWkvjK5GyBXO33Hs2dsROvPDvcEJI9IMqWQuiORGx9+vQ9FFX8jLMTAATImkrdnHaAT2PwGcSwh5AU5HiVtzjLkZTiedj8CJDF+eYwzghO3/nM2l7gbwQTgdeo53e6PlAhzLl9kG4L/geBr2Pa4PwInO900R+S2l9K4T3HcueixmemECO78899xz8Pv9WL16NVRVhcs1OGXNsiz8/e9/xznnnINQKAQAMAwD7e3tqKqqQnNzc6+Q7u7uRmFhIVRVdYp9GLMKQRRkiJCdQkwTGSTQhkTv85ZpWaaiW5KJpGhQiBbnK3AFCmoDp6RX8OdakkXi7ekGoy5VJ7XH7lTilEspCy4qCLet7HrE+guZ62lxh2MJu3GvDy+d94o7VejcAaM2tSTFipUoRmahplunGLq40dYCS4nth5N6B9OGpdhES9u8dsgSU3FbNuLUZcdsrx3tdboIcRES5COkQIiSsBQjYSnGhV02EY9Fk2dRbvJso+xyp+meu2Y13DX9i7SFYAlKLvsBtKZ9CG25AoRzbikUXfTFfuN6ItoAUPmJ303wjBkjwD6peYBM9y9/4vS6H8oDaCel9POTOJ1RsXjx4pvhJPX35hpVVlaWnn766dfmb1azG0VRcM8998A0TZSUlGDdunXYs2cPzj777N4xr7zyCrZt24bS0lIAwNq1axEOh/HAAw8gFothzpw5uOyyy0ApRVNTE6qqqnDrrbfijDPOwNKlS/N1aIxpCLVtmxpGylQ02TTdppeXkqYa97hNI6ImMsWCfARvuTW8VZUSCtOWVQ6SWEy41DyDCmn4EKE+OE4XIT5CQnyUFIhREs42F/GzCDKDMbv4bt31F30/35OYbUx7gT3dWLx4MQHwRzhekL1UVVWVbdmy5Zr8zIrBYOQbaqs2aJTyQlLzutWoLKQs3UwVmjIlHp9m+mWFdJhB8cHM2/m1rz1uPP2f9oSKjq72kPmMJpHOkfcwcIeUE4BCjtJCDggJlPp4IMBTKsmUplyUJj2UpiSKiMu2uyQgORG32SgFsUHcNoiLOj+yDeICIFNAssGJFETs+Z+CSBQQnP8JtcDpFjjDpJxhgddN8KYB3jAhGDaIboHTLPCqBU61wCsmOM0Er7K75owZSDmAbZlDL0/EnXfGGGF11VMEliLCYMwsqG2BIGlxJGkIfEoXpLQmSWmd4zIugddcssvgPF7L8vosyLLtFsTe8r1+/tGWDfy78xTlcft8dFad4qp94SnjI8V75folcxOPdbXcTzkyvNMRpeCBME9pIQHCAqV+AfBxFF4JVHHZNOGhNClTWi9T2uWiNEYGpLCNeKwUcMQwcdngXBRwUed/GSCyDYgUnGiDiLYjkvv8gLfBGRY4w6LO/yYEwwSnGxBMC7xig4s5ApnTTHCKBV4zneUT4fLEYExnWDrIFIEJ7Mkn5x8/ZbcSGIxpQMYASZocSdo8l6Y8nyaCoHCyrFGXS7PdboO43RbndluC5KIiIb2+F2P2oY1pLvPutnPSzwXe7rPKytwAwHVE6Gea/2yvKDfFwtqgNU8rDR9OdzhV8ZSCA7w8pcUcUCAAfp5SH0fhF0ENF6UJt02TLkpbZUq73ZR2cwP8+CkFl40muyk4mQJuCiJTQMpGlnsiyYITVSYSgGyEmdhZoayblDMt8LoTSeYNE4Jpg0v3iORsNFk1wasmOI1FkxmMcYGCCewpAxPYk0/ObxLLslgkhsGYZCg1LJ5PZTg+qQlCWhfFtCWJGVuSFEiyysmyLsiyKcqy5ZIk6uZ59DQgmTBe66jV701sRUP1JonWuoJ9n6t89sXM+0rrZABoK6kLn9a87G0tybY6kVI/B/h4SiFTmnLbVHFTqKKNqESRIeA4CiIDnGwDIRtccapXLCObdkFECnD9o8m9Itk0wRsW+HRWIGs2ONUElxXJvELB2bmPiMFgMGYfTGBPPjkFtmEYRq7lDAZj9FBqU47LKByfVAU+pQti2pTEtJUVzESWNF6WDVGSLVmWbbcoQgLgz/7kDdUUcF/jadrTrgu5VMUCCaWDxwjPvqp9CvdQiXPO27bbCgd4yX+6p9LbFGlJcJRYAE8BErZBQgZ4W3UiyYYJLhtJ5s1sbrJiOWkXvfnJJnjNOv5o8mS3YmYwGIMRwW4HTRmYwJ58hhLYg4zXGQwGAKg6x6cUnk9pgpAyJDFjiVLaliSVyLLKybIhyrIpOVFmuAnpn8M8lWlIFap/jW3N7Cs8y2/P8w8pUklHt1kSNegHwkfcPcsW2iSm+o7a84RT1Vdjrz+dMIniCGjOpOBYyhmDMfvoBHA035NgODCBPfkQ5Cgg0nWdRbAZswJKTZvn0xmOS6qCkNJFMW2JUsaWJIVKUk9ahiHKsuWSZermeRzzXp4B2JTi8Y5VmX/TrXZH6cle+PkR87Pll5qjP/PdtdfF48yeZed61abrt+hzrn56yaGSVbHuL931j29M6MQZDAaDMWqYwJ58WASbMaOg1AbHKQrHp1TBiTKbopixJDlDnSizk5Yhy6YsSbZbkiAD8GV/Zg1xw63dnbiw7QXPhUG9rCA02vWkp17RA0QsOpvbsa7v8tWaVhEtISWhyDa+s3zpuhsv27riS3c9uGfcJ85gMBiMMcME9uRjIYfINk3TopRSZtfHmBroJselFJ5PqYKQMkQxbYpShkqSAvlY8Z8ky7ZLkqib4+AG4B5xs7OQ3ama7rv096aOhtZXoEisGcu6fGe3wqULpKuTv7C5QJ+W5gAqTasclCZ21DZKZcblJIEjPwVw0bhOnsFgMBjHBRPYk8+QkWpKqUkIYV3WGOMOpRbluHSPYNYFMW2IYsaWpAxkSSWSrPOybEiybMqyTN2CABFToPhvuqLbvPXP2Oktj4nvlFOB6hIAhWPeiG3Bvb0l5gIpvrJ4D59riI/SxofWcat+9Lcn971RtcBz42Vbr/jSXQ/+5UTnz2AwGIwTgwnsSebNN9+kixcvNuB4VfaztbJt2+Q4jglsxqggRNEIl1QEIa2LQsoQHIs5KskqZEnjZZcuyrIpSZI97Yr/pitNakHyjvS7u3cHziyxCz1zTmRb3hf3dJpCUfln0z/tDPhoca4xVYYZPeCWlvOZl4ns+kmpYhz61o2Xbf3nl+56MHEi+2YwGAzGicEEdn4YSmAbYLfZZy09nsw8n9YEIaULQsrMFv8RObcnswxmj5Z3bErxdOKU1n/Si+2O4LIKuLkTjvoLre26nQgGvTSpXxHcFRhq3HJNtw7IEv6zjrM3NuzoPBpaatv6vu8B+MKJzoHBYDAYxw8T2PlBh9PdrV+6CKWUFTrOIHo9mbmkKohpPZvLbEuSQmVJ5aTe4j9LlmXbJYqQwdIypg3HihbfFtBDheXjtmHbguuVlowpl4Q+r/66zuNF7VBD12iq91748NjJ5KTLn/pXomnzjzhN37/0xsu2/vFLdz24e9zmxGAwGIwxwQR2ftCRo52pbdtMYE95Ru/JLIpwcxxLy5hpnEjR4mjwPv162pQrQi47Y37Q90rJcGNXq3o5AOgi8XSElJ2hZJPZJa2glr77NwBOP945NH392dsBrDje9RkMxqxhX9X1Wz6Y70lMRZjAzg86gEHet9kUEcYkkvVkVjgupQhCctZ5MjNGx7gULY4CrqVds5ViF3jgs/ofmjyeoaPXADDHNCtAaRqEeB/YwAkfevqu0tiaL5db+p7UCRY8/gHAk8e5LoPBmD3o+Z7AVIUJ7PygIUdUk0WwTxxKbRCiqDyfUnk+pYli2hB7W2UrkKRjnszZtAwXIfAC/S3QGAygb9HiGSV2ofeEihZHgloWdW9vopa7jJds1brS+1LRSOsQgHgobcgQsvS5FeSkTz7cnJFNdb8pr05Z2s4bjrfgser6LU81ff3ZOwF84LgOhsFgzBbskYfMTpjAzg85U0Qsy9LyMJdpwHCezFpPlLmvJ7MLOe4QMBijYSKKFkeD++ldSctdFgCAT+l/avJ56KjSTypNs/uQJMHkiXSkDC/PO/KAvH/xBzZa2q4IQL8P4PPHOaUvA9gKVhPAYDCGxsr3BKYqTGDnBw05BLZhGJk8zGXSOebJnFYFIck8mRlTggkrWhwNrd0JqAV+8IBANfujnmcLRrvqkrTOH5KcrKV/nMr5vnTfy6vfXHR5My+vqbO0Vz9942Vb/3A8BY9V129pafr6s98D8D9jXZfBYMwamMAeAiaw84MGx0WkH7quK3mYyzihaHxP8Z+YMkQhbUmSQiVZIbKTliFIsik7FnNwMU9mxlRhd6qm+279vemjwfXldAKKFkeCWhb1bG8SqKuIAMDV2l+aAiFaPdr1F8fUyn+Fna7zrywiqymxO8vbXjjSXL55k6W91grQIQsez1u4+f0Azhxq2wLHk59e8NVogScYHssxMRiMWQMT2EPABHZ+yBnB1nV9ykSwR/BkJsdaZTNPZsb0Q7d561+x01seFd8ppQLVpZigosXRIDx/sJW6iioAgKeGfY3nydBY1l9l6r252pQQbv8ccmDRkQdOaik/zeBdG45a6ktbbrxs64e+dNeDt+dY/TCc9up1ubZt2hYe2P/4gx9Z894PjWVODAZj1sBysIeACez8MOkCm3kyMxhO0eKd6Yu73wicOeFFi6OBtkQiYtpT3nM2+Ih2Z1MwZI86eg0AK3nTA4ua4IkAAPdsJkXfvVMJBpJ1z8T9G0+11O31gN1T8BgfsPprAPYAqAHQkWv7z9S9cuSMuev2zCuoZrZ9DAZjICyCPQRMYOcHFTlSRFRVHaPAVg3HXi4bZRbTltRT/CdpnCTr4rEoM/NkZsxObErxTOLk1gfouye1aHEkqGnZ8msdgOQnAECoST/lfmzIro1DIRBATlqKFhL8ALC3lltucnb9ooN3lb+69uuC4NrUZKrPbwbwPQwoeHzs0PP2eQs3/wXAD+F8H+R0Mrr1tfse+c7Zn14k8gKzqGQwGH1hAnsImMDODzHkENiKkk5zXDzNcSk1K5hNyYkyQ+pNyzB6WmW7ssV/4qTPnsGYBuS1aHEU8C8caeQkf2/O94e0vzcVhKzjiqoXJUzaHDp2Ot8xnxxdd6jxTFFP7qSudRtN9aWjgPXpbIfHN/qu+9ih55vPW7j5YQAXAmjItf2mRFvqxcYdT51eu+7845kfg8GYsaTzPYGpChPY+SFnpFqSjmY2n3aYeTIzGCdAvosWRwNt7u4W0/Kc3kQxauMzrn/7jnd7NYolNPd5fM9pXNW6QxbmHf2X9ubiy3nBfVqrqTw9F8BvAGzJsYmHssu9GOIL8/YdD7y8umzJyUGXv/h458lgMGYc0XxPYKoyKA+YMSlkkKMwoL2dpPIwFwZj2qPbvHVv5MzGa5K/aL/e//PCI4Wbq6kgTsm7O9S0bGlHBITje8+/79fubSp2mcft1LGKGv26wB4tIws0AYcqWl9YS2yriZdP2QgIhwCcduNlW68cuP5jh57PALgdwJCt2U3btO/b++hDxztHBoMxI4nlewJTFSaw80POCHYsRjTLyp0DyWAwBtOkFiRv6P5o3cesW7X7Cj8zJ+sIMqXhnz/cwIueY64l1MbnXQ+6T2Sb6zlt0MXES0tIMwHly9pffosQwgnu07uzT/3sxsu2BnNs5jUA+zCMyH6m7pX6w5GGMXtqMxiMGQuLYA8BE9j5YchiRk1l+UwMxnDYlOKp+EmtX4h9r/lr8u99O4suqrUl7/Qo3m3s6hIVdz+XkHdr/2oucxknZBO4mtc8sGi/u2L3bubmA8CCw/evBqUKL6/eAAhvAigF8P2B23js0PM2gL/A6YI6ZPrgn16771HDMvUTmS+DwZgxMIE9BExg54cM4Uy3IGhzBVFdJkqZNZKc2uRyJc6Ix61BxY8MBsMpWry5+z31H1Nvjt4c+nZ5R3hFJTiO5Hteo4UapiXuihJCuH7n3S/L/zhhZw6JA+RU/4vztgIyJy1jj2imw/5Uw6uEECJ4zu6x6fuvGy/bumrgdh479HwzgIcBVAy1r56CxxOdM4PBmBHE8j2BqQoT2HlAdiUzPl+k0u2JLfK44yVud9zldicN2ZXqUjUrku/5MRhTiT2pmu5vR77Y8F/crdxTRR+s0T2F07KrIP/c4cZ+qSEAtqoPt1S69XEpGixMDHbLenoF6QaAxQfvKgUAQV6xHhD3wXEx+s0Qm3oYQArAkEWXt+944OWYmsjpm81gMGYVLII9BExg54E3drXooqjvF0XjcUE0nhIE63met17leXuvrtPmkbfAYMxs+hYt/mSKFy2OivrOTlHzDnI0+ap0z7g5OdVkjEHn8/s3kBUUsALJ+kWCkdoFAKLn3J4UteEKHv8MYEjhb9qm/Y+9jz08TlNnMBjTl1i+JzBVYQI7f8QBDLo1HI9bscmfCoMxNZiORYsjQQ3TknbHBUJIv3SW87THW6s96pAFhWNlla0YA5fFglxh3IPdADDv6EMKAPDy0rUgck+h4lAFj68D2AtW8MhgMIaHRbCHgAns/BFBDoEdjTKBzZhdTOuixVHAP3u4iRPdg9JaviHeOa7n3/W8ljMf/cFlznmmsuXZdaBWCwCInvN73IpKAfxg4DrZgse/YlQFj4Z2glNnMBjTl1i+JzBVYQI7f+QU2B0dZmzyp8JgTD7TvWhxVBzt6BB1b/XAxWdqT7fN8yjjGp1fxet+WJQOXP7YBm4BBdUdy75XDwIALy08GcS1MzvkUzdetnX1oPVGW/DYsPOpcTkABoMxHWER7CFgAjt/dAGQBy5sbjZikz8VxmQRjZgwzUEaaFYxU4oWR4JqhintTUgDU0MA4JvCX8b9j8DFEU5OWcmBy5UAJ73lpW0AsODwfStBqQoAovdtPfPiAfz6xsu25rq4eRhAEsMVPO58YDsreGQwZiWZquu3DEpNYzgwgZ0/OuF8sfUjlbJ1XadKHubDyEE0YuKaa5pyPtfaauCb32zF5z/Xgt/91unhkUrZ+MbXW/HVr7Tiu99pg2FQ3H9/HJ/7XDMUxcarrykQhJkVpB0Nus3Z90bObLw2+YuOGVG0OAr4Z480c6I7NHD5Ju2FjkXedPlE7LNYMQYJbAB4dDlcACAZqUJfqulVAODFeatBPK9lh5wGgBU8MhiMscCi18PABHb+iAEY7KsFQFHs2KTOhDEkv/99BLqWO9h4880RXHFFGL/8fxXo7DKxc6eCJ55I4pJLgvjZDeUIF/B45ZUMDr+l47xz/XjzTQ2yPLvEdbZosf5j1p/U+wo/MycZqB63or4pzeG2dtEcnBoCAN/m/zxh3Vpr0kbOfOkXThUKDEoNAFh06K6inuWi98K+d9GGKnjcAWAPRip47GYFjwzGLCOW7wlMZZjAzh9DXvml00xgTwV27FDgchGEC3L3/mluMrBwoaNPQiEe6bSNd70riDVrnfq8eMxGKMSDUsC0KF57VcH69TOmdm9Ynoqf1PaF2PeaskWLNTOpaHEkqKYb0oG0K1dqyFrt1a5lvsSQOc0nymJNz/k6G25O2B20owAQShxdIhiZNwCAF2tWgPheyQ4rwdAFj3cAcGOYgsdbX7+XFTwyGLMLFsEeBiaw80cMQ7z+ySQT2PnGMChuvz2Kj3+iYMgxW0734vY/R/HiC2m8+koGp5zi7n1u314VqZSFZctcWLPWjZdeyqComMe3v92OnTtmZgZQ3HBrt3S/u/4jyk3Rm0PfLusIr6iacUWLo0B45kgLJ7hyRYLxHf6PEypATyL6oLqOHp46me+NnM+tf7i366PkfXvf/OrhCh4fxDAFj82JdlbwyGDMLmL5nsBUhgns/KEA0JEjDzsWs9hVYZ75syeXrwAAlPZJREFU250xvOtdAfh8Q3euv+KKMNat9+Dhfydx3vl+uN3OxymRsPDrX3fhy19x0lbPOsuHq64Kw+fjsWGDG88+mx5ym9ORvkWLTxZdMWOLFkfFodY2wfINaigDAKv0Xd0rvdHKidz9BtEQYQ92EgGAV9ZxpSqoDgAVTU+tA7VbAYATq5aCC2zPDuMB/GaIgsd/YzQFjworeGQwZglMqwwDE9h54sUX0hRABxyf2X60tRmdkz8jRl9ef13BAw8k8MUvtuDwWzpu/J/cb8mCBRI6OkxccokTsDQMih/8oAMf+1gBSkuP1fA1NRmoqBAgigT2DDARmY1FiyNBFU2XDmY8OTJDAADfJbcoQz03Xnh4QsSEqed6zhI5/o1Cx02EBxVKO157s+c5yXtRCEDPX+ZmnEDB4317H33o+I+AwWBMI9rzPYGpDBPY+aUNOQR2XZ3OBHae+cUvK/Dznzs/8xdIuOSSIP74x8igcXffFcMllwThcjkfpX//O4lDBzX89Y4YvvjFFjz5ZArptI2CMI+aGgkPP5Tsl0oy3WjWCpL/0/2RullXtDgKhGePtnKCK5DruWX6nsjJvq4JjV73EE4Y9lDPPbaO6/Xen//WvctBqQYAnFC+iHChl/oMHa7D4x44DWpy8mz9qw1vdde/MfaZMxiMacaRfE9gKkNo7ruJjElg06nedwN4O4Dmgc995zulX5UkMn2VGGNG8VT8pLYH6LvNjuCymdcMZjx4s6XVVUeHtN67y/hc4wZ/55zJmMpVdij++vxAzhxwWDa99WdW2gviA4CX137z+bSvcjMA2GbHYT35l7k4Fnj59ZfuevAzAzdx3sLNlQB+COe8ldMRpTJQ6vvu2Z/+tMiLQ+aEMxiMac+FVddv+U++JzFVYRHs/NKOHDnYAJBKWSyKzcgrrGhxdFBF06S31CHzkhcab8bW+TqqJms+y6HnTBEBAPAcea2Mdvc8nH/wb73pHpxQMp9wBX2j2J88kYLHFxp2PDXGqTMYjOnF0XxPYCrDBHZ+iQHIeTs3FmMCm5EfWNHi2BCeOdrOCbJ/qOe/Q29KcBOdfN2H9cQY9rz+yDou1PN7UeLIIt5U9vQ8Fn1by3HMn//ECh53PPAyK3hkMGYsFEBdvicxlWECO790A8j5xdvdzQQ2Y/LQbc6+L3pm47XJn7ezosUxsK+5WYQ/Z0MZAJhrHEls9rdMWvQaANZCD9JhKmkPrRCCcWLHex6XHflXb8Mrji+aS/jiF/sM3wzgqoHbGE3Bo0UtygoeGYwZS0vV9VuY7/0wMIGdX3pu1Q4S2W1tJhPYjAmnb9HivQWfmZMM1AxZvMboD02rqnRUz53rnOU79HcxjpBJPc/6CBF4xRrWC/K5SvR+Mc5reWYlqNUbaRa9W2vQP7f6pzdetjWUYzOs4JHBmL2w9JARYAI7j7z4QtqEk4c9qJixvp45iTAmjqfjq1u/EPte01el3/t2FG2tnU2dFscL4dm6Tk6QhkyRqDIakqf7GifFOWQgId2MDff8Exu43gsDEZRzNz/fe77h+PAcwpf2jWIP1eGRAvgrABnDdXh87d5HddbhkcGYaTCBPQJMYOefegDegQvb2sykYVA1D/NhzFD6Fi3eFPpOOStaPAH2NDWLxD+sK8i37d9GeI4M3aloAqlWjZzuHj00LRLkNs5O9TxeUv/QPEqp0fNY9G6dB6cRVg+fvPGyrScN3M5jh55vAfAQhil4bEl2pF9s2PHkGKbPYDCmPkxgjwAT2PnnCHJEsAEgmWR52IwThxUtji80pShSvREabkyZ2ZI+x1+fl+g1ACzX9RHP7U/3uTwIGym3FdnfaxfK8cFKwlf0dRQ50YLH7VElwZpSMBgzB+aBPQJMYOefdhzroNaP7m6rdZLnwpghsKLFiUN8tr6LE6RBd5368m3rt10CN3TaxESzztZH9NB/5jRB6vt4Xt2Dob6PJd9FiwD0vYt2KoAPD9xOtuDxNoxY8PjIwyPNicFgTBtYBHsEmMDOP50YQmC3thotkzwXxjSHFS1OLOSNhiaBGz41pNhqy1zgP5y36DUArKVGcKQmYp3VnHSEt3sF9IJkfUhNt/W2KyWcv4wT5rw8YLWhCh53YISCx+fqX2MFjwzGzIEJ7BFgAjv/dMF5Hwbdej16VGcCmzEqno6vbv1i7LpmVrQ4cdBEJiM12QUjjfum+fuOfEavASBIIHKanRhp3HPzuX5NaYoaHuuXuy16L1wGINNnUTGcLo79YAWPDMasQkeODtSM/jCBnWdefCFtAOhAjjzsw4f1LtOkQ3dlY8xqBhYttodXsjbmE4j4fEOE8OKwFy4FZqey1ffmkAV/k0lQMVMjjXn2DF60+kS6T27fXqgb6d6oNuF8xZxQ+8qA1a698bKtJw/cFit4ZDBmDfVV12/J2SSPcQwmsKcGOZ1EbBs0Hmd52Iz+7E1VR74d+UI9K1qcPMjO+iaB84/YMOZr5k3tIg9ppHGTwRzNMEYaEy8i7kMy6fXMFmHzUuuLkb5jRO/bVgDoK9aHK3h8GEACrOCRwZjJsPSQUcAE9tTgEIZwEunqsliaCCNbtHhG47XJn7f/2P+LgiOFp9WwosXJgSYyGamFFo40LmhF1Iv9e8snY06jYZmuj+puxgvLuH6pJKc0bgvYttUbnSKcp5AT5786YLVNyF3wqGBUHR5ZwSODMY1hAnsUMIE9NWjCEIWOLS2s0HE2079o8bOsaDEPiM81RAkvjujK8RXjpjaZhzwZcxoNa6yRnUQA4JnTSNjsUxEZMuI+I3Kgre8Y0XP+SQDiA1ZlBY8MxuyECexRwAT21KAFOYocAeDwYY0J7FkIK1qcIrxe1yDw/hEdQXxWQr/E90bZZExptGywh2/j3kPGT1yHfFxH32WLGx7p1yCHcO4QJy7aOWDVYgA/Grg9VvDIYMx43sz3BKYDTGBPDZJwokOugU/U1RkR1tFxdsCKFqcWNJZOyW0oGc3YLxo3t7iEwZ/ffFLAQSKalRzN2KdX9ncTmZc4XKplOrr7LhO9550MIDpg1eEKHh/ECAWPL9S/zgoeGYzpx+v5nsB0gAnsKcCLL6QpnCtCf67nYzGWhz2TYUWLUxPxhcY44cURRbPHThof8L02KiE+2QRG4SQCAM9tQpkB9CuKLG7Ylu77mBA5wEnLdg1YlcPwHR6HLXj8y85/soJHBmN60VV1/ZaGfE9iOsAE9tThAIYodGxvNxsneS6MCYYVLU5tyKtHR5UaAgCf0//Y4hYwJVN4qlRjVDafuouI+4Ncv7zr1W0vVJqm2tcDG6Ln7LVwvPv7sgnARwZus0/B45AXHz0FjyM1xWEwGFOGHfmewHSBCeypQzOAnL6SR45o9ZM8F8YE0VO0+HHzTworWpyiRFJJqYMb1fsi2xnzCu/2oome0vGydJROIgDwxMmk3/eBCIuX2l7ql5tNiOTjpZV7c6x+/Y2Xbc1152UHgDcwUsFjpGFgZJzBYExNWHrIKGECe+rQgiHejz171CbbpszUfRozsGjRkr2DfM8ZUwPhxeYU4YVRuYH8l/6nZq9Ip+x7ucbUR50Xvn0tyjWgX73HqoZHC21q9zv3CJ4z1wOko//aw3Z4vAMjFjze8xgreGQwpgVMYI8SJrCnCC++kE4D6EaONJFMhhqJhM0azkwzEqZLu6X7Yla0OI0g2480CIJvVF7Woq1ZH/E+P6I/dj5ZByMw2rGWSLhdRVy/fOgCPe43owf71YAQIrp5efX+HJu49sbLtp4ycGGfgschU25ak52s4JHBmB4wgT1KmMCeWhzAEIWObW0GSxOZJvQULX6K/Il7suhDrGhxmkC7Ewmpix+11d61+p+b/SIdsoBvKlBKqAu6nR55pMNja8mgyP2C+v8Mqg0Q3KdvBMjAi/6RCh7jGLHgMc4KHhmMqUscwOF8T2K6wAT21OIAclj1AUBdnc4E9hSGFS1Ob6htQ3ypNUN4YVRtzgWq2Z/wPB2a4GmNC37FTIw8yuGN1ShN92+LjgXxQ6Wa0tXPso8QQeblNYdybGIjhi54vA0jdHi8d+8jD7GCRwZjyrKz6vot7AM6SmatwCaEFOR7DjmoxxAdHd94Q623bfbNM9VgRYszA2770XpB8I06ev0x7Y6mgGSPOv0in1SO0kkEAChHyGvlfPfA5UUNTwyKggvuzRsB0pRjM0MVPO4EsBvDFDw+X/9641vd9azgkcGYmrD0kDEw4wQ2IWQTIeSnhJAwIeRqQsidhJB5hJCN2Z+ek/t/CCFeQkgBIeRsQsiZfX782W3tIIQ8TgjpJIScRgh5qs/PPydg+q0ATOQoBkokbC2ZtNsGr8LIB88kVrV+MXZd01el33tZ0eL0hnbG41JUHLIhykA4atJrPU+MqkviVGCpPmp9DQB4bMPgOpBVbS9UmKbWrwCSEF7iXevrcmzixDo8vn4vK3hkMKYmr+V7AtOJGSWwCSEcHIGqAJgH53blN+FUxv8Czq3LdxBCXAAaKaVpOCf7GgC1AE6HU/HeE5lqppSeC+BlABKAewA8B+Da7D7GlRdfSFtw0kRyRsZaW42j471PxujpW7T4++B3y9vDK6vAcTPqMzTboLYNaXubSjh+1Ok8H9b+1hSW7GkjsE8Zg5MIALy5lJTECYn3XSZTUxDbtw+6wBdcmzYCXK70tWuGKHhsxQgdHluTnenn61/fNpY5MxiMSYFFsMfATBMHbwfwewAfhCOuGwB8HsB6OJ0SH4MjqF8FsJIQsgvAeyilt8Lxaz0DwGZKaXN2e+WEkMcBbMBgj+qJStd4A0MUOh49qtdN0D4Zw8CKFmcu3EtH6nnBN+q0HkJN+l/uR6Z0YeNANtj6mFNZXp7DDWyJjlUN/ymg1O533iOEEwTXplyNsEZT8JjzPAcAf935z1dYwSODMaVIw9FRjFEyowQ2pfRBAPcDeArAS9nFCvoX7aQBPADgagD3AejJ91sP4HZKad8ocUefCPZkcRRDNJzZsUOpsyxqTeJcZi3ZosUmVrQ4c6EdsZgUl0bVrbGHy7V7mwpla1pdYJVz1A3dzow88hiPnkoGifJCLRYwYm81D1zOu9ZtAvhcd9c2AvjowIV9OjwO2aCHFTwyGFOOXVXXb2H9OMbAjBLYWS4BcD6AT/ZZNjAJcQucVI+1ADYTQp6GE+n+CiHkCULIl7LjBjoKXADgNDgpIvPGed49NMIR2PzAJzIZakQiFnMTmUAGFC1WsaLFmQm1LCpt79AJxw+ZCzx4JRufcz00LXPtvWNwEgGAhrko6OLJoGLHefX/GfR6EcLxgnvzUD79IxU8DllYygoeGYwpBUsPGSMzSmATQi6BkxZyF4CnAWyFE0Hpmy8twGno8mMAMUrpTymlZwC4AcANlNJzKKU3ZscuIYQ8BWBT9vEbAD4N4BY4qSjjzosvpA38//buO76t8l78+OfR8h7ZyyEhkAQChFD2CHsUSKG3ty0tpS3tbX9dt4NC97y3LQ1tc7sos0DYBAgjZG9nOHvvOMszHvG2tnSe3x9HBsexZFmSLdn+vl/1C1s6OnrsxtZXz/kO8zJMpzmeJSW+zlpjiThJ0eLAYtl4vNRqzxrencd82vt++fD0QCp2H+rSaE/3iwbXn21p6XjbpMZDI73uujMCb2vapVeB9UgnpxlK5IJHB10XPHrC3S+E6DUSYHdTvwqwgWrg74ALc4f6Ocyq13LM/tLfBGqAzwAfB3KVOnOwAoBSKgvYp7W+EdgQuvmk1nqv1nov8H6oWLIn7CDMQIY9ezydvYiJGEjR4sCkqxoaHM3dSw0BeDj9vZ76fe9x53WzkwjA8mvp9M3EkLKVrR1vU0pZbBk3nApzqkgFjx/QZcHjNpnwKETySYDdTf0qmNBarwUaQp8fxwysSzBTLnzADzELHZ8HHsOsZv9t6OGZnJ77fBOwQyl1NjAkdF/7F+UHOD0NJZGOEaaI8uhR3ymXy2jsoecdEPa1nlX/6/qHSr+tXlBStDiw6GBQO7bWBrqVGgLc6/mgYlS6P2zOcKrrbicRgOrRKrfSrmo63n7xyXWjA0HvGbvKFsfUK8HWWRGUBXgiTMHjYrosePxgS4O7SVqUCpE8zcC+ZC+ir+lXAXZIOpChlLod+B7wIyADsGmtdwP3AAu01q9qrZ8FfqmU+i7wJWBtu/OkAa9j7nZvxCyGnBTqi70cMwB/o4e+hzLC9MMGOHnSL2ki3dSxaPHokOvO0jZHVFP7RP9hLTpWYrVnhZ0mGM6P0t7p0/9WrtS+sAFsJGsnWc5oR5qmA3Zb9dYzOnxYLBZly7ypqePtbUsA/qvjjdEWPL69d8lCKXgUImkKC2ZODyR7EX2N6m9/tJRSdsy8Pjfm99cnu25cfU3Wt4ELgNqO9113Xeakj3889/O9v6q+p9IzqPU1572ndufcPEzyqgc2XVlfl77Lma8sljMKiCO507Ok8sn8F6MeRJOqLioocGO3nDFEJpL8Ou186ulgpkVx2u5zbdrg5t1X/W+OUuqMXWlPwz/3g39KJ6c7BUx6eM7801oA3jbxWgU8BEwCwu5U/+yGb947aej4ad1ZvxAiIb5fMHP6P5K9iL6m3+1ga639Wmun1troq8F1yFbMtJUzbNvmPi7t+iJrK1r8UdozmTuGfkKKFgc4HQgaju11urvBNcBPHXO6/ZhUlNnNTiIAjUNUVmmG5Yygd5i3PtffeLSys8fYM28N1xJwKGZx+WlCBY+v00XB4+ztc5dLwaMQSbEi2Qvoi/pdgN2PhC1mdLu1v64ueKIX19InSNGiCMe6/miZ1Z7Z7RzqW7wrqsZlevpFq8ZRMXQSAVh9vvJ3dvvZJYs7/d2ypp1/GSptT5jT/b9Z9824tOONoYLHeUjBoxCp5mTBzOmSfx0DCT5S1IYiZz1QSZhuItKu7yP7nWPrfl3/gxIpWhSd0RV1dXZ3xthYHvsz2+uJXk7STPL6Y8oHXH0tI4KaM66YTW48MMrnaThj4iOALeO2ToNyIk94XEIUBY/1UvAoRG9amewF9FUSYKe2jUCnweK2be6DvbyWlNK+aPEP2X8bcnTI9HFStCg60oGg4dhRj1Ldv5Ix3buu+twsV9hBKH3NJQFfpy1Ju+LKUWlHss9MEwEYVLay07QTW9qkj6HSd4Y5ZZwFj4tlwqMQvUfSQ2IkAXZqOxDujvJyf1NjY7DTHMj+rNIzqPUvdQ/KpEURFeu6o6VWe+aQWB77C9vL/arO4Uojtk4iACsvUp1GtFMr144JBn2dpp7YMm+P9Pryx1n3zeisz/ZOzI5NYd/YbCjdUV5cV7IzwrmFEImzPNkL6KskwE5tJwA/YQp/jh/37e/V1SSRFC2Kbis9dcruyTgrlode6dtYc15WS5/vHNLeBIuRpQNGTEWC669ilN/8W3SaDO23Waq3dbq7bXOcOxWVGW44RVwFjy9se1smPArR84oLZk4vS/Yi+ioJsFPYhiJnAHM3p9OJalu2uPp1gN0cSPc+V/fJkq+6n5aiRdEt2h8IOnY3WmJJDQH4leXFcDnEfVqmO9jtTiIAvgxl3Z/feZrIBSWLhugwORuWjNsjvRH+eqwFj1Wtp1zrTmyT3FAhepbsXsdBgpXUtw1zeM4ZSkv9DU1NwX5X8NO+aHHl0C+O82YOlaJF0S3WtUfLLPaMTt+YduUS37ZTF2Y3dXuUel8wwh37ru/yi1WnOdwjvXXZvqZjnaarOdImTEZlbQlzyrgmPL6264OtUvAoRI+S/Os4SICd+g6H/tvZixAnTvSPNBGfYTHebbihTIoWRdxO1NbafVnjYn34r9UL/Tb1YJLPF3N14NbLGOaFTn82Y0sWhx3FrjJui9Qe8Qrgax1vXFa83gO8iBQ8CpEsBtJBJC4SYKe4DUXORqAYyO/s/q1b3X26P2X7osW3B39vrBQtinhoXyDg2Ntk62zCYDQu9O2pm5ZdV5DodaWKaQGfPdbHBh1K7RxiOdXZfefX7xvi8zR22rIvLW3C2VrlhNvFhvAFj7uIquDxxM4I5xZCxGZHwczpnf5Oi+hIgN03rCXMpdLjx331zc3B6l5eT9ykaFH0BOvaoxUWe0bMKUW/Uc+6YozN+4Qr4ugkArD0Yyq3s9utSpFVtsIX7nEq7dYxQLit5iGEL3h8DbPgMewbgxe2zV3mC0jBoxAJJukhcZIAu2/Yj5ki0qfTRKRoUfSoYzXVdn9WTF1DAM7z7W+4NLu23+5eA0xWRo4O6LCBcFf2XkKuE1o7u+9jJ9cNCwb9nZ47PePs0QY5OyKc+uuz7ptxWccblxWvr8IseBwV7oFVradc60qk4DHZqltPsfbEVlq9rqiOr2zuc/tCA40UOMZJgps+IDTV8SiQ19n9qZ4mIkWLoqdpr9/v2N+SFmtqCMCvebbF0p+3r0PS3YHGWB+rrYpNIyydRlBZhs8SrNoc/tzpt56lNUaYe9sKHjt7Teqy4PHVXfO21rsaT4Z9bhG1Wmc9n3r1v0+77Stzf8re6sNhHgEHao7y7fd/y9byPXzm9e/iC/rZU3WIz7/xEJ98+Vs8vfkNAB5b8yxffuvHaK0pKo30fkskmRdYl+xF9HUSYPcda4BOL88eO+arS7WhMx8VLc6SokXR42xrj1Za7On5sT7+HH9x01U5VTGNU+9rRnjiS6dYcZkKG+heULYsP1zRYWbG2UMDOndvhFNfTucTHrsseDS0od/eu3ihFDzGp9HTwkMLHsXtd39427v7ljIubzQXjpgU9nGHT51g1l0/46HrvsJZeaMpazzJr5f/nVl3/ZR3H3iCRYcKKW2s5JSznvOHn8Pe6sOMyZVymxS2vmDmdHfXh4lIJMDuO/YRJkUE4NAh787eW0p4ZxYtjpe/oqJnHamqsgWyY+4aAvAb/XTTQNi9Bpjo9ccVhRZPVRkNSnWaJjLWU+twNx6pD/dYa8at47XWkSZkxl7wWLaz/HDdCdkWjYNVWXji3t+S7TBLYhrczfxu1RPkpedQVBJuZhDcO+UWCvJGsOLoBpq8LYwfNIZGdzOjc0eglGJQRh6tPhdaawJGkM3lu7lq7LRe+q5EDN5N9gL6Awmw+4gNRc46zMmOnaaJrFvn3GsYEV+4etSapqlVP2z8jRQtil6lvT6/45AzI57YeJz/RPO12RX9Ove6vWkBb8ydRNqsG60C4e4bVbI0bMu+zMzxuV4jtzjCqYcAf+x4Y7uCRzsRCh5nb5u7XAoeY5eTlkVuWvaHX/97y5vcPflGvjDtHt7eu4SlxeGzBpw+N/MPriQ/PRelFJcVXMTsbXN5d/8yyppOcv6wc5g8bAIVTdUoFP/52ncpPnWiF74r0U0GMDfZi+gPJMDuW9YQJsBuaAi6q6oC4ZPkeoBZtHivWbSY/5uR1YOmStGi6FW2NccqLbb0Tn8novUr48kGq0UNmH+3lxv+uDqJAKy+UmWGu29aw75Mj7s+bKWbI+vjBVrrsAE68LUuCh4jT3gs2SoFjwmyr6aYL3/sPxiePYRPnHcTG0p3hj02Lz2Hv979C9JsDnadPMjMOx7hnCHjeHHbO3z7qi+glOLrl3+WT114Oxn2dO6cdD0rjm7ovW9GRGt9wczpUs+QAAPmRaWfiJS/yJ49np29sYjTixa/JEWLIjkOnzxpC8aXGjI6UNZ6U07pgNm9BjifQI4O6rhGwZdNVo4qi3J2dp9VKdLKVoVNQ8nMGJvtDOSWRTh9pILHJUAjEQseP5CCxwQZnz+G0kazvGdX1SEK8jrP+PvZkllsLNsJQLOnldy0bKwWK+cMNssa/mPKbR8e2+xpJcuRgcNqR4ft3CiS6M1kL6C/kAC7D9lQ5KwFjhNm6MyGDc4jXq/R6YtevKRoUaQS7fb6HMXurHjTpn8VfKrOalHWBC2rT7AoRZo70BTvedaMDf+zv6JqfXog6Au7S52Vc9cIrSMG+ZcTecLjMMLUpEjBY+J888r7mb39Hf7jlW+zuWwX9110N+tLtjF72+kZBN+68vP8qfBZPvXqf3PxqPM5Z4jZLfPPa//Nz278Jm2/p8fqy5gy/FymjTqf2dvmSh526pH0kARS8keob7n6mqxrgK8DJZ3d/6UvDbpj0qS0qxL1fJWeQa2vO++t25Vz09BgWrbkVYuUYF16sNSuc2LueQ0wIlDpXJ/5SJrNgi1R6+orPp4zrKxiaEZcXVOGlxq+x181wr7J/uDczzmzCqaH/ZtRU/VsRW5ay5gIT1EHTH54zvy69jfeNvFaBfwAmAxUhXvwT2/4xj2Th559SYTzCyFOt7Zg5vTrk72I/kJ2sPue3UAQ6HTXbfNm185EPEn7osXtQz8xToJrkTIOVlTGG1wD/CL4dO1ADK4BzvX44i6IrjnL4jhuU2FbeU0tXxXxykBu/j2Djci72JEmPL5OFwWPL2x7WwoehegeSQ9JIAmw+5gNRc5WYDPmJdIzHDzorY51dLoULfZ/wfo6dCCu9Nuk0i6P13HU22k/+O4YEqh13ZldHGn3tF+bFvDF3UkEYN3ZYQfHMM5Tnd5SfzhsgJuePiKj2ZdfF+7+kK/Num/G5R1vjGbCY3VrnWttyVYZ9yxEdCQ9JMEkeOqb1gFp4e48eNAbvmFpJ6RoMfUET1bQ8LPvUv/9r9Ly5KxOjzFaW2j46Xdo+NE3afzVD9F+f6ePc737BvXf+wra7ca3dQPKlpDYKilsa09UW2zt+ojF6GeBJ2vs1vC7n/3d5YYv7p8hwNrrsRkRKtUKyldF6hZC/qB78wwj4i52XAWPr+36YJsUPAoRFekekmASYPdNh4FWoNN+s6tXt+4KdtEloK1o8VtStJiSWp75O1lf/DqD//48wdoafDu3nnGMZ8UiMj/9RQb9+Sksg4fg3by+08f5jx4i/ba78R/ah0oP26I49e2vqLQTf2pIfrDec0/OwbCt3gaCCwjk6mDEVnlRaRxuTTuUhjfc/dPq9mS53PVh/xalpw3NaPYPDjuYJuQyzLqT00Rb8PjW3sULpNZIiC5JekiCSYDdB20ocgaAFYRJE2luNrylpf5OW/pVega1zqr78omvBV5wvz34e2ObZdJiSgqWl2CfeD4AlvxBGM6WM47JvPezpF1m1rMaTQ1YBg3u/HFaQyCAd+sG0q64tve+iQTSTo/HcdwXV7/rNj/xP1XlsDKg30zalFIOTzDuTiIARZPCB9hWpVVG+dqII5cHD/5kbtAwuspbenTWfTOGdHL7bmAHEPbv2MaynRWHTx2XCY9ChCfpIT1AAuy+awsR/v/buNG5pf3Xa5suale0eM94KVpMbWnX34rzpafxFhXi21KE42NXhj3Wt28XuqUFx5SpnT4u7bKr8W5ci3XYCBp/+QN8O7aEPVeqsq09UWuxOeL+N5sTbPR+Kmdv2LzdgWSo2x92GEx3rL1BZQQipIlcVbU2LRDwhs3VdjgGZbQGhnWViz2Y8BMeuy543C4THoWIQNJDeoAE2H1XJVBKmMmO+/Z5T5acSjvRVrT4VP5vpWixD8n+4tdxXHEt7oXvkn77J7BkdD44z2huouWfj5H7o9+EfVz6TXeQ/eA3Udk5OK6cjmdNH6v72ltWblc5cbWUa/OI/9mTadbw9QsDyTlef9ydRABcuVbHvgzCButZQXear2bHmZdg2hk85JP5gWCXu9j/Neu+GVd0vDFU8Pg+UvAoRKwkPaQHSLDVR20ocmpgGWGGzgA8duCunVK02HfZzp1MsKaKrM880On92u+n6X9/TPbXvod15OiIjwuUlWAbXYByOECH3UxMObrV7XaUBAYn4lxZwRbfZ7N3SEpUyNSAL2EtCtdfZETcHZ5Wviri4+22vHRncFRtF09jAf4VpuBxKdCAFDwK0V2SHtJDJMDu23YCAei8l2/+6hf3Kq+rRyY7ip7nmvMimZ9+AJWeQeDEUVqf+9dp97sXvov/8AGcr/6b+oe+hmfVkjMeB2A4W7EMHop13ATc8+dGTDdJNfa1JacsNkfn2/fd9JD/2coMGxmJOFd/cEXQm7A0saJrbbleHb5lX4GrPK+18XhrpHMMHnLPEH/Q8HXxVJEKHl8ChiIFj0J0h6SH9BCZ5NjHXX1N1peA6zBTRj4UxOJoIef8hru/dzXXfFx27USfo3aVlqdVWQsSca4Mw+nf5vi6P9NGQoL1/sCvtb5k/FmGStCo+J/809dwaasl7NWyXUMvq6q78CsjI52jtmZOWY69oqt0oHpgUoQJj+cBYQOGn17//+6ZPGyCTHgUwvTdgpnTH0/2Ivoj2cHu+9bQrrjHQ9qwaoZPP8GE/6hi9NDWjRtXacPoOzkBQgC62eVyVBiddY2IyXd9z1dIcH06u1LK7k5MJxGANR8L300E4MLabSM8nqaIxwwaPGOEP2hEPAaz4HFmxxtDBY+vYV7Ri1jw6A34InY2EWKA8AFzkr2I/koC7L6vRENpC9nTyhl7Zynjrj/FcG8LOQvcZK0I1DUcClaU7U/2IoXoDvu60npltSckncNheIJfyto4NBHn6m+GeBLTSQRg8xW24S4dvre2VWmVfXJjxDxrmy3L4dXjq6J4unAFj9XAe3RV8Hhi68oonkOI/m5uwczpXdU+iBhJgN3HbShy6ipGb6hg7OgGBh11kvOuj/TNGuuH+Y7eDWs2JXONQnSH2llSZrPmJCQ1BOA7vtnl2XadkMmF/c2EBHUSAQjaLZY9g41TkY75WPnyIcGgP+IVtfzBM8b4AkZXO8yK8AWPyzALHnPDPfj13fOl4FEIeCrZC+jPJMDuB6oYvcpN1tYAjhJQZ7x4+XdtLTca6iuSsTYhukM3upyOSt3pAKVY2A1v8KuZaxPShaQ/usjvS0j+dZuVV0R+SckOujKMUwciBrY2a7rNp86pieLpLgP+X8cb2xU8DiFCweObexZJwaMYyPYXzJy+JtmL6M8kwO4HPEWFXmAxMDzcMb5d22QXW6Q8e1Fpo7LaEzbP/eu+VypyHDps67aB7vKgL6EDp3ZOs45o0ZFb9l1QurDL/38HDbqrwBcwoumA9IcIEx53EmHC46byXRWHTh3fHsVzCNEfPZ3sBfR3EmD3H+sxd2s6/f/Us3rJPu3xRGyTJURSbT9RZrPmjEnU6azab3wjc1V+os7XH03Dn6eNxDVG1xaL2jXCqI50TIGzbIin5WTEvE+rNc3qV5MjppuEdFXwGHHC4/Pb3paCRzEQuTCv8ogeJAF2P+EpKqwDNhNuF9vvN/z7d23o1UUJESXd6GxNq1Jhr8DE4ive1yryHEbYPFwB6UpZbJ7EdRIBWHq1rcvi1IKy5V11CiF/0B0FvoARcQJkyH/Num/GGc3d2xU8jj7jESG1znq3FDyKAWhOwczpjcleRH8nAXb/sgwIe/nVvei9LdrrlcEzIuXY15c1K6stYSPMLTqgv52xXFJDojDEHUjo34SDU2zDmzCaIx1zQfWmMT6fM+IVNavVYfVbptRH8ZRdFTzW00XBY52rsTLc/UL0Q1Lc2AskwO5fjgElhBmfrl0uv2/vjvW9uiIhuqC2Hi+12XLC7jLG4gHvm+WD04L5iTxnfzXe6wvbWi9WWwuMiIGxVWmVdXJjlykg+YNuH+sNGNHssF9K+ILHF+my4HHhAi0Vj2Jg2F4wc/rmZC9iIJAAux/xFBVqYD6QF/aYRe9t0V7JxRYpor6lxVFjSeykUW3w3fTF0pYvSonuJAKw+Fpbl6k508qWDjeMYMTg3mqxWYLWqdGmsPxh1n0zOut3vgfYToSCx83luysPnTq+I8rnEaIvk+LGXiIBdv+zC3ASJlVEu90B327ZxRapwbahsjWRqSEAn/POLR+WHgg7sluc7rIEdxIBKJlgG1yvgnWRjskJtGYadQe7TM3Iz795rDegG6J42kgFj28gBY9CNGMW/4peIAF2P+MpKvQBi4jQss+9+L2t0lFEJJvadKzUZssOO3EvJtrgB+nzEzIBcqC4VPvzeiI9omi87rJA8fySBV2Or7dYbCpomxbt36uvxlnwuCLK5xGiL3q1YOZ0ee3vJRJg90+FgA/ofGfQ4wn4dm9b26srEqIdXdfc7Ki3jkz0eT/lnVcxMt3fWV9kEUaGRVmtnqjynLtl6XRblwN+xraWDPW21kRs6weQn3dTgceve6PgcbsUPIp+TIobe5EE2P2Qp6iwFfiACDmH7sXvb9MedzQtsIRIKG0Y2DeedCmLzZHocz+S9l5C000GikFuf8K7C1WNseVWWYNdTmQcXbbM19UxFotFaftlriif+lLgGx1vlIJHMcBtKJg5fXeyFzGQSIDdf60m0i621xv07ZJdbNH7LJuPl9hs2QnfvZ7hWVg5OsPXWZGb6MJ4r9/fE+ddN5Euc5ovqN44xu93d3nZOi9veoHHryPmdbcjBY9CnE52r3uZBNj9lKeo0AnMI/Iu9nbtdkXsVytEIunapiZHgz2hLfna/CTtLVtPnHcguNCX+E4iAMum24YaXewG2zAsGVG07LNYLOC4MuIY9nYGIQWPQrSpB95M9iIGGgmw+7fVgJdww2d8vqBv51bZxRa9QgeD2rGpyqMs1rCBTazu8C47OTbDm9BJkAPJZUFfl8WGsWgYas0qT4s8Oh1gWumS4YYRDHZ1XH7+dWPcfiKOWW8nroLHNSe2SMGj6C+eLJg5Pdo3pyJBJMDuxzxFhS7gfSJ1FFkyb7vhdiW8wEmIjqybjpda7dmJ7Xkd8hP7G/K3LA6X4euRTiIAq6fQZY51bqAl06g/HFVxoSXt6mjTWRTwRKwFj2/sXrC9ztUgBY+ir3MCf032IgYieVHq/9YAHsLtYvv9hn/HljW9uiIx4OjqxgZ7k2NMT5z7Rm9h1YRMd48E7gNFtlI2qzfyePNYrbzWNjyodZe705NLFnT+N6qDvLyrR7v8qsviyZCPAd/seGP0BY+LpOBR9HVPFcycHm3tgkggCbD7udAu9rtEysVe+sFOw+Vs7LVFiQFFB4PasaXGryzWHsmR/rntFQmAEiDfHeiR/riuXGv6sUyjqqvjxrUcH+Z11kYVOFvTp3cZsLfz+3gKHg+eOra9G88lRCrxALOSvYiBSgLsgWEd4AY6H8Dh9xu+7ZtlF1v0CMuG46VWe1aP5Edf4y2qmZTlTOywmgHqLI8v4tjyeKycqoxojhtZttwbzXF5uZeNcvksXQbtIYOAxzreGCp4fB2wEaHg8YVtc1dIwaPoo54vmDn9ZLIXMVBJgD0AeIoK3cA7RMjF9iybv8twOqMZRyxE1HRVQ4OjJa2gp87/S+tLPRYUDjQX+H099nqw9mrbyIDWXeZOX1hVNMbv90TVk9uWeUN3lvCVWffNuKrjjcuK19cgBY+if/LTyRtL0XskwB441mEWO3S+ix0IGL5tGwt7dUWiX9PBoHZsrQ0oi6VHWsBd7t1cOyW7uUda/g1ElwV9PTZi3pdhsR/MDXa542zHsKRXbYqqS0huziUjnT5rtLtzcU14fGP3gu2nXA0VUT6XEKng5YKZ00uTvYiBTALsAcJTVOjBzMUOv4u9fMFuo7Wly360QkTDuv5YidWeNaynzv8r6+wuu1OI6F2u/Xk9Wc+3/BJLVK8300oXDzO0EVVKiSPr5u68eQtX8OglugmPC6XgUfQRQeCPyV7EQCcB9sCyHmgFOu95Gwxqz8rFC3t1RaJf0hV19XZn+tieOv/Fvh11F2U19EhXkoEqT2G39FAnEYBNV9hGebXushdvnr85K1hfHNVucU72RcOdPlt3Wun9ftZ9Mzp709dlweOW8j1S8Cj6ijkFM6cfSfYiBjoJsAeQ0C72O0DYXUXfpnXHAxWl+3tvVaK/0YGg4dhRb/RUagjAb9RzbqU63WwUccjroU4iAEG7xbJncLDLoTMAk0sWRtWyDyAt+7buDC6Kq+Dx+a1vS8GjSHUaeDTZixASYA9ERUAL4XaxAfe7byzWgYBcfhcxsa4/Wmq1Z3bWFi0hpvj21l+SXddjhZMD2VivP9ohLjFZdoU1LZrjxjcfGeZ1nYoqFzs76/xhrT57d/KjH4y14PGUq8FdeHzz8m48lxC97b2CmdP3JXsRQgLsAcdTVOgF5hJhFzt4sqLFv3u7tO0T3Vd26pTdnXFWTz7Fb9SzTtm97hlTfL4e/cHunGYd4cKIapd8eNnKqEc7Z+Tckd6N9OiuJjzWIQWPou/6fbIXIEwSYA9MG4FmICvcAa55b26QgkfRHdofCNp3NSiloitmi0ag+fRNzIn+Q42XZ9fI7nUPubQHO4kAaItFbR9uRDVVburJdaP9AY8rmmOzMicNcfrTy7uxlEuAb3W8sV3B41DCFDxqNFLwKFLUooKZ06VOIEVIgD0AhXaxXyNCRxH8fkMKHkW0jNYWGr/xoO/U3EeH1Lzze3Sw80yDoLOBqld//OHX3qojVL/xC6pefoTmze8A0LDmJWre+i1aazylu097/G/0My0W2b7uMVcavryefo6lV9uiCuLtBK1pJ7dEOxKdzJw7M7sZ9IYreNwLbAVGhnvglvI9lQdrpeBRpJzfJXsB4iMSYA9cW4CDRAiyfZvWHQ+Ul0oul+iS+43XW/Mu/2zaiM/9HmvWINydxB5BTyunFvwV7f9oWF/D8qcZctcPGPHAn3EdKsLfWIXhbMQ+fDy+6qPYcj+Kf872H2u+JqdSOof0oMEWHMobbOnJ5zg4xTa8GaMpmmOnlS4aGm3LvszMCYOd/szu7GLnE77g8Y1WrzOXSAWP26TgUaSUVQUzp29I9iLERyTAHqA8RYUG8ApmsWPYbg/u995YIgWPIhLtDwQHjbzZnznhUguA4WrCmnnmRqhSFobd+xOU46MNzKC7BVvuMJRSWDJy0D4XWmswDLzl+0gbe9GHx/5aP9VgUUr+ZvWw3B7sJNJmS4ER1dTYfH9TdrDhaJf5zs2uev76/vfJyr07u7Nd7KBh8NzaLfxzxXo2HysDoLyhiadWb/xKhsO+Wyn1MIBS6g9KqQXLjxTVHm8oP4kUPIq+43+TvQBxOnmxGsA8RYVlwCIivIhIwaPoinXt0TKLPWMQgLfiAIa3lbQx551xnCUtE0va6Wn/6QVTaN72Ac79qwk01WAfdjaOYeMINNUAiurXfoL/VBkF/tKW67PLJPe6FxR4/D3+hnrxtbawRYQdTTyxyBHpfpe3hZdX/QlvwENGxlmDnP6sso7HrCs+QcGgPL57y7XsP1mNxx/gve37+NwVF/O7T94eAP5TKXU2Zh/s3cAl9a6mRURT8OiUgkeRdAsLZk5fnexFiNNJgC3mAy6k4FHE4nhNjd2XNQ7M3ej65U8z5M4fRP3wwXd8B/uQsbRsm0/uVZ9GKUXu5Z8k68KbUPY0Middg+voFn5tPFlvtage66stPnJ+D3cSASiZYBtcr4JRFTtOaD40wuuqD/v3RykLX731l6TbzT9h2Xkz8rTWp6WVHK2t4+KxowAYP2QQ5Q2NuHw+8jMzUEpdMiwnKwczkFaYvbCn+43AcrqY8KjRzNmzcIEUPIokCgI/7vIo0eskwB7gPEWFTuBlIkwww+83PCsWScGjOI32+gOOfc12pZTSQT+n3p9J/vVfxpYXvna2I2WxYh9splVnTbnxw9sNjxOLIwNltZMTqPfeknNCdq97yaUBX9RDXuJRNF5Hnes9rHxl2G4iGY4sMtKyP/w6Pb0gr9Wfc1outi8QJC/D/LbS7XZaPD7GDx3MuuITbC+pwKLUlD986o5KzALHcZjDOtasOLIhAGwjQsHj1oo9Jw/UHt0W7fciRIK9IH2vU5ME2ALMivn9RCp43LxeCh7FaazrjlW0pYa07l6Gr+oITRvmUPXaT2lc9xoNa16O6jyNa18m/8YHaWsO4q+vwDH8bByjJtG87QP+e9Q+2b3uRZfjjzp9Ix5Lp9sGR3vsxZVrxwQC3qha9gHk5N+Tb2gdbPs6zWbDHzS/bHS70Vrz6UsvYnhuNuuPnODm88+xpNlsf9Ja/xVzw8EFvKPRdwNvYNaphC14fGHb3JXegC/q9QmRIE7g18lehOicBNiireDxVSADKXgU0ThWXW33Z304UCbnkrsY+4M5jLx/JiPvn0n+dfcz6PovdvrQkffPPO3roXf/kPSxF374tX3wGBzDz8aeP5JpX/2t64fnVYcdiiQSb4TS6fgMZ08/T9UYW26VNRixDd+pQIAHSkuwE7A6qraecWwwGODJRT9n1nvfpdllZpyU1R7m2WWzcv+6bGNg9aFjALh8Pv69dgtaa45U1zE4KwOLRTE8x0wr+dhZYwC+POu+GVdjdhdpAbyAJTTh8V26Lnhc0f2fghBxmVUwc/rJZC9CdE4CbAF8WPC4mC4LHrcV9t6qRCrSXr/fsb81XfVCP+qfB56usVmw9fTziNPluAM92qqvzdpJhG1z1xQM8vOTJ3GHuvRNLV08RHdo2bd637ucNWwyD3/ynzg9zXh8Ll5aNZNzR03lh/c+7t9ddlLXtbrITU+nyeXm1Y07cPp8nDV4EACL9hzi7qnnt109UScbm/+dZrPuATYD3wXa/t4tRwoeRWqpAv6U7EWI8CTAFu1FUfD41kYpeBzYbGuOVlrs6T0+kGRwoNY9I/tQ2Dd8oueM8bRrVt6Dlk63DTPCFAhagVmjR5MdGgw62FefE2g4Xtn+mOLKXXzsnBsAuO2Sz1NaewhDa+689ItkpI/ItlkzPN5AgDS7lYvGjsJmsfDdW67BYjHfG37+ymlMGPZRpsqo/Nwpf/jUx6/TWh/XWp+vtd4Ep014lIJHkSp+UzBzeo9faRKxkwBbfKhdwWPkCY9S8DhwFZ+ssgWzx/XGU/008HS13UrEFm2iZ5zv651MsKYh1syyNKOqs/uyrVZyrKdnrJ1Tsui0PGif30N+5lAADCNIs7uBCSMvoHDve2wpXoHTb00fnpPtH5mbg8vrZ8ygPF5Yt5Xq5ogb9L+bdd+Mzv4G7kUKHkVq2AM8l+xFiMgkwBYdbQUO0FXB44ljO3ttRSIlaLfX5zjsyuyNSeV5wXrPJ3P2j+rxJxKd+lgPdxIJNAU49qiZH104BX/H+/1a863yMu4vKaE2EABgv8fDo3uXjHjs7W8EVux6E4AGZw3PLvstWmsq6o6itebz0x9iRP5Y1ux7jzsueUC5jWEV10+ewKXjx+CwWblozEgOVEZM/c4nwoRHzM31sG/8QhMepeBR9KQfFMycHuz6MJFMEmCL07Sb8Bix4NH5+guLDJczqmlson+wrT1+0mJL75UOEz/yP1PlsJLWG88lznSl4eux/5+DziDlz5ZjeM106pXX2oYH23X8AHi1oYEL0tN5bdw4GoNBnEaQP1RX84eRo/jdRbdX7jy+llPNJ0mzZ5Buz6T8VDFObwtDckZisVgZkT8WgMsn3kpe/j3Dg4bh8/j8pNlsWK0Wosjh+PKs+2Zc0/HGdgWPYd/81bkaPauPb5IJj6KnvFMwc/rKZC9CdE0CbHEGT1FhOV1MeNStzT73wnff1YYh+YYDweGTJ21G76SGZAebfZ/O3h32MrzoeaMsOgOf0TO7sBYY++2xWNLNlx9XrjX9WObpaSJbXC4+nmPG+NlWK3s9HqoCfla2tnJx1drRGY4sw+N3MTx3DEdP7uHtDU/g8jYzfrg5QfSDLc9z75VfRymFwzEo80RDWs2o/FzGDs5nffGJ0/Kuw1DAv2bdN6OzTYblwCkgbB3CnN0Ld0jBo+gBHuCRZC9CREcCbBHOAswem2ELHv07tpT5D+xZ23tLEsmg3V6vo9id3RupIQAP+5+pTLfRK8NORHhZ7kBzT5zXmmHFmnl63LpyqjqtO4hLG4ywmc1jvjZ4CHWBINdkmX+KljWdstXVHw+OGTyB8SOmcPaIKQzNGYVFWalpMufLfOmmn3LuqKkfnm/S+C8NHZGb7R2SncmP77yRcUMGRbPUacC3O97YruBxMBEKHt/Ys0AKHkWizSqYOf14shchoiMBtuhUqODxFSIVPAKuN18qNBrqZaemH7OtOV5tsaXl9MZzZRot/s9lbw8/VVT0mtG91EkEYO3VtpEBrT/Mxc60WPCEYlOXYWCg+e2IkZztcPBaQyP/NSg/AFrfPPXTXHv+3Zwz8kI+ds6N7C3d1On57ba8dLcxutNiyi6EK3jch1mvEvZKy7aKvVLwKBKpAvhjshchoicBtoikbcJj+Mv1gYDhmvvqOzoQOKNQSfQDByoq7eSc1fWBifF93/OVGTYyeuv5RHiTE9RJJNAaoHVvK4GWwJn3NQXQAY0vw2I/mBv8MAC+IC2d7W4zQ+WQ18MYux2rUpztMGsLv5BpzfA3nqgAcPucpNkzsVntaG2c8Rxt8gZ9YmTAMDzdXH4enfQaloJHkQQ/kbZ8fYsE2CKsUMHjbMx/J2GDnsDxI/W+zeuX9Na6RO/QTo/HcczbK0WNAGmGK/BA1uahvfV8IrKPBXwfFpkGXUFOzDrB8T8fp+QfJRiBMwPZupV1HPvjMY798RhHfnWEitkV+Bv9lPy1BNcxF8cfO06gOUDd8jqO/eEYaGjZ24LzsJO65XUsv8Ty4evRvXl5PH7qFI9WV3PU52Nquvnn5x+navnhsGEopZhQsthW3VjGmCETGDf8PAr3vsfEUReH/X7stpw0jzE2ll3sL826b8a1HW9cVry+Fil4FL1jfcHM6a8mexGJopQaH+PjfqyUiqr4XSmVp5Q6482vUmpCLM8dCyUpYqIr6dfccA3wTeA4hC/Az/nvH3/OOmrM5F5bmOhR1iUHS3tz9/phz79Kvpu/vlcKKUXXyrRy3TVhbCZA3Yo60kakkX1hNpUvVpI9NZvcS8K/96p8uZJB0wcRdAaxpFnIPDeTk2+cJPuCbJq3NJNxdgaOkQ6CrUHyLjdrBa1+w5j956AvTal0gJqAn20uN9dlZZ3RD7vNoqv+UJ+Wnt9lxWKbQMDp8zQ+GbRZLd29SrILuPThOfNP63Zy28Rr04DfAzagqbMHKhR/+viP/mto1uCCbj6nEABeYFrBzOkHk/HkSqlHgBat9dOhrx8CGrXWL7Q75lFgrdZ6kVJqLDBTa/2FMOf7CVCstX6nm+u4DnPa9NZ2N1cDX9Ban3F5TCn1FlCjtf5Oh9u/D9RqrV/rzvPHQnawRTQ2hD4iTtVzvvHCPO31yCWs/mBfeUVvBtcOwxP8SlbRkN56vlRS3WrgD6beRsdYpTPxG26AIbcMIfvCbAACLQFsOeGn1/sb/ASaA2SMzyD7gmwyz83EeciJ+5ibzHMz0Vqjg5rWfa3kTP0otT9ot1j2DA5Wt3093GbnztzcsME1wJCy1d0a6W6zZTk8jK/u+sgzXExcBY8LF0rBo4jR/yQxuF4AfBX4llJqvlJqPvA14CGl1CuhY6zAHcA2pdQnATec2ds+dOx4YGwMwXUO8CiwBbhXa30jcAJ4q2NwrUwzgbWAVyn1fdWuQl9r/Xfg7tA5e5QE2KJLnqJCjVnw6ALCblsZp2pdnhWL3uutdYmeoVvdbscJf35vPuc3fC+VZ9t1dm8+Z3cdbzC4+zUX019w8vCSzlN5G9yau141j/nmfPdp91W3GlzydCsAj2/2cd3zTpw+zdKjAezW3unQ0l2ZHTqJuI64CDqDZJ6bGfYxdSvqGHzzR5vKWmuaNjWhrAplUeRcmEPLzhbsg+yU/L2E1gOtHx677Aprt3qfX1y5enQg6OtWXnX+oLvH+IMxtSCMVPC4BSl4FIm3Hfhzsp5ca3038AxmV7GZoY/lwP9prR8IHfZZzFotBdwfuq1AKfWYUmpOh1N+EXg8hqX8FvglZovC95VSLwNHtNZvtz8olP7xNmZsWwS8htkNaKlS6j/apZe8AnwyhnV0iwTYIiqeosIW4GlgCBEG0HjXrz7iP3JoS68tTCScbV3JKYvNEbY9Y8KfT3uNr2euiapvWjL9ZLmHX13vYO1XsihvMVh94syivZd3+3hgqp21X8mixafZWvlRRsEjy7y4Q/s6O6uCfHGqnS2VQTLtqRlcA4xq10kk0Bqg8pVKxvzXmLDHa0PjPOAk+/yP3isppRj9pdFknptJy84W8q7MY/h/DMeaaSXn4hyat34Uw++cZh3hwmjt7NydSdN+u616Z7d2pG3WDLuXc2q785iQPDoJdkIFj3OIouDRE/BKwaOIija76ny1YOb0M//Q9L50IDv08eGb4FDA+ghm6uhU4HLMKzq5mIFux/qEc7TWB0OPtYZ2vzsVut8CoLV+GNgJXIq5O54NjFJK3ayUGhTatb4J+AvwY8wr7leFPtYCXwGuC30NsBG4JKafRDdIgC2i5ikq3I/5TjZiLqHrjReWGq0tp3pnVSKh9pSV21XO2N58yv/yvlae6zB6rZgyVofrDD42ynw9GJ6paPKcecV/SIaFQ6eCNHo0ZU2as/LM4Hnl8QBZdhiZbX6tNfgNWHo0wJ0Tw6dbJNskr18DGAGDsifKGPnpkTiGho0hcR12kTnho93t2gW1NKw3B74GXUEsmeZLjrfKi2O4A2VTp1V1aItFbR9u1HVnjReVLBzU3fSLQYPuGuMPRh/It/PFCAWP79BFwWPhsc1S8CiiopR6rGDm9F3JXkfI3cBPQx+3trv9CuBNzJjgP4AdwJcxd7R3ApHGuf8caFFKNXb2AbQA/xUKohcA/8BsVfgsZvOFZ4HbQ89/n9Z6FfAvYCnwE2AKcDbwLWA+Zt51Yei53URo3JAoEmCL7nofqATCdnvQbnfA/f6bc7VhhO+ZJVKObnG7HKWBqAvGEsGiA/qbmSvCTsRLJZ+eYud/Vnv54JCfxUeD3DLhzMD4urOsFNcb/GOTj/OGWhiUrvAFNf9b6GXmrR/Nzrn9HBvzD/spyLVwz+suVh1PhU2qM10S6iTSsKYB9wk3NR/UcOyPx6h5r4bquWduHLfsbSFz8kcB9uAbB9NY1MixR82uIdkXZhN0B7Hn2UkbnUbD6gayppx+sWTp1bZuvfAN89bm+ptKKrvzGKs1zeZlUrcC+ZBIEx5X0NWExz0Ld5xy1pfH8LxiYNkH/C6ZCwjtILddXpuptb4xlPv8eOh+C7AeeA4oBX4NtPX2tGFe8e6YFuVWSmUDaK1/p7XO1Frnh/nI1Fo/C6wGjgDjgIeA/8HMx/4L5o70Rq31G6HzB4Engc8BBuZu91eAHwDt/8ieDZTF9QOKgnQREd2Wfs0NYzFzoqr56BfqDJmffuA6xyWX39Jb6xLxsS06WG6z5PRqp4Ovel4p+3X+wl7dMY/HutIAfy7ycfloK7+8/sx04S+84+LJuzPITVP83wYv2Q5FVavm/KEWPnOBnRtnO1n9oBlQbioPcLRBU91qcLTB4PG7Uq/991FtcX5yQkGvpQu1+fcffU25WKJ+43Vo0EUnKy7+Ztjd484Eg76gs/4fLofNEkux0/cfnjP/Hx1vvG3itRcCP8IswOr0xfXS0ReM/M5VD/y/9oVXQrTRWgeVUtcUzJy+OZnrUEp9Bfg05r9jxUf/nts+twJPYKZj/AUzVeRxzGB2FvDd0DEerXVL6JyfAAZrrV+MYT2TMQffXYA5Mr4SM7hubnfMjZi/f3sxp1C3YuZbTwLGaa3/GjruN8A7Wus93V1Hd8gOtug2T1FhGfA6ED4ZE3C989r6YF1tSe+sSsRD7Sop6+3gWumA/k7GkpQubOxo2kgrpU0GP7y68zQJlx/2VAcJGppNFUEUsPxYgH9t8XHjbCc7q4J8bZ5Z/Hi4zuCcQYo0m8JI0X2Oc5SRpQNGr010bLOlwGjozvGTG/aM8nmauvUYq9Vh9Vum1HdvZR/631n3zehs4mjXBY+V+6r21x7dGu5+MbAppf6W7OAaQGv9QqjIcSmwR2s9Q2s9A7Nt4Hyt9Z1a6w/aPSSIefWmBnhQa12PWfT4SLtj5mN28Ig4IbojpdQ9mDvidXwUt6YDS0KdS9qvYS1mcWMR5puB8cA3Qs+NUmoSMKang2uQAFvEbhWwhwg5hxiGds156V3t772Ry6L7dLPL5ajQvT7g5X7v3PIhacGUL25s78/rvfzwKgeZdsX+2iC/XHl6A4ufXZfG/5vvIW9mC/VuzecvsrPmK1msftD8mDbSyr/vyaDZqxmZbWHKMCvPbPNxayfpJqki0x3stL9zT1p8ra3bOfmDygubuz7qdPmDbh/rDRixfH+RJjx2XfC49e2VUvAoOlEM/CrZiwBQSqUrpd7B3DX+Rbu77gcuVErNDn3tANK11g3AYWAJsEgptRyYjpkXDUCoVuKHnJ7H3dU6sjB3rT8OnIMZsO/XWs/DzMH+cHCM1nqt1nqm1npXqM+1HTihtb5Da10cOuxmTg/6e4ykiIiYpV9zwxDMIQutQNj+12k33n5++q13fVauiKYm28KDFTZrTsSrEQmnDTarB+uHp/duzrfovk9kDS09MTyz13qit3nqMW/9YMMa9b8Pj3L41173J8NqtXer1V99/ZLSTLUvlu9PA9c/PGf+uo533Dbx2ruAzwBhr+B97qK7L7lj0vR7Ynhe0Q9prbVS6saCmdPXJHstbZRS47XWJ8LcN0JrHUtP+XjWo/pSP3nZwRYx8xQV1gH/BkYQ4d+Sd/XSA/4De854ERIpYMeJsl4ProHPeN8tl+C6b5jk8yXlBa1oPN3akU7XPrulZle3R6Hn598y1hvQ3UovCemq4LGWLgoea6XgUYQopZ5MpeAaIFxwHbqvV4Pr0HP2meAaJMAW8duOWeUbOR/79RdWBqtPHumVFYmo6EanM+0kw5Lx3D9Mn5fe9VEiFUwL+OzJeN4l06PfvW4ztWRBfndfhC0WmwrapsXSsg/M3r/f6XhjtBMe5+xesMDQqZqBL3qL1roEs7Wc6EckwBZxCU15nAM0APlhDzQM3fri03MNZ2usRUUiwexFZY3Kau/1QPdezwcVo9L9vZ7zLWJzheHr8ZHCnakebcutsgZruvOYYZ6aPH9zWbda9gHk591U4PHrRBc87ieKgscDNVLwONAppf5fwczpsb7JEylKAmwRN09RoROzwjcfs/9lp3RTg8f19itv6EAgbGs/0TvUtuNJSQ0B+FHaO+EnlYiUM1kZOTqgk/I7u3YS7q6POt34ksXdLvawWCxK2y+NtegwzgmPc6XgcWCbXTBz+tJkL0IkngTYIiE8RYXFwHtAxJ7GgcMHaj2rl77fK4sSndKNzlZHtaVbbZIS5U7P4sqCDG9S0lJE7NLdgV7vJAKwdLptmNHNlI9JdbtG+7wtjd19rry86ws8fh3L8BkwJzxe1/HGaCY81rsbPauPbVoW4/OKPkxrfQyzb7TohyTAFok0H9gNjI50kHfVkv2+/bul6DFJ7OvLm5XV1q1OC4nyU8ebnRWEiRQ3wuPv9k5yIjQNsWaWpRndKly0KMgvX9PtNwQWiwUcV3q6PjKscAWPy+mi4PHNPYt2SsHjwKK19iqlPlMwc3pS3ryKnicBtkgYT1FhAHgGaMYs7glLih6TQ205VmqzZUd8A9RTbvGuqBqX6eksV1WkuIlef9IK8Qqn4O/uYy6uWDEqGOx+Klp+/nVj3H5qu/u4kKnAf3e8cVnxeh9S8Cg6UEo9UjBz+vZkr0P0HAmwRUJ5igpbgH8AmUD42c+GoVtnP/W20dpyqrfWNuDVtzQ7aq1hC6562s9sryfrqUWcpgW8SekkArDyWtvwoNbB7jwmw/A6VO3uk7E8nyXt6m4H9O38z6z7ZnT2O7Yf2EyEVBEpeBw4tNZvFcyc/niy1yF6lgTYIuE8RYWlmEWPozALfDqlmxu9zteef037pMCnp2nDwLah0qmstqQUGF7vXVt9bpYracG9iM/lhj8pnUQAXLnW9GOZ3UsTAbiwZEFuLG1z8/KuHu3yq251L2n/cCJPeLTQdcFj2KFdou8ztHFcKfW1ZK9D9DwJsEVP2Qp8AESckBYsOdbgnj93jjaC3dqhEt1j2XyixGbLDj/Wvof9wvaykaznFvE7n0CODup4dnbjsnKq6va/n5HuqkG+5vJut+wDsKZPj+fv0Rdn3TdjescblxWvP0UUBY+rjm1aHsdzixRmaO2zKMunC2ZO79YQJdE3SYAtekSoP/a7mEWPEdvB+bZtKvWuL5zfKwsbgPSp5mZHgy0pedcAV/o21kzOak1acC/iZ1GKtCR1EgFYe7VtZEB3P8AfV7okppzmvNzLRrl8lngm1f1r1n0zOmtZ2mXB41tmwWNZHM8tUpSCH0re9cAhAbboMaGix2eBJrooevQsfn+n/8De9b2ysAFEGwaOTSddymJNWg7trywvJm3nUyTOME8gKZ1EAHwZFvvB3GC300TOO7VjjM/bEtMbA1vmDfEUHF5E5ILHIUQoeHxj9/yFUvDYvwSM4Nyxj13/r2SvQ/QeCbBFj/IUFTZjFj1mYBY+huV87bkVwZMVh3plYQOEZdPxEqstO2m5z5f4tp26MLspKQNtRGKd6/UlNc1n+SWWbr9eWRTkVaxrjOX5cnMuGen0Wbsd1LcTqeBxExFSRbZX7q/aX3N0SxzPLVJI0AiesFmsX032OkTvkgBb9LhQ0eO/gBFA+J1Uw9Ctz/9rrtHUGM+LmgjRNY2NjkZ70lJDAH5jed6bzOcXiXOx3xd2Smtv2HSFbZRX6273qb64fPnIoBHb9FhH1s3xvEbmEnnCoyJCweML2+aukoLHvs/Qhs9qsX5K8q4HHgmwRa/wFBXuBF7HnPQY9t+ddjn9zpefec1wu6T5fhx0MKgdm2u8yUwNuci/q/7irHrZve4nrjB82cl8/qDdYtkzONjtvOhMw5OmavfG1LIvJ/ui4U6fLaZCyZAHIhQ8ziXCUC4peOwfFOqhgpnTdyR7HaL3SYAtetMSYCVdjFMPnqxocb787Iva42ntnWX1P5aNx0ut9qykDnX5Nc85leo0zVT0QRcQyNVBHUjmGpZdYY1pAukFJQtyY33OtOzb4n2TGq7gcSVQQxcFjzWtdVLw2EeF8q6fSPY6RHJIgC16TaizyGvAQboYpx4sOdbgnDP7Je3zJa2wqq/SVY2NjmZHUneOz/Ptb7g0u7YgmWsQiWVTSjk8waReWdo5zTrChdHtN96jXJWDvM0VMe1iZ2edP6zVZ6+I5bEhXRU8Rpzw+IZMeOyTQnnXX0n2OkTySIAtepWnqNAHPAk0AkMjHRs4fKDWNffVl7XfL3m8UdLBoHZsrfEpizWp+bK/Uc+2WmT7ut8Z6vYndSiUtljU9uFGXSyPPat0acxFmhk5d6THMrSmna4mPIYtRN5xcn+1FDz2LaG86/8omDm9JdlrEckjAbbodaHOIn/DLHiMmNfp37vzpHveW6/pYEBavUXBUnSs1GrPGp7MNZzrL268MrtKdq/7oXO8/qQPhFp6tS0jlsedV7tttM/njKnQLCtz0hCnP708lseG5AJ/6Xhj9BMe35YJj32ENt+Jfalg5vSdyV6LSK4BHWArpdKVUnHt9CmlpimlLkrUmtqdN+yI8Z6glEpTSp3TW8/nKSqsBP6O2Q82PdKxvu2bSt0L33tDB2XaYyS6sr7e0Zqe9MD21/rpZtm97p+mBpLbSQTg4BTb8GaMbqeqWJVWORXrGmJ93sycOzN1fNvYX5h134zrO97YruAxbNu+BneTd9XRjcvieG7RS/zBwP+c9dgNc5K9DpF8AzrABv4KPN3+BqXUIKVUpVJquVJqXei2nyulPqeUel0pNaTdsWMw/zBer5T6ZIePuzuc9w9KqbNDnzuUUnPDLUopNQhYppSK+P+PUmqBUmpw6PM1ndx/fugNwDSl1P8opR5r9/XUDoffD/wz0vMlmqeocD/wDOYLS9jdGwDfxrXHPMsXvKUNQ0Zud0IHgoZj+6mgslh69Y1ZR+P8J5qvza5IepAvesblweR2EmmzucBojOVxl5QvGxE0Yrsalpk5YbDTnxHPLjbA4zEXPO5dvEsKHlOb0+d+c8Jfbv6fZK9DpIYBG2ArpR4CKoEapdTX290VAJZqrW8FKpRS7wB+oBkIAi8ppaYopfKAV4ES4DDw/4DLgeGYBS0d8wQvDR0LcBvgUkqdF/pwKKVsbbvpWusGYBXwsXbrtYY+LlVKrVZKLQ493xuhzy9QSi1WSq1USn059LDLgBuA64AJwLjQ5zcA17Y79zDg90C2Umq+Umpb6L8LlVKrYvn5RstTVLgBeAEoIFKPbMC7ZsUhb+Gyd+PcReqXrEVHS632rGHJXsevjCcbrJbIbwxF33Ux/jxt6KRfSVp8nS0nlsdlBt3p1O6Pue1eVu6M7Dj//lwEfLfjjVLw2Pe1ep3bsxwZDyR7HSJ1DLgXQqWUXSn1VyBNa/074OfABKXUC0qpEYANuEIp9TdgGFAPjAfcwDSgQWu9X2vdBDwCnAf8EPMP593Al4ApwEOh57MopRow0yC2K6V+D3wLsAI/Bd7BDH6/hLlrXaWU2gbcAfxNKVWrlNoOrAfu0lpv01rfqLX+OLALuCf0+W6t9ce11jdrrV8MfbvHQmuaEVr7RaHP7wbK234emG8U/qm1vl5rPQPwa61naK3v0lrflKiffTieosLVfNQjO+IlaM/yhXt9G9bM7+k19SW6oq7O7so4K9nrGBMoa7kpp1R2r/sxu1LK7k5uJxGA0rNtg+sswZiKHaeULoh5Fz4j46xBTn9WvLvIvw1T8HiALiY8mgWPR6TgMcU4fa4qq8V6a8HM6VIrJD40oAJspdQNmDvDx4GblVLzgQ8wd3rXAUuB6zGD27OBe4DvYO48e4BDhNotKaUygTKgEPhm6PH/Bn4HbAT+WymVp7U2gO1a6xuBHwCTgJPAN7XWD4bW49NaPx8KZv8B/EprfZ3W+rrQsddqra/SWn8Qeu7vKqVWYwbp74V2sAntbE8NfX4B8GlgO7AT2AAUhT7fDtyklLoRGBNa78jQrvV8YHJo93qpUuqM9lI9ZDHmm42zQt9XWO4F72z3btmwpFdWleJ0IGg4dtSjVPfHSCfar4JP1VstvVs7IHrfEE9yO4m02TCemDo0jHGWD/G2nIx5WmxW3oy2v+uxilTw+CZdTHh8ftvclR6/FDymCk/A66pzNd48cdZtMef3i/4p6S/KvWwL8Fngca317aFd2hla69sw0xSuxAxA/whkAH8CLgEexgywbwfa+lqOx9x1HgX8F7ANc5f6Isyf64N8lOJxcSgg/htmW6aZwCuh+9JC527zJnAfmDnUwDGt9Wm9oLXW/wztYt8cOrYMaAC+r7XeHTpmn9b6IeBGzDcQEzDfNFyG+SbiDa31aq31Ca31r4GpwCdDO9iHQrvXt2utH+/GzzdmoR7Z7wMLMIPsiP823e+9sdG3e3uPpq/0Bdb1R0ut9swhXR/Zs0YEKp235hyXqY0DwIQU6CQCsGS6dXCsjx1bujTmgTkZ6QV5rf6ceHOx4yt4PCYFj6kgaASDFc3Vn73mqfsOJHstIvUMqABba+0CHgMWhHZrj7TbtV0APAU4MfOwm4FZoY91mAHsPOBKpdRIrfV+YAVmEH09MAgzGJ+Bmd98L2ZAD7Cz3Q42WuujQCC025xBuwBba30EUEqpqzCLMGeG+35ChZQfAHO11p/SWu/q5DAb5s56+49KQv/ft+V2A53m9YVSXHplVzIUZL+FWfAzjjC5iG1cc15c4z+4t6g31paSSk+dsruTnxoC8Ivg07U2S+T0HtE/XOT3pcRViurRttwqa7AmlseeX7NlTKwt+wBy8u/JN3TcuehdTXjMD/fAUMFjaZzPL+KgtaasqeqhG575woJkr0WkpgEVYANorb+otb4T84/YWsw0igVa6ztDKRvtlWDmK48FqjCD0Pu11lWhgsQ/YO44L8TcRa4JBdIrMHeOI00h/G9gH5AJZ1zq/GHovLVa640dHxgKev8CPADcrbVe3O6+yR26jwQwA/j2H4HQB5jFmQtCa32vXYpI+zce/xXh+0goT1Ghgbm7v54ogmzny88u8x89vLU31pZKtD8QdOxusKRCasjQYI3rzuxi2b0eIC4P+rKSvYY2aydF/BsbllVplV1ZVB/r86anjcx1BfLi3cW+kMgFj4OIUPD4+u75C6XgMXkqmqufuO7pz/Vq5y3RtyT9xbm3hXZsf4lZwPhVzA4hFyil/jd0SCZwPubO9BzgLsz8ZTD/2N2glPqu1joQCtTnYga6LwDDQqkgN2MG8G2dOi5plyICgNa6Ups7IEO11h8WRiilLgaeAB7HrCn6l1JqSodv437gXOCLWuuWdo+1Y6ZZXNDu2DGYwXz7jyvarePJUHFkW7rMDOBwu6/v1Fo/0/VPNnE8RYVBzJ/nNsx0kYicLzyxIFB6fHePLyyFWNcdLbfYM2O+RJ5IP/M/VWO3Ru4AI/qPaWYnkZRol7l0um2YEWNXj2llS0cYRjDmVJHsvHuGGIaO+fEhv51134zO0kG6LHjcefJA9b6aI5vjfH4Rg+rWU8uuevIz30n2OkRqG3ABNvAfmIWLVwOLgLcxpwneqpT6dOj+nZiB9e8xO338DvBhduJ4CjiqlMpQSr0I3ARcr7X2aq0fCO1gbw115FgTSq/YFrr9W4ALQCn1ZaVUMXAi9PU0pdQmzB2NX2it/6S1/hzwLjBTKXW4rY82sAMwMLuOrG77AJYA72it97T7fg9orW9t+wAeBSoIdREJI+m9bj1FhX7MHtl7Ma8ghKc1rf/+53uB8pK9vbG2pCuprbV7s1IiNWRQoM79iZyDo5O9DtF70pWy2DzJ7yQC0DTEmlmWZsRUsJgddGXoU7G37EtPG57tDAyuiPXxIXEVPL6wbe4qKXjsXfWuxgOYqaBCRKSkpbBJKZWN2c3D1+62dMwd5ngvBXb2fIMAm9a6NvS1ArK01q1hjne0X1scz6v6Uh/p9GtuyMBseTiByG8KwGJRWV/+xsft5553RcTj+jDtCwTSlp5osdgzBiV7LQB/9Dx64vP5e8cnex2id92cO7y8dkjyp4YCzFjkLf3STmtMbzjLs8bWHb78pzEXCXt9da5Ay2y71aLivYJz48Nz5hd2vPG2idfeAXye0EZMZz5z4Z0X3zX5hk/G+fwiCi1eZ02Ns+7CG575Qm2y1yJS30Dcwe6U1rq1YwCrtfb0RHAdOndDW3Ad+lqHC65D98cdXLc9TyLO01s8RYVuzNaF5US4XAqAYWjnC08u8u3a1m+7i1jXHq1IleA6J9jo/VTO3sj/n4h+6WyvL97UiIRZea1teDDGgsMCZ9kQb2tVdazPneYYkukKDo15F7ydcBMeVwHVRCx4XCQFj73AE/C6ap11t0hwLaIlAbZIeZ6iwlbMjiqngM4GNJzG9eZLa7xFhfO10c8KgI7X1Nj9qZEaAvAj/zNVaVbSkr0O0ftSpZMIgCvXmn4sM7Y0EYAxpcviGg6Sl3/PsKBhxLsBciHwvY43RlPwCEjBYw/zBnze4w3ln7j+mS8MjDREkRASYIs+wVNU2ITZMrEZcxx9RO4F72zzLF/4pg4GU6Jnb7y01x9w7Gt2hFKJki4r2OL7TPbOLv9/EP3TZSnUSQRg5VQVc9HlBdWbxvj9rpiG1gA4HIMyXcGRidjFjlTwuBEpeEwKX8Dn31118HO3PffgymSvRfQtEmCLPsNTVFgP/BnwYnaBichbuOyge95bL2u/39vji+th1rXHKiz2jPxkr6PNQ/5nKzNsZCR7HSI5LtX+vFRKN1t7tW1koF03pu6wKq0yKzfENHa9Tf7gT4wMGka8f2dyiLPg0e33hk0zFN3nC/oDRaU7vvkfr3znvWSvRfQ9EmCLPsVTVFiLOXzHRRTpIr6tG0qcc2a/oL2evvvCc6Sqyh7IGpfsZbTJMJz++7O3yu71AJZhUVarx0iJTiIAvgyL/WBuMOY0kWllS4fH07LPbstLdxujT8b6+Hbun3XfjBs63riseH0dZsersB17GtxN3pXHNsiExwTxBwOB5UeKfv7Am488n+y1iL5JAmzR53iKCqsx2w3WAF12Mggc2Fvd+uLTzxvO1pgHSySL9vr8jkPOjBTJDAHge77nKzNtZCZ7HSK5Brn9KdUebvklsQ9dygm0Zhp1B+NK88gb9IlRAcPwdH1kl8JNeOyy4PHtvYt3S8Fj/AJGIDj/0Kr/e2vvojOuKAgRLQmwRZ/kKSpswBx7f5goJj4GS441tD779+eNpoZE7DL1GtuaY5UWW3pestfRJs1wBb6UtXFostchkm+81x9XcWCibbrCNsqrdcwB7vklC+J602i35aR5jLEx76K3cwHw/Y43hgoeZ9NFweNruz5YYGgjJQYB9UVBI2i8t3/5c/MOrPhlKD1HiJhIgC36LE9RoRP4O7AFGE8X/56N2hpnyxP/NztYW3O8F5YXv8MnT9qC2SmTGgLwbd+LFVl2nVIFbiI5LvSlTicRgKDdYtkzOBhzy72xrSVDva01MT8eIH/QjNGBoBHT+PYOfhOm4PEg5mThsAWPu6oO1uyrLt6SgDUMOEHDMN4/sOLlBYdWf39Z8fqUegMp+h4JsEWf5ikq9GJOfFyBGWR3dmn1Q7q12dfy5F9eDVSU7u+F5cVMu70+R7E7K5VSQ+yGN/jVzHUpMZ5dJN9lQV/KpQktu8IaV9vI0WXL4mq3Z7NlOTx6fFxBekgOZtek04R2VN+iq4LH7e9IwWM3GYah5x9c+foHB1d+a1nx+kSk+ogBTgJs0ed5igoDwCvAO8BZRHjhAcDrDbY+9de3/UcOpewuj23t8SqLLS032eto7+u+VypyHDon2esQqeEyfCnVSQRg5zTrCBdGzIHlBdUbx/j97rgC0/zBd4/xBw1XPOcI+fys+2bc2PFGKXhMPENrvfBw4VvvHVj+/5YVr0/EFQghJMAW/YOnqNAA3sfMURwDXbSQMwztfOGJhb49O1b3+OK661DlSbvOSZmBMgBW7Te+kbkqP9nrEKkjWymb1Ws0J3sd7WmLRW0fbsTccs+GYck4ufFUPGuwWTPsXs5J1LS/mCc8SsFjdAyt9eLDa96bu2/Jfy0rXp+IN0ZCABJgi37EU1SoPUWFK4HHMYfRZHf1GNcbswu9G9bM10ZqFAVpl8frOOLpct297ave18rzHEZK7aiL5Mt3B1IuDWHJ1ba4UlemlS4ZbhjxDagaNOiuMf5g7Dvp7UjBYw/SWrPsyLoFb+1d9OVlxetT7t+y6NskwBb9jqeocAvwJyCXCDs8bdzz525zv/vGi6nQK9u29kS1xZaWUmkYFh3Q38pYLsG1OMNZHl/MvaN7yqEptmHNxN6jOzfQkmnUH46rZZ/VmmbzMimu4TXt/GbWfTM6SweRgsc4rTi6YfEbuxc8sKx4fcyTPIUIRwJs0S95igoPYPbKtgFdtpXzbd9U2vL0354O1p8q6/HFhbO/osJOaqWGADzgfbN8cFowP9nrEKnnAr8vJV9DNhcYDfE8fnLJgvR41zBo0McLfAEjEYFbVwWPAGGLO5+XCY9nMLTWS4vXLXl117zPLytenzIDk0T/kpJ/HIVIBE9R4Qng94CHKKY+GtUnW1v+MXO2v/jg5p5eW0fa6fE4jvtSpt91G6UD+rvpi1MuZUWkhkuDvsi1Dkmy+DpbXFdcxrUcH+Z11tbEcw6r1WH1W86PK9Bv53NdFDyG3cVu9DR7Vx4tkoLHkKARDM7du/j913fPv39Z8frGZK9H9F8SYIt+zVNUWAX8AagliqmP+P2Gc/aTizyrl72jg4Fe64NqW3uixmJzpFwg+znvuxXD0gODkr0OkZou1/68FGskAkDp2bbBdZZgXCkaI8tWeONdR/6gOwq8gYSNlI99wuO+JburW0+VJGgdfZYv4PM9v23u2wsPF359WfH6PjfZV/QtEmCLfq/d1MdizF7ZXTaX9iybv8f52gvPGU5nonagwttbVmFXqZcagjb4Qfr8lNyhFKkhX2G3pFgnkTYbxhNXesaFVevH+P2euMbBWy02S9B6UaIC7CnADzreGBqIMpsuCh5f3zV/4UAueHT63M7HN74yp6h0+/eWFa+Pq1OMENGQAFsMCJ6iwlbgb8B64Gy66pUNBA7urW7515+fCVZVFvfUunSr2+0oSc0d4k9551WMSPcPSfY6RGrLS8FOIgBLplvjGopkx7CkV22Ku91efv4tY70B3RjveULiKnjcW13c6+lvqaDR3dz457XPztlTffjHy4rXx5X6I0S0JMAWA0Zo6uO/MXd7RgNd5jzrpgZPy+N/es23e/vqnhiqYV9bcspic6TcRDyAR9Lei2sqnhgYxnr9KTlSunq0LbfKGowrmJpWunhYvLu+FotNBW0XJ6pLRTZxFDy+sG3u6oFW8FjdWlf9+9VPvFXSWPnLZcXrq5K9HjFwSIAtBpR2vbL/AFiJsOPzIa1xzXmx0LPovde035ewEbpqd2m5zZIzNlHnS6QZ3oWVozN8XXZfEWKKz9dlylWyrJ1EXFP58vzNWcH64op415Gfd3OBx68TlfP7uVn3zbip443tCh7DFnQPtILHEw0Vpb9b+fhrda7GXy8rXn8y2esRA4sE2GJA8hQVFgO/AU5g5mVbu3qMd/3qI60vPPmM0dQY9y6Ibna5HOVGXJewe9JPHG91VkwlxBlStZMIwNLptmFGnFeeJpcsjLtln8ViUdp+aSKnBD4+674Z9k5uXwVUIQWP7K0+XPyH1U++6PS7/1d2rkUySIAtBqxQ8eNfgCXAOLoarw4ES441tPxz5nOBkmO74nlu+/rSemW1p2RqyB3eZSfHZniHJ3sdom+40ki99pJtmoZYM8vSjLiCq/HNR4Z5XafizsXOy7u+wOPXiRo+M4XOJzz6gRfpesJjvy543FC6Y8+sdc8/EzACj0krPpEsEmCLAc1TVOgH3sAcrz4k9BGRdrsDrc/8/T3vxrULYxmxrnaWlNssOV23DEySn9jfkL8LImqDLTiUN5iyeb2FU4g7R3x42cq4U8MsFgs4rkxYihlmweOYTm4/RBcFj7urDvXLgketNYsPr9nyzJY5jwP/WFa8Pq4uMELEQ15IxYAXysveDPwP4Mbsl91lXqn7g7e3uOa++oJ2u6JuU6abXS5HpU7Zzhw3eVdXTch0j0j2OkTfkuMOpGSrPoCV19qGB7UOxnOOqSfXjfYHPHGneOTnXzfG7Sfu3fCQBBQ8elL2jVF3BQ0jOGfPwjVz9iz8K/DcsuL1vmSvSQxsEmALEeIpKiwD/hfYjdnKr8s8ZP/OreXN/3jsiUDp8d3RPId9XWmDstpTNmf157ZXU29qiEh5Yz2p2UkEwJVrTT+WGV+aiJ2gNe3kloS0d7OkXZ3In9V9s+6bcXPHG0MFj2/RRcHjiqMbliZwLUnjC/q9z219c+WS4rWPAW8sK14f1xsqIRJBAmwh2gn1y/4X8CYwFnOXKCLd3Ohtffpv77qXL3xT+3zhuxZsP1Fms+Z0dkk3JVzjLaqZmOXsuquKEB2cn8KdRABWTlVx5xtPK100NBF5y3l5V492+1UiezGHK3hcjVnwGLbP/tx9S/b09YLHRndz3WNrnlm4oWznb5cVr18Y2sEXIukkwBaiA09RYdBTVDgf+DOQBURV8OddteRAy5OznuhsMI1udLamVTEswUtNqF9aXwokew2ib7o04Iu700ZPWnu1bWRA67h2jvP9TdnBhqNxt+wDsKRPT+QO6/mEn/D4ImZHkX5Z8Hi0vrT4l8v/Nv9YfdlvlhWvL0r2eoRoTwJsIcLwFBXuxWzlV4vZZaTLXTqjpqq15Z+PveYtKvxABz66bG4vKmtWVnvKBiGXezfXTslu7mxCnBBduhx/brLXEIkvw2I/mBuMu1XbxBOLupwAG4283MtGuXyW6kScK+TXEQoeizAHa3WqLxY8aq114fHNG36/6ollTp/rd8uK1+9J9pqE6EgCbCEi8BQV1gB/BNZi5mVHFSS758/d3vKnP+4LVlTUq63HS23WnJQOXn9lnS0FQSJmI5ROx2ekdMeG5ZdY4n69m9B8aITXVX8qEeuxZd6QyFSGrgoeNREKHp/f9vaqvlLw6A343M9vm7tw9vZ3NgB/WFa8/miy1yREZyTAFqILnqJCD/AC5pj1IUDXXTa8wYt0eWWw9Xe/f9zYvm+/NoIpm35xsW9H3dTsxpTNDRd9Q447kKhx4D1i0xW2UV6t426TN6x8ZUIGxuTmXDLS6bMkcrpguILHeswgO2x9RZOnxbf8aFHKFzzWu5uqHl395Lx1JVt3YAbXlclekxDhSIAtRBRCrfzWAL8CKjCnP3ZWWARBnac8xnkE9AZlGLpl6webGte9+lSwtb6091Ycvd+o5+IaJy0EwGiP35vsNUQStFsse4YE4y4unHpy7ehAwJuQ3xlH1i1dTpDtpkgFjyeJUPD4zr6lKV3wWHzqxJ5fLP2/FaVNJ7cAj4XeOAiRsiTAFqIbPEWFVcBMzC4jo+k4mEZrcAeuIWgcUfDh1DZ/7Ym6uiWPv+A+tm2RNgIp09Jsim9v/SXZdSk79Eb0Hed7Uz/LaOnl1rhzqB06YHNUb0tIF5Cc7IuGO322RO7Cng881PHGaAseX935wYJUK3g0tGGsOFq04tHCp3Z6At53gb8vK17fJ9JZxMAmAbYQ3eQpKgx4igoXAr8FWjALIM2dKG/wYuU3LBjs7OyxLTsWbG4sfOmJQMup47203Ih+o551KpXSHdZEH3FpMLU7iQDsmmYd4cKIOzibWrJosE5QIJqWdWvnV8Ji96tYCx73VB+q3VN1eFOC1xMzj9/rfGbLnPde2TnvOGZgPXdZ8fqUTbcToj0JsIWIkaeosARz+uNC4CyC+izlMSYR0EXKLCrqlL++vLF+6RMvuYo3faCDgaRdVp/kP9hweXaN7F6LhLjS8KV0JxEAbbGo7SOMuIsUB/vqcwINxxOy85ydPWVYq8+ekPZ/bacE/q/jjdEWPL6wPTUmPNY668v/Z+Xj8zaV7ToC/HZZ8fptyV6TEN0hAbYQcfAUFXo9RYVvAY/iDeYSME4qaIrmsa27l2xvWP38E/6Gyv09vMxO/Vo/02KR7WuRIKMsOgOfkZACwJ605CpbViLOc07JooTtPKdn35GmdULno3x21n0zbul4Yyhv+U1SvOBxf82R7b9Y9n+FVa21G4D/XVa8PpFvQIToFRJgC5EAnqLCQxZn4MtKMxszZSQvmscFGquaG1b++62WHQteCnpaa3t0ke2c7T/WfE3OSdm9FgmV5Q40J3sNXTk0xTasGSOqN8GRnNt0YITX3VDX9ZFdy86aNNTpTy9PxLnaCVfwWEgUBY9VLadOJHg9XfIHA775B1ct+vPaf+/1BwNzgCeWFa9P6faPQoQjAbYQCeIq3uR0FW96BbNvdhA4i7bc7C64j207Xrfo70+5T+xY2htpI7/WTzVYlJLff5FQqd5JpM3mAqMhEecZWrYqYcFfZs6dmTqx29jnAR/veGOqTnisaa0r+2PhU2/O3bekFPjLsuL1HywrXp/IiZdC9Cp5gRUiwVzFmw5itvNbAowlwk7RaYyg0bLtgw31K5993F9XtjvBl4w/NNZ/ovn67DLZvRYJN9mX+p1EABZfZ0tIvvjUk2tGB4K+uHtrA2RmThjs9Gckahd7F3D9w3PmfxDm/pQpeAwaRrCoZPuKny39y7LjDeUlmPnWMplR9HkSYAvRA1zFm9yu4k1zgN8DHsy0EVs0jw0217Y2rH7h3Zat7z8fdDfHPd65o18ZTzdYLSrR/XeF4JKAL2zxXCopPds2uM4SjDu9I037bfaq7Qn7Hc3KvSsnzl3sRuC7wKUPz5m/NtxB3Sx47LEBQo2e5prHN778wrNb36w0tN6COTwm4X/zhEgGCbCF6EGu4k1HgF8DH2DuFg2P9rGe0t1ldYv+/oyreOM8w+9NSFX/qEBF6y05J2T3WvSIq3TqdxJps2E8CQkcLy5dOFhrIyGXmzIyxue3+rPKuvs4rXUAeBw49+E58x9/eM78LlMroi54PJL4gkettd518uCGny75y+s7Tx6wA68AzywrXi9Dr0S/oXrqMrQQ4nSZE688C3gAmAzUAFHnb6q0LEfOJXddmzZq0jXKYo1qJ7wz//L+quTuvKPjYn28EF25qKDAjd2Skex1dGVEZaD5ny+SkDcEiy9+uNwxaEJC3ri6PeVNuObkqChrJE61Ok9sOV6+8GRTy/f3VVR1q0f0bROvtQP/C2QCYfPS/3j7I18emTN0fHfOHY7T52p6c8+id9ec2OLFrFV5fFnx+gOJOLcQqUR2sIXoJa7iTaWYUyD/hXlZ9iyiTBvRXqeveeNbqxpWPfdPf115TPnZw4NVrjtyjnY2gEKIhMnsA51EAKpH23KrrPGPTgeYULI45je9HWWkF+S1+nO6zMV2en0ni46UvDRv54EXTza15AFXdfe5QgWPs+lqwuOueQkpeCw+dWLXL5b99d9rTmyxAMeA30hwLforCbCF6EWu4k2Gq3jTZuCnwALMtJER0T4+0FjV3LD6+XebN899NtBaX9Kd5/554KkamyW6gF6IWI3qI51EANZOIiEpCZMa9430ehrrE3EugJy8GfmG1p2meXj9gcZdZSffmbNl9zMHq2rLMes7aoBYe0UfBtYToeBxb/XhuAoevQGfa+7eJXMeLXxqfZOnZRDwEjBrWfH6uIf+CJGqJEVEiCTKnHjlaODzwFTgFHQvLzRz8nXnZZx7xc3W9OxhkY4bHKh1b8r4vtVuxRH7aoXo2o9tuSWLxub3iTSkvLqg6+mnjYxEDFzaPOa2ktaJn0zY911b/e+SHEfzh+fzB4Ou47UN6zYdL93sDxoGMBLzCti7wPJ9FVUxdzO5beK1gzGvrtUBnb5Byk3Ldsy845H/zrCn53Tn3GVNJw8/uem1hSdbagcBJZi51jI4RvR7EmALkWSZE69UwMXAlzBb+lUR5kWuU0qprPOvn5Jx9qU3WtKzh3Z2yJ88vz/x2fz94xOwXCEiep30qkfPHj4y2euI1p9neU+O81nDFvpFy6vs/sLr/hS0WR3piViXx1vTarS+nG5oHSipayjadLxsk8cf8AGDMQdZbQHe3FdRlZA0l9smXnsr8AXMILhTn5py+4WfOP/m/4zmfP5gwLfq2MYlr++efzy03veABaG0FCH6PblcLESSuYo3aWBn5sQrDwA3Ap/CHFBzErMIKDKttXN/4T7ngTX7s86/8YKMsz92gyU968NAOy9Y7/lkzv64AwghonGF9nVrhzPZCqfg/9LO+M+Tpv12W/XOCkZfMT7+s4HdNshxoN6+Ytvx7TudXp8HyMJM4yjFrOM4vK+iKpE7ZIXAzZhv8jsteHxn/9K9lxdcdOnInGHjI52oorn66Ozt7yw8UleSjblZ8LtlxeuPJnCtQqQ82cEWIsVkTrwyD5gB3IrZQ7sGs19tdBRq/Pizv+g7/64hgYwhuX/wzDzxhfzd43tksUJ04sKxBV5ls/SJntiZzUHPc48bdquKvzd8bdqw5t1X/SZHxZFyEgz6fSU1uzYX7X+lqNlV4wYcmOkgrcBrwJZ9FVU9MuHwtonXTgZ+jrmL3WlR44UjJg176NoHv2lRljNquNx+T8uS4nVL3j+wvBQYCiwH3pb2e2IgkgBbiBSVOfHKMcB9mOkjDZhDJLqUR+vZE1XF1BzlnVcz5fMXzTv3nStGZWnpHiJ6zeVDR9V4cuxR93xPtj/8zVsx0W1NyO/I4mk/qnDkj+/2uYJBv6+0dveWov2vFjU5q1yYV7FGYQa67wGr9lVU9XigetvEa78OXA5Uhjvm+9d8+bZpo86/pu1rQxt6X82Rzc9vfXtVo6d5KODGzLXe29PrFSJVSYAtRAoL5Wefj9k/ezRmIWSEoTOaSZTfPVw1Hk1X/oMAFoX67AW28+84xzZ9SKalz+TGir7rE1lDS08Mzzwr2euI1i0rfWXf2GQZm4hzHRp00cmKi78ZdUqW1+8KHC5fX7zj6Lx5re46D2Z3rxGAHVgGLNxXUdWUiLVFI1Tw+EegnggFj3+845H/zrSn55xyNVS8sWv+/G2V+5ow3xBsAF5dVry+T7RrFKKnSIAtRB+QOfFKG3AZ8BlgCGEC7Vyc4yap8kvycL6v1JlpJZ88zzbx7om260dkW2Sao+gxD9tzS5YW9I1OIgAOt+Gf/dcgNqXsiTjf4qsebXCk5w2KdIzX7246WrV3w4aDH5R5PeXXgGceZgFjGmaQOm9fRVVSxobfNvHaW4AvAifCHTNj8k3n5WfkZr+264NthjZGYqaxvQBsDo1iF2JAkwBbiD4kc+KVdj4KtAcDtbSbCDmR8jtHqIaSdOXfH+k8N463Ftwz2Xb1hEGW8xPRokyI9l5W6ZV/Gj88bF/lVPTrxz1lF7bYErKLvangjhLnufd0+gbD6WmuPlS5o2jbkVV7g0bAAJQRbLgDo7kJgh8A7++rqOr2uPRECk14/B/MwsqwEx6BDMz88L3AC9LXWoiPSIAtRB8UCrQvxwy0BwG1ObgGTVJlV+TjfLez3evOTBpiyfvchfYrp46wfMxhVX2iKE2kvkPa0vLpCQV9qpvINUW+yh8UWhLypsCjHP611/3JsFrtH/5ONbTWHttftnnDnpINR0I3KWA4kKF1cL826hftKyvek4jnT4QuCh4tmClrPuBVYMOy4vVxT3oUoj+RAFuIPixz4pUO4ArgPydQcc1oVV+Vrvw7unueQek47r/IccnVY61X5qapiJe2hYjGhWPH+pRN9ZnBRla/Ycz+c9CXplRC+livmPyVEmPEJWOqGkp27Ty+dlPZqeLa0F0fBtbAHsxBMcf3nChKuRfjMAWPgzBHq68G3llWvL7X8sOF6EskwBaiH8iceKXjfFVy12jqblCKQZgT2bo1FRLMgshPT7Gdd8vZtqtG5Vj6TJGaSD2XDR1V682xR5wwmmp+/LSn9LJ6W9z/7lu1alxtG77hXSNrT4u7oa3zR1vxYhqwC5gHHEvFwLrNbROvHYQ54bEeM8d6FOYgrBeWFa8/nMy1CZHqJMAWoh+5Z7LdDnwMc1jNCMzWfo2xnOvKMdYRd0+yXTplmGWqpI+I7rore2hp2bC+00kEYNp2f9XPl6iYOu1oDRXacnR1MG3z/GBasYFqe3G18tFY8w3A4j0nikoTtOQeFyp4/DrmG/a3gZUyjVGIrkmALUQ/dM9kuxWYCnwSOItYBtaE5Diwf3qK/YJrxlovle4jIlrft+edWFmQNz7Z6+gOZRj6hccCzkws2dE+pkXjP2jYN88PpG0/oO317e5qGxBjYE5JXLbnRFFSuoLEI1TweD2we1nx+tqujhdCmCTAFqIfu2eyXQHnAh/H3NkOAtVATDtQl46yDPvEZPulFwyzXJxmS0yuquifZqv0yll9rJMIwPee95y4rto2PtIxWmt9MhA4utHt3vMe+ed77DkfoCyu0N1ZmFMMvcAioHDPiaLGHl20ECLlSIAtxABxz2T7COBG4BbMy9WnAFekx4STacf26Sn2KdeOtX5sZLYaJ53+REf7tLXlcxPG9KlOIgCT9wdqf/c+neaOtwaD9fu93p0rWlt2lfn9zQCu9KE3eNIHuwxr2nEgG/P3aj6wec+Joph+v4QQfZ8E2KLPUkrNBv6ttV6nlPolZkupy7TW+5VS/wdsBO5qO6aLc6VhDkkYCxzUWn89dPv40ONvDX09CpgN5ABrtNY/7YnvrSfdM9meDVwJzMDsBtBM5F63EU0aYsm7e6LtootHWi8anKH6zHhs0bMMrZk67iy/siZmeEtv+vcffU25WPIAfFp7Sny+/Rtdzl0bXK6OudO2oMUxuSW7YFzAnvU25o71/j0nioK9vmghREqxJXsBQiTQTOCHSqmHgenAI5gBdjS+CJzSWt+vlHpJKXWt1np9J8d9H3hOa/2mUmqxUmqk1rpP5VXOO+RvBVbcM9leCFyEGWhPAAKYedrdSh85XGc0Ha7zrQPWXT7aMvy2c2wXXTjcelG2Q+Uleu2i77AoRZo70OTLtg9N9lq6a91ZRt2FRwIVO93uPaucrcVerTsGzNmYE1X9VsP3bparumhdQ9WJ3l+pECJVSYAt+pNSzGKcXwH/0lob3UhduBF4J/T5zwF3mOMqgAeUUuu11h8HUEqNwNzVzgM+0Fr/MbTz/QfMQQxorb/S3W+mp8075A8AO+6ZbN8JFADXYv4c0ohxV3tLpVGzpdK3QsGKm8+2nnXjeNtFk4dapqTbVGYCly76iGGegLsiu49sYAd10FrlP+rY59o3b1/LwfnNQV+HI6yY/asdmBNUZwNbV7W0OOmDlFJfB34AnOzk7gzMVLIngZeANcCfQx/Pa63v7KVlCtFnSYqI6LNCKSIXA03AOMzRvrWYLwrnaK397dNI2j3ufcxguM1rwH9ivnhcAtwH/F5r/V4nKSIK+CbwEDBba/2oUupvwE6t9Wyl1CbMXfMcYDdwu9Z6Y8/8BBLvnsn2dMxd7TuAczCLImsIvVGIhd2C5c6JtglXjrGed85gy+RMu4q6Q4Po2/7bkVdSOCav05HhKSGotbXGf8yx3703fXXzQWtD0NPJUbmYw1WCmGlnhcDRVS0tfXpyoVLqS6FPX8UMpj8GPKa11kqpQq31DUqpszCnxe7EDLT3Yf7N3Qb4tNaf7PWFC9FHyA626Ou+2y4HG8wXgMNa67BpDlrrezveppS6FcjRWv9ZKdWCeQm4MxcCz2HuXi1WSq0HJgNXK6UexOwgMBqzZ+zSvhRcA8w75PcAW+6ZbN+K+X1cA9yMuavdirmr3a135X4DY96hwJF5hwJHFMy/fpy14NqzrJPPG2o9Lz9d9bn0ARG9i/0+W2GyF9GB4Tdcvlpfsf+gq3bIqtYROQ3GO51c53IAwzBfIyuB94Htq1pauj28KYW1vUGYA5yHuWt9r1LqNkArpSYAmVrrWaFNhI9j7nY/rrX+XDIWLERfIgG2EKb1mC8g72Lu0HSWfw3wS+AJrXWhUuowkA4cAt7XWq9SSj2AOfXMjhmQ9knzDvk1ZjrMW/dMts/DfGNxK+abCTCH1zR397waKCwJlheWBMuBFVNHWIbcNN42+YLhlvOGZ6kCi7Qj6VeuMHwpcbUi6AzWequ8h11HXIecB53laDRak+vnUwELw+0GNZiTFodiBpoeYDnmYJiyVS0t/fFSrwUYDHwAHADOBpZg/q6DeZVvtlLqh5i/7/cCmcCU0IaGBdijtX63l9ctRJ8gAbYYCP6tlGoLdh/VWr/TyTHPAC8ppdZivnCEC7B/BzyjlAoAx4BlmGOPn1NK/R44DryBmdPcL8w75PdiXhLeds9k+2DMATa3YKblGJhvKGLKQ91dbdTtrvYVAUUFuSrrtgm2iRcMt5wzNtdydoZdZSXoWxBJcgGBXB3UAWVVvfpaow1tBBoDJZ4KzyHnAedhb6X3zHoCpWjJ0JVZHqbYDdIx3//tANYB+1e1tMScFtVH5GG26WwGNoU+rJj9u9Fa71BKXYVZ9NzYdjtmSh2Y8UNTL65XiD5FcrCFEN0WGmAzArgUuAlzJyyI2QPYG+GhUVHAFWOsI64qsJ4zcYhlwugcNc5m6d0gTSTGx4aPrvNn2Yb09PMEncFa3ynfcU+Z55jzoPNEsDUY7t+hwgwuc+0B7TirhqZ8Fy8De1e1tPTZq07dpZR6DLOweybm7y7AeK31uUqp1VrrG5VSPwKKMVNkNvDRVTkrUKS1/kVvr1uIvkICbCFEXELB9jjgMuAGzDx0A6gjfDeWbsmwYb1hvO2sj42yTDhnkGXCkEw1StJJ+obbc4aVnRyaMTbR5w26gw3+en+Jt8J7zHnIedxf548UHCvMYsW80OdHMDtj7G3e0RxzD/i+TCm1FLOAcW67Iu62wLrtv6uAb2itD7fdFjpuGvCQ1vrLyVq/EKlOAmwhRMLcM9luA8Zj5rFfg9l9AWLM2Q5nSIZKu/Ys69jzh1rGjsu3jB2RpcbYrcqRqPOLxPmWI//EujG54+M9T9AVrPPX+0u8ld4TriOuEl+Nr6t/TzbMKyvpmEH1UczUr93NO5rr4l1PX6aUGgYs0lpfFhrKNTV0V53W+r5QYP1lYKXW+tzQY2owOyOBWQR+UGv9YC8vXYg+QwJsIUSPCO1sjwYuAK7jo7z0VsyAO2FtzmwW1OWjrSMuHmkZe84gy9jROZaxOWkqP1HnF7F70pJZ/sS4od2qSTB8hjPQHKj01/krvFXeCvdxd2WgMRDN2PEMzKDagjk4aRewGTjcvKM5YW/wkk0p9f+At7TWDaGvfwA8qbWOKj1LKXUnMFlr/Tel1LnA/cA/MXvh/x6z8PEd4F6t9W9D7Uk3h27/J+YVq0e01g9E+XyZwGCtdXm7284CKvSZQ3yE6BckwBZC9Ip7JtuHYHYhuQY4H3NXMYDZ+i8hqSTtjc9XOVeMsRacnW8ZOSbXMnJophqZ7VC5iX4eEdlWbWv8yoTR+eHu1wHtC7QEKv0N/kpfta/CXeKu8FX5oi2ea5/6AeYbt42YO63Hmnc097tCRaXUJcBazN14K+ZgrSXAQsyfx0yt9Y52xy8B7tJaB5VSyzv09B8N/AWz7egXgW9qrc9ItVFKjQH+DjzbdhxwN+Yut4HZQ3s7ZjvPMZgF4Hbgr1rrxUqp4cD3tNa/bHfObwK1Wuu5CfrRCJFSJMAWQvS6eybbszDHs1+IWSg5GDM4cGMG3N0a1x6tEVkq45JR1hETB1tGFuSqkSOy1ci8NDXMalGWnng+AX6t9SXjzzKURVkNj9EUaA3UBJoDNf46f42n3HPSU+o5he5Wb/VMzNQja+jr45gFeAeAyuYdzf32RS0U6C4GPo+5k3wLZteTrwN/xQx4T2FeLXoWs93g5cCW0CmuwNyJdgB/0lovj3M9Vsw87isx+2lXYQ7t2qa1Xh065vvApzED8bTQur6JWQzddttKrfXP4lmLEKlGAmwhRFKFUkmGYE6OvAQzHzQ9dHcLZu52j11GTrdhvXiEdei5gy3DxuSqIcOz1NDBGWpoXpoaYreqPjLnO3UYWusGP41VHmrLXJwqbuXUX/0ZNQ0VvlNBZ9jOHpFkYO5QOzDfhNVito08ABxv3tHcn4a/RBQa/nIBZr9uQ2v9olLqdszflxrMvtTO0LEOzDeqTwPfxWxD+Arw7dDpmiIN5IpyPbOAIszUkmbM9K+DwC+AR4FSzN3sszGD6RatdUk8zylEXyEBthAipdwz2W7FvHQ9EXN3exJmTq3C3JFrIgGtAKMxPl/lTBxsGTw2zzJ4ZLYaPDRTDc5NU3lZdpWbYSd7oHYycfu1s8WnG5s8urHerRtrXbpxe70etM5tte51WZa1BuJ6Q5SJGVC3vblpwMyl3o8ZrDX0513qriilcjBTYG7UWpcopR4HtmLubFswg9gWpdTTmAXH+UAO8ARmcL0fM6XjYq11zG9OlFKfwUz5SscMsNuC6IWYb4DuAX6IuUP949B9W7TWTyulNvFRWti5Wut+MzdAiDbSV1YIkVLmHfIHgbLQx8p7JtvtwChgLGZKyRTMHtxgvmg3Ye6cJTzoOtGoW040BlsgeMaum82CGpurssfmWXJHZqvcoZkqZ3CGys1LU7k5aSo3066y06ykO6xk9IUUFENr7Qvidvtxuvza6fJrZ6sPZ4tPO5s82lnt1E1lTUZjcb3R2Ooj0PHxLUoVFDssU1ut3Qqu0zCDvyzMqxQWzB3qtZiB4AkGeEDdid9hpsTcr5Taj5kmAmYaRj7m7nEh8G/M3e4jmL83qzF3vj8Aro0nuAbQWr+llPrP0PP+lI+KS78O/BqYprU+rpQaijnAx4m5ow1mcP1g6POX41mHEKlKAmwhREqbd8jvx3xhLgXWh1JKBmEG3BOBi0Kfa8xdbj9mwO0kgZ1KOgoY6OONuuV4Y7AFc6x8WIPScQzNtGQMyVQZ+ekqIy+N9Jw0lZHtUBmZdtLtFmWzW7HZLG0fymZV2GwWrFYLoc/NQTva/J/WGm2YucvavOGj/wY1QX8Qny+ofd4gPm8ArzeofZ4APk9A+9x+fC6/9jn9eE+5DFdVq3ZWtmiX0b1c6NOka11ngRy0hs439m2YwXTb+HSFmQJ0ADOYLsfMoY5pKuhAoJS6C3NkeSHmv/PvY05S/T7wR+BtrfXm0OHfwPzdGI0Z0E7FTCM5l4+KQuNZy9nAn4AnMa865GPmxZcAt/HRdNdxmHnZYOaLL8fc0b4FMz/84XjXIkQqkhQRIUSfd89kezrmLvdIzOLJiZiFXir0YWC+4LfSQwWUAvY67J+pt1qXGEoFMHelMzB/9grwYfai3o8ZhFUATbI7HT2l1GWYKRlfA/ZhpsxYgTuBs4BbdbsXdaXUTOAkZkrVauBzobZ7C4Eva61r41jLNzBTtoZhdg65AjNP/hZgGWYR5Vyl1E2YqV7/xkxTeQBzyM8vMQdTXQnM0Fr32JthIZJBdrCFEH3evEN+D2Y3ibaOEm1Db4ZiBt1jMXO5z8bcbTMwL2cbgAtzh89DD6SZ9GMWzJ9lJqFAOkPrBmXumB7HzBM+gtlZogaoa97RLEFUHLTWW5VSbfnKWzDTqBzAHzB/3gVAWajv9E+APZhvZi5sO4dS6muYRcVxXSkI5VJfBtyE+Tt2B+bu9HdDX7dNyNTAt4BPhtbyIGawb2C26dwDfBUzABei35AAWwjRL8075A9gBndVwE74sGNJLmaA0RZ8j8cMTNrSTDQfBd/edh8+BlYAbsHcLW37sPNRNxcV+rwKM8XjBFAzKhCsL7Pba5p3NMtVgp7jABxa69VKqbZWfNdhpmL8SSn1AWZf7PeBSszA9e+Y+e5g5mC/pLVORI/wtn8bGzHfqD6PGXDfCDyilKrDjDOeBB4HXsMssPwLZrvAb2G+IZb+9KLfkRQRIYTgwx3vfMxircGYwfdwzEvgQ/koCGj7o9lWuOjFTDvxY+7I+TGDz1T846owA2U7ZqDW9l8r5hsK3e64IGZP5SrMNIMqzEEubR+t8w75U/F7TDlKqd9hpk5UA1/UWrcqpf6mtf5Bu2OmAWitd0Y4z2xgGua/s6e11s92Yw0KuBk4qrU+EeG41R1uatJa39uN57FEk+6hlLLH2yZQiFQmAbYQQkQh1D4wG7NQLzf0MQgzCM8P3d5WxJfJR7vh7YPWtv+2fWjMwLbjR/s/zKrDYzv+14IZILedT3NmcN/+HC2YnVcaMS/j14f+62z30YgE0AmhlLoGsyf0TZgDVjK01v/XyXEPAmitZ0c412zMHekDmK0L79Ja7+7GWn4LrG4bAiOE6DmSIiKEEFEItQ9sCn1EdM9kuwXzknxGh480zGDYFvqwh25zhD7aPrfzUaDd/r9tnwfbfe7FDIo9mGksPj5KafF1uM0175Bf8qB71x3AQq21Do0tvwDMnWKt9Y2hz/8I/Efo8y9qrW9RSv0PcFBr/bpS6jfAobYTaq3rlFILgOuVUqcwUy8UsE5r/YvQaPI5mP+O9mmtv6GUegEzyP+kUmqf1voLvfT9CzEgSYAthBAJFgpi3Xw0TEMMXCMwB8GgtT6G2fnjNFrrnymlDoU+nx26+SXM8eevAx8HHgv9t00d5pWTMZgdOXZiTlX8BTAdc6rj95RSnwmlbXxFdrCF6D0pP/xACCGE6MOaCfX+VkpdoZT6UTQP0lofBXKUUjcCe7XWng6HDMZM7wlgDnr5N2aKEsAiwKqUWgZMlRZ4QvQ+CbCFEEKInrMec/AKmH2fw13VcGPm7rcVJAK8gdmZ46X2Byql8jF7X6/EHEf+R8ze2G0581cDL2utbwNuVkqdE+E5hBA9QAJsIYQQoufMA44ppYowUzdeCHPcMuBTSqn1oeMA3sYMmte1O+6fwGLgJ1rrg8B84KnQ87iUUmMwB/r8SSm1AbMHeUnosXOBnyqlNgLnIIToMdJFRAghhEgxSqkLMIPxp7XWzyV7PUKI7pEAWwghhBBCiASSFBEhhBD9nlLKqpS6Ispj7Uopi1Iqp+ujozpfdiLOI4ToOyTAFkIIMRDcBny7szuUUqOVUvPa3fQEcD1mgWGnlFIPKKXuDnPf+UqpT7d9AIfafX1fKE8apVSaUuqM12FlcnTjexNCpBjpgy2EEKLfUkp9CfgqMB5o6jAKfI3W+teYre48oe4c92MO5WkFnEqpnwILtNZ7Opz6LMxhP535T+A45lCi64HPYnbvuAqz84czdNxsYIxSygBGYm56VWIOjTkOPBjDtyyESAESYAshhOjPxgCPa63fbn+jUmo88JhS6g7ge8B5wOeAzwAHQ4dlAbeGjrMCaVprV+g+K+bYeUK70JmAR2sdwJy0eQEfBcjpmG31zgImaa2/CKC1/ny79TwIpGutn0rUNy6ESB4JsIUQQvRn/gj3aa31EqXUIMxd5zeAA8AXQ/cHgW+GxpyPB15VSgVC952NucP9k9DXacDXMScqKuAE8DIwCXPq4ovAKMxd9CyttTPUi9oaCso/FArmDS1dCITosyTAFkII0d/9Tin1gw63pWH2iwZ4ABiCORHxA8xd66eAG4GJwJHQZMWr2h6slFoBlGqtv9LJ8zmAHcB3AA9wKeaI9DTgGa11W4rIhcBspZQfGGaeVj2I+dp8P3A45u9YCJFUEmALIRJKKTUaOKW19sX4+E539drdbwHo7vhnpdREoAwzzzVXa10Vy/pEn/SrMCkiM5VSt2OOHD8FLAF+hRl4NwKrgM8opUq01vvbPXYKZh71YKXUZK31oQ7PNwhzRHorZi/r7wCvAJMJjU0HCOV1Xxo654NIiogQ/YYE2EKILimlHgFatNZPh75+CGjUWnc2le4PmFPpXovx6cYAbymlvKGvbcBUYHvoayswE1iglPoC5mX8S4HLgbGYU+vGYwZJD2mt94Ye9zjwA2AKcDNm0CNEFvA74Bda61VKqf2YhYiNmMWO36fdeHOlVBrwL8x/S27gWaXUne1ys8HcmT6JmZ7ybcx/lz8L3ffznvxmhBCpQQJsIURESqkFmPmmPqXUJ0I3nw0ElVK3aK0fUEodwtwdBsgApiilvhr6erzW+txon09rXQ5c3e75H8Hs4vDHTg73AhO01j9SSo0A7gD2AfcBRW3BtVLqIqBKa31AKTULGN2hm8SXtNal0a5R9CmK8Ckix7XW7yqlhgEopYZivjF8GrNDyFDg/4XO8Rel1Hmh+17WWu8KPeYJYJlS6kGtdXFoAqNNa90cauM3GzMgvxGzW8klSql6zN1xpbXuNEdcKWXDzBEPJujnIIToRRJgCyEi0lrfHQpOhgGLQjd/BtihtZ4d+jqA2YpsktZ6o1Lqs8ABrfUepdT2jueMllJqHPAb4Cal1DitdUm7+x4ErgWuUko5MduheYGHgTnA8FA6iRWzn/ECpdR1QA3wSczgqQFYJcF1v5ZG+BSR/2t3jB34FLBTa/2PUKpSIeYO9z9DV0sexSx6bPs9QGs9RynlAVYopaZjdgp5Rin1Dcyix0eAKuBHof9eCFRjdh35iVLqtFQqpdTnQp/aMXfWFyfkpyCE6FUyKl0I0aVQgD0WM/UDzAB1Y1uArZQ6C8jBbEvmBXKBt7XWa+J4zlxgIeDDLD77CzBLa/1+6P5fYxaTHcDMbb0eM796EmabNQtmKslIzDcEm4BzgZ9gbi78HvPy/1St9epY1ylSm1IqEwjEWhPQ7jx2IENr3Rzm/qx2xYsopUZiplF54nleIUTfJDvYQoho3U2oIAsoADa2uy8LszjsNcwuDG8SRweE0CX7uZj53HdjXq7/FLBSKeXXWi8EijHTUbzAZsy/Z8eBL2Nelp+utV4Y2sU+BtwYSme5HXPnOgjczkdvGkQ/1CE3Op7z+InQ8q99cB36WopohRjAZFS6ECIspZQ1dKkcYKbW+kat9Y2YBYMopSxKqXswW5rlA/+NmUZyM2b7scVKqbWhS+fRPud5mEHvbztcij+FuXP+uFJqsNb6dcxODWBebr8Xs3/xuZg76RNDjzMwU1gITep7jI8m6bUCf492bUIIIUQ0ZAdbCBHJl4BPAxqzg96nQ7er0G33AU9orW+AD1vsPQqsxswzfaV9EVeoSHJIu9ztzhQD97bPt26jtT6mlJrWyWX648BzgAszyH6Fdu3Q2nkeM92kOXS++UqpbyilbtVaL4+wJiGEECJqsoMthAhLa/2C1vpuYCmwR2s9Q2s9AzMtY77W+k6t9QdKqTGhriHrMMdHP47Zbq9IKfWf7U75n8A3u3jOYIfg2oIZ0Lfd3z64VqGPKzB3t+8HzsEcHPLZTs7xE631EszUkjZfxSxmE0IIIRJCAmwhRFhKqXSl1DvAcOAX7e66H7hQKTU71Bf4V5iFjf+ptX5Ua92qtf49MAO4XCnVFtD+CNjdzWWkEf5qWxowDvgcZp52e36l1A9Dn9sAe6iN2mRgObAeQGtdG65VmhBCCBEL6SIihIhIKTVea30izH0jtNbV3TjXFUCx1rohgetTgKVjv+Bwt4fus4WbFCmEEELESwJsIYQQQgghEkhSRIQQQgghhEggCbCFEEIIIYRIIAmwhRBCCCGESCAJsIUQQgghhEggCbCFEEIIIYRIIAmwhRBCCCGESCAJsIUQQgghhEggCbCFEEIIIYRIIAmwhRBCCCGESCAJsIUQQgghhEggCbCFEEIIIYRIIAmwhRBCCCGESCAJsIUQQgghhEggCbCFEEIIIYRIIAmwhRBCCCGESCAJsIUQQgghhEggCbCFEEIIIYRIIAmwhRBCCCGESCAJsIUQQgghhEggCbCFEEIIIYRIIAmwhRBCCCGESCAJsIUQQgghhEggCbCFEEIIIYRIIAmwhRBCCCGESCAJsIUQQgghhEggCbCFEEIIIYRIIAmwhRBCCCGESCAJsIUQQgghhEggCbCFEEIIIYRIIAmwhRBCCCGESCAJsIUQQgghhEggCbCFEEIIIYRIIAmwhRBCCCGESCAJsIUQQgghhEggCbCFEEIIIYRIIAmwhRBCCCGESCAJsIUQQgghhEggCbCFEEIIIYRIIAmwhRBCCCGESCAJsIUQQgghhEggCbCFEEIIIYRIIAmwhRBCCCGESCAJsIUQQgghhEggCbCFEEIIIYRIoP8P/fiPf652pWwAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "f = plt.figure(figsize=(12,15))\n", + "labels = pd2[pd2[\"life\"] > 1][\"name\"].tolist()+[\"其他(一条命)\"]\n", + "sizes = pd2[pd2[\"life\"] > 1][\"life\"].tolist() + [sum(pd2[pd2[\"life\"] <= 1][\"life\"])]\n", + "explode = (0,0,0,0.1,0,0)\n", + "plt.pie(sizes,labels=labels,explode=tuple(e),shadow=True,autopct='%1.2f%%')\n", + "pass" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "val = {}\n", + "for idx,life in zip(pd2[\"index\"],pd2[\"life\"]):\n", + " if idx <10:\n", + " idx = \"0{}\".format(idx)\n", + " else:\n", + " idx = \"{}\".format(idx)\n", + " val[idx] = life" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "start = 202101081730" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "第 91 轮,攻击被触发,发动攻击的数值是 202101081821 \n", + "被击中战斗的同学是:汤鹏 , 剩余生命值:0.0\n", + "*_* 汤鹏 同学退出战斗……阿门~~~\n", + "还有 55 位同学在继续战斗\n", + "\n", + "第 146 轮,攻击被触发,发动攻击的数值是 202101081876 \n", + "被击中战斗的同学是:小昭她哥 , 剩余生命值:0.0\n", + "*_* 小昭她哥 同学退出战斗……阿门~~~\n", + "还有 54 位同学在继续战斗\n", + "\n", + "第 178 轮,攻击被触发,发动攻击的数值是 202101081908 \n", + "被击中战斗的同学是:ChercherᝰACE , 剩余生命值:5.0\n", + "第 202 轮,攻击被触发,发动攻击的数值是 202101081932 \n", + "被击中战斗的同学是:R , 剩余生命值:7.0\n", + "第 317 轮,攻击被触发,发动攻击的数值是 202101082047 \n", + "被击中战斗的同学是:郭家乐 , 剩余生命值:0.0\n", + "*_* 郭家乐 同学退出战斗……阿门~~~\n", + "还有 53 位同学在继续战斗\n", + "\n", + "第 363 轮,攻击被触发,发动攻击的数值是 202101082093 \n", + "被击中战斗的同学是:金喜william , 剩余生命值:0.0\n", + "*_* 金喜william 同学退出战斗……阿门~~~\n", + "还有 52 位同学在继续战斗\n", + "\n", + "第 380 轮,攻击被触发,发动攻击的数值是 202101082110 \n", + "被击中战斗的同学是:、Fresh , 剩余生命值:0.0\n", + "*_* 、Fresh 同学退出战斗……阿门~~~\n", + "还有 51 位同学在继续战斗\n", + "\n", + "第 393 轮,攻击被触发,发动攻击的数值是 202101082123 \n", + "被击中战斗的同学是:会跳舞的文艺青年 , 剩余生命值:16.0\n", + "第 449 轮,攻击被触发,发动攻击的数值是 202101082179 \n", + "被击中战斗的同学是:HelloWorld , 剩余生命值:0.0\n", + "*_* HelloWorld 同学退出战斗……阿门~~~\n", + "还有 50 位同学在继续战斗\n", + "\n", + "第 493 轮,攻击被触发,发动攻击的数值是 202101082223 \n", + "被击中战斗的同学是:M I AO , 剩余生命值:0.0\n", + "*_* M I AO 同学退出战斗……阿门~~~\n", + "还有 49 位同学在继续战斗\n", + "\n", + "第 649 轮,攻击被触发,发动攻击的数值是 202101082379 \n", + "被击中战斗的同学是:憬 , 剩余生命值:0.0\n", + "*_* 憬 同学退出战斗……阿门~~~\n", + "还有 48 位同学在继续战斗\n", + "\n", + "第 654 轮,攻击被触发,发动攻击的数值是 202101082384 \n", + "被击中战斗的同学是:默溪 , 剩余生命值:4.0\n", + "第 916 轮,攻击被触发,发动攻击的数值是 202101082646 \n", + "被击中战斗的同学是:柳好肥 , 剩余生命值:8.0\n", + "第 926 轮,攻击被触发,发动攻击的数值是 202101082656 \n", + "被击中战斗的同学是:虫虫 , 剩余生命值:0.0\n", + "*_* 虫虫 同学退出战斗……阿门~~~\n", + "还有 47 位同学在继续战斗\n", + "\n", + "第 940 轮,攻击被触发,发动攻击的数值是 202101082670 \n", + "被击中战斗的同学是:城城 , 剩余生命值:0.0\n", + "*_* 城城 同学退出战斗……阿门~~~\n", + "还有 46 位同学在继续战斗\n", + "\n", + "第 1015 轮,攻击被触发,发动攻击的数值是 202101082745 \n", + "被击中战斗的同学是:周浩 , 剩余生命值:1.0\n", + "第 1030 轮,攻击被触发,发动攻击的数值是 202101082760 \n", + "被击中战斗的同学是:HelloWorld , 剩余生命值:1.0\n", + "第 1187 轮,攻击被触发,发动攻击的数值是 202101082917 \n", + "被击中战斗的同学是:筱䓉^_^薇諒 , 剩余生命值:1.0\n", + "第 1279 轮,攻击被触发,发动攻击的数值是 202101083009 \n", + "被击中战斗的同学是:孙宇 , 剩余生命值:16.0\n", + "第 1346 轮,攻击被触发,发动攻击的数值是 202101083076 \n", + "被击中战斗的同学是:锅醋姜就是我 , 剩余生命值:1.0\n", + "第 1457 轮,攻击被触发,发动攻击的数值是 202101083187 \n", + "被击中战斗的同学是:别来无恙 , 剩余生命值:0.0\n", + "*_* 别来无恙 同学退出战斗……阿门~~~\n", + "还有 45 位同学在继续战斗\n", + "\n", + "第 1483 轮,攻击被触发,发动攻击的数值是 202101083213 \n", + "被击中战斗的同学是:会跳舞的文艺青年 , 剩余生命值:15.0\n", + "第 1654 轮,攻击被触发,发动攻击的数值是 202101083384 \n", + "被击中战斗的同学是:Bing , 剩余生命值:0.0\n", + "*_* Bing 同学退出战斗……阿门~~~\n", + "还有 44 位同学在继续战斗\n", + "\n", + "第 1698 轮,攻击被触发,发动攻击的数值是 202101083428 \n", + "被击中战斗的同学是:夏天 , 剩余生命值:3.0\n", + "第 1710 轮,攻击被触发,发动攻击的数值是 202101083440 \n", + "被击中战斗的同学是:直到世界的尽头 , 剩余生命值:0.0\n", + "*_* 直到世界的尽头 同学退出战斗……阿门~~~\n", + "还有 43 位同学在继续战斗\n", + "\n", + "第 1940 轮,攻击被触发,发动攻击的数值是 202101083670 \n", + "被击中战斗的同学是:其实,不懂你 , 剩余生命值:17.0\n", + "第 1951 轮,攻击被触发,发动攻击的数值是 202101083681 \n", + "被击中战斗的同学是:周浩 , 剩余生命值:0.0\n", + "*_* 周浩 同学退出战斗……阿门~~~\n", + "还有 42 位同学在继续战斗\n", + "\n", + "第 2233 轮,攻击被触发,发动攻击的数值是 202101083963 \n", + "被击中战斗的同学是:Mr_wu , 剩余生命值:0.0\n", + "*_* Mr_wu 同学退出战斗……阿门~~~\n", + "还有 41 位同学在继续战斗\n", + "\n", + "第 2302 轮,攻击被触发,发动攻击的数值是 202101084032 \n", + "被击中战斗的同学是:兔子州 , 剩余生命值:0.0\n", + "*_* 兔子州 同学退出战斗……阿门~~~\n", + "还有 40 位同学在继续战斗\n", + "\n", + "第 2305 轮,攻击被触发,发动攻击的数值是 202101084035 \n", + "被击中战斗的同学是:孙宇 , 剩余生命值:15.0\n", + "第 2376 轮,攻击被触发,发动攻击的数值是 202101084106 \n", + "被击中战斗的同学是:XYQ , 剩余生命值:12.0\n", + "第 2430 轮,攻击被触发,发动攻击的数值是 202101084160 \n", + "被击中战斗的同学是:人海 , 剩余生命值:0.0\n", + "*_* 人海 同学退出战斗……阿门~~~\n", + "还有 39 位同学在继续战斗\n", + "\n", + "第 2616 轮,攻击被触发,发动攻击的数值是 202101084346 \n", + "被击中战斗的同学是:YYL , 剩余生命值:0.0\n", + "*_* YYL 同学退出战斗……阿门~~~\n", + "还有 38 位同学在继续战斗\n", + "\n", + "第 2775 轮,攻击被触发,发动攻击的数值是 202101084505 \n", + "被击中战斗的同学是:孙宇 , 剩余生命值:14.0\n", + "第 2902 轮,攻击被触发,发动攻击的数值是 202101084632 \n", + "被击中战斗的同学是:七度十二分 , 剩余生命值:0.0\n", + "*_* 七度十二分 同学退出战斗……阿门~~~\n", + "还有 37 位同学在继续战斗\n", + "\n", + "第 3134 轮,攻击被触发,发动攻击的数值是 202101084864 \n", + "被击中战斗的同学是:蓝袜子-UP , 剩余生命值:2.0\n", + "第 3285 轮,攻击被触发,发动攻击的数值是 202101085015 \n", + "被击中战斗的同学是:孙宇 , 剩余生命值:13.0\n", + "第 3347 轮,攻击被触发,发动攻击的数值是 202101085077 \n", + "被击中战斗的同学是:浩阳 , 剩余生命值:7.0\n", + "第 3463 轮,攻击被触发,发动攻击的数值是 202101085193 \n", + "被击中战斗的同学是:其实,不懂你 , 剩余生命值:16.0\n", + "第 3487 轮,攻击被触发,发动攻击的数值是 202101085217 \n", + "被击中战斗的同学是:Berton , 剩余生命值:0.0\n", + "*_* Berton 同学退出战斗……阿门~~~\n", + "还有 36 位同学在继续战斗\n", + "\n", + "第 3556 轮,攻击被触发,发动攻击的数值是 202101085286 \n", + "被击中战斗的同学是:雪落香杉树 , 剩余生命值:0.0\n", + "*_* 雪落香杉树 同学退出战斗……阿门~~~\n", + "还有 35 位同学在继续战斗\n", + "\n", + "第 3569 轮,攻击被触发,发动攻击的数值是 202101085299 \n", + "被击中战斗的同学是:夏天 , 剩余生命值:2.0\n", + "第 3913 轮,攻击被触发,发动攻击的数值是 202101085643 \n", + "被击中战斗的同学是:会跳舞的文艺青年 , 剩余生命值:14.0\n", + "第 3917 轮,攻击被触发,发动攻击的数值是 202101085647 \n", + "被击中战斗的同学是:ChercherᝰACE , 剩余生命值:4.0\n", + "第 4021 轮,攻击被触发,发动攻击的数值是 202101085751 \n", + "被击中战斗的同学是:XYQ , 剩余生命值:11.0\n", + "第 4080 轮,攻击被触发,发动攻击的数值是 202101085810 \n", + "被击中战斗的同学是:含信 , 剩余生命值:0.0\n", + "*_* 含信 同学退出战斗……阿门~~~\n", + "还有 34 位同学在继续战斗\n", + "\n", + "第 4108 轮,攻击被触发,发动攻击的数值是 202101085838 \n", + "被击中战斗的同学是:默溪 , 剩余生命值:3.0\n", + "第 4293 轮,攻击被触发,发动攻击的数值是 202101086023 \n", + "被击中战斗的同学是:LS , 剩余生命值:1.0\n", + "第 4440 轮,攻击被触发,发动攻击的数值是 202101086170 \n", + "被击中战斗的同学是:ChercherᝰACE , 剩余生命值:3.0\n", + "第 4607 轮,攻击被触发,发动攻击的数值是 202101086337 \n", + "被击中战斗的同学是:Lilly An , 剩余生命值:5.0\n", + "第 4645 轮,攻击被触发,发动攻击的数值是 202101086375 \n", + "被击中战斗的同学是:浩阳 , 剩余生命值:6.0\n", + "第 4672 轮,攻击被触发,发动攻击的数值是 202101086402 \n", + "被击中战斗的同学是:文献综合征患者 , 剩余生命值:0.0\n", + "*_* 文献综合征患者 同学退出战斗……阿门~~~\n", + "还有 33 位同学在继续战斗\n", + "\n", + "第 4917 轮,攻击被触发,发动攻击的数值是 202101086647 \n", + "被击中战斗的同学是:浩阳 , 剩余生命值:0.0\n", + "*_* 浩阳 同学退出战斗……阿门~~~\n", + "还有 32 位同学在继续战斗\n", + "\n", + "第 4975 轮,攻击被触发,发动攻击的数值是 202101086705 \n", + "被击中战斗的同学是:阳光的丹尼尔 , 剩余生命值:0.0\n", + "*_* 阳光的丹尼尔 同学退出战斗……阿门~~~\n", + "还有 31 位同学在继续战斗\n", + "\n", + "第 5015 轮,攻击被触发,发动攻击的数值是 202101086745 \n", + "被击中战斗的同学是:HYL-GISer , 剩余生命值:3.0\n", + "第 5172 轮,攻击被触发,发动攻击的数值是 202101086902 \n", + "被击中战斗的同学是:默溪 , 剩余生命值:2.0\n", + "第 5229 轮,攻击被触发,发动攻击的数值是 202101086959 \n", + "被击中战斗的同学是:CityDast , 剩余生命值:1.0\n", + "第 5429 轮,攻击被触发,发动攻击的数值是 202101087159 \n", + "被击中战斗的同学是:CityDast , 剩余生命值:0.0\n", + "*_* CityDast 同学退出战斗……阿门~~~\n", + "还有 30 位同学在继续战斗\n", + "\n", + "第 5468 轮,攻击被触发,发动攻击的数值是 202101087198 \n", + "被击中战斗的同学是:筱䓉^_^薇諒 , 剩余生命值:0.0\n", + "*_* 筱䓉^_^薇諒 同学退出战斗……阿门~~~\n", + "还有 29 位同学在继续战斗\n", + "\n", + "第 5636 轮,攻击被触发,发动攻击的数值是 202101087366 \n", + "被击中战斗的同学是:Hi~我是蘇小美 , 剩余生命值:1.0\n", + "第 5845 轮,攻击被触发,发动攻击的数值是 202101087575 \n", + "被击中战斗的同学是:柳好肥 , 剩余生命值:7.0\n", + "第 5860 轮,攻击被触发,发动攻击的数值是 202101087590 \n", + "被击中战斗的同学是:浩阳 , 剩余生命值:5.0\n", + "第 5876 轮,攻击被触发,发动攻击的数值是 202101087606 \n", + "被击中战斗的同学是:会跳舞的文艺青年 , 剩余生命值:13.0\n", + "第 5936 轮,攻击被触发,发动攻击的数值是 202101087666 \n", + "被击中战斗的同学是:浩阳 , 剩余生命值:4.0\n", + "第 5996 轮,攻击被触发,发动攻击的数值是 202101087726 \n", + "被击中战斗的同学是:A^Hundred^Flowers , 剩余生命值:6.0\n", + "第 5999 轮,攻击被触发,发动攻击的数值是 202101087729 \n", + "被击中战斗的同学是:孙宇 , 剩余生命值:12.0\n", + "第 6356 轮,攻击被触发,发动攻击的数值是 202101088086 \n", + "被击中战斗的同学是:轩仔 , 剩余生命值:0.0\n", + "*_* 轩仔 同学退出战斗……阿门~~~\n", + "还有 28 位同学在继续战斗\n", + "\n", + "第 6421 轮,攻击被触发,发动攻击的数值是 202101088151 \n", + "被击中战斗的同学是:夏天 , 剩余生命值:1.0\n", + "第 6427 轮,攻击被触发,发动攻击的数值是 202101088157 \n", + "被击中战斗的同学是:ChercherᝰACE , 剩余生命值:2.0\n", + "第 6664 轮,攻击被触发,发动攻击的数值是 202101088394 \n", + "被击中战斗的同学是:Yang , 剩余生命值:1.0\n", + "第 6750 轮,攻击被触发,发动攻击的数值是 202101088480 \n", + "被击中战斗的同学是:柳好肥 , 剩余生命值:6.0\n", + "第 6871 轮,攻击被触发,发动攻击的数值是 202101088601 \n", + "被击中战斗的同学是:XYQ , 剩余生命值:10.0\n", + "第 7210 轮,攻击被触发,发动攻击的数值是 202101088940 \n", + "被击中战斗的同学是:默溪 , 剩余生命值:1.0\n", + "第 7284 轮,攻击被触发,发动攻击的数值是 202101089014 \n", + "被击中战斗的同学是:HelloWorld , 剩余生命值:0.0\n", + "*_* HelloWorld 同学退出战斗……阿门~~~\n", + "还有 27 位同学在继续战斗\n", + "\n", + "第 7400 轮,攻击被触发,发动攻击的数值是 202101089130 \n", + "被击中战斗的同学是:炒饭没了? , 剩余生命值:0.0\n", + "*_* 炒饭没了? 同学退出战斗……阿门~~~\n", + "还有 26 位同学在继续战斗\n", + "\n", + "第 7462 轮,攻击被触发,发动攻击的数值是 202101089192 \n", + "被击中战斗的同学是:夏天 , 剩余生命值:0.0\n", + "*_* 夏天 同学退出战斗……阿门~~~\n", + "还有 25 位同学在继续战斗\n", + "\n", + "第 8112 轮,攻击被触发,发动攻击的数值是 202101089842 \n", + "被击中战斗的同学是:Pz , 剩余生命值:1.0\n", + "第 8127 轮,攻击被触发,发动攻击的数值是 202101089857 \n", + "被击中战斗的同学是:会跳舞的文艺青年 , 剩余生命值:12.0\n", + "第 8267 轮,攻击被触发,发动攻击的数值是 202101089997 \n", + "被击中战斗的同学是:会跳舞的文艺青年 , 剩余生命值:11.0\n", + "第 8282 轮,攻击被触发,发动攻击的数值是 202101090012 \n", + "被击中战斗的同学是:孙宇 , 剩余生命值:11.0\n", + "第 8367 轮,攻击被触发,发动攻击的数值是 202101090097 \n", + "被击中战斗的同学是:Snow , 剩余生命值:0.0\n", + "*_* Snow 同学退出战斗……阿门~~~\n", + "还有 24 位同学在继续战斗\n", + "\n", + "第 8396 轮,攻击被触发,发动攻击的数值是 202101090126 \n", + "被击中战斗的同学是:蓝袜子-UP , 剩余生命值:1.0\n", + "第 8576 轮,攻击被触发,发动攻击的数值是 202101090306 \n", + "被击中战斗的同学是:XYQ , 剩余生命值:9.0\n", + "第 9029 轮,攻击被触发,发动攻击的数值是 202101090759 \n", + "被击中战斗的同学是:默溪 , 剩余生命值:0.0\n", + "*_* 默溪 同学退出战斗……阿门~~~\n", + "还有 23 位同学在继续战斗\n", + "\n", + "第 9042 轮,攻击被触发,发动攻击的数值是 202101090772 \n", + "被击中战斗的同学是:Lilly An , 剩余生命值:4.0\n", + "第 9095 轮,攻击被触发,发动攻击的数值是 202101090825 \n", + "被击中战斗的同学是:Hi~我是蘇小美 , 剩余生命值:0.0\n", + "*_* Hi~我是蘇小美 同学退出战斗……阿门~~~\n", + "还有 22 位同学在继续战斗\n", + "\n", + "第 9397 轮,攻击被触发,发动攻击的数值是 202101091127 \n", + "被击中战斗的同学是:Yang , 剩余生命值:0.0\n", + "*_* Yang 同学退出战斗……阿门~~~\n", + "还有 21 位同学在继续战斗\n", + "\n", + "第 9548 轮,攻击被触发,发动攻击的数值是 202101091278 \n", + "被击中战斗的同学是:LS , 剩余生命值:0.0\n", + "*_* LS 同学退出战斗……阿门~~~\n", + "还有 20 位同学在继续战斗\n", + "\n", + "第 9558 轮,攻击被触发,发动攻击的数值是 202101091288 \n", + "被击中战斗的同学是:期待灵感的hm啊 , 剩余生命值:0.0\n", + "*_* 期待灵感的hm啊 同学退出战斗……阿门~~~\n", + "还有 19 位同学在继续战斗\n", + "\n", + "第 9716 轮,攻击被触发,发动攻击的数值是 202101091446 \n", + "被击中战斗的同学是:HYL-GISer , 剩余生命值:2.0\n", + "第 9836 轮,攻击被触发,发动攻击的数值是 202101091566 \n", + "被击中战斗的同学是:一一 , 剩余生命值:0.0\n", + "*_* 一一 同学退出战斗……阿门~~~\n", + "还有 18 位同学在继续战斗\n", + "\n", + "第 10300 轮,攻击被触发,发动攻击的数值是 202101092030 \n", + "被击中战斗的同学是:R , 剩余生命值:6.0\n", + "第 11029 轮,攻击被触发,发动攻击的数值是 202101092759 \n", + "被击中战斗的同学是:白桃大魔王 , 剩余生命值:4.0\n", + "第 11084 轮,攻击被触发,发动攻击的数值是 202101092814 \n", + "被击中战斗的同学是:壳乐乐 , 剩余生命值:1.0\n", + "第 11358 轮,攻击被触发,发动攻击的数值是 202101093088 \n", + "被击中战斗的同学是:其实,不懂你 , 剩余生命值:15.0\n", + "第 11466 轮,攻击被触发,发动攻击的数值是 202101093196 \n", + "被击中战斗的同学是:ChercherᝰACE , 剩余生命值:1.0\n", + "第 11541 轮,攻击被触发,发动攻击的数值是 202101093271 \n", + "被击中战斗的同学是:浩阳 , 剩余生命值:3.0\n", + "第 11655 轮,攻击被触发,发动攻击的数值是 202101093385 \n", + "被击中战斗的同学是:其实,不懂你 , 剩余生命值:14.0\n", + "第 11666 轮,攻击被触发,发动攻击的数值是 202101093396 \n", + "被击中战斗的同学是:锅醋姜就是我 , 剩余生命值:0.0\n", + "*_* 锅醋姜就是我 同学退出战斗……阿门~~~\n", + "还有 17 位同学在继续战斗\n", + "\n", + "第 12224 轮,攻击被触发,发动攻击的数值是 202101093954 \n", + "被击中战斗的同学是:柳好肥 , 剩余生命值:5.0\n", + "第 12308 轮,攻击被触发,发动攻击的数值是 202101094038 \n", + "被击中战斗的同学是:🇭 🇪 🇷 🇴 🇮 🇨 , 剩余生命值:0.0\n", + "*_* 🇭 🇪 🇷 🇴 🇮 🇨 同学退出战斗……阿门~~~\n", + "还有 16 位同学在继续战斗\n", + "\n", + "第 12910 轮,攻击被触发,发动攻击的数值是 202101094640 \n", + "被击中战斗的同学是:浩阳 , 剩余生命值:2.0\n", + "第 13142 轮,攻击被触发,发动攻击的数值是 202101094872 \n", + "被击中战斗的同学是:XYQ , 剩余生命值:8.0\n", + "第 13279 轮,攻击被触发,发动攻击的数值是 202101095009 \n", + "被击中战斗的同学是:浩阳 , 剩余生命值:1.0\n", + "第 13847 轮,攻击被触发,发动攻击的数值是 202101095577 \n", + "被击中战斗的同学是:ChercherᝰACE , 剩余生命值:0.0\n", + "*_* ChercherᝰACE 同学退出战斗……阿门~~~\n", + "还有 15 位同学在继续战斗\n", + "\n", + "第 14068 轮,攻击被触发,发动攻击的数值是 202101095798 \n", + "被击中战斗的同学是:孙宇 , 剩余生命值:10.0\n", + "第 14321 轮,攻击被触发,发动攻击的数值是 202101096051 \n", + "被击中战斗的同学是:R , 剩余生命值:5.0\n", + "第 14636 轮,攻击被触发,发动攻击的数值是 202101096366 \n", + "被击中战斗的同学是:A^Hundred^Flowers , 剩余生命值:5.0\n", + "第 15140 轮,攻击被触发,发动攻击的数值是 202101096870 \n", + "被击中战斗的同学是:柳好肥 , 剩余生命值:4.0\n", + "第 15601 轮,攻击被触发,发动攻击的数值是 202101097331 \n", + "被击中战斗的同学是:白桃大魔王 , 剩余生命值:3.0\n", + "第 15746 轮,攻击被触发,发动攻击的数值是 202101097476 \n", + "被击中战斗的同学是:A^Hundred^Flowers , 剩余生命值:4.0\n", + "第 16350 轮,攻击被触发,发动攻击的数值是 202101098080 \n", + "被击中战斗的同学是:浩阳 , 剩余生命值:0.0\n", + "*_* 浩阳 同学退出战斗……阿门~~~\n", + "还有 14 位同学在继续战斗\n", + "\n", + "第 16363 轮,攻击被触发,发动攻击的数值是 202101098093 \n", + "被击中战斗的同学是:壳乐乐 , 剩余生命值:0.0\n", + "*_* 壳乐乐 同学退出战斗……阿门~~~\n", + "还有 13 位同学在继续战斗\n", + "\n", + "第 16779 轮,攻击被触发,发动攻击的数值是 202101098509 \n", + "被击中战斗的同学是:孙宇 , 剩余生命值:9.0\n", + "第 17301 轮,攻击被触发,发动攻击的数值是 202101099031 \n", + "被击中战斗的同学是:孙宇 , 剩余生命值:8.0\n", + "第 17628 轮,攻击被触发,发动攻击的数值是 202101099358 \n", + "被击中战斗的同学是:R , 剩余生命值:4.0\n", + "第 17748 轮,攻击被触发,发动攻击的数值是 202101099478 \n", + "被击中战斗的同学是:Pz , 剩余生命值:0.0\n", + "*_* Pz 同学退出战斗……阿门~~~\n", + "还有 12 位同学在继续战斗\n", + "\n", + "第 18895 轮,攻击被触发,发动攻击的数值是 202101100625 \n", + "被击中战斗的同学是:白桃大魔王 , 剩余生命值:2.0\n", + "第 18941 轮,攻击被触发,发动攻击的数值是 202101100671 \n", + "被击中战斗的同学是:柳好肥 , 剩余生命值:3.0\n", + "第 19342 轮,攻击被触发,发动攻击的数值是 202101101072 \n", + "被击中战斗的同学是:孙宇 , 剩余生命值:7.0\n", + "第 19704 轮,攻击被触发,发动攻击的数值是 202101101434 \n", + "被击中战斗的同学是:Lilly An , 剩余生命值:3.0\n", + "第 19786 轮,攻击被触发,发动攻击的数值是 202101101516 \n", + "被击中战斗的同学是:蓝袜子-UP , 剩余生命值:0.0\n", + "*_* 蓝袜子-UP 同学退出战斗……阿门~~~\n", + "还有 11 位同学在继续战斗\n", + "\n", + "第 19968 轮,攻击被触发,发动攻击的数值是 202101101698 \n", + "被击中战斗的同学是:孙宇 , 剩余生命值:6.0\n", + "第 20781 轮,攻击被触发,发动攻击的数值是 202101102511 \n", + "被击中战斗的同学是:柳好肥 , 剩余生命值:2.0\n", + "第 22120 轮,攻击被触发,发动攻击的数值是 202101103850 \n", + "被击中战斗的同学是:其实,不懂你 , 剩余生命值:13.0\n", + "第 22202 轮,攻击被触发,发动攻击的数值是 202101103932 \n", + "被击中战斗的同学是:白桃大魔王 , 剩余生命值:1.0\n", + "第 22259 轮,攻击被触发,发动攻击的数值是 202101103989 \n", + "被击中战斗的同学是:R , 剩余生命值:3.0\n", + "第 22264 轮,攻击被触发,发动攻击的数值是 202101103994 \n", + "被击中战斗的同学是:R , 剩余生命值:2.0\n", + "第 22513 轮,攻击被触发,发动攻击的数值是 202101104243 \n", + "被击中战斗的同学是:会跳舞的文艺青年 , 剩余生命值:10.0\n", + "第 22531 轮,攻击被触发,发动攻击的数值是 202101104261 \n", + "被击中战斗的同学是:柳好肥 , 剩余生命值:1.0\n", + "第 22859 轮,攻击被触发,发动攻击的数值是 202101104589 \n", + "被击中战斗的同学是:白桃大魔王 , 剩余生命值:0.0\n", + "*_* 白桃大魔王 同学退出战斗……阿门~~~\n", + "还有 10 位同学在继续战斗\n", + "\n", + "第 23539 轮,攻击被触发,发动攻击的数值是 202101105269 \n", + "被击中战斗的同学是:HYL-GISer , 剩余生命值:1.0\n", + "第 23645 轮,攻击被触发,发动攻击的数值是 202101105375 \n", + "被击中战斗的同学是:会跳舞的文艺青年 , 剩余生命值:9.0\n", + "第 23651 轮,攻击被触发,发动攻击的数值是 202101105381 \n", + "被击中战斗的同学是:XYQ , 剩余生命值:7.0\n", + "第 24135 轮,攻击被触发,发动攻击的数值是 202101105865 \n", + "被击中战斗的同学是:孙宇 , 剩余生命值:5.0\n", + "第 24233 轮,攻击被触发,发动攻击的数值是 202101105963 \n", + "被击中战斗的同学是:A^Hundred^Flowers , 剩余生命值:3.0\n", + "第 24729 轮,攻击被触发,发动攻击的数值是 202101106459 \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "被击中战斗的同学是:R , 剩余生命值:1.0\n", + "第 25251 轮,攻击被触发,发动攻击的数值是 202101106981 \n", + "被击中战斗的同学是:HYL-GISer , 剩余生命值:0.0\n", + "*_* HYL-GISer 同学退出战斗……阿门~~~\n", + "还有 9 位同学在继续战斗\n", + "\n", + "第 25735 轮,攻击被触发,发动攻击的数值是 202101107465 \n", + "被击中战斗的同学是:XYQ , 剩余生命值:6.0\n", + "第 26457 轮,攻击被触发,发动攻击的数值是 202101108187 \n", + "被击中战斗的同学是:R , 剩余生命值:0.0\n", + "*_* R 同学退出战斗……阿门~~~\n", + "还有 8 位同学在继续战斗\n", + "\n", + "第 26619 轮,攻击被触发,发动攻击的数值是 202101108349 \n", + "被击中战斗的同学是:XYQ , 剩余生命值:5.0\n", + "第 27033 轮,攻击被触发,发动攻击的数值是 202101108763 \n", + "被击中战斗的同学是:柳好肥 , 剩余生命值:0.0\n", + "*_* 柳好肥 同学退出战斗……阿门~~~\n", + "还有 7 位同学在继续战斗\n", + "\n", + "第 27427 轮,攻击被触发,发动攻击的数值是 202101109157 \n", + "被击中战斗的同学是:XYQ , 剩余生命值:4.0\n", + "第 28500 轮,攻击被触发,发动攻击的数值是 202101110230 \n", + "被击中战斗的同学是:孙宇 , 剩余生命值:4.0\n", + "第 28582 轮,攻击被触发,发动攻击的数值是 202101110312 \n", + "被击中战斗的同学是:其实,不懂你 , 剩余生命值:12.0\n", + "第 28644 轮,攻击被触发,发动攻击的数值是 202101110374 \n", + "被击中战斗的同学是:A^Hundred^Flowers , 剩余生命值:2.0\n", + "第 28749 轮,攻击被触发,发动攻击的数值是 202101110479 \n", + "被击中战斗的同学是:蔚蓝天空 , 剩余生命值:2.0\n", + "第 28820 轮,攻击被触发,发动攻击的数值是 202101110550 \n", + "被击中战斗的同学是:会跳舞的文艺青年 , 剩余生命值:8.0\n", + "第 29021 轮,攻击被触发,发动攻击的数值是 202101110751 \n", + "被击中战斗的同学是:XYQ , 剩余生命值:3.0\n", + "第 29735 轮,攻击被触发,发动攻击的数值是 202101111465 \n", + "被击中战斗的同学是:蔚蓝天空 , 剩余生命值:1.0\n", + "第 29778 轮,攻击被触发,发动攻击的数值是 202101111508 \n", + "被击中战斗的同学是:XYQ , 剩余生命值:2.0\n", + "第 30490 轮,攻击被触发,发动攻击的数值是 202101112220 \n", + "被击中战斗的同学是:XYQ , 剩余生命值:1.0\n", + "第 31624 轮,攻击被触发,发动攻击的数值是 202101113354 \n", + "被击中战斗的同学是:A^Hundred^Flowers , 剩余生命值:1.0\n", + "第 32394 轮,攻击被触发,发动攻击的数值是 202101114124 \n", + "被击中战斗的同学是:A^Hundred^Flowers , 剩余生命值:0.0\n", + "*_* A^Hundred^Flowers 同学退出战斗……阿门~~~\n", + "还有 6 位同学在继续战斗\n", + "\n", + "第 33505 轮,攻击被触发,发动攻击的数值是 202101115235 \n", + "被击中战斗的同学是:孙宇 , 剩余生命值:3.0\n", + "第 33662 轮,攻击被触发,发动攻击的数值是 202101115392 \n", + "被击中战斗的同学是:Lilly An , 剩余生命值:2.0\n", + "第 33871 轮,攻击被触发,发动攻击的数值是 202101115601 \n", + "被击中战斗的同学是:其实,不懂你 , 剩余生命值:11.0\n", + "第 34754 轮,攻击被触发,发动攻击的数值是 202101116484 \n", + "被击中战斗的同学是:孙宇 , 剩余生命值:2.0\n", + "第 37277 轮,攻击被触发,发动攻击的数值是 202101119007 \n", + "被击中战斗的同学是:XYQ , 剩余生命值:0.0\n", + "*_* XYQ 同学退出战斗……阿门~~~\n", + "\n", + "\n", + " 战斗结束……恭喜以下同学获奖:♪(^∇^*)\n", + "蔚蓝天空\t 剩余生命值:1.0\n", + "Lilly An\t 剩余生命值:2.0\n", + "孙宇\t 剩余生命值:2.0\n", + "会跳舞的文艺青年\t 剩余生命值:8.0\n", + "其实,不懂你\t 剩余生命值:11.0\n" + ] + } + ], + "source": [ + "flag = 0\n", + "while True:\n", + " flag +=1\n", + " h = hashKnife(start + flag)\n", + " if h[0:1] == \"0\":\n", + " if h[-2:] in val:\n", + " val[h[-2:]] -=1\n", + " name = pd2[pd2[\"index\"] == int(h[-2:])][\"name\"].tolist()[0]\n", + " print(\"第 {0} 轮,攻击被触发,发动攻击的数值是 {1}\\\n", + " \\n被击中战斗的同学是:{2} , 剩余生命值:{3}\".format(flag,start+flag,\n", + " name,val[h[-2:]]))\n", + " if val[h[-2:]] == 0:\n", + " del val[h[-2:]]\n", + " print(\"*_* {0} 同学退出战斗……阿门~~~\".format(name))\n", + " if len(val) <= 5:\n", + " print(\"\\n\\n 战斗结束……恭喜以下同学获奖:♪(^∇^*)\")\n", + " for v in val:\n", + " name = pd2[pd2[\"index\"] == int(v)][\"name\"].tolist()[0]\n", + " print(\"{0}\\t 剩余生命值:{1}\".format(name,val[v]))\n", + " break\n", + " else:\n", + " print(\"还有 {0} 位同学在继续战斗\\n\".format(len(val)))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/image/issues/20230914101754.png b/image/issues/20230914101754.png new file mode 100644 index 0000000..f81bcc5 Binary files /dev/null and b/image/issues/20230914101754.png differ diff --git a/image/issues/20230914102028.png b/image/issues/20230914102028.png new file mode 100644 index 0000000..fcd6bf7 Binary files /dev/null and b/image/issues/20230914102028.png differ