File tree Expand file tree Collapse file tree 1 file changed +8
-13
lines changed
Expand file tree Collapse file tree 1 file changed +8
-13
lines changed Original file line number Diff line number Diff line change 1111import numpy as np
1212from sklearn .cross_validation import KFold
1313from sklearn .linear_model import ElasticNet , Lasso , Ridge
14+ from sklearn .metrics import r2_score
1415from sklearn .datasets import load_boston
1516boston = load_boston ()
1617x = boston .data
2627
2728 # Predict on the whole data:
2829 p = met .predict (x )
29-
30- e = p - y
31- # np.dot(e, e) == sum(ei**2 for ei in e) but faster
32- total_error = np .dot (e , e )
33- rmse_train = np .sqrt (total_error / len (p ))
30+ r2_train = r2_score (y , p )
3431
3532 # Now, we use 10 fold cross-validation to estimate generalization error
36- kf = KFold (len (x ), n_folds = 10 )
37- err = 0
33+ kf = KFold (len (x ), n_folds = 5 )
34+ p = np . zeros_like ( y )
3835 for train , test in kf :
3936 met .fit (x [train ], y [train ])
40- p = met .predict (x [test ])
41- e = p - y [test ]
42- err += np .dot (e , e )
37+ p [test ] = met .predict (x [test ])
4338
44- rmse_10cv = np . sqrt ( err / len ( x ) )
39+ r2_cv = r2_score ( y , p )
4540 print ('Method: {}' .format (name ))
46- print ('RMSE on training: {}' .format (rmse_train ))
47- print ('RMSE on 10 -fold CV: {}' .format (rmse_10cv ))
41+ print ('R2 on training: {}' .format (r2_train ))
42+ print ('R2 on 5 -fold CV: {}' .format (r2_cv ))
4843 print ()
4944 print ()
You can’t perform that action at this time.
0 commit comments