forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathasgd.py
339 lines (287 loc) · 10.2 KB
/
asgd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import torch
from torch import Tensor
from .optimizer import (Optimizer, _use_grad_for_differentiable, _get_value, _default_to_fused_or_foreach,
_differentiable_doc, _foreach_doc, _maximize_doc)
from torch._utils import is_compiling
from torch.utils._foreach_utils import _group_tensors_by_device_and_dtype
from typing import List, Optional
__all__ = ["ASGD", "asgd"]
def _to_tensor(x):
if not isinstance(x, torch.Tensor):
return torch.tensor(x)
return x
class ASGD(Optimizer):
def __init__(
self,
params,
lr=1e-2,
lambd=1e-4,
alpha=0.75,
t0=1e6,
weight_decay=0,
foreach: Optional[bool] = None,
maximize: bool = False,
differentiable: bool = False,
):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= weight_decay:
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
defaults = dict(
lr=lr,
lambd=lambd,
alpha=alpha,
t0=t0,
weight_decay=weight_decay,
foreach=foreach,
maximize=maximize,
differentiable=differentiable,
)
super().__init__(params, defaults)
def __setstate__(self, state):
super().__setstate__(state)
for group in self.param_groups:
group.setdefault("foreach", None)
group.setdefault("maximize", False)
group.setdefault("differentiable", False)
state_values = list(self.state.values())
step_is_tensor = (len(state_values) != 0) and torch.is_tensor(
state_values[0]["step"]
)
if not step_is_tensor:
for s in state_values:
s["step"] = torch.tensor(float(s["step"]))
eta_is_tensor = (len(state_values) != 0) and torch.is_tensor(
state_values[0]["eta"]
)
if not eta_is_tensor:
for s in state_values:
s["eta"] = torch.tensor(s["eta"])
mu_is_tensor = (len(state_values) != 0) and torch.is_tensor(
state_values[0]["mu"]
)
if not mu_is_tensor:
for s in state_values:
s["mu"] = torch.tensor(float(s["mu"]))
def _init_group(self, group, params_with_grad, grads, mus, axs, etas, state_steps):
for p in group["params"]:
if p.grad is not None:
params_with_grad.append(p)
if p.grad.is_sparse:
raise RuntimeError("ASGD does not support sparse gradients")
grads.append(p.grad)
state = self.state[p]
# State initialization
if len(state) == 0:
state["step"] = torch.tensor(0.0)
state["eta"] = torch.tensor(group["lr"])
state["mu"] = torch.tensor(1.0)
state["ax"] = torch.zeros_like(
p, memory_format=torch.preserve_format
)
mus.append(state["mu"])
axs.append(state["ax"])
etas.append(state["eta"])
state_steps.append(state["step"])
@_use_grad_for_differentiable
def step(self, closure=None):
"""Performs a single optimization step.
Args:
closure (Callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
for group in self.param_groups:
params_with_grad = []
grads = []
mus = []
axs = []
etas = []
state_steps = []
self._init_group(group, params_with_grad, grads, mus, axs, etas, state_steps)
asgd(
params_with_grad,
grads,
axs,
mus,
etas,
state_steps,
lambd=group["lambd"],
lr=group["lr"],
t0=group["t0"],
alpha=group["alpha"],
weight_decay=group["weight_decay"],
foreach=group["foreach"],
maximize=group["maximize"],
differentiable=group["differentiable"],
)
return loss
ASGD.__doc__ = r"""Implements Averaged Stochastic Gradient Descent.
It has been proposed in `Acceleration of stochastic approximation by
averaging`_.
Args:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float, optional): learning rate (default: 1e-2)
lambd (float, optional): decay term (default: 1e-4)
alpha (float, optional): power for eta update (default: 0.75)
t0 (float, optional): point at which to start averaging (default: 1e6)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
{foreach}
{maximize}
{differentiable}
.. _Acceleration of stochastic approximation by averaging:
https://dl.acm.org/citation.cfm?id=131098
""".format(foreach=_foreach_doc, maximize=_maximize_doc, differentiable=_differentiable_doc)
def asgd(
params: List[Tensor],
grads: List[Tensor],
axs: List[Tensor],
mus: List[Tensor],
etas: List[Tensor],
state_steps: List[Tensor],
# kwonly args with defaults are not supported by functions compiled with torchscript issue #70627
# setting this as kwarg for now as functional API is compiled by torch/distributed/optim
foreach: Optional[bool] = None,
maximize: bool = False,
differentiable: bool = False,
*,
lambd: float,
lr: float,
t0: float,
alpha: float,
weight_decay: float,
):
r"""Functional API that performs asgd algorithm computation.
See :class:`~torch.optim.ASGD` for details.
"""
if foreach is None:
_, foreach = _default_to_fused_or_foreach(params, differentiable, use_fused=False)
if foreach and torch.jit.is_scripting():
raise RuntimeError("torch.jit.script not supported with foreach optimizers")
if foreach and not torch.jit.is_scripting():
func = _multi_tensor_asgd
else:
func = _single_tensor_asgd
func(
params,
grads,
axs,
mus,
etas,
state_steps,
lambd=lambd,
lr=lr,
t0=t0,
alpha=alpha,
weight_decay=weight_decay,
maximize=maximize,
differentiable=differentiable,
)
def _single_tensor_asgd(
params: List[Tensor],
grads: List[Tensor],
axs: List[Tensor],
mus: List[Tensor],
etas: List[Tensor],
state_steps: List[Tensor],
*,
lambd: float,
lr: float,
t0: float,
alpha: float,
weight_decay: float,
maximize: bool,
differentiable: bool,
):
def _to_tensor(x):
if not isinstance(x, torch.Tensor):
return torch.tensor(x)
return x
for i, param in enumerate(params):
grad = grads[i]
grad = grad if not maximize else -grad
mu = mus[i]
ax = axs[i]
eta = etas[i]
step_t = state_steps[i]
if torch.is_complex(param):
grad = torch.view_as_real(grad)
param = torch.view_as_real(param)
ax = torch.view_as_real(ax)
# update step
step_t += 1
step = _get_value(step_t)
if weight_decay != 0:
grad = grad.add(param, alpha=weight_decay)
eta_value = _get_value(eta)
# decay term
param.mul_(1 - lambd * eta_value)
# update parameter
param.add_(grad, alpha=-eta_value)
# averaging
if is_compiling() or mu.item() != 1:
ax.add_(param.sub(ax).mul(mu))
else:
ax.copy_(param)
new_eta = _to_tensor(lr / ((1 + lambd * lr * step) ** alpha))
eta.copy_(new_eta)
new_mu = _to_tensor(1 / max(1, step - t0))
mu.copy_(new_mu)
def _multi_tensor_asgd(
params: List[Tensor],
grads: List[Tensor],
axs: List[Tensor],
mus: List[Tensor],
etas: List[Tensor],
state_steps: List[Tensor],
*,
lambd: float,
lr: float,
t0: float,
alpha: float,
weight_decay: float,
maximize: bool,
differentiable: bool,
):
if len(params) == 0:
return
assert not differentiable, "_foreach ops don't support autograd"
grouped_tensors = _group_tensors_by_device_and_dtype([params, grads, axs, mus, etas, state_steps])
for (grouped_params, grouped_grads, grouped_axs, grouped_mus,
grouped_etas, grouped_state_steps) in grouped_tensors.values():
if maximize:
grouped_grads = torch._foreach_neg(grouped_grads)
def _view_complex_as_real(tensor_list):
return [
torch.view_as_real(t) if torch.is_complex(t) else t for t in tensor_list
]
grouped_grads = _view_complex_as_real(grouped_grads)
grouped_params = _view_complex_as_real(grouped_params)
grouped_axs = _view_complex_as_real(grouped_axs)
# update step
torch._foreach_add_(grouped_state_steps, 1)
if weight_decay != 0:
grouped_grads = torch._foreach_add(grouped_grads, grouped_params, alpha=weight_decay)
# decay term
eta = _get_value(grouped_etas[0])
torch._foreach_mul_(grouped_params, 1 - lambd * eta)
# update parameter
torch._foreach_add_(grouped_params, grouped_grads, alpha=-eta)
# averaging
for i in range(len(grouped_axs)):
if is_compiling() or grouped_mus[i].item() != 1:
grouped_axs[i].add_(grouped_params[i].sub(grouped_axs[i]).mul(grouped_mus[i]))
else:
grouped_axs[i].copy_(grouped_params[i])
# update eta and mu
for i in range(len(grouped_mus)):
new_eta = _to_tensor(
lr / (1 + lambd * lr * _get_value(grouped_state_steps[i]) ** alpha)
)
grouped_etas[i].copy_(new_eta)
new_mu = _to_tensor(1 / max(1, _get_value(grouped_state_steps[i]) - t0))
grouped_mus[i].copy_(new_mu)