forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadamax.py
338 lines (287 loc) · 12.1 KB
/
adamax.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
import torch
from torch import Tensor
from .optimizer import (Optimizer, _use_grad_for_differentiable, _get_value, _stack_if_compiling,
_default_to_fused_or_foreach, _differentiable_doc, _maximize_doc, _foreach_doc)
from typing import List, Optional
from torch.utils._foreach_utils import _group_tensors_by_device_and_dtype
__all__ = ["Adamax", "adamax"]
class Adamax(Optimizer):
def __init__(
self,
params,
lr=2e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0,
foreach: Optional[bool] = None,
*,
maximize: bool = False,
differentiable: bool = False,
):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
if not 0.0 <= weight_decay:
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
defaults = dict(
lr=lr,
betas=betas,
eps=eps,
weight_decay=weight_decay,
foreach=foreach,
maximize=maximize,
differentiable=differentiable,
)
super().__init__(params, defaults)
def __setstate__(self, state):
super().__setstate__(state)
for group in self.param_groups:
group.setdefault("foreach", None)
group.setdefault("maximize", False)
group.setdefault("differentiable", False)
state_values = list(self.state.values())
step_is_tensor = (len(state_values) != 0) and torch.is_tensor(
state_values[0]["step"]
)
if not step_is_tensor:
for s in state_values:
s["step"] = torch.tensor(float(s["step"]))
def _init_group(self, group, params_with_grad, grads, exp_avgs, exp_infs, state_steps):
for p in group["params"]:
if p.grad is None:
continue
params_with_grad.append(p)
if p.grad.is_sparse:
raise RuntimeError("Adamax does not support sparse gradients")
grads.append(p.grad)
state = self.state[p]
# State initialization
if len(state) == 0:
state["step"] = torch.tensor(0.0)
state["exp_avg"] = torch.zeros_like(
p, memory_format=torch.preserve_format
)
state["exp_inf"] = torch.zeros_like(
p, memory_format=torch.preserve_format
)
exp_avgs.append(state["exp_avg"])
exp_infs.append(state["exp_inf"])
state_steps.append(state["step"])
@_use_grad_for_differentiable
def step(self, closure=None):
"""Performs a single optimization step.
Args:
closure (Callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
for group in self.param_groups:
params_with_grad = []
grads = []
exp_avgs = []
exp_infs = []
state_steps = []
beta1, beta2 = group["betas"]
eps = group["eps"]
lr = group["lr"]
weight_decay = group["weight_decay"]
foreach = group["foreach"]
maximize = group["maximize"]
differentiable = group["differentiable"]
self._init_group(group, params_with_grad, grads, exp_avgs, exp_infs, state_steps)
adamax(
params_with_grad,
grads,
exp_avgs,
exp_infs,
state_steps,
eps=eps,
beta1=beta1,
beta2=beta2,
lr=lr,
weight_decay=weight_decay,
foreach=foreach,
maximize=maximize,
differentiable=differentiable,
)
return loss
Adamax.__doc__ = r"""Implements Adamax algorithm (a variant of Adam based on infinity norm).
.. math::
\begin{aligned}
&\rule{110mm}{0.4pt} \\
&\textbf{input} : \gamma \text{ (lr)}, \beta_1, \beta_2
\text{ (betas)},\theta_0 \text{ (params)},f(\theta) \text{ (objective)},
\: \lambda \text{ (weight decay)}, \\
&\hspace{13mm} \epsilon \text{ (epsilon)} \\
&\textbf{initialize} : m_0 \leftarrow 0 \text{ ( first moment)},
u_0 \leftarrow 0 \text{ ( infinity norm)} \\[-1.ex]
&\rule{110mm}{0.4pt} \\
&\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\
&\hspace{5mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\
&\hspace{5mm}if \: \lambda \neq 0 \\
&\hspace{10mm} g_t \leftarrow g_t + \lambda \theta_{t-1} \\
&\hspace{5mm}m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) g_t \\
&\hspace{5mm}u_t \leftarrow \mathrm{max}(\beta_2 u_{t-1}, |g_{t}|+\epsilon) \\
&\hspace{5mm}\theta_t \leftarrow \theta_{t-1} - \frac{\gamma m_t}{(1-\beta^t_1) u_t} \\
&\rule{110mm}{0.4pt} \\[-1.ex]
&\bf{return} \: \theta_t \\[-1.ex]
&\rule{110mm}{0.4pt} \\[-1.ex]
\end{aligned}
For further details regarding the algorithm we refer to `Adam: A Method for Stochastic Optimization`_.
""" + r"""
Args:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float, optional): learning rate (default: 2e-3)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its square
eps (float, optional): term added to the denominator to improve
numerical stability (default: 1e-8)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
{foreach}
{maximize}
{differentiable}
.. _Adam\: A Method for Stochastic Optimization:
https://arxiv.org/abs/1412.6980
""".format(foreach=_foreach_doc, maximize=_maximize_doc, differentiable=_differentiable_doc)
def adamax(
params: List[Tensor],
grads: List[Tensor],
exp_avgs: List[Tensor],
exp_infs: List[Tensor],
state_steps: List[Tensor],
# kwonly args with defaults are not supported by functions compiled with torchscript issue #70627
# setting this as kwarg for now as functional API is compiled by torch/distributed/optim
foreach: Optional[bool] = None,
maximize: bool = False,
differentiable: bool = False,
*,
eps: float,
beta1: float,
beta2: float,
lr: float,
weight_decay: float,
):
r"""Functional API that performs adamax algorithm computation.
See :class:`~torch.optim.Adamax` for details.
"""
if not all(isinstance(t, torch.Tensor) for t in state_steps):
raise RuntimeError(
"API has changed, `state_steps` argument must contain a list of singleton tensors"
)
if foreach is None:
_, foreach = _default_to_fused_or_foreach(params, differentiable, use_fused=False)
if foreach and torch.jit.is_scripting():
raise RuntimeError("torch.jit.script not supported with foreach optimizers")
if foreach and not torch.jit.is_scripting():
func = _multi_tensor_adamax
else:
func = _single_tensor_adamax
func(
params,
grads,
exp_avgs,
exp_infs,
state_steps,
eps=eps,
beta1=beta1,
beta2=beta2,
lr=lr,
weight_decay=weight_decay,
maximize=maximize,
differentiable=differentiable,
)
def _single_tensor_adamax(
params: List[Tensor],
grads: List[Tensor],
exp_avgs: List[Tensor],
exp_infs: List[Tensor],
state_steps: List[Tensor],
*,
eps: float,
beta1: float,
beta2: float,
lr: float,
weight_decay: float,
maximize: bool,
differentiable: bool,
):
for i, param in enumerate(params):
grad = grads[i]
grad = grad if not maximize else -grad
exp_avg = exp_avgs[i]
exp_inf = exp_infs[i]
step_t = state_steps[i]
# update step
step_t += 1
if weight_decay != 0:
grad = grad.add(param, alpha=weight_decay)
if torch.is_complex(param):
param = torch.view_as_real(param)
grad = torch.view_as_real(grad)
exp_avg = torch.view_as_real(exp_avg)
exp_inf = torch.view_as_real(exp_inf)
# Update biased first moment estimate.
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
# Update the exponentially weighted infinity norm.
norm_buf = torch.cat(
[exp_inf.mul_(beta2).unsqueeze(0), grad.abs().add_(eps).unsqueeze_(0)], 0
)
if not differentiable:
torch.amax(norm_buf, 0, keepdim=False, out=exp_inf)
else:
exp_inf.copy_(torch.amax(norm_buf, 0, keepdim=False))
bias_correction = 1 - beta1 ** _get_value(step_t)
clr = lr / bias_correction
param.addcdiv_(exp_avg, exp_inf, value=-clr)
def _multi_tensor_adamax(
params: List[Tensor],
grads: List[Tensor],
exp_avgs: List[Tensor],
exp_infs: List[Tensor],
state_steps: List[Tensor],
*,
beta1: float,
beta2: float,
lr: float,
weight_decay: float,
eps: float,
maximize: bool,
differentiable: bool,
):
assert not differentiable, "_foreach ops don't support autograd"
if len(params) == 0:
return
grouped_tensors = _group_tensors_by_device_and_dtype([params, grads, exp_avgs, exp_infs, state_steps])
for grouped_params, grouped_grads, grouped_exp_avgs, grouped_exp_infs, grouped_state_steps in grouped_tensors.values():
if maximize:
grouped_grads = torch._foreach_neg(grouped_grads)
grouped_params = [torch.view_as_real(x) if torch.is_complex(x) else x for x in grouped_params]
grouped_grads = [torch.view_as_real(x) if torch.is_complex(x) else x for x in grouped_grads]
grouped_exp_avgs = [torch.view_as_real(x) if torch.is_complex(x) else x for x in grouped_exp_avgs]
grouped_exp_infs = [torch.view_as_real(x) if torch.is_complex(x) else x for x in grouped_exp_infs]
# Update steps
torch._foreach_add_(grouped_state_steps, 1)
if weight_decay != 0:
grouped_grads = torch._foreach_add(grouped_grads, grouped_params, alpha=weight_decay)
# Update biased first moment estimate.
torch._foreach_mul_(grouped_exp_avgs, beta1)
torch._foreach_add_(grouped_exp_avgs, grouped_grads, alpha=1 - beta1)
# Update the exponentially weighted infinity norm.
torch._foreach_mul_(grouped_exp_infs, beta2)
for exp_inf, grad in zip(grouped_exp_infs, grouped_grads):
norm_buf = torch.cat(
[exp_inf.unsqueeze(0), grad.abs().add_(eps).unsqueeze_(0)], 0
)
torch.max(norm_buf, 0, keepdim=False, out=(exp_inf, exp_inf.new().long()))
bias_corrections = [1 - beta1 ** _get_value(step) for step in grouped_state_steps]
clr = _stack_if_compiling([-1 * (lr / bias_correction) for bias_correction in bias_corrections])
torch._foreach_addcdiv_(grouped_params, grouped_exp_avgs, grouped_exp_infs, clr)