forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprofiler.py
54 lines (44 loc) · 1.57 KB
/
profiler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import tempfile
import torch
import contextlib
from . import cudart, check_error
__all__ = ["init", "start", "stop", "profile"]
DEFAULT_FLAGS = [
"gpustarttimestamp",
"gpuendtimestamp",
"gridsize3d",
"threadblocksize",
"streamid",
"enableonstart 0",
"conckerneltrace",
]
def init(output_file, flags=None, output_mode='key_value'):
rt = cudart()
if not hasattr(rt, 'cudaOutputMode'):
raise AssertionError("HIP does not support profiler initialization!")
if hasattr(torch.version, "cuda") and torch.version.cuda is not None and int(torch.version.cuda.split(".")[0]) >= 12:
# Check https://github.com/pytorch/pytorch/pull/91118
# cudaProfilerInitialize is no longer needed after CUDA 12
raise AssertionError("CUDA12+ does not need profiler initialization!")
flags = DEFAULT_FLAGS if flags is None else flags
if output_mode == 'key_value':
output_mode_enum = rt.cudaOutputMode.KeyValuePair
elif output_mode == 'csv':
output_mode_enum = rt.cudaOutputMode.CSV
else:
raise RuntimeError("supported CUDA profiler output modes are: key_value and csv")
with tempfile.NamedTemporaryFile(delete=True) as f:
f.write(b'\n'.join(f.encode('ascii') for f in flags))
f.flush()
check_error(rt.cudaProfilerInitialize(f.name, output_file, output_mode_enum))
def start():
check_error(cudart().cudaProfilerStart())
def stop():
check_error(cudart().cudaProfilerStop())
@contextlib.contextmanager
def profile():
try:
start()
yield
finally:
stop()