|
| 1 | +import tensorflow as tf |
| 2 | + |
| 3 | + |
| 4 | +class BasicConv2D(tf.keras.layers.Layer): |
| 5 | + def __init__(self, filters, kernel_size, strides, padding): |
| 6 | + super(BasicConv2D, self).__init__() |
| 7 | + self.conv = tf.keras.layers.Conv2D(filters=filters, |
| 8 | + kernel_size=kernel_size, |
| 9 | + strides=strides, |
| 10 | + padding=padding) |
| 11 | + self.bn = tf.keras.layers.BatchNormalization() |
| 12 | + |
| 13 | + def call(self, inputs, training=None, **kwargs): |
| 14 | + x = self.conv(inputs) |
| 15 | + x = self.bn(x, training=training) |
| 16 | + x = tf.nn.relu(x) |
| 17 | + |
| 18 | + return x |
| 19 | + |
| 20 | + |
| 21 | +class Stem(tf.keras.layers.Layer): |
| 22 | + def __init__(self): |
| 23 | + super(Stem, self).__init__() |
| 24 | + self.conv1 = BasicConv2D(filters=32, |
| 25 | + kernel_size=(3, 3), |
| 26 | + strides=2, |
| 27 | + padding="valid") |
| 28 | + self.conv2 = BasicConv2D(filters=32, |
| 29 | + kernel_size=(3, 3), |
| 30 | + strides=1, |
| 31 | + padding="valid") |
| 32 | + self.conv3 = BasicConv2D(filters=64, |
| 33 | + kernel_size=(3, 3), |
| 34 | + strides=1, |
| 35 | + padding="same") |
| 36 | + self.b1_maxpool = tf.keras.layers.MaxPool2D(pool_size=(3, 3), |
| 37 | + strides=2, |
| 38 | + padding="valid") |
| 39 | + self.b2_conv = BasicConv2D(filters=96, |
| 40 | + kernel_size=(3, 3), |
| 41 | + strides=2, |
| 42 | + padding="valid") |
| 43 | + self.b3_conv1 = BasicConv2D(filters=64, |
| 44 | + kernel_size=(1, 1), |
| 45 | + strides=1, |
| 46 | + padding="same") |
| 47 | + self.b3_conv2 = BasicConv2D(filters=96, |
| 48 | + kernel_size=(3, 3), |
| 49 | + strides=1, |
| 50 | + padding="valid") |
| 51 | + self.b4_conv1 = BasicConv2D(filters=64, |
| 52 | + kernel_size=(1, 1), |
| 53 | + strides=1, |
| 54 | + padding="same") |
| 55 | + self.b4_conv2 = BasicConv2D(filters=64, |
| 56 | + kernel_size=(7, 1), |
| 57 | + strides=1, |
| 58 | + padding="same") |
| 59 | + self.b4_conv3 = BasicConv2D(filters=64, |
| 60 | + kernel_size=(1, 7), |
| 61 | + strides=1, |
| 62 | + padding="same") |
| 63 | + self.b4_conv4 = BasicConv2D(filters=96, |
| 64 | + kernel_size=(3, 3), |
| 65 | + strides=1, |
| 66 | + padding="valid") |
| 67 | + self.b5_conv = BasicConv2D(filters=192, |
| 68 | + kernel_size=(3, 3), |
| 69 | + strides=2, |
| 70 | + padding="valid") |
| 71 | + self.b6_maxpool = tf.keras.layers.MaxPool2D(pool_size=(3, 3), |
| 72 | + strides=2, |
| 73 | + padding="valid") |
| 74 | + |
| 75 | + def call(self, inputs, training=None, **kwargs): |
| 76 | + x = self.conv1(inputs, training=training) |
| 77 | + x = self.conv2(x, training=training) |
| 78 | + x = self.conv3(x, training=training) |
| 79 | + branch_1 = self.b1_maxpool(x) |
| 80 | + branch_2 = self.b2_conv(x, training=training) |
| 81 | + x = tf.concat(values=[branch_1, branch_2], axis=-1) |
| 82 | + branch_3 = self.b3_conv1(x, training=training) |
| 83 | + branch_3 = self.b3_conv2(branch_3, training=training) |
| 84 | + branch_4 = self.b4_conv1(x, training=training) |
| 85 | + branch_4 = self.b4_conv2(branch_4, training=training) |
| 86 | + branch_4 = self.b4_conv3(branch_4, training=training) |
| 87 | + branch_4 = self.b4_conv4(branch_4, training=training) |
| 88 | + x = tf.concat(values=[branch_3, branch_4], axis=-1) |
| 89 | + branch_5 = self.b5_conv(x, training=training) |
| 90 | + branch_6 = self.b6_maxpool(x, training=training) |
| 91 | + x = tf.concat(values=[branch_5, branch_6], axis=-1) |
| 92 | + |
| 93 | + return x |
| 94 | + |
| 95 | + |
| 96 | +class InceptionBlockA(tf.keras.layers.Layer): |
| 97 | + def __init__(self): |
| 98 | + super(InceptionBlockA, self).__init__() |
| 99 | + self.b1_pool = tf.keras.layers.AveragePooling2D(pool_size=(3, 3), |
| 100 | + strides=1, |
| 101 | + padding="same") |
| 102 | + self.b1_conv = BasicConv2D(filters=96, |
| 103 | + kernel_size=(1, 1), |
| 104 | + strides=1, |
| 105 | + padding="same") |
| 106 | + self.b2_conv = BasicConv2D(filters=96, |
| 107 | + kernel_size=(1, 1), |
| 108 | + strides=1, |
| 109 | + padding="same") |
| 110 | + self.b3_conv1 = BasicConv2D(filters=64, |
| 111 | + kernel_size=(1, 1), |
| 112 | + strides=1, |
| 113 | + padding="same") |
| 114 | + self.b3_conv2 = BasicConv2D(filters=96, |
| 115 | + kernel_size=(3, 3), |
| 116 | + strides=1, |
| 117 | + padding="same") |
| 118 | + self.b4_conv1 = BasicConv2D(filters=64, |
| 119 | + kernel_size=(1, 1), |
| 120 | + strides=1, |
| 121 | + padding="same") |
| 122 | + self.b4_conv2 = BasicConv2D(filters=96, |
| 123 | + kernel_size=(3, 3), |
| 124 | + strides=1, |
| 125 | + padding="same") |
| 126 | + self.b4_conv3 = BasicConv2D(filters=96, |
| 127 | + kernel_size=(3, 3), |
| 128 | + strides=1, |
| 129 | + padding="same") |
| 130 | + |
| 131 | + def call(self, inputs, training=None, **kwargs): |
| 132 | + b1 = self.b1_pool(inputs) |
| 133 | + b1 = self.b1_conv(b1, training=training) |
| 134 | + |
| 135 | + b2 = self.b2_conv(inputs, training=training) |
| 136 | + |
| 137 | + b3 = self.b3_conv1(inputs, training=training) |
| 138 | + b3 = self.b3_conv2(b3, training=training) |
| 139 | + |
| 140 | + b4 = self.b4_conv1(inputs, training=training) |
| 141 | + b4 = self.b4_conv2(b4, training=training) |
| 142 | + b4 = self.b4_conv3(b4, training=training) |
| 143 | + |
| 144 | + return tf.concat(values=[b1, b2, b3, b4], axis=-1) |
| 145 | + |
| 146 | + |
| 147 | +class ReductionA(tf.keras.layers.Layer): |
| 148 | + def __init__(self, k, l, m, n): |
| 149 | + super(ReductionA, self).__init__() |
| 150 | + self.b1_pool = tf.keras.layers.MaxPool2D(pool_size=(3, 3), |
| 151 | + strides=2, |
| 152 | + padding="valid") |
| 153 | + self.b2_conv = BasicConv2D(filters=n, |
| 154 | + kernel_size=(3, 3), |
| 155 | + strides=2, |
| 156 | + padding="valid") |
| 157 | + self.b3_conv1 = BasicConv2D(filters=k, |
| 158 | + kernel_size=(1, 1), |
| 159 | + strides=1, |
| 160 | + padding="same") |
| 161 | + self.b3_conv2 = BasicConv2D(filters=l, |
| 162 | + kernel_size=(3, 3), |
| 163 | + strides=1, |
| 164 | + padding="same") |
| 165 | + self.b3_conv3 = BasicConv2D(filters=m, |
| 166 | + kernel_size=(3, 3), |
| 167 | + strides=2, |
| 168 | + padding="valid") |
| 169 | + |
| 170 | + def call(self, inputs, training=None, **kwargs): |
| 171 | + b1 = self.b1_pool(inputs) |
| 172 | + |
| 173 | + b2 = self.b2_conv(inputs, training=training) |
| 174 | + |
| 175 | + b3 = self.b3_conv1(inputs, training=training) |
| 176 | + b3 = self.b3_conv2(b3, training=training) |
| 177 | + b3 = self.b3_conv3(b3, training=training) |
| 178 | + |
| 179 | + return tf.concat(values=[b1, b2, b3], axis=-1) |
| 180 | + |
| 181 | + |
| 182 | +class InceptionBlockB(tf.keras.layers.Layer): |
| 183 | + def __init__(self): |
| 184 | + super(InceptionBlockB, self).__init__() |
| 185 | + self.b1_pool = tf.keras.layers.AveragePooling2D(pool_size=(3, 3), |
| 186 | + strides=1, |
| 187 | + padding="same") |
| 188 | + self.b1_conv = BasicConv2D(filters=128, |
| 189 | + kernel_size=(1, 1), |
| 190 | + strides=1, |
| 191 | + padding="same") |
| 192 | + self.b2_conv = BasicConv2D(filters=384, |
| 193 | + kernel_size=(1, 1), |
| 194 | + strides=1, |
| 195 | + padding="same") |
| 196 | + self.b3_conv1 = BasicConv2D(filters=192, |
| 197 | + kernel_size=(1, 1), |
| 198 | + strides=1, |
| 199 | + padding="same") |
| 200 | + self.b3_conv2 = BasicConv2D(filters=224, |
| 201 | + kernel_size=(1, 7), |
| 202 | + strides=1, |
| 203 | + padding="same") |
| 204 | + self.b3_conv3 = BasicConv2D(filters=256, |
| 205 | + kernel_size=(1, 7), |
| 206 | + strides=1, |
| 207 | + padding="same") |
| 208 | + self.b4_conv1 = BasicConv2D(filters=192, |
| 209 | + kernel_size=(1, 1), |
| 210 | + strides=1, |
| 211 | + padding="same") |
| 212 | + self.b4_conv2 = BasicConv2D(filters=192, |
| 213 | + kernel_size=(1, 7), |
| 214 | + strides=1, |
| 215 | + padding="same") |
| 216 | + self.b4_conv3 = BasicConv2D(filters=224, |
| 217 | + kernel_size=(7, 1), |
| 218 | + strides=1, |
| 219 | + padding="same") |
| 220 | + self.b4_conv4 = BasicConv2D(filters=224, |
| 221 | + kernel_size=(1, 7), |
| 222 | + strides=1, |
| 223 | + padding="same") |
| 224 | + self.b4_conv5 = BasicConv2D(filters=256, |
| 225 | + kernel_size=(7, 1), |
| 226 | + strides=1, |
| 227 | + padding="same") |
| 228 | + |
| 229 | + def call(self, inputs, training=None, **kwargs): |
| 230 | + b1 = self.b1_pool(inputs) |
| 231 | + b1 = self.b1_conv(b1, training=training) |
| 232 | + |
| 233 | + b2 = self.b2_conv(inputs, training=training) |
| 234 | + |
| 235 | + b3 = self.b3_conv1(inputs, training=training) |
| 236 | + b3 = self.b3_conv2(b3, training=training) |
| 237 | + b3 = self.b3_conv3(b3, training=training) |
| 238 | + |
| 239 | + b4 = self.b4_conv1(inputs, training=training) |
| 240 | + b4 = self.b4_conv2(b4, training=training) |
| 241 | + b4 = self.b4_conv3(b4, training=training) |
| 242 | + b4 = self.b4_conv4(b4, training=training) |
| 243 | + b4 = self.b4_conv5(b4, training=training) |
| 244 | + |
| 245 | + return tf.concat(values=[b1, b2, b3, b4], axis=-1) |
| 246 | + |
| 247 | + |
| 248 | +class ReductionB(tf.keras.layers.Layer): |
| 249 | + def __init__(self): |
| 250 | + super(ReductionB, self).__init__() |
| 251 | + self.b1_pool = tf.keras.layers.MaxPool2D(pool_size=(3, 3), |
| 252 | + strides=2, |
| 253 | + padding="valid") |
| 254 | + self.b2_conv1 = BasicConv2D(filters=192, |
| 255 | + kernel_size=(1, 1), |
| 256 | + strides=1, |
| 257 | + padding="same") |
| 258 | + self.b2_conv2 = BasicConv2D(filters=192, |
| 259 | + kernel_size=(3, 3), |
| 260 | + strides=2, |
| 261 | + padding="valid") |
| 262 | + self.b3_conv1 = BasicConv2D(filters=256, |
| 263 | + kernel_size=(1, 1), |
| 264 | + strides=1, |
| 265 | + padding="same") |
| 266 | + self.b3_conv2 = BasicConv2D(filters=256, |
| 267 | + kernel_size=(1, 7), |
| 268 | + strides=1, |
| 269 | + padding="same") |
| 270 | + self.b3_conv3 = BasicConv2D(filters=320, |
| 271 | + kernel_size=(7, 1), |
| 272 | + strides=1, |
| 273 | + padding="same") |
| 274 | + self.b3_conv4 = BasicConv2D(filters=320, |
| 275 | + kernel_size=(3, 3), |
| 276 | + strides=2, |
| 277 | + padding="valid") |
| 278 | + |
| 279 | + def call(self, inputs, training=None, **kwargs): |
| 280 | + b1 = self.b1_pool(inputs) |
| 281 | + |
| 282 | + b2 = self.b2_conv1(inputs, training=training) |
| 283 | + b2 = self.b2_conv2(b2, training=training) |
| 284 | + |
| 285 | + b3 = self.b3_conv1(inputs, training=training) |
| 286 | + b3 = self.b3_conv2(b3, training=training) |
| 287 | + b3 = self.b3_conv3(b3, training=training) |
| 288 | + b3 = self.b3_conv4(b3, training=training) |
| 289 | + |
| 290 | + return tf.concat(values=[b1, b2, b3], axis=-1) |
| 291 | + |
| 292 | + |
| 293 | +class InceptionBlockC(tf.keras.layers.Layer): |
| 294 | + def __init__(self): |
| 295 | + super(InceptionBlockC, self).__init__() |
| 296 | + self.b1_pool = tf.keras.layers.AveragePooling2D(pool_size=(3, 3), |
| 297 | + strides=1, |
| 298 | + padding="same") |
| 299 | + self.b1_conv = BasicConv2D(filters=256, |
| 300 | + kernel_size=(1, 1), |
| 301 | + strides=1, |
| 302 | + padding="same") |
| 303 | + self.b2_conv = BasicConv2D(filters=256, |
| 304 | + kernel_size=(1, 1), |
| 305 | + strides=1, |
| 306 | + padding="same") |
| 307 | + self.b3_conv1 = BasicConv2D(filters=384, |
| 308 | + kernel_size=(1, 1), |
| 309 | + strides=1, |
| 310 | + padding="same") |
| 311 | + self.b3_conv2 = BasicConv2D(filters=256, |
| 312 | + kernel_size=(1, 3), |
| 313 | + strides=1, |
| 314 | + padding="same") |
| 315 | + self.b3_conv3 = BasicConv2D(filters=256, |
| 316 | + kernel_size=(3, 1), |
| 317 | + strides=1, |
| 318 | + padding="same") |
| 319 | + self.b4_conv1 = BasicConv2D(filters=384, |
| 320 | + kernel_size=(1, 1), |
| 321 | + strides=1, |
| 322 | + padding="same") |
| 323 | + self.b4_conv2 = BasicConv2D(filters=448, |
| 324 | + kernel_size=(1, 3), |
| 325 | + strides=1, |
| 326 | + padding="same") |
| 327 | + self.b4_conv3 = BasicConv2D(filters=512, |
| 328 | + kernel_size=(3, 1), |
| 329 | + strides=1, |
| 330 | + padding="same") |
| 331 | + self.b4_conv4 = BasicConv2D(filters=256, |
| 332 | + kernel_size=(3, 1), |
| 333 | + strides=1, |
| 334 | + padding="same") |
| 335 | + self.b4_conv5 = BasicConv2D(filters=256, |
| 336 | + kernel_size=(1, 3), |
| 337 | + strides=1, |
| 338 | + padding="same") |
| 339 | + |
| 340 | + def call(self, inputs, training=None, **kwargs): |
| 341 | + b1 = self.b1_pool(inputs) |
| 342 | + b1 = self.b1_conv(b1, training=training) |
| 343 | + |
| 344 | + b2 = self.b2_conv(inputs, training=training) |
| 345 | + |
| 346 | + b3 = self.b3_conv1(inputs, training=training) |
| 347 | + b3_1 = self.b3_conv2(b3, training=training) |
| 348 | + b3_2 = self.b3_conv3(b3, training=training) |
| 349 | + |
| 350 | + b4 = self.b4_conv1(inputs, training=training) |
| 351 | + b4 = self.b4_conv2(b4, training=training) |
| 352 | + b4 = self.b4_conv3(b4, training=training) |
| 353 | + b4_1 = self.b4_conv4(b4, training=training) |
| 354 | + b4_2 = self.b4_conv5(b4, training=training) |
| 355 | + |
| 356 | + return tf.concat(values=[b1, b2, b3_1, b3_2, b4_1, b4_2], axis=-1) |
0 commit comments