|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "metadata": { |
| 7 | + "collapsed": true |
| 8 | + }, |
| 9 | + "outputs": [], |
| 10 | + "source": [ |
| 11 | + "#OneR算法 其实是OneRule的简写 表示只用许多特征中的一个特征来作为分类依据\n", |
| 12 | + "\n", |
| 13 | + "#算法思想: 遍历每一个特征的每一个取值,对每一个特征值,统计它在各个类别中出现的次数,找到它出现次数最多的类别\n", |
| 14 | + "# 并统计它在其他类别中的出现次数\n", |
| 15 | + "\n", |
| 16 | + "import numpy as np" |
| 17 | + ] |
| 18 | + }, |
| 19 | + { |
| 20 | + "cell_type": "code", |
| 21 | + "execution_count": 2, |
| 22 | + "metadata": { |
| 23 | + "collapsed": false, |
| 24 | + "scrolled": false |
| 25 | + }, |
| 26 | + "outputs": [ |
| 27 | + { |
| 28 | + "name": "stdout", |
| 29 | + "output_type": "stream", |
| 30 | + "text": [ |
| 31 | + "Iris Plants Database\n", |
| 32 | + "\n", |
| 33 | + "Notes\n", |
| 34 | + "-----\n", |
| 35 | + "Data Set Characteristics:\n", |
| 36 | + " :Number of Instances: 150 (50 in each of three classes)\n", |
| 37 | + " :Number of Attributes: 4 numeric, predictive attributes and the class\n", |
| 38 | + " :Attribute Information:\n", |
| 39 | + " - sepal length in cm\n", |
| 40 | + " - sepal width in cm\n", |
| 41 | + " - petal length in cm\n", |
| 42 | + " - petal width in cm\n", |
| 43 | + " - class:\n", |
| 44 | + " - Iris-Setosa\n", |
| 45 | + " - Iris-Versicolour\n", |
| 46 | + " - Iris-Virginica\n", |
| 47 | + " :Summary Statistics:\n", |
| 48 | + "\n", |
| 49 | + " ============== ==== ==== ======= ===== ====================\n", |
| 50 | + " Min Max Mean SD Class Correlation\n", |
| 51 | + " ============== ==== ==== ======= ===== ====================\n", |
| 52 | + " sepal length: 4.3 7.9 5.84 0.83 0.7826\n", |
| 53 | + " sepal width: 2.0 4.4 3.05 0.43 -0.4194\n", |
| 54 | + " petal length: 1.0 6.9 3.76 1.76 0.9490 (high!)\n", |
| 55 | + " petal width: 0.1 2.5 1.20 0.76 0.9565 (high!)\n", |
| 56 | + " ============== ==== ==== ======= ===== ====================\n", |
| 57 | + "\n", |
| 58 | + " :Missing Attribute Values: None\n", |
| 59 | + " :Class Distribution: 33.3% for each of 3 classes.\n", |
| 60 | + " :Creator: R.A. Fisher\n", |
| 61 | + " :Donor: Michael Marshall (MARSHALL%[email protected])\n", |
| 62 | + " :Date: July, 1988\n", |
| 63 | + "\n", |
| 64 | + "This is a copy of UCI ML iris datasets.\n", |
| 65 | + "http://archive.ics.uci.edu/ml/datasets/Iris\n", |
| 66 | + "\n", |
| 67 | + "The famous Iris database, first used by Sir R.A Fisher\n", |
| 68 | + "\n", |
| 69 | + "This is perhaps the best known database to be found in the\n", |
| 70 | + "pattern recognition literature. Fisher's paper is a classic in the field and\n", |
| 71 | + "is referenced frequently to this day. (See Duda & Hart, for example.) The\n", |
| 72 | + "data set contains 3 classes of 50 instances each, where each class refers to a\n", |
| 73 | + "type of iris plant. One class is linearly separable from the other 2; the\n", |
| 74 | + "latter are NOT linearly separable from each other.\n", |
| 75 | + "\n", |
| 76 | + "References\n", |
| 77 | + "----------\n", |
| 78 | + " - Fisher,R.A. \"The use of multiple measurements in taxonomic problems\"\n", |
| 79 | + " Annual Eugenics, 7, Part II, 179-188 (1936); also in \"Contributions to\n", |
| 80 | + " Mathematical Statistics\" (John Wiley, NY, 1950).\n", |
| 81 | + " - Duda,R.O., & Hart,P.E. (1973) Pattern Classification and Scene Analysis.\n", |
| 82 | + " (Q327.D83) John Wiley & Sons. ISBN 0-471-22361-1. See page 218.\n", |
| 83 | + " - Dasarathy, B.V. (1980) \"Nosing Around the Neighborhood: A New System\n", |
| 84 | + " Structure and Classification Rule for Recognition in Partially Exposed\n", |
| 85 | + " Environments\". IEEE Transactions on Pattern Analysis and Machine\n", |
| 86 | + " Intelligence, Vol. PAMI-2, No. 1, 67-71.\n", |
| 87 | + " - Gates, G.W. (1972) \"The Reduced Nearest Neighbor Rule\". IEEE Transactions\n", |
| 88 | + " on Information Theory, May 1972, 431-433.\n", |
| 89 | + " - See also: 1988 MLC Proceedings, 54-64. Cheeseman et al\"s AUTOCLASS II\n", |
| 90 | + " conceptual clustering system finds 3 classes in the data.\n", |
| 91 | + " - Many, many more ...\n", |
| 92 | + "\n" |
| 93 | + ] |
| 94 | + } |
| 95 | + ], |
| 96 | + "source": [ |
| 97 | + "#加载数据\n", |
| 98 | + "\n", |
| 99 | + "from sklearn.datasets import load_iris\n", |
| 100 | + "\n", |
| 101 | + "dataset = load_iris()\n", |
| 102 | + "\n", |
| 103 | + "#得到数据和输出\n", |
| 104 | + "X = dataset.data\n", |
| 105 | + "y = dataset.target\n", |
| 106 | + "\n", |
| 107 | + "print(dataset.DESCR)" |
| 108 | + ] |
| 109 | + }, |
| 110 | + { |
| 111 | + "cell_type": "code", |
| 112 | + "execution_count": 3, |
| 113 | + "metadata": { |
| 114 | + "collapsed": false |
| 115 | + }, |
| 116 | + "outputs": [ |
| 117 | + { |
| 118 | + "name": "stdout", |
| 119 | + "output_type": "stream", |
| 120 | + "text": [ |
| 121 | + "150 4\n" |
| 122 | + ] |
| 123 | + } |
| 124 | + ], |
| 125 | + "source": [ |
| 126 | + "#获得记录条数和特征数量\n", |
| 127 | + "\n", |
| 128 | + "n_samples, n_features = X.shape\n", |
| 129 | + "\n", |
| 130 | + "print(n_samples, n_features)\n", |
| 131 | + "\n" |
| 132 | + ] |
| 133 | + }, |
| 134 | + { |
| 135 | + "cell_type": "code", |
| 136 | + "execution_count": 4, |
| 137 | + "metadata": { |
| 138 | + "collapsed": false, |
| 139 | + "scrolled": true |
| 140 | + }, |
| 141 | + "outputs": [ |
| 142 | + { |
| 143 | + "name": "stdout", |
| 144 | + "output_type": "stream", |
| 145 | + "text": [ |
| 146 | + "3.46366666667\n", |
| 147 | + "(150, 4)\n" |
| 148 | + ] |
| 149 | + } |
| 150 | + ], |
| 151 | + "source": [ |
| 152 | + "attribute_means = X.mean()\n", |
| 153 | + "print(attribute_means)\n", |
| 154 | + "\n", |
| 155 | + "X_d = np.array(X >= attribute_means, dtype='int')\n", |
| 156 | + "print(X_d.shape)" |
| 157 | + ] |
| 158 | + }, |
| 159 | + { |
| 160 | + "cell_type": "code", |
| 161 | + "execution_count": 5, |
| 162 | + "metadata": { |
| 163 | + "collapsed": false |
| 164 | + }, |
| 165 | + "outputs": [ |
| 166 | + { |
| 167 | + "name": "stdout", |
| 168 | + "output_type": "stream", |
| 169 | + "text": [ |
| 170 | + "train:(112, 4)\n", |
| 171 | + "test:(38, 4)\n" |
| 172 | + ] |
| 173 | + } |
| 174 | + ], |
| 175 | + "source": [ |
| 176 | + "#分成训练集合和测试集合\n", |
| 177 | + "\n", |
| 178 | + "from sklearn.cross_validation import train_test_split \n", |
| 179 | + "\n", |
| 180 | + "random_state = 14\n", |
| 181 | + "\n", |
| 182 | + "X_train,X_test,y_train,y_test = train_test_split(X_d, y, random_state=random_state) #默认25%\n", |
| 183 | + "\n", |
| 184 | + "print(\"train:%s\\ntest:%s\" % (X_train.shape,X_test.shape))" |
| 185 | + ] |
| 186 | + }, |
| 187 | + { |
| 188 | + "cell_type": "code", |
| 189 | + "execution_count": 11, |
| 190 | + "metadata": { |
| 191 | + "collapsed": true |
| 192 | + }, |
| 193 | + "outputs": [], |
| 194 | + "source": [ |
| 195 | + "from collections import defaultdict\n", |
| 196 | + "from operator import itemgetter\n", |
| 197 | + "\n", |
| 198 | + "def train(X,y_true,feature):\n", |
| 199 | + " n_samples, n_features = X.shape\n", |
| 200 | + " assert 0 <= feature < n_features\n", |
| 201 | + " \n", |
| 202 | + " #得到训练集中的不同的值\n", |
| 203 | + " values = set(X[:,feature])\n", |
| 204 | + " \n", |
| 205 | + " predictors = dict()\n", |
| 206 | + " errors =[]\n", |
| 207 | + " \n", |
| 208 | + " \n", |
| 209 | + " for current_value in values:\n", |
| 210 | + " most_frequent_class,error = train_feauture_value(X,y_true,feature,current_value)\n", |
| 211 | + " predictors[current_value] = most_frequent_class\n", |
| 212 | + " errors.append(error)\n", |
| 213 | + " \n", |
| 214 | + " total_error = sum(errors)\n", |
| 215 | + " return predictors, total_error\n", |
| 216 | + "\n", |
| 217 | + "\n", |
| 218 | + "#计算在一个特征值在哪个类别中出现的次数最多\n", |
| 219 | + "def train_feauture_value(X,y_true, feature, value):\n", |
| 220 | + " class_counts = defaultdict(int)\n", |
| 221 | + " for sample,y in zip(X,y_true):\n", |
| 222 | + " #计算个体在各个类别中的个数\n", |
| 223 | + " if sample[feature] == value:\n", |
| 224 | + " class_counts[y] += 1\n", |
| 225 | + " #排序\n", |
| 226 | + " sorted_class_counts = sorted(class_counts.items(), key=itemgetter(1),reverse=True)\n", |
| 227 | + " most_frequent_class = sorted_class_counts[0][0]\n", |
| 228 | + " \n", |
| 229 | + " n_samples = X.shape[1]\n", |
| 230 | + " \n", |
| 231 | + " #计算在其他类别的次数\n", |
| 232 | + " error = sum([ class_counts for class_value,class_counts in class_counts.items() \n", |
| 233 | + " if class_value != most_frequent_class])\n", |
| 234 | + " \n", |
| 235 | + " return most_frequent_class, error\n", |
| 236 | + " \n" |
| 237 | + ] |
| 238 | + }, |
| 239 | + { |
| 240 | + "cell_type": "code", |
| 241 | + "execution_count": 12, |
| 242 | + "metadata": { |
| 243 | + "collapsed": false |
| 244 | + }, |
| 245 | + "outputs": [ |
| 246 | + { |
| 247 | + "name": "stdout", |
| 248 | + "output_type": "stream", |
| 249 | + "text": [ |
| 250 | + "The best model is based on variable 2 and has error 37.00\n", |
| 251 | + "{'predictor': {0: 0, 1: 2}, 'variable': 2}\n" |
| 252 | + ] |
| 253 | + } |
| 254 | + ], |
| 255 | + "source": [ |
| 256 | + "#得到所有的预测值\n", |
| 257 | + "all_predictors = {variable: train(X_train, y_train, variable) for variable in range(X_train.shape[1])}\n", |
| 258 | + "errors = {variable: error for variable, (mapping, error) in all_predictors.items()}\n", |
| 259 | + "\n", |
| 260 | + "#排序所有的测试值\n", |
| 261 | + "best_variable, best_error = sorted(errors.items(), key=itemgetter(1))[0]\n", |
| 262 | + "print(\"The best model is based on variable {0} and has error {1:.2f}\".format(best_variable, best_error))\n", |
| 263 | + "\n", |
| 264 | + "# 选择最好的特征\n", |
| 265 | + "model = {'variable': best_variable,\n", |
| 266 | + " 'predictor': all_predictors[best_variable][0]}\n", |
| 267 | + "print(model)\n" |
| 268 | + ] |
| 269 | + }, |
| 270 | + { |
| 271 | + "cell_type": "code", |
| 272 | + "execution_count": 18, |
| 273 | + "metadata": { |
| 274 | + "collapsed": false |
| 275 | + }, |
| 276 | + "outputs": [], |
| 277 | + "source": [ |
| 278 | + "#使用单一特征预测\n", |
| 279 | + "def predict(X_test, model):\n", |
| 280 | + " variable = model['variable']\n", |
| 281 | + " predictor = model['predictor']\n", |
| 282 | + " y_predicted = np.array([predictor[int(sample[variable])] for sample in X_test])\n", |
| 283 | + " return y_predicted\n" |
| 284 | + ] |
| 285 | + }, |
| 286 | + { |
| 287 | + "cell_type": "code", |
| 288 | + "execution_count": 20, |
| 289 | + "metadata": { |
| 290 | + "collapsed": false |
| 291 | + }, |
| 292 | + "outputs": [ |
| 293 | + { |
| 294 | + "name": "stdout", |
| 295 | + "output_type": "stream", |
| 296 | + "text": [ |
| 297 | + "[0 0 0 2 2 2 0 2 0 2 2 0 2 2 0 2 0 2 2 2 0 0 0 2 0 2 0 2 2 0 0 0 2 0 2 0 2\n", |
| 298 | + " 2]\n" |
| 299 | + ] |
| 300 | + } |
| 301 | + ], |
| 302 | + "source": [ |
| 303 | + "#输出预测值\n", |
| 304 | + "y_predicted = predict(X_test, model)\n", |
| 305 | + "print(y_predicted)" |
| 306 | + ] |
| 307 | + }, |
| 308 | + { |
| 309 | + "cell_type": "code", |
| 310 | + "execution_count": 22, |
| 311 | + "metadata": { |
| 312 | + "collapsed": false, |
| 313 | + "scrolled": true |
| 314 | + }, |
| 315 | + "outputs": [ |
| 316 | + { |
| 317 | + "name": "stdout", |
| 318 | + "output_type": "stream", |
| 319 | + "text": [ |
| 320 | + "accuracy is 65.7894736842\n" |
| 321 | + ] |
| 322 | + } |
| 323 | + ], |
| 324 | + "source": [ |
| 325 | + "#计算准确度\n", |
| 326 | + "accuracy = np.mean(y_predicted == y_test) * 100\n", |
| 327 | + "print(\"accuracy is %s\" % (accuracy) )" |
| 328 | + ] |
| 329 | + }, |
| 330 | + { |
| 331 | + "cell_type": "code", |
| 332 | + "execution_count": 23, |
| 333 | + "metadata": { |
| 334 | + "collapsed": false |
| 335 | + }, |
| 336 | + "outputs": [ |
| 337 | + { |
| 338 | + "name": "stdout", |
| 339 | + "output_type": "stream", |
| 340 | + "text": [ |
| 341 | + " precision recall f1-score support\n", |
| 342 | + "\n", |
| 343 | + " 0 0.94 1.00 0.97 17\n", |
| 344 | + " 1 0.00 0.00 0.00 13\n", |
| 345 | + " 2 0.40 1.00 0.57 8\n", |
| 346 | + "\n", |
| 347 | + "avg / total 0.51 0.66 0.55 38\n", |
| 348 | + "\n" |
| 349 | + ] |
| 350 | + }, |
| 351 | + { |
| 352 | + "name": "stderr", |
| 353 | + "output_type": "stream", |
| 354 | + "text": [ |
| 355 | + "/Users/xxg/anaconda/lib/python3.5/site-packages/sklearn/metrics/classification.py:1074: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples.\n", |
| 356 | + " 'precision', 'predicted', average, warn_for)\n" |
| 357 | + ] |
| 358 | + } |
| 359 | + ], |
| 360 | + "source": [ |
| 361 | + "#输出报告\n", |
| 362 | + "from sklearn.metrics import classification_report\n", |
| 363 | + "print(classification_report(y_test, y_predicted))" |
| 364 | + ] |
| 365 | + }, |
| 366 | + { |
| 367 | + "cell_type": "code", |
| 368 | + "execution_count": null, |
| 369 | + "metadata": { |
| 370 | + "collapsed": true |
| 371 | + }, |
| 372 | + "outputs": [], |
| 373 | + "source": [] |
| 374 | + } |
| 375 | + ], |
| 376 | + "metadata": { |
| 377 | + "anaconda-cloud": {}, |
| 378 | + "kernelspec": { |
| 379 | + "display_name": "Python [Root]", |
| 380 | + "language": "python", |
| 381 | + "name": "Python [Root]" |
| 382 | + }, |
| 383 | + "language_info": { |
| 384 | + "codemirror_mode": { |
| 385 | + "name": "ipython", |
| 386 | + "version": 3 |
| 387 | + }, |
| 388 | + "file_extension": ".py", |
| 389 | + "mimetype": "text/x-python", |
| 390 | + "name": "python", |
| 391 | + "nbconvert_exporter": "python", |
| 392 | + "pygments_lexer": "ipython3", |
| 393 | + "version": "3.5.1" |
| 394 | + } |
| 395 | + }, |
| 396 | + "nbformat": 4, |
| 397 | + "nbformat_minor": 0 |
| 398 | +} |
0 commit comments