This repository has been archived by the owner on Nov 19, 2018. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 314
/
Copy pathMatrix.cs
1663 lines (1544 loc) · 75.8 KB
/
Matrix.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// MIT License - Copyright (C) The Mono.Xna Team
// This file is subject to the terms and conditions defined in
// file 'LICENSE.txt', which is part of this source code package.
using System;
namespace TrueCraft.API
{
/// <summary>
/// Represents the right-handed 4x4 doubleing point matrix, which can store translation, scale and rotation information.
/// </summary>
public struct Matrix : IEquatable<Matrix>
{
#region Public Constructors
/// <summary>
/// Constructs a matrix.
/// </summary>
/// <param name="m11">A first row and first column value.</param>
/// <param name="m12">A first row and second column value.</param>
/// <param name="m13">A first row and third column value.</param>
/// <param name="m14">A first row and fourth column value.</param>
/// <param name="m21">A second row and first column value.</param>
/// <param name="m22">A second row and second column value.</param>
/// <param name="m23">A second row and third column value.</param>
/// <param name="m24">A second row and fourth column value.</param>
/// <param name="m31">A third row and first column value.</param>
/// <param name="m32">A third row and second column value.</param>
/// <param name="m33">A third row and third column value.</param>
/// <param name="m34">A third row and fourth column value.</param>
/// <param name="m41">A fourth row and first column value.</param>
/// <param name="m42">A fourth row and second column value.</param>
/// <param name="m43">A fourth row and third column value.</param>
/// <param name="m44">A fourth row and fourth column value.</param>
public Matrix(double m11, double m12, double m13, double m14, double m21, double m22, double m23, double m24, double m31,
double m32, double m33, double m34, double m41, double m42, double m43, double m44)
{
this.M11 = m11;
this.M12 = m12;
this.M13 = m13;
this.M14 = m14;
this.M21 = m21;
this.M22 = m22;
this.M23 = m23;
this.M24 = m24;
this.M31 = m31;
this.M32 = m32;
this.M33 = m33;
this.M34 = m34;
this.M41 = m41;
this.M42 = m42;
this.M43 = m43;
this.M44 = m44;
}
#endregion
#region Public Fields
/// <summary>
/// A first row and first column value.
/// </summary>
public double M11;
/// <summary>
/// A first row and second column value.
/// </summary>
public double M12;
/// <summary>
/// A first row and third column value.
/// </summary>
public double M13;
/// <summary>
/// A first row and fourth column value.
/// </summary>
public double M14;
/// <summary>
/// A second row and first column value.
/// </summary>
public double M21;
/// <summary>
/// A second row and second column value.
/// </summary>
public double M22;
/// <summary>
/// A second row and third column value.
/// </summary>
public double M23;
/// <summary>
/// A second row and fourth column value.
/// </summary>
public double M24;
/// <summary>
/// A third row and first column value.
/// </summary>
public double M31;
/// <summary>
/// A third row and second column value.
/// </summary>
public double M32;
/// <summary>
/// A third row and third column value.
/// </summary>
public double M33;
/// <summary>
/// A third row and fourth column value.
/// </summary>
public double M34;
/// <summary>
/// A fourth row and first column value.
/// </summary>
public double M41;
/// <summary>
/// A fourth row and second column value.
/// </summary>
public double M42;
/// <summary>
/// A fourth row and third column value.
/// </summary>
public double M43;
/// <summary>
/// A fourth row and fourth column value.
/// </summary>
public double M44;
#endregion
#region Indexers
public double this[int index]
{
get
{
switch (index)
{
case 0: return M11;
case 1: return M12;
case 2: return M13;
case 3: return M14;
case 4: return M21;
case 5: return M22;
case 6: return M23;
case 7: return M24;
case 8: return M31;
case 9: return M32;
case 10: return M33;
case 11: return M34;
case 12: return M41;
case 13: return M42;
case 14: return M43;
case 15: return M44;
}
throw new ArgumentOutOfRangeException();
}
set
{
switch (index)
{
case 0: M11 = value; break;
case 1: M12 = value; break;
case 2: M13 = value; break;
case 3: M14 = value; break;
case 4: M21 = value; break;
case 5: M22 = value; break;
case 6: M23 = value; break;
case 7: M24 = value; break;
case 8: M31 = value; break;
case 9: M32 = value; break;
case 10: M33 = value; break;
case 11: M34 = value; break;
case 12: M41 = value; break;
case 13: M42 = value; break;
case 14: M43 = value; break;
case 15: M44 = value; break;
default: throw new ArgumentOutOfRangeException();
}
}
}
public double this[int row, int column]
{
get
{
return this[(row * 4) + column];
}
set
{
this[(row * 4) + column] = value;
}
}
#endregion
#region Private Members
private static Matrix identity = new Matrix(1f, 0f, 0f, 0f,
0f, 1f, 0f, 0f,
0f, 0f, 1f, 0f,
0f, 0f, 0f, 1f);
#endregion
#region Public Properties
/// <summary>
/// The backward vector formed from the third row M31, M32, M33 elements.
/// </summary>
public Vector3 Backward
{
get
{
return new Vector3(this.M31, this.M32, this.M33);
}
set
{
this.M31 = value.X;
this.M32 = value.Y;
this.M33 = value.Z;
}
}
/// <summary>
/// The down vector formed from the second row -M21, -M22, -M23 elements.
/// </summary>
public Vector3 Down
{
get
{
return new Vector3(-this.M21, -this.M22, -this.M23);
}
set
{
this.M21 = -value.X;
this.M22 = -value.Y;
this.M23 = -value.Z;
}
}
/// <summary>
/// The forward vector formed from the third row -M31, -M32, -M33 elements.
/// </summary>
public Vector3 Forward
{
get
{
return new Vector3(-this.M31, -this.M32, -this.M33);
}
set
{
this.M31 = -value.X;
this.M32 = -value.Y;
this.M33 = -value.Z;
}
}
/// <summary>
/// Returns the identity matrix.
/// </summary>
public static Matrix Identity
{
get { return identity; }
}
/// <summary>
/// The left vector formed from the first row -M11, -M12, -M13 elements.
/// </summary>
public Vector3 Left
{
get
{
return new Vector3(-this.M11, -this.M12, -this.M13);
}
set
{
this.M11 = -value.X;
this.M12 = -value.Y;
this.M13 = -value.Z;
}
}
/// <summary>
/// The right vector formed from the first row M11, M12, M13 elements.
/// </summary>
public Vector3 Right
{
get
{
return new Vector3(this.M11, this.M12, this.M13);
}
set
{
this.M11 = value.X;
this.M12 = value.Y;
this.M13 = value.Z;
}
}
/// <summary>
/// Position stored in this matrix.
/// </summary>
public Vector3 Translation
{
get
{
return new Vector3(this.M41, this.M42, this.M43);
}
set
{
this.M41 = value.X;
this.M42 = value.Y;
this.M43 = value.Z;
}
}
/// <summary>
/// Scale stored in this matrix.
/// </summary>
public Vector3 Scale
{
get
{
return new Vector3(this.M11, this.M22, this.M33);
}
set
{
this.M11 = value.X;
this.M22 = value.Y;
this.M33 = value.Z;
}
}
/// <summary>
/// The upper vector formed from the second row M21, M22, M23 elements.
/// </summary>
public Vector3 Up
{
get
{
return new Vector3(this.M21, this.M22, this.M23);
}
set
{
this.M21 = value.X;
this.M22 = value.Y;
this.M23 = value.Z;
}
}
#endregion
#region Public Methods
/// <summary>
/// Creates a new <see cref="Matrix"/> which contains sum of two matrixes.
/// </summary>
/// <param name="matrix1">The first matrix to add.</param>
/// <param name="matrix2">The second matrix to add.</param>
/// <returns>The result of the matrix addition.</returns>
public static Matrix Add(Matrix matrix1, Matrix matrix2)
{
matrix1.M11 += matrix2.M11;
matrix1.M12 += matrix2.M12;
matrix1.M13 += matrix2.M13;
matrix1.M14 += matrix2.M14;
matrix1.M21 += matrix2.M21;
matrix1.M22 += matrix2.M22;
matrix1.M23 += matrix2.M23;
matrix1.M24 += matrix2.M24;
matrix1.M31 += matrix2.M31;
matrix1.M32 += matrix2.M32;
matrix1.M33 += matrix2.M33;
matrix1.M34 += matrix2.M34;
matrix1.M41 += matrix2.M41;
matrix1.M42 += matrix2.M42;
matrix1.M43 += matrix2.M43;
matrix1.M44 += matrix2.M44;
return matrix1;
}
/// <summary>
/// Creates a new <see cref="Matrix"/> which contains sum of two matrixes.
/// </summary>
/// <param name="matrix1">The first matrix to add.</param>
/// <param name="matrix2">The second matrix to add.</param>
/// <param name="result">The result of the matrix addition as an output parameter.</param>
public static void Add(ref Matrix matrix1, ref Matrix matrix2, out Matrix result)
{
result.M11 = matrix1.M11 + matrix2.M11;
result.M12 = matrix1.M12 + matrix2.M12;
result.M13 = matrix1.M13 + matrix2.M13;
result.M14 = matrix1.M14 + matrix2.M14;
result.M21 = matrix1.M21 + matrix2.M21;
result.M22 = matrix1.M22 + matrix2.M22;
result.M23 = matrix1.M23 + matrix2.M23;
result.M24 = matrix1.M24 + matrix2.M24;
result.M31 = matrix1.M31 + matrix2.M31;
result.M32 = matrix1.M32 + matrix2.M32;
result.M33 = matrix1.M33 + matrix2.M33;
result.M34 = matrix1.M34 + matrix2.M34;
result.M41 = matrix1.M41 + matrix2.M41;
result.M42 = matrix1.M42 + matrix2.M42;
result.M43 = matrix1.M43 + matrix2.M43;
result.M44 = matrix1.M44 + matrix2.M44;
}
/// <summary>
/// Creates a new rotation <see cref="Matrix"/> around X axis.
/// </summary>
/// <param name="radians">Angle in radians.</param>
/// <returns>The rotation <see cref="Matrix"/> around X axis.</returns>
public static Matrix CreateRotationX(double radians)
{
Matrix result;
CreateRotationX(radians, out result);
return result;
}
/// <summary>
/// Creates a new rotation <see cref="Matrix"/> around X axis.
/// </summary>
/// <param name="radians">Angle in radians.</param>
/// <param name="result">The rotation <see cref="Matrix"/> around X axis as an output parameter.</param>
public static void CreateRotationX(double radians, out Matrix result)
{
result = Matrix.Identity;
var val1 = (double)Math.Cos(radians);
var val2 = (double)Math.Sin(radians);
result.M22 = val1;
result.M23 = val2;
result.M32 = -val2;
result.M33 = val1;
}
/// <summary>
/// Creates a new rotation <see cref="Matrix"/> around Y axis.
/// </summary>
/// <param name="radians">Angle in radians.</param>
/// <returns>The rotation <see cref="Matrix"/> around Y axis.</returns>
public static Matrix CreateRotationY(double radians)
{
Matrix result;
CreateRotationY(radians, out result);
return result;
}
/// <summary>
/// Creates a new rotation <see cref="Matrix"/> around Y axis.
/// </summary>
/// <param name="radians">Angle in radians.</param>
/// <param name="result">The rotation <see cref="Matrix"/> around Y axis as an output parameter.</param>
public static void CreateRotationY(double radians, out Matrix result)
{
result = Matrix.Identity;
var val1 = (double)Math.Cos(radians);
var val2 = (double)Math.Sin(radians);
result.M11 = val1;
result.M13 = -val2;
result.M31 = val2;
result.M33 = val1;
}
/// <summary>
/// Creates a new rotation <see cref="Matrix"/> around Z axis.
/// </summary>
/// <param name="radians">Angle in radians.</param>
/// <returns>The rotation <see cref="Matrix"/> around Z axis.</returns>
public static Matrix CreateRotationZ(double radians)
{
Matrix result;
CreateRotationZ(radians, out result);
return result;
}
/// <summary>
/// Creates a new rotation <see cref="Matrix"/> around Z axis.
/// </summary>
/// <param name="radians">Angle in radians.</param>
/// <param name="result">The rotation <see cref="Matrix"/> around Z axis as an output parameter.</param>
public static void CreateRotationZ(double radians, out Matrix result)
{
result = Matrix.Identity;
var val1 = (double)Math.Cos(radians);
var val2 = (double)Math.Sin(radians);
result.M11 = val1;
result.M12 = val2;
result.M21 = -val2;
result.M22 = val1;
}
/// <summary>
/// Creates a new scaling <see cref="Matrix"/>.
/// </summary>
/// <param name="scale">Scale value for all three axises.</param>
/// <returns>The scaling <see cref="Matrix"/>.</returns>
public static Matrix CreateScale(double scale)
{
Matrix result;
CreateScale(scale, scale, scale, out result);
return result;
}
/// <summary>
/// Creates a new scaling <see cref="Matrix"/>.
/// </summary>
/// <param name="scale">Scale value for all three axises.</param>
/// <param name="result">The scaling <see cref="Matrix"/> as an output parameter.</param>
public static void CreateScale(double scale, out Matrix result)
{
CreateScale(scale, scale, scale, out result);
}
/// <summary>
/// Creates a new scaling <see cref="Matrix"/>.
/// </summary>
/// <param name="xScale">Scale value for X axis.</param>
/// <param name="yScale">Scale value for Y axis.</param>
/// <param name="zScale">Scale value for Z axis.</param>
/// <returns>The scaling <see cref="Matrix"/>.</returns>
public static Matrix CreateScale(double xScale, double yScale, double zScale)
{
Matrix result;
CreateScale(xScale, yScale, zScale, out result);
return result;
}
/// <summary>
/// Creates a new scaling <see cref="Matrix"/>.
/// </summary>
/// <param name="xScale">Scale value for X axis.</param>
/// <param name="yScale">Scale value for Y axis.</param>
/// <param name="zScale">Scale value for Z axis.</param>
/// <param name="result">The scaling <see cref="Matrix"/> as an output parameter.</param>
public static void CreateScale(double xScale, double yScale, double zScale, out Matrix result)
{
result.M11 = xScale;
result.M12 = 0;
result.M13 = 0;
result.M14 = 0;
result.M21 = 0;
result.M22 = yScale;
result.M23 = 0;
result.M24 = 0;
result.M31 = 0;
result.M32 = 0;
result.M33 = zScale;
result.M34 = 0;
result.M41 = 0;
result.M42 = 0;
result.M43 = 0;
result.M44 = 1;
}
/// <summary>
/// Creates a new scaling <see cref="Matrix"/>.
/// </summary>
/// <param name="scales"><see cref="Vector3"/> representing x,y and z scale values.</param>
/// <returns>The scaling <see cref="Matrix"/>.</returns>
public static Matrix CreateScale(Vector3 scales)
{
Matrix result;
CreateScale(ref scales, out result);
return result;
}
/// <summary>
/// Creates a new scaling <see cref="Matrix"/>.
/// </summary>
/// <param name="scales"><see cref="Vector3"/> representing x,y and z scale values.</param>
/// <param name="result">The scaling <see cref="Matrix"/> as an output parameter.</param>
public static void CreateScale(ref Vector3 scales, out Matrix result)
{
result.M11 = scales.X;
result.M12 = 0;
result.M13 = 0;
result.M14 = 0;
result.M21 = 0;
result.M22 = scales.Y;
result.M23 = 0;
result.M24 = 0;
result.M31 = 0;
result.M32 = 0;
result.M33 = scales.Z;
result.M34 = 0;
result.M41 = 0;
result.M42 = 0;
result.M43 = 0;
result.M44 = 1;
}
/// <summary>
/// Creates a new translation <see cref="Matrix"/>.
/// </summary>
/// <param name="xPosition">X coordinate of translation.</param>
/// <param name="yPosition">Y coordinate of translation.</param>
/// <param name="zPosition">Z coordinate of translation.</param>
/// <returns>The translation <see cref="Matrix"/>.</returns>
public static Matrix CreateTranslation(double xPosition, double yPosition, double zPosition)
{
Matrix result;
CreateTranslation(xPosition, yPosition, zPosition, out result);
return result;
}
/// <summary>
/// Creates a new translation <see cref="Matrix"/>.
/// </summary>
/// <param name="position">X,Y and Z coordinates of translation.</param>
/// <param name="result">The translation <see cref="Matrix"/> as an output parameter.</param>
public static void CreateTranslation(ref Vector3 position, out Matrix result)
{
result.M11 = 1;
result.M12 = 0;
result.M13 = 0;
result.M14 = 0;
result.M21 = 0;
result.M22 = 1;
result.M23 = 0;
result.M24 = 0;
result.M31 = 0;
result.M32 = 0;
result.M33 = 1;
result.M34 = 0;
result.M41 = position.X;
result.M42 = position.Y;
result.M43 = position.Z;
result.M44 = 1;
}
/// <summary>
/// Creates a new translation <see cref="Matrix"/>.
/// </summary>
/// <param name="position">X,Y and Z coordinates of translation.</param>
/// <returns>The translation <see cref="Matrix"/>.</returns>
public static Matrix CreateTranslation(Vector3 position)
{
Matrix result;
CreateTranslation(ref position, out result);
return result;
}
/// <summary>
/// Creates a new translation <see cref="Matrix"/>.
/// </summary>
/// <param name="xPosition">X coordinate of translation.</param>
/// <param name="yPosition">Y coordinate of translation.</param>
/// <param name="zPosition">Z coordinate of translation.</param>
/// <param name="result">The translation <see cref="Matrix"/> as an output parameter.</param>
public static void CreateTranslation(double xPosition, double yPosition, double zPosition, out Matrix result)
{
result.M11 = 1;
result.M12 = 0;
result.M13 = 0;
result.M14 = 0;
result.M21 = 0;
result.M22 = 1;
result.M23 = 0;
result.M24 = 0;
result.M31 = 0;
result.M32 = 0;
result.M33 = 1;
result.M34 = 0;
result.M41 = xPosition;
result.M42 = yPosition;
result.M43 = zPosition;
result.M44 = 1;
}
/// <summary>
/// Returns a determinant of this <see cref="Matrix"/>.
/// </summary>
/// <returns>Determinant of this <see cref="Matrix"/></returns>
/// <remarks>See more about determinant here - http://en.wikipedia.org/wiki/Determinant.
/// </remarks>
public double Determinant()
{
double num22 = this.M11;
double num21 = this.M12;
double num20 = this.M13;
double num19 = this.M14;
double num12 = this.M21;
double num11 = this.M22;
double num10 = this.M23;
double num9 = this.M24;
double num8 = this.M31;
double num7 = this.M32;
double num6 = this.M33;
double num5 = this.M34;
double num4 = this.M41;
double num3 = this.M42;
double num2 = this.M43;
double num = this.M44;
double num18 = (num6 * num) - (num5 * num2);
double num17 = (num7 * num) - (num5 * num3);
double num16 = (num7 * num2) - (num6 * num3);
double num15 = (num8 * num) - (num5 * num4);
double num14 = (num8 * num2) - (num6 * num4);
double num13 = (num8 * num3) - (num7 * num4);
return ((((num22 * (((num11 * num18) - (num10 * num17)) + (num9 * num16))) - (num21 * (((num12 * num18) - (num10 * num15)) + (num9 * num14)))) + (num20 * (((num12 * num17) - (num11 * num15)) + (num9 * num13)))) - (num19 * (((num12 * num16) - (num11 * num14)) + (num10 * num13))));
}
/// <summary>
/// Divides the elements of a <see cref="Matrix"/> by the elements of another matrix.
/// </summary>
/// <param name="matrix1">Source <see cref="Matrix"/>.</param>
/// <param name="matrix2">Divisor <see cref="Matrix"/>.</param>
/// <returns>The result of dividing the matrix.</returns>
public static Matrix Divide(Matrix matrix1, Matrix matrix2)
{
matrix1.M11 = matrix1.M11 / matrix2.M11;
matrix1.M12 = matrix1.M12 / matrix2.M12;
matrix1.M13 = matrix1.M13 / matrix2.M13;
matrix1.M14 = matrix1.M14 / matrix2.M14;
matrix1.M21 = matrix1.M21 / matrix2.M21;
matrix1.M22 = matrix1.M22 / matrix2.M22;
matrix1.M23 = matrix1.M23 / matrix2.M23;
matrix1.M24 = matrix1.M24 / matrix2.M24;
matrix1.M31 = matrix1.M31 / matrix2.M31;
matrix1.M32 = matrix1.M32 / matrix2.M32;
matrix1.M33 = matrix1.M33 / matrix2.M33;
matrix1.M34 = matrix1.M34 / matrix2.M34;
matrix1.M41 = matrix1.M41 / matrix2.M41;
matrix1.M42 = matrix1.M42 / matrix2.M42;
matrix1.M43 = matrix1.M43 / matrix2.M43;
matrix1.M44 = matrix1.M44 / matrix2.M44;
return matrix1;
}
/// <summary>
/// Divides the elements of a <see cref="Matrix"/> by the elements of another matrix.
/// </summary>
/// <param name="matrix1">Source <see cref="Matrix"/>.</param>
/// <param name="matrix2">Divisor <see cref="Matrix"/>.</param>
/// <param name="result">The result of dividing the matrix as an output parameter.</param>
public static void Divide(ref Matrix matrix1, ref Matrix matrix2, out Matrix result)
{
result.M11 = matrix1.M11 / matrix2.M11;
result.M12 = matrix1.M12 / matrix2.M12;
result.M13 = matrix1.M13 / matrix2.M13;
result.M14 = matrix1.M14 / matrix2.M14;
result.M21 = matrix1.M21 / matrix2.M21;
result.M22 = matrix1.M22 / matrix2.M22;
result.M23 = matrix1.M23 / matrix2.M23;
result.M24 = matrix1.M24 / matrix2.M24;
result.M31 = matrix1.M31 / matrix2.M31;
result.M32 = matrix1.M32 / matrix2.M32;
result.M33 = matrix1.M33 / matrix2.M33;
result.M34 = matrix1.M34 / matrix2.M34;
result.M41 = matrix1.M41 / matrix2.M41;
result.M42 = matrix1.M42 / matrix2.M42;
result.M43 = matrix1.M43 / matrix2.M43;
result.M44 = matrix1.M44 / matrix2.M44;
}
/// <summary>
/// Divides the elements of a <see cref="Matrix"/> by a scalar.
/// </summary>
/// <param name="matrix1">Source <see cref="Matrix"/>.</param>
/// <param name="divider">Divisor scalar.</param>
/// <returns>The result of dividing a matrix by a scalar.</returns>
public static Matrix Divide(Matrix matrix1, double divider)
{
double num = 1f / divider;
matrix1.M11 = matrix1.M11 * num;
matrix1.M12 = matrix1.M12 * num;
matrix1.M13 = matrix1.M13 * num;
matrix1.M14 = matrix1.M14 * num;
matrix1.M21 = matrix1.M21 * num;
matrix1.M22 = matrix1.M22 * num;
matrix1.M23 = matrix1.M23 * num;
matrix1.M24 = matrix1.M24 * num;
matrix1.M31 = matrix1.M31 * num;
matrix1.M32 = matrix1.M32 * num;
matrix1.M33 = matrix1.M33 * num;
matrix1.M34 = matrix1.M34 * num;
matrix1.M41 = matrix1.M41 * num;
matrix1.M42 = matrix1.M42 * num;
matrix1.M43 = matrix1.M43 * num;
matrix1.M44 = matrix1.M44 * num;
return matrix1;
}
/// <summary>
/// Divides the elements of a <see cref="Matrix"/> by a scalar.
/// </summary>
/// <param name="matrix1">Source <see cref="Matrix"/>.</param>
/// <param name="divider">Divisor scalar.</param>
/// <param name="result">The result of dividing a matrix by a scalar as an output parameter.</param>
public static void Divide(ref Matrix matrix1, double divider, out Matrix result)
{
double num = 1f / divider;
result.M11 = matrix1.M11 * num;
result.M12 = matrix1.M12 * num;
result.M13 = matrix1.M13 * num;
result.M14 = matrix1.M14 * num;
result.M21 = matrix1.M21 * num;
result.M22 = matrix1.M22 * num;
result.M23 = matrix1.M23 * num;
result.M24 = matrix1.M24 * num;
result.M31 = matrix1.M31 * num;
result.M32 = matrix1.M32 * num;
result.M33 = matrix1.M33 * num;
result.M34 = matrix1.M34 * num;
result.M41 = matrix1.M41 * num;
result.M42 = matrix1.M42 * num;
result.M43 = matrix1.M43 * num;
result.M44 = matrix1.M44 * num;
}
/// <summary>
/// Compares whether current instance is equal to specified <see cref="Matrix"/> without any tolerance.
/// </summary>
/// <param name="other">The <see cref="Matrix"/> to compare.</param>
/// <returns><c>true</c> if the instances are equal; <c>false</c> otherwise.</returns>
public bool Equals(Matrix other)
{
return ((((((this.M11 == other.M11) && (this.M22 == other.M22)) && ((this.M33 == other.M33) && (this.M44 == other.M44))) && (((this.M12 == other.M12) && (this.M13 == other.M13)) && ((this.M14 == other.M14) && (this.M21 == other.M21)))) && ((((this.M23 == other.M23) && (this.M24 == other.M24)) && ((this.M31 == other.M31) && (this.M32 == other.M32))) && (((this.M34 == other.M34) && (this.M41 == other.M41)) && (this.M42 == other.M42)))) && (this.M43 == other.M43));
}
/// <summary>
/// Compares whether current instance is equal to specified <see cref="Object"/> without any tolerance.
/// </summary>
/// <param name="obj">The <see cref="Object"/> to compare.</param>
/// <returns><c>true</c> if the instances are equal; <c>false</c> otherwise.</returns>
public override bool Equals(object obj)
{
bool flag = false;
if (obj is Matrix)
{
flag = this.Equals((Matrix) obj);
}
return flag;
}
/// <summary>
/// Gets the hash code of this <see cref="Matrix"/>.
/// </summary>
/// <returns>Hash code of this <see cref="Matrix"/>.</returns>
public override int GetHashCode()
{
return (((((((((((((((this.M11.GetHashCode() + this.M12.GetHashCode()) + this.M13.GetHashCode()) + this.M14.GetHashCode()) + this.M21.GetHashCode()) + this.M22.GetHashCode()) + this.M23.GetHashCode()) + this.M24.GetHashCode()) + this.M31.GetHashCode()) + this.M32.GetHashCode()) + this.M33.GetHashCode()) + this.M34.GetHashCode()) + this.M41.GetHashCode()) + this.M42.GetHashCode()) + this.M43.GetHashCode()) + this.M44.GetHashCode());
}
/// <summary>
/// Creates a new <see cref="Matrix"/> which contains inversion of the specified matrix.
/// </summary>
/// <param name="matrix">Source <see cref="Matrix"/>.</param>
/// <returns>The inverted matrix.</returns>
public static Matrix Invert(Matrix matrix)
{
Matrix result;
Invert(ref matrix, out result);
return result;
}
/// <summary>
/// Creates a new <see cref="Matrix"/> which contains inversion of the specified matrix.
/// </summary>
/// <param name="matrix">Source <see cref="Matrix"/>.</param>
/// <param name="result">The inverted matrix as output parameter.</param>
public static void Invert(ref Matrix matrix, out Matrix result)
{
double num1 = matrix.M11;
double num2 = matrix.M12;
double num3 = matrix.M13;
double num4 = matrix.M14;
double num5 = matrix.M21;
double num6 = matrix.M22;
double num7 = matrix.M23;
double num8 = matrix.M24;
double num9 = matrix.M31;
double num10 = matrix.M32;
double num11 = matrix.M33;
double num12 = matrix.M34;
double num13 = matrix.M41;
double num14 = matrix.M42;
double num15 = matrix.M43;
double num16 = matrix.M44;
double num17 = (double) ((double) num11 * (double) num16 - (double) num12 * (double) num15);
double num18 = (double) ((double) num10 * (double) num16 - (double) num12 * (double) num14);
double num19 = (double) ((double) num10 * (double) num15 - (double) num11 * (double) num14);
double num20 = (double) ((double) num9 * (double) num16 - (double) num12 * (double) num13);
double num21 = (double) ((double) num9 * (double) num15 - (double) num11 * (double) num13);
double num22 = (double) ((double) num9 * (double) num14 - (double) num10 * (double) num13);
double num23 = (double) ((double) num6 * (double) num17 - (double) num7 * (double) num18 + (double) num8 * (double) num19);
double num24 = (double) -((double) num5 * (double) num17 - (double) num7 * (double) num20 + (double) num8 * (double) num21);
double num25 = (double) ((double) num5 * (double) num18 - (double) num6 * (double) num20 + (double) num8 * (double) num22);
double num26 = (double) -((double) num5 * (double) num19 - (double) num6 * (double) num21 + (double) num7 * (double) num22);
double num27 = (double) (1.0 / ((double) num1 * (double) num23 + (double) num2 * (double) num24 + (double) num3 * (double) num25 + (double) num4 * (double) num26));
result.M11 = num23 * num27;
result.M21 = num24 * num27;
result.M31 = num25 * num27;
result.M41 = num26 * num27;
result.M12 = (double) -((double) num2 * (double) num17 - (double) num3 * (double) num18 + (double) num4 * (double) num19) * num27;
result.M22 = (double) ((double) num1 * (double) num17 - (double) num3 * (double) num20 + (double) num4 * (double) num21) * num27;
result.M32 = (double) -((double) num1 * (double) num18 - (double) num2 * (double) num20 + (double) num4 * (double) num22) * num27;
result.M42 = (double) ((double) num1 * (double) num19 - (double) num2 * (double) num21 + (double) num3 * (double) num22) * num27;
double num28 = (double) ((double) num7 * (double) num16 - (double) num8 * (double) num15);
double num29 = (double) ((double) num6 * (double) num16 - (double) num8 * (double) num14);
double num30 = (double) ((double) num6 * (double) num15 - (double) num7 * (double) num14);
double num31 = (double) ((double) num5 * (double) num16 - (double) num8 * (double) num13);
double num32 = (double) ((double) num5 * (double) num15 - (double) num7 * (double) num13);
double num33 = (double) ((double) num5 * (double) num14 - (double) num6 * (double) num13);
result.M13 = (double) ((double) num2 * (double) num28 - (double) num3 * (double) num29 + (double) num4 * (double) num30) * num27;
result.M23 = (double) -((double) num1 * (double) num28 - (double) num3 * (double) num31 + (double) num4 * (double) num32) * num27;
result.M33 = (double) ((double) num1 * (double) num29 - (double) num2 * (double) num31 + (double) num4 * (double) num33) * num27;
result.M43 = (double) -((double) num1 * (double) num30 - (double) num2 * (double) num32 + (double) num3 * (double) num33) * num27;
double num34 = (double) ((double) num7 * (double) num12 - (double) num8 * (double) num11);
double num35 = (double) ((double) num6 * (double) num12 - (double) num8 * (double) num10);
double num36 = (double) ((double) num6 * (double) num11 - (double) num7 * (double) num10);
double num37 = (double) ((double) num5 * (double) num12 - (double) num8 * (double) num9);
double num38 = (double) ((double) num5 * (double) num11 - (double) num7 * (double) num9);
double num39 = (double) ((double) num5 * (double) num10 - (double) num6 * (double) num9);
result.M14 = (double) -((double) num2 * (double) num34 - (double) num3 * (double) num35 + (double) num4 * (double) num36) * num27;
result.M24 = (double) ((double) num1 * (double) num34 - (double) num3 * (double) num37 + (double) num4 * (double) num38) * num27;
result.M34 = (double) -((double) num1 * (double) num35 - (double) num2 * (double) num37 + (double) num4 * (double) num39) * num27;
result.M44 = (double) ((double) num1 * (double) num36 - (double) num2 * (double) num38 + (double) num3 * (double) num39) * num27;
/*
///
// Use Laplace expansion theorem to calculate the inverse of a 4x4 matrix
//
// 1. Calculate the 2x2 determinants needed the 4x4 determinant based on the 2x2 determinants
// 3. Create the adjugate matrix, which satisfies: A * adj(A) = det(A) * I
// 4. Divide adjugate matrix with the determinant to find the inverse
double det1, det2, det3, det4, det5, det6, det7, det8, det9, det10, det11, det12;
double detMatrix;
FindDeterminants(ref matrix, out detMatrix, out det1, out det2, out det3, out det4, out det5, out det6,
out det7, out det8, out det9, out det10, out det11, out det12);
double invDetMatrix = 1f / detMatrix;
Matrix ret; // Allow for matrix and result to point to the same structure
ret.M11 = (matrix.M22*det12 - matrix.M23*det11 + matrix.M24*det10) * invDetMatrix;
ret.M12 = (-matrix.M12*det12 + matrix.M13*det11 - matrix.M14*det10) * invDetMatrix;
ret.M13 = (matrix.M42*det6 - matrix.M43*det5 + matrix.M44*det4) * invDetMatrix;
ret.M14 = (-matrix.M32*det6 + matrix.M33*det5 - matrix.M34*det4) * invDetMatrix;
ret.M21 = (-matrix.M21*det12 + matrix.M23*det9 - matrix.M24*det8) * invDetMatrix;
ret.M22 = (matrix.M11*det12 - matrix.M13*det9 + matrix.M14*det8) * invDetMatrix;
ret.M23 = (-matrix.M41*det6 + matrix.M43*det3 - matrix.M44*det2) * invDetMatrix;
ret.M24 = (matrix.M31*det6 - matrix.M33*det3 + matrix.M34*det2) * invDetMatrix;
ret.M31 = (matrix.M21*det11 - matrix.M22*det9 + matrix.M24*det7) * invDetMatrix;
ret.M32 = (-matrix.M11*det11 + matrix.M12*det9 - matrix.M14*det7) * invDetMatrix;
ret.M33 = (matrix.M41*det5 - matrix.M42*det3 + matrix.M44*det1) * invDetMatrix;
ret.M34 = (-matrix.M31*det5 + matrix.M32*det3 - matrix.M34*det1) * invDetMatrix;
ret.M41 = (-matrix.M21*det10 + matrix.M22*det8 - matrix.M23*det7) * invDetMatrix;
ret.M42 = (matrix.M11*det10 - matrix.M12*det8 + matrix.M13*det7) * invDetMatrix;
ret.M43 = (-matrix.M41*det4 + matrix.M42*det2 - matrix.M43*det1) * invDetMatrix;
ret.M44 = (matrix.M31*det4 - matrix.M32*det2 + matrix.M33*det1) * invDetMatrix;
result = ret;
*/
}
/// <summary>
/// Creates a new <see cref="Matrix"/> that contains linear interpolation of the values in specified matrixes.
/// </summary>
/// <param name="matrix1">The first <see cref="Matrix"/>.</param>
/// <param name="matrix2">The second <see cref="Vector2"/>.</param>
/// <param name="amount">Weighting value(between 0.0 and 1.0).</param>
/// <returns>>The result of linear interpolation of the specified matrixes.</returns>
public static Matrix Lerp(Matrix matrix1, Matrix matrix2, double amount)
{
matrix1.M11 = matrix1.M11 + ((matrix2.M11 - matrix1.M11) * amount);
matrix1.M12 = matrix1.M12 + ((matrix2.M12 - matrix1.M12) * amount);
matrix1.M13 = matrix1.M13 + ((matrix2.M13 - matrix1.M13) * amount);
matrix1.M14 = matrix1.M14 + ((matrix2.M14 - matrix1.M14) * amount);
matrix1.M21 = matrix1.M21 + ((matrix2.M21 - matrix1.M21) * amount);
matrix1.M22 = matrix1.M22 + ((matrix2.M22 - matrix1.M22) * amount);
matrix1.M23 = matrix1.M23 + ((matrix2.M23 - matrix1.M23) * amount);
matrix1.M24 = matrix1.M24 + ((matrix2.M24 - matrix1.M24) * amount);
matrix1.M31 = matrix1.M31 + ((matrix2.M31 - matrix1.M31) * amount);
matrix1.M32 = matrix1.M32 + ((matrix2.M32 - matrix1.M32) * amount);
matrix1.M33 = matrix1.M33 + ((matrix2.M33 - matrix1.M33) * amount);