/content/wandb/run-20230620_074559-l72dgp51"
+ ]
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "| acc | ββββββββ |
| loss | ββββββββ |
| acc | 0.88454 |
| loss | 0.06463 |
./wandb/run-20230620_074559-l72dgp51/logs"
+ ]
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "/content/wandb/run-20230620_074606-27l5at5i"
+ ]
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "| acc | ββββββββ |
| loss | βββ βββββ |
| acc | 0.91691 |
| loss | 0.11744 |
./wandb/run-20230620_074606-27l5at5i/logs"
+ ]
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "/content/wandb/run-20230620_074613-zgus7nry"
+ ]
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "| acc | ββ ββββββ |
| loss | ββ ββββββ |
| acc | 0.79091 |
| loss | 0.20306 |
./wandb/run-20230620_074613-zgus7nry/logs"
+ ]
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "/content/wandb/run-20230620_074619-hmtgb9zk"
+ ]
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "| acc | ββ ββ ββββ |
| loss | ββββββββ |
| acc | 0.79685 |
| loss | 0.21223 |
./wandb/run-20230620_074619-hmtgb9zk/logs"
+ ]
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "/content/wandb/run-20230620_074624-t5uhm5xa"
+ ]
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "| acc | ββββββββ |
| loss | ββββββββ |
| acc | 0.9296 |
| loss | 0.14465 |
./wandb/run-20230620_074624-t5uhm5xa/logs"
+ ]
+ },
+ "metadata": {}
+ }
+ ],
+ "source": [
+ "import random\n",
+ "\n",
+ "# Launch 5 simulated experiments\n",
+ "total_runs = 5\n",
+ "for run in range(total_runs):\n",
+ " # π 1οΈβ£ Start a new run to track this script\n",
+ " wandb.init(\n",
+ " # Set the project where this run will be logged\n",
+ " project=\"basic-intro\",\n",
+ " # We pass a run name (otherwise itβll be randomly assigned, like sunshine-lollypop-10)\n",
+ " name=f\"experiment_{run}\",\n",
+ " # Track hyperparameters and run metadata\n",
+ " config={\n",
+ " \"learning_rate\": 0.02,\n",
+ " \"architecture\": \"CNN\",\n",
+ " \"dataset\": \"CIFAR-100\",\n",
+ " \"epochs\": 10,\n",
+ " })\n",
+ "\n",
+ " # This simple block simulates a training loop logging metrics\n",
+ " epochs = 10\n",
+ " offset = random.random() / 5\n",
+ " for epoch in range(2, epochs):\n",
+ " acc = 1 - 2 ** -epoch - random.random() / epoch - offset\n",
+ " loss = 2 ** -epoch + random.random() / epoch + offset\n",
+ "\n",
+ " # π 2οΈβ£ Log metrics from your script to W&B\n",
+ " wandb.log({\"acc\": acc, \"loss\": loss})\n",
+ "\n",
+ " # Mark the run as finished\n",
+ " wandb.finish()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "SCoKXnnot8KI"
+ },
+ "source": [
+ "3οΈβ£ You can find your interactive dashboard by clicking any of the π wandb links above."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "Db9mJ_t-t8KI"
+ },
+ "source": [
+ "# π₯ Simple Pytorch Neural Network\n",
+ "\n",
+ "πͺ Run this model to train a simple MNIST classifier, and click on the project page link to see your results stream in live to a W&B project.\n",
+ "\n",
+ "\n",
+ "Any run in `wandb` automatically logs [metrics](https://docs.wandb.ai/ref/app/pages/run-page#charts-tab),\n",
+ "[system information](https://docs.wandb.ai/ref/app/pages/run-page#system-tab),\n",
+ "[hyperparameters](https://docs.wandb.ai/ref/app/pages/run-page#overview-tab),\n",
+ "[terminal output](https://docs.wandb.ai/ref/app/pages/run-page#logs-tab) and\n",
+ "you'll see an [interactive table](https://docs.wandb.ai/guides/data-vis)\n",
+ "with model inputs and outputs."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "ts0KvXvWt8KJ"
+ },
+ "source": [
+ "## Set up Dataloader"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "id": "NX8RTsS7t8KJ"
+ },
+ "outputs": [],
+ "source": [
+ "#@title\n",
+ "import wandb\n",
+ "import math\n",
+ "import random\n",
+ "import torch, torchvision\n",
+ "import torch.nn as nn\n",
+ "import torchvision.transforms as T\n",
+ "\n",
+ "device = \"cuda:0\" if torch.cuda.is_available() else \"cpu\"\n",
+ "\n",
+ "def get_dataloader(is_train, batch_size, slice=5):\n",
+ " \"Get a training dataloader\"\n",
+ " full_dataset = torchvision.datasets.MNIST(root=\".\", train=is_train, transform=T.ToTensor(), download=True)\n",
+ " sub_dataset = torch.utils.data.Subset(full_dataset, indices=range(0, len(full_dataset), slice))\n",
+ " loader = torch.utils.data.DataLoader(dataset=sub_dataset,\n",
+ " batch_size=batch_size,\n",
+ " shuffle=True if is_train else False,\n",
+ " pin_memory=True, num_workers=2)\n",
+ " return loader\n",
+ "\n",
+ "def get_model(dropout):\n",
+ " \"A simple model\"\n",
+ " model = nn.Sequential(nn.Flatten(),\n",
+ " nn.Linear(28*28, 256),\n",
+ " nn.BatchNorm1d(256),\n",
+ " nn.ReLU(),\n",
+ " nn.Dropout(dropout),\n",
+ " nn.Linear(256,10)).to(device)\n",
+ " return model\n",
+ "\n",
+ "def validate_model(model, valid_dl, loss_func, log_images=False, batch_idx=0):\n",
+ " \"Compute performance of the model on the validation dataset and log a wandb.Table\"\n",
+ " model.eval()\n",
+ " val_loss = 0.\n",
+ " with torch.inference_mode():\n",
+ " correct = 0\n",
+ " for i, (images, labels) in enumerate(valid_dl):\n",
+ " images, labels = images.to(device), labels.to(device)\n",
+ "\n",
+ " # Forward pass β‘\n",
+ " outputs = model(images)\n",
+ " val_loss += loss_func(outputs, labels)*labels.size(0)\n",
+ "\n",
+ " # Compute accuracy and accumulate\n",
+ " _, predicted = torch.max(outputs.data, 1)\n",
+ " correct += (predicted == labels).sum().item()\n",
+ "\n",
+ " # Log one batch of images to the dashboard, always same batch_idx.\n",
+ " if i==batch_idx and log_images:\n",
+ " log_image_table(images, predicted, labels, outputs.softmax(dim=1))\n",
+ " return val_loss / len(valid_dl.dataset), correct / len(valid_dl.dataset)\n",
+ "\n",
+ "def log_image_table(images, predicted, labels, probs):\n",
+ " \"Log a wandb.Table with (img, pred, target, scores)\"\n",
+ " # π Create a wandb Table to log images, labels and predictions to\n",
+ " table = wandb.Table(columns=[\"image\", \"pred\", \"target\"]+[f\"score_{i}\" for i in range(10)])\n",
+ " for img, pred, targ, prob in zip(images.to(\"cpu\"), predicted.to(\"cpu\"), labels.to(\"cpu\"), probs.to(\"cpu\")):\n",
+ " table.add_data(wandb.Image(img[0].numpy()*255), pred, targ, *prob.numpy())\n",
+ " wandb.log({\"predictions_table\":table}, commit=False)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "VDZjU5Qpt8KJ"
+ },
+ "source": [
+ "## Train Your Model"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 1000
+ },
+ "id": "YHNv8F6-t8KK",
+ "outputId": "614f95d1-f38e-4245-9538-1f908fffdfee"
+ },
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "/content/wandb/run-20230620_074732-ytdd4ahf"
+ ]
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "| train/epoch | βββββββββββββββββββββ β β β β β ββββββββββββββ |
| train/example_ct | βββββββββββββββββββββ β β β β β ββββββββββββββ |
| train/train_loss | ββ ββββββββββββββββββββββββββββββββββββββ |
| val/val_accuracy | ββββββββββ |
| val/val_loss | ββ ββββββββ |
| test_accuracy | 0.8 |
| train/epoch | 10.0 |
| train/example_ct | 120000 |
| train/train_loss | 0.05827 |
| val/val_accuracy | 0.9475 |
| val/val_loss | 0.15717 |
./wandb/run-20230620_074732-ytdd4ahf/logs"
+ ]
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "/content/wandb/run-20230620_074820-b5bx6v3j"
+ ]
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "| train/epoch | βββββββββββββββββββββ β β β β β ββββββββββββββ |
| train/example_ct | βββββββββββββββββββββ β β β β β ββββββββββββββ |
| train/train_loss | ββ ββββββββββββββββββββββββββββββββββββββ |
| val/val_accuracy | βββ βββββββ |
| val/val_loss | ββ ββββββββ |
| test_accuracy | 0.8 |
| train/epoch | 10.0 |
| train/example_ct | 120000 |
| train/train_loss | 0.2626 |
| val/val_accuracy | 0.9405 |
| val/val_loss | 0.18755 |
./wandb/run-20230620_074820-b5bx6v3j/logs"
+ ]
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "/content/wandb/run-20230620_074858-g9dxusrg"
+ ]
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "| train/epoch | βββββββββββββββββββββ β β β β β ββββββββββββββ |
| train/example_ct | βββββββββββββββββββββ β β β β β ββββββββββββββ |
| train/train_loss | ββββββββββββββββββββββββββββββββββββββββ |
| val/val_accuracy | ββββββββββ |
| val/val_loss | ββ ββββββββ |
| test_accuracy | 0.8 |
| train/epoch | 10.0 |
| train/example_ct | 120000 |
| train/train_loss | 0.12211 |
| val/val_accuracy | 0.9515 |
| val/val_loss | 0.16107 |
./wandb/run-20230620_074858-g9dxusrg/logs"
+ ]
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "/content/wandb/run-20230620_074938-0iz25z1p"
+ ]
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "| train/epoch | βββββββββββββββββββββ β β β β β ββββββββββββββ |
| train/example_ct | βββββββββββββββββββββ β β β β β ββββββββββββββ |
| train/train_loss | ββββββββββββββββββββββββββββββββββββββββ |
| val/val_accuracy | ββ β βββββββ |
| val/val_loss | ββ ββββββββ |
| test_accuracy | 0.8 |
| train/epoch | 10.0 |
| train/example_ct | 120000 |
| train/train_loss | 0.12409 |
| val/val_accuracy | 0.9485 |
| val/val_loss | 0.16076 |
./wandb/run-20230620_074938-0iz25z1p/logs"
+ ]
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "/content/wandb/run-20230620_075017-gn4dxjen"
+ ]
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "| train/epoch | βββββββββββββββββββββ β β β β β ββββββββββββββ |
| train/example_ct | βββββββββββββββββββββ β β β β β ββββββββββββββ |
| train/train_loss | ββ ββββββββββββββββββββββββββββββββββββββ |
| val/val_accuracy | ββββ ββββββ |
| val/val_loss | ββ ββββββββ |
| test_accuracy | 0.8 |
| train/epoch | 10.0 |
| train/example_ct | 120000 |
| train/train_loss | 0.09508 |
| val/val_accuracy | 0.951 |
| val/val_loss | 0.15981 |
./wandb/run-20230620_075017-gn4dxjen/logs"
+ ]
+ },
+ "metadata": {}
+ }
+ ],
+ "source": [
+ "# Launch 5 experiments, trying different dropout rates\n",
+ "for _ in range(5):\n",
+ " # π initialise a wandb run\n",
+ " wandb.init(\n",
+ " project=\"pytorch-intro\",\n",
+ " config={\n",
+ " \"epochs\": 10,\n",
+ " \"batch_size\": 128,\n",
+ " \"lr\": 1e-3,\n",
+ " \"dropout\": random.uniform(0.01, 0.80),\n",
+ " })\n",
+ "\n",
+ " # Copy your config\n",
+ " config = wandb.config\n",
+ "\n",
+ " # Get the data\n",
+ " train_dl = get_dataloader(is_train=True, batch_size=config.batch_size)\n",
+ " valid_dl = get_dataloader(is_train=False, batch_size=2*config.batch_size)\n",
+ " n_steps_per_epoch = math.ceil(len(train_dl.dataset) / config.batch_size)\n",
+ "\n",
+ " # A simple MLP model\n",
+ " model = get_model(config.dropout)\n",
+ "\n",
+ " # Make the loss and optimizer\n",
+ " loss_func = nn.CrossEntropyLoss()\n",
+ " optimizer = torch.optim.Adam(model.parameters(), lr=config.lr)\n",
+ "\n",
+ " # Training\n",
+ " example_ct = 0\n",
+ " step_ct = 0\n",
+ " for epoch in range(config.epochs):\n",
+ " model.train()\n",
+ " for step, (images, labels) in enumerate(train_dl):\n",
+ " images, labels = images.to(device), labels.to(device)\n",
+ "\n",
+ " outputs = model(images)\n",
+ " train_loss = loss_func(outputs, labels)\n",
+ " optimizer.zero_grad()\n",
+ " train_loss.backward()\n",
+ " optimizer.step()\n",
+ "\n",
+ " example_ct += len(images)\n",
+ " metrics = {\"train/train_loss\": train_loss,\n",
+ " \"train/epoch\": (step + 1 + (n_steps_per_epoch * epoch)) / n_steps_per_epoch,\n",
+ " \"train/example_ct\": example_ct}\n",
+ "\n",
+ " if step + 1 < n_steps_per_epoch:\n",
+ " # π Log train metrics to wandb\n",
+ " wandb.log(metrics)\n",
+ "\n",
+ " step_ct += 1\n",
+ "\n",
+ " val_loss, accuracy = validate_model(model, valid_dl, loss_func, log_images=(epoch==(config.epochs-1)))\n",
+ "\n",
+ " # π Log train and validation metrics to wandb\n",
+ " val_metrics = {\"val/val_loss\": val_loss,\n",
+ " \"val/val_accuracy\": accuracy}\n",
+ " wandb.log({**metrics, **val_metrics})\n",
+ "\n",
+ " print(f\"Train Loss: {train_loss:.3f}, Valid Loss: {val_loss:3f}, Accuracy: {accuracy:.2f}\")\n",
+ "\n",
+ " # If you had a test set, this is how you could log it as a Summary metric\n",
+ " wandb.summary['test_accuracy'] = 0.8\n",
+ "\n",
+ " # π Close your wandb run\n",
+ " wandb.finish()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "Q3ml5Jpdt8KK"
+ },
+ "source": [
+ "You have now trained your first model using wandb! π Click on the wandb link above to see your metrics"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "g0UiHy0zt8KK"
+ },
+ "source": [
+ "# π Try W&B Alerts\n",
+ "\n",
+ "**[W&B Alerts](https://docs.wandb.ai/guides/track/alert)** allows you to send alerts, triggered from your Python code, to your Slack or email. There are 2 steps to follow the first time you'd like to send a Slack or email alert, triggered from your code:\n",
+ "\n",
+ "1) Turn on Alerts in your W&B [User Settings](https://wandb.ai/settings)\n",
+ "\n",
+ "2) Add `wandb.alert()` to your code:\n",
+ "\n",
+ "```python\n",
+ "wandb.alert(\n",
+ " title=\"Low accuracy\",\n",
+ " text=f\"Accuracy is below the acceptable threshold\"\n",
+ ")\n",
+ "```\n",
+ "\n",
+ "See the minimal example below to see how to use `wandb.alert`. You can find the full docs for **[W&B Alerts here](https://docs.wandb.ai/guides/track/alert)**"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 512,
+ "referenced_widgets": [
+ "dc28f7e21b5944e98c8e6db6cf9350d7",
+ "6db6d296f5c24593839230a9ffe06b59",
+ "f2748e47229340c6b4d8a93026b15c3e",
+ "5b0e082cb319498dab44ea17d547ac60",
+ "1b1b097353aa4b0fa1cee3211c56c3b2",
+ "c89f1e30a84b490383cdce61a9341aa7",
+ "40eb5d2111364cb8b7c9e8a12b8356df",
+ "4f399058781442f4a5bcaf565e30545a"
+ ]
+ },
+ "id": "Q5MRRFP9t8KK",
+ "outputId": "b183e7aa-78f6-4939-caf7-98b6be2e45fd"
+ },
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "/content/wandb/run-20230620_075127-91yxcdmb"
+ ]
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "| Accuracy | ββββββββ |
| Accuracy | 0.125 |
./wandb/run-20230620_075127-91yxcdmb/logs"
+ ]
+ },
+ "metadata": {}
+ }
+ ],
+ "source": [
+ "# Start a wandb run\n",
+ "wandb.init(project=\"pytorch-intro\")\n",
+ "\n",
+ "# Simulating a model training loop\n",
+ "acc_threshold = 0.3\n",
+ "for training_step in range(1000):\n",
+ "\n",
+ " # Generate a random number for accuracy\n",
+ " accuracy = round(random.random() + random.random(), 3)\n",
+ " print(f'Accuracy is: {accuracy}, {acc_threshold}')\n",
+ "\n",
+ " # π Log accuracy to wandb\n",
+ " wandb.log({\"Accuracy\": accuracy})\n",
+ "\n",
+ " # π If the accuracy is below the threshold, fire a W&B Alert and stop the run\n",
+ " if accuracy <= acc_threshold:\n",
+ " # π Send the wandb Alert\n",
+ " wandb.alert(\n",
+ " title='Low Accuracy',\n",
+ " text=f'Accuracy {accuracy} at step {training_step} is below the acceptable theshold, {acc_threshold}',\n",
+ " )\n",
+ " print('Alert triggered')\n",
+ " break\n",
+ "\n",
+ "# Mark the run as finished (useful in Jupyter notebooks)\n",
+ "wandb.finish()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "RYzn2rx3t8KL"
+ },
+ "source": [
+ "\n",
+ "# What's next π ?\n",
+ "The next tutorial you will learn how to do hyperparameter optimization using W&B Sweeps:\n",
+ "## π [Hyperparameters sweeps using PyTorch](https://colab.research.google.com/github/wandb/examples/blob/master/colabs/pytorch/Organizing_Hyperparameter_Sweeps_in_PyTorch_with_W%26B.ipynb)"
+ ]
+ }
+ ],
+ "metadata": {
+ "accelerator": "GPU",
+ "colab": {
+ "provenance": [],
+ "toc_visible": true,
+ "include_colab_link": true
+ },
+ "kernelspec": {
+ "display_name": "Python 3",
+ "name": "python3"
+ },
+ "widgets": {
+ "application/vnd.jupyter.widget-state+json": {
+ "f11e91c719cf42768cc05c1bb5188bce": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "VBoxModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "VBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "VBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_9e5b273035134707961ec280e95fb6e8",
+ "IPY_MODEL_07ec0669291746fdb522bc4cf4516ac4"
+ ],
+ "layout": "IPY_MODEL_9994bd5bc3f64c679e182e1ec7b50815"
+ }
+ },
+ "9e5b273035134707961ec280e95fb6e8": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "LabelModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "LabelModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "LabelView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_0816abeb0d174911bd52ed10ad57831f",
+ "placeholder": "β",
+ "style": "IPY_MODEL_337ab30bfbb8434fab95bb4bf12808bd",
+ "value": "0.001 MB of 0.009 MB uploaded (0.000 MB deduped)\r"
+ }
+ },
+ "07ec0669291746fdb522bc4cf4516ac4": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "FloatProgressModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_cdaaa28cc8ea4a61a1f7a7a47c9fafe4",
+ "max": 1,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_842dc67eaf5941068e2c4fbcba7e03e1",
+ "value": 0.12907919351486177
+ }
+ },
+ "9994bd5bc3f64c679e182e1ec7b50815": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "0816abeb0d174911bd52ed10ad57831f": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "337ab30bfbb8434fab95bb4bf12808bd": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "cdaaa28cc8ea4a61a1f7a7a47c9fafe4": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "842dc67eaf5941068e2c4fbcba7e03e1": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "ProgressStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "0873388e0f834250875b084b694d78f8": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "VBoxModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "VBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "VBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_2dd1526be3734a7a8740e867d86b4263",
+ "IPY_MODEL_3b6060a1767b46b098cc87de3efd6885"
+ ],
+ "layout": "IPY_MODEL_b3b0978b144d4fbd97771431aeb98600"
+ }
+ },
+ "2dd1526be3734a7a8740e867d86b4263": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "LabelModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "LabelModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "LabelView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_ef37b045d3ae4cfa8550ed2b96ebe5fa",
+ "placeholder": "β",
+ "style": "IPY_MODEL_af3a6514c86b4e5688260e1915aa0d14",
+ "value": "0.001 MB of 0.009 MB uploaded (0.000 MB deduped)\r"
+ }
+ },
+ "3b6060a1767b46b098cc87de3efd6885": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "FloatProgressModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_e5b6b2805d414ceba996d75fc59c8521",
+ "max": 1,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_d68f4cd9aaa14cffaabc581aaded28f2",
+ "value": 0.12907919351486177
+ }
+ },
+ "b3b0978b144d4fbd97771431aeb98600": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "ef37b045d3ae4cfa8550ed2b96ebe5fa": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "af3a6514c86b4e5688260e1915aa0d14": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "e5b6b2805d414ceba996d75fc59c8521": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "d68f4cd9aaa14cffaabc581aaded28f2": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "ProgressStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "477e68340ab84c8a8abcc0b04ca631f7": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "VBoxModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "VBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "VBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_85c7932299b9421eb68d75f89c2f067b",
+ "IPY_MODEL_f809893739454d73a8d3d4b5158b4091"
+ ],
+ "layout": "IPY_MODEL_ca313f0af29b4ba39e7467ded344edc6"
+ }
+ },
+ "85c7932299b9421eb68d75f89c2f067b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "LabelModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "LabelModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "LabelView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_b3aafd89369646cb80e0977dd4a7f6a5",
+ "placeholder": "β",
+ "style": "IPY_MODEL_d2b6a6c96eeb4e4589a6a835b4e52f11",
+ "value": "0.001 MB of 0.009 MB uploaded (0.000 MB deduped)\r"
+ }
+ },
+ "f809893739454d73a8d3d4b5158b4091": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "FloatProgressModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_4fb5d5e93e734046af6ceb013a0229ba",
+ "max": 1,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_8cff1176ddd94464bead0fcea459cc08",
+ "value": 0.12909260991580918
+ }
+ },
+ "ca313f0af29b4ba39e7467ded344edc6": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "b3aafd89369646cb80e0977dd4a7f6a5": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "d2b6a6c96eeb4e4589a6a835b4e52f11": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "4fb5d5e93e734046af6ceb013a0229ba": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "8cff1176ddd94464bead0fcea459cc08": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "ProgressStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "91bc7228fbb94f0683bf798521777591": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "VBoxModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "VBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "VBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_9548840103e64458a0573ee6c97fc00f",
+ "IPY_MODEL_e620391f9d1347409b51b7cf2f1b555e"
+ ],
+ "layout": "IPY_MODEL_ae1094c5e27943cda46b43b7888c2114"
+ }
+ },
+ "9548840103e64458a0573ee6c97fc00f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "LabelModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "LabelModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "LabelView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_a956c5c637b04d5cbd109230bf9bb738",
+ "placeholder": "β",
+ "style": "IPY_MODEL_928ec4b573b24bd9ad24139081dde374",
+ "value": "0.001 MB of 0.009 MB uploaded (0.000 MB deduped)\r"
+ }
+ },
+ "e620391f9d1347409b51b7cf2f1b555e": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "FloatProgressModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_033c70a9ced3411aa90e43b0ef7cd8b5",
+ "max": 1,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_37cb938b57d94dab91560f953f4d17a2",
+ "value": 0.12898867061636005
+ }
+ },
+ "ae1094c5e27943cda46b43b7888c2114": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "a956c5c637b04d5cbd109230bf9bb738": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "928ec4b573b24bd9ad24139081dde374": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "033c70a9ced3411aa90e43b0ef7cd8b5": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "37cb938b57d94dab91560f953f4d17a2": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "ProgressStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "13f067631577466eb52d7dab241b4003": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "VBoxModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "VBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "VBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_a1706499943c47ae8b03bbbd120aba97",
+ "IPY_MODEL_1f9457318c594ddcb6b7c8b96d4cdb26"
+ ],
+ "layout": "IPY_MODEL_7b1c9d26909c443ba099d3c4450b0f19"
+ }
+ },
+ "a1706499943c47ae8b03bbbd120aba97": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "LabelModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "LabelModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "LabelView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_dcfb69b6ee6342798628c0810c37b89c",
+ "placeholder": "β",
+ "style": "IPY_MODEL_029aa0da172a4a7bbd2b6e6bda440c52",
+ "value": "0.001 MB of 0.009 MB uploaded (0.000 MB deduped)\r"
+ }
+ },
+ "1f9457318c594ddcb6b7c8b96d4cdb26": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "FloatProgressModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_6f2fbeb18498432eb08d8ad895f89b46",
+ "max": 1,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_1c38ff38b8c846fcb5203652f5c8d4f4",
+ "value": 0.12906577990231735
+ }
+ },
+ "7b1c9d26909c443ba099d3c4450b0f19": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "dcfb69b6ee6342798628c0810c37b89c": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "029aa0da172a4a7bbd2b6e6bda440c52": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "6f2fbeb18498432eb08d8ad895f89b46": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "1c38ff38b8c846fcb5203652f5c8d4f4": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "ProgressStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "dc28f7e21b5944e98c8e6db6cf9350d7": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "VBoxModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "VBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "VBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_6db6d296f5c24593839230a9ffe06b59",
+ "IPY_MODEL_f2748e47229340c6b4d8a93026b15c3e"
+ ],
+ "layout": "IPY_MODEL_5b0e082cb319498dab44ea17d547ac60"
+ }
+ },
+ "6db6d296f5c24593839230a9ffe06b59": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "LabelModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "LabelModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "LabelView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_1b1b097353aa4b0fa1cee3211c56c3b2",
+ "placeholder": "β",
+ "style": "IPY_MODEL_c89f1e30a84b490383cdce61a9341aa7",
+ "value": "0.001 MB of 0.009 MB uploaded (0.000 MB deduped)\r"
+ }
+ },
+ "f2748e47229340c6b4d8a93026b15c3e": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "FloatProgressModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_40eb5d2111364cb8b7c9e8a12b8356df",
+ "max": 1,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_4f399058781442f4a5bcaf565e30545a",
+ "value": 0.12825547747002894
+ }
+ },
+ "5b0e082cb319498dab44ea17d547ac60": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "1b1b097353aa4b0fa1cee3211c56c3b2": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "c89f1e30a84b490383cdce61a9341aa7": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "40eb5d2111364cb8b7c9e8a12b8356df": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "4f399058781442f4a5bcaf565e30545a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "ProgressStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ }
+ }
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
\ No newline at end of file