A multivariate and non-parametric batch effect correction framework
based on Projection to Latent Structures Discriminant Analysis for
microbiome data. This repository contains the R package hosted on
Bioconductor.
(macOS users only: Ensure you have installed XQuartz first.)
Make sure you have the latest R version and the latest BiocManager
package installed following these
instructions.
## install BiocManager if not installed
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")Ensure the following returns TRUE, or follow the guidelines provided
by the output.
BiocManager::valid()You can install PLSDAbatch using the following code:
BiocManager::install('PLSDAbatch')Install the GitHub version with:
# without vignette
BiocManager::install("EvaYiwenWang/PLSDAbatch")
# with vignette
## Install CRAN packages for vignette
cran_pkgs <- c("pheatmap", "vegan")
to_install <- cran_pkgs[!cran_pkgs %in% installed.packages()[, "Package"]]
if (length(to_install) > 0) install.packages(to_install)
## Install Bioconductor packages for vignette
bioc_pkgs <- c("Biobase", "SummarizedExperiment")
to_install <- bioc_pkgs[!bioc_pkgs %in% installed.packages()[, "Package"]]
if (length(to_install) > 0) BiocManager::install(to_install)
devtools::install_github("https://github.com/EvaYiwenWang/PLSDAbatch", build_vignettes = T)library(PLSDAbatch)
## names
ls('package:PLSDAbatch')
## names and details
lsf.str('package:PLSDAbatch')browseVignettes("PLSDAbatch")Wang, Y., & Lê Cao, K. A. (2023). PLSDA-batch: a multivariate framework to correct for batch effects in microbiome data. Briefings in Bioinformatics, 24(2), bbac622.
https://academic.oup.com/bib/article/24/2/bbac622/6991121 (The mentioned simulations and analyses in the paper are separately stored here.)
- submitted to Bioconductor.
- fixed bugs: the clash of functions from dependencies.
- Added a
modeargument toPLSDA_batch(). - Added a
criterionargument tolinear_regres()to select P-values from the optimal model based on the specified criterion. - Added a
return.modelarugument tolinear_regres()to reduce memory usage when set toFALSE. - Extended
Scatter_Density()to support any multivariate method that returns component scores, including PCA and PLS, with corresponding arguments updated. - Added
lighten()anddarken()functions for enhanced color generation. - Refined multiple functions to improve usability.
- Updated the vignette accordingly.