return true;
}
-#ifdef XCP
-#ifdef HAVE_INT128
-/*
- * Convert numeric to int128, rounding if needed.
- *
- * If overflow, return FALSE (no error is raised). Return TRUE if okay.
- */
-static bool
-numericvar_to_int128(NumericVar *var, int128 *result)
-{
- NumericDigit *digits;
- int ndigits;
- int weight;
- int i;
- int128 val,
- oldval;
- bool neg;
- NumericVar rounded;
-
- /* Round to nearest integer */
- init_var(&rounded);
- set_var_from_var(var, &rounded);
- round_var(&rounded, 0);
-
- /* Check for zero input */
- strip_var(&rounded);
- ndigits = rounded.ndigits;
- if (ndigits == 0)
- {
- *result = 0;
- free_var(&rounded);
- return true;
- }
-
- /*
- * For input like 10000000000, we must treat stripped digits as real. So
- * the loop assumes there are weight+1 digits before the decimal point.
- */
- weight = rounded.weight;
- Assert(weight >= 0 && ndigits <= weight + 1);
-
- /* Construct the result */
- digits = rounded.digits;
- neg = (rounded.sign == NUMERIC_NEG);
- val = digits[0];
- for (i = 1; i <= weight; i++)
- {
- oldval = val;
- val *= NBASE;
- if (i < ndigits)
- val += digits[i];
-
- /*
- * The overflow check is a bit tricky because we want to accept
- * INT128_MIN, which will overflow the positive accumulator. We can
- * detect this case easily though because INT128_MIN is the only
- * nonzero value for which -val == val (on a two's complement machine,
- * anyway).
- */
- if ((val / NBASE) != oldval) /* possible overflow? */
- {
- if (!neg || (-val) != val || val == 0 || oldval < 0)
- {
- free_var(&rounded);
- return false;
- }
- }
- }
-
- free_var(&rounded);
-
- *result = neg ? -val : val;
- return true;
-}
-#endif
-#endif
-
/*
* Convert int8 value to numeric.
*/