Botuliini
Botuliini | |
A1-botuliini (PDB: 3BTA) | |
Tunnisteet | |
CAS-numero | A: 93384-43-1 B: 93384-44-2 D: 93384-46-4 E: 93384-47-5 F: 107231-15-2 |
EC-numero | 3.4.24.69 |
Tietokannat | |
KEGGt | KEGG |
Botuliinit ovat ryhmä rakenteellisesti ja toiminnollisesti samankaltaisia hermomyrkkyjä, joita tuottavat tietyt Clostridium-bakteerit. Annoskokoon suhteutettuna botuliinit ovat eräitä kaikkein voimakkaimpia tunnetuista myrkyistä.[1] Myrkyllisyys riippuu botuliinityypistä ja annostelutavasta. Esimerkiksi luonnossa olevan ja lääkkeenäkin usein käytetyn A1-botuliinin ihmisen tappavan annoksen on arvioitu olevan nieltynä 1000 nanogrammaa per kehonpainokilo (ng/kg) ja 1 ng/kg verenkiertoon tai lihakseen pistettynä.[2]
Botuliinit toimivat myrkkyinä estämällä lihassupistukseen vaaditun asetyylikoliinin vapautumista hermo-lihasliitoksissa. Botuliinimyrkytys eli botulismi ilmenee 12–72 tunnissa, jos botuliinia on nielty. Se paranee hoidettuna viikoissa tai kuukausissa.[1] Hoitamattomana se yleensä tappaa, mutta kuolleisuus hoidettuun botulismiin on noin 5–10%.[3] Botulismin pääoireena on yläraajoista alaraajoihin leviävä luurankolihasten heikkous tai halvaantuminen. Pallean mahdollinen halvaantuminen estää hengittämisen, joka vaatii hengityskonehoitoa.[1] Botuliineja vastaan on vastamyrkkyjä, mutta nämä tehoavat vain jos niitä annetaan ennen myrkytysoireiden ilmenemistä. Botuliineja vastaan on myös rokotteita.[4]
Botuliineja käytetään lääkkeinä muun muassa lihasten liikehäiriöhin. Kasvolihaksiin annettuja botuliinipistoksia käytetään myös halvaannuttamaan kasvolihaksia ja estämään siten ilmehdinnän edistämää ihoryppyjen muodostumista. Botuliineja voidaan myös käyttää kemiallisina aseina.[1]
"Botuliini" tulee latinan sanasta botulus, eli makkara. Sanaa alettiin käyttämään sen jälkeen, kun saksalaislääkäri Justinus Kerner kirjoitti 1800-luvulla kuvauksia botuliinimyrkytyksistä, jotka johtuivat pilaantuneen makkaran syönnistä.[1]
Esiintyminen luonnossa
Botuliineja tuottavat vähähappisissa oloissa tietyt Clostridium-bakteerit, joiden itiöitä on laajalti muun muassa maaperässä. Botuliinimyrkytyksen eli botulismin voivat aiheuttaa ainakin Clostridium botulinum-, Clostridium baratii-, Clostridium butyricum- tai Clostridium argentinense -bakteerien tuottamat botuliinit.[1]
Rakenne
Perusrakenne
Botuliineja on useita, mutta ne ovat rakenteellisesti likimain samantapaisia. Botuliinien massa on noin 150 kDa. Kaikissa botuliineissa on 2 peptidiketjua: kevyt- ja raskasketju eli L- ja H-ketjut (eng. Light, Heavy). Ketjut ovat toisissaan kiinni yhdellä disulfidisidoksella. Raskasketjun massa on noin 100 kDa. Se jakautuu N-terminaaliseen proteiinidomeeniin eli HN-domeeniin ja C-terminaaliseen domeeniin eli HC-domeeniin. HN- ja HC-domeenien massat ovat noin 50 kDa. HC sitoutuu lektiininä johonkin myrkyn kohteena olevan hermosolun solukalvossa olevan reseptorin hiilihydraattiin. Sitoutumisen jälkeen botuliinin siirtyminen solun sisälle tapahtuu HC-ketjun avulla. Kevytketjun massa botuliineissa on noin 50 kDa ja se sisältää aktiivisen kohdan. Kohta vaatii sinkki-ionin kofaktoriksi myrkyllisyyden aiheuttavaan entsyymitoimintaansa.[5]
Kompleksit
Clostridium-bakteerien tuottamat botuliinit ovat aina ei-kovalenttisesti kiinni NTNHA-proteiinissa (eng. NonToxic Non-HemAgglutinin protein) ja näiden kokonaisuutta sanotaan M-PTC:ksi (eng. Minimally functional Progenitor Toxin Complex). NTNHA suojaa botuliinia muun muassa ruuansulatuselimistön entsyymeiltä ja ilman sitä nielty botuliini hajoaa nopeasti kehossa vähentäen botuliinin mykyllisyyttä merkittävästi. Kompleksi muodostuu happamassa ja hajoaa pH-arvossa 7.3, jolloin vapautunut botuliini voi imeytyä verenkiertoon.[5] NTNHA ei ole myrkyllinen ja sen massa on noin 140 kDa, joten koko M-PTC:n massa on noin 300 kDa. Jotkin botuliinityypit voivat olla luontaisesti kompleksoituneet vieläkin useamman proteiinin kanssa ja näiden kompleksien massa voi olla jopa 900 kDa.[2]
Luokittelu
Botuliinien päätyyppejä ovat muun muassa A-, B-, C-, D-, E-, F- ja G-botuliinit. Botuliineista käytetään usein kirjainlyhennettä BoNT (eng. Botulinum NeuroToxin) ja esimerkiksi A-botuliinia voidaan kutsua nimellä BoNT/A.[2] Kirjainpohjaiset luokat perustuvat varhaisissa tutkimuksissa käytettyyn botuliinien tunnistamiseen vasta-aineiden avulla. Siksi botuliinien pääluokkia kutsutaan usein serotyypeiksi. Geenitutkimuksen kehitys on kuitenkin sittemmin paljastanut, että osa näistä päätyypeistä jakautuu vielä useisiin alatyyppeihin. Alatyyppien nimissä käytetään usein numeroita. Esimerkkejä ovat A1-botuliini ja A2-botuliini, joita voidaan kutsua vastaavasti nimin BoNT/A1 ja BoNT/A2. A-botuliineja on tosin enemmän kuin vain A1 ja A2.[6] Botuliineja on luonnossa myös yhdistelminä, joita sanotaan usein kimeereiksi. Esimerkiksi BoNT/CD merkitsee botuliinia, jonka raskasketjussa on jonkin C-botuliinin HN-domeeni ja jonkin D-botuliinin HC-domeeni.[5]
Botuliinien päätyyppien A–G lisäksi muitakin botuliinityyppejä tunnetaan. Esimerkkejä ovat BoNT/X, BoNT/J, BoNT/Wo ja BoNT/A2F4F5.[7]
Myrkyllisyyden mekanismi
Kaikki botuliinit estävät luurankolihasten supistumista estämällä asetyylikoliinin vapautumista hermo-lihasliitosten hermosoluista ja siten asetyylikoliinin sitoutumista lihassolujen asetyylikoliinireseptoreihin. Näiden reseptorien aktivaatio saisi aikaan lihassupistuksen.[1]
Botuliinit koostuvat raskas- ja kevytketjusta. Nieltynä botuliinit imeytyvät suolistosta verenkiertoon. Veren botuliinien raskasketjut sitoutuvat joihinkin hermosolujen solukalvon proteiineihin. Kiinnittyneet botuliinit päätyvät endosytoosilla solujen sisään kalvorakkuloissa. Rakkulat happamoituvat, jolloin kevyt- ja raskasketjut irtoavat erilleen. Kevytketju päätyy rakkulasta solulimaan.[1]
Hermosolujen aksonien hermopäätteissä on asetyylikoliinia sisältäviä kalvorakkuloita, joista asetyylikoliini vapautuu eri proteiineista koostuvien SNARE-kompleksien avulla. Botuliinien soluliman kevytketjut estävät SNARE-kompleksien muodostumista pilkkomalla proteolyyttisesti sen rakenneosia ennen kompleksin muodostumista. Pilkottu osa riippuu botuliinista. B-, D-, F- ja G-botuliinit pilkkovat kompleksin synaptobreviineitä eli VAMP-proteiineja. Tyypin A-, C- ja E-botuliinit pilkkovat SNAP25-proteiineja. Tyypin C-botuliinit pilkkovat syntaksiineja.[1]
Botuliinit eivät tiettävästi läpäise veri-aivoestettä tehokkaasti ja niiden myrkyllisyys kohdistuu pääosin ääreishermostoon. Ne voivat tästä huolimatta vaikuttaa keskushermostoon ainakin epäsuorin tavoin.[8]
Myrkyllisyys
Botuliineja on useita ja niiden myrkyllisyys poikkeaa toisistaan. Esimerkiksi A1-botuliinin, joka on kompleksoitunut NTNHA:n kanssa (katso kohta kompleksit), ihmisille tappavan annoksen on arvioitu olevan nieltynä 1000 nanogrammaa per kehonpainokilo (ng/kg), hengitysteihin sisään hengitettynä 10 ng/kg ja lihakseen tai verenkiertoon pistettynä 1 ng/kg.[2] Botuliinit eivät imeydy ehjän ihon läpi, mutta ne imeytyvät haavoista ja limakalvoilta.[3]
Tyypillisesti vain botuliinien päätyypit A, B ja E aiheuttavat myrkytyksiä ihmisissä. F- ja G-botuliinit voivat myös aiheuttaa myrkytyksen ihmisille, mutta harvoin.[1]
Annoskokoon suhteutettuna botuliinit ovat eräitä kaikkein voimakkaimpia tunnetuista myrkyistä. Esimerkiksi verenkiertoon pistettynä botuliinit ovat massaltaan hiirille likimain 200-kertaa myrkyllisempiä kuin batrakotoksiini ja 500-kertaa myrkyllisempiä kuin risiini.[1]
Myrkyn tuhoaminen
Botuliinit denaturoituvat ja menettävät myrkyllisyytensä altistettaessa ne vähintään 5 min ajan 85 °C:lle tai vähintään 20 min ajan 80 °C:lle. HSTS-pastörointi (15 sekuntia 72 °C:ssa) todennäköisesti tuhoaa pääosan botuliineista, mutta tavanomainen pastörointi ei (30 min 63 °C:ssa). Veden klooraus tuhoaa botuliineja. Myös auringonvalo voi tuhota botuliineja, mutta hitaasti.[3]
Botuliineja tuottavat bakteerit kuolevat helposti muun muassa monien liuottimien avulla. Esimerkiksi väkevä etanoli- tai laimea natriumhypokloriittiliuos tappavat niitä helposti. Bakteerien itiöt ovat kuitenkin hyvin kestäviä. Kestävimpien bakteerilajien itiöt kuolevat 3 min altistuksessa 121 °C:lle. Tällaisia käsittelyolosuhteita käytetään esimerkiksi säilyketölkkiruokien teollisessa tölkityksessä botulismin ehkäisemiseksi. Herkempien lajien itiöt kuolevat jo 10 min altistuksessa 90 °C:lle. Autoklavointi ja säteilytys ovat myös toimivia tapoja tuhota itiöitä.[3]
Myrkytys
- Pääartikkeli: Botulismi
Botuliinimyrkytyksen eli botulismin oireet alkavat botuliinin nielemisen jälkeen 12–72 tunnissa. Aluksi voi ilmetä riippuluomisuutta ja näköhäiriöitä, sillä pupillit laajentuvat niitä ohjaavien lihasten halvauksen takia. Sitten voi ilmetä dysartriaa ja yläraajoista alaraajoihin leviävä luurankolihasten heikkous tai halvaantuminen. Hengitys voi pysähtyä pallean halvauksen takia. Tämä johtaa tukehtumiseen ilman hengityskonehoitoa.[1] Botuliinit eivät halvaannuta sydänlihasta.[9] Hoidettuna myrkytyksen halvaus paranee itsestään useissa viikoissa tai kuukausissa botuliinityypistä riippuen. Halvaantumisen aikana on kuitenkin mahdollista saada jokin infektio ja kuolla siihen.[1] Kuolleisuus hoidettuun botulismiin on noin 5–10%.[3] Ennen kuin myrkytys alkaa oireilemaan, se voidaan estää antamalla verenkiertoon polyklonaalisiin vasta-aineisiin pohjautuvia aineita, jotka tehoavat samanaikaisesti useita botuliinityyppejä vastaan. Myrkytystä voidaan ennaltaehkäistä myös rokottein.[4]
Botulismi johtuu botuliinien saamisesta kehoon tai niitä tuottavien bakteerien tartunnasta. Myrkytys johtuu yleensä ruokamyrkytyksestä, jolloin kyse on usein epähygieenisesti tehtyjen kotivalmisteisten säilykkeiden syömisestä, joissa botuliineja tuottavat Clostridium-bakteerit ovat päässeet lisääntymään. Syynä voi olla myös bakteeritartunta. Tartunta ilmenee useimmin 2–4 kuukautisilla vauvoilla ja syy on yleensä hunajan syöttäminen vauvalle. Hunajassa mahdollisesti olevat botuliinibakteerit lisääntyvät vauvan suolistossa botuliinia tuottaen. Vauvoilla suolimikrobikanta on aikuisia kehittymättömämpi, eikä se siksi vie kasvutilaa botuliinibakteereilta yhtä hyvin kuin aikuisilla.[1]
Hyötykäyttö
Botuliineja voidaan käyttää hoitamaan muun muassa karsastusta, eri liikehäiriöitä (esimerkkejä: fokaalidystonia ja blefarospasmi), spastisuutta, päänsärkyä ja liikahikoilua. Niitä käytetään myös estämään ryppyjen muodostumista pistämällä niitä tiettyihin kasvojen lihaksiin, jolloin ryppyjen muodostumista edistävä kasvolihasten liike estyy väliaikaisesti. Botuliineja voidaan myös käyttää kemiallisina aseina.[1]
Katso myös
Lähteet
- ↑ a b c d e f g h i j k l m n o RC Gupta et al: Handbook of toxicology of chemical warfare agents, s. 361-383. (2. painos) Elsevier, 2015. doi:10.1016/B978-012374484-5.00030-4 ISBN 9780128001592
- ↑ a b c d O Rossetto, C Montecucco: Tables of toxicity of botulinum and tetanus neurotoxins. Toxins, 2019, 11. vsk, nro 12. PubMed:31771110 doi:10.3390/toxins11120686 ISSN 2072-6651 Artikkelin verkkoversio.
- ↑ a b c d e AR Spickler: Botulism cfsph.iastate.edu. 2018. Arkistoitu 21.9.2018. Viitattu 8.4.2020.
- ↑ a b C Rasetti-Escargueil, MR Popoff: Antibodies and vaccines against botulinum toxins: available measures and novel approaches. Toxins, 2019, 11. vsk, nro 9. PubMed:31547338 doi:10.3390/toxins11090528 ISSN 2072-6651 Artikkelin verkkoversio.
- ↑ a b c M Dong, P Stenmark: ”The structure and classification of botulinum toxins”, Handbook of experimental pharmacology. Springer, 2019. PubMed: 31792680 doi:10.1007/164_2019_342 Teoksen verkkoversio.
- ↑ S Zhang et al: Identification and characterization of a novel botulinum neurotoxin. Nature Communications, 2017, 8. vsk, nro 1, s. 1–10. doi:10.1038/ncomms14130 ISSN 2041-1723 Artikkelin verkkoversio.
- ↑ N Serdev et al: ”Botulinum toxins, diversity, mode of action, epidemiology of botulism in France”, Botulinum Toxin. IntechOpen, 2018. doi:10.5772/intechopen.79056 ISBN 9781838817558 Teoksen verkkoversio.
- ↑ G Li et al: Brain functional changes in patients with botulism after illegal cosmetic injections of botulinum toxin: A resting-state fMRI study. PLoS ONE, 2018, 13. vsk, nro 11. PubMed:30485326 doi:10.1371/journal.pone.0207448 ISSN 1932-6203 Artikkelin verkkoversio.
- ↑ PP Taillac et al: CBRNE - botulism clinical presentation: history, physical emedicine.medscape.com. 16.2.2019. Arkistoitu 9.10.2017. Viitattu 8.4.2020.