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About this book
This chapter helps you decide whether or not this book is of interest to you.
Why should I read this book?
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ECMAScript modules: importing and exporting values, etc.
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Instructions
This chapter contains information that is useful when reading this book.
How to read this book
There are two ways in which you can read this book:
This book was written with both ways in mind, so skipping content should not be a problem. If, at any point, there is relevant information elsewhere in the book, I point to it.
How assertions are used in this book
The following import is always assumed to have been made (similarly to how non-strict assert is available in the Node.js REPL):
import * as assert from 'node:assert/strict';
This module implements assertions – which are often used in examples in this book. This is what they look like:
// Comparing primitive values:
assert.equal(3 + 4, 7);
assert.equal('abc'.toUpperCase(), 'ABC');
// Comparing objects:
assert.notEqual({prop: 1}, {prop: 1}); // shallow comparison
assert.deepEqual({prop: 1}, {prop: 1}); // deep comparison
assert.notDeepEqual({prop: 1}, {prop: 2}); // deep comparison
Getting started with Node.js
This chapter explains the first steps with Node.js.
Getting help for Node.js
Installing Node.js and npm
The installer for Node.js also installs the package manager npm. It can be downloaded from the Node.js homepage and is available for many operating systems.
Running Node.js code
Evaluating code in the Node.js REPL
The Node.js REPL (read-eval-print loop) is a command line where we can interactively evaluate Node.js code.
We can start the Node.js REPL in JavaScript strict mode (which is safer and switched on by default for code in ESM modules):
node --use_strict
If we run node without any arguments, the Node.js REPL does not use strict mode:
node
This is what using the Node.js REPL looks like (% is a Unix shell prompt, > is the Node.js REPL prompt):
% node
Welcome to Node.js v18.9.0.
Type ".help" for more information.
> path.join('dir', 'sub', 'file.txt')
'dir/sub/file.txt'
>
All of Node’s built-in modules are available via global variables in the REPL: assert, path, fs, util, etc.
Quickly printing the result of a JavaScript expression
We can use the shell command node with the option --print (abbreviation: -p) to print the result of evaluating a JavaScript expression. Similarly to the REPL, all built-in modules are available via global variables. For example, the following command prints the path of the homedirectory and works on both Unixes and Windows:
node -p "os.homedir()"
For more information on this command line option, see [Content not included].
Running modules with Node.js code
Take, for example, the following module:
// my-module.mjs
import * as os from 'node:os';
console.log(os.userInfo());
We can run it from a shell via:
node my-module.mjs
Running Node.js code that’s in the clipboard
We can also run Node.js code that we have copied to the clipboard. For example, we could copy the code of my-module.mjs from the previous section and run it like this on macOS:
pbpaste | node --input-type=module
Option --input-type=module tells Node.js to interpret the code it receives from standard input as a module. Among other things, that enables us to use import.
The macOS shell command pbpaste sends the contents of the clipboard to standard output. Other operating systems have similar shell commands:
An overview of Node.js: architecture, APIs, event loop, concurrency
This chapter gives an overview of how Node.js works:
The Node.js platform
The following diagram provides an overview of how Node.js is structured:

The APIs available to a Node.js app consist of:
The Node.js APIs are partially implemented in JavaScript, partially in C++. The latter is needed to interface with the operating system.
Node.js runs JavaScript via an embedded V8 JavaScript engine (the same engine used by Google’s Chrome browser).
Global Node.js variables
These are a few highlights of Node’s global variables:
crypto gives us access to a web-compatible crypto API.
console has much overlap with the same global variable in browsers (console.log() etc.).
fetch() lets us use the Fetch browser API.
process contains an instance of class Process and gives us access to command line arguments, standard input, standard out, and more.
structuredClone() is a browser-compatible function for cloning objects.
URL is a browser-compatible class for handling URLs.
More global variables are mentioned throughout this chapter.
Using modules instead of global variables
The following built-in modules provide alternatives to global variables:
'node:console' is an alternative to the global variable console:
console.log('Hello!');
import {log} from 'node:console';
log('Hello!');
'node:process' is an alternative to the global variable process:
console.log(process.argv);
import {argv} from 'node:process';
console.log(process.argv);
In principle, using modules is cleaner than using global variables. However, using the global variables console and process are such established patterns that deviating from them also has downsides.
The built-in Node.js modules
Most of Node’s APIs are provided via modules. These are a few frequently used ones (in alphabetical order):
'node:assert/strict': Assertions are functions that check if a condition is met and report an error if not. They can be used in application code and for unit testing. This is an example of using this API:
import * as assert from 'node:assert/strict';
assert.equal(3 + 4, 7);
assert.equal('abc'.toUpperCase(), 'ABC');
assert.deepEqual({prop: true}, {prop: true}); // deep comparison
assert.notEqual({prop: true}, {prop: true}); // shallow comparison
'node:child_process' is for running native commands synchronously or in separate processes. This module is described in §12 “Running shell commands in child processes”.
'node:fs' provides file system operations such as reading, writing, copying and deleting files and directories. For more information, see §8 “Working with the file system on Node.js”.
'node:os' contains operating-system-specific constants and utility functions. Some of them are explained in §7 “Working with file system paths and file URLs on Node.js”.
'node:path' is a cross-platform API for working with file system paths. It is described in §7 “Working with file system paths and file URLs on Node.js”.
'node:stream' contains a Node.js-specific streams API which are explained in §9 “Native Node.js streams”.
'node:util' contains various utility functions.
Module 'node:module' contains function builtinModules() which returns an Array with the specifiers of all built-in modules:
import * as assert from 'node:assert/strict';
import {builtinModules} from 'node:module';
// Remove internal modules (whose names start with underscores)
const modules = builtinModules.filter(m => !m.startsWith('_'));
modules.sort();
assert.deepEqual(
modules.slice(0, 5),
[
'assert',
'assert/strict',
'async_hooks',
'buffer',
'child_process',
]
);
The different styles of Node.js functions
In this section, we use the following import:
import * as fs from 'node:fs';
Node’s functions come in three different styles. Let’s look at the built-in module 'node:fs' as an example:
The three examples we have just seen, demonstrate the naming convention for functions with similar functionality:
Let’s take a closer look at how these three styles work.
Synchronous functions
Synchronous functions are simplest – they immediately return values and throw errors as exceptions:
try {
const result = fs.readFileSync('/etc/passwd', {encoding: 'utf-8'});
console.log(result);
} catch (err) {
console.error(err);
}
Promise-based functions
Promise-based functions return Promises that are fulfilled with results and rejected with errors:
import * as fsPromises from 'node:fs/promises'; // (A)
try {
const result = await fsPromises.readFile(
'/etc/passwd', {encoding: 'utf-8'});
console.log(result);
} catch (err) {
console.error(err);
}
Note the module specifier in line A: The Promise-based API is located in a different module.
Promises are explained in more detail in “JavaScript for impatient programmers”.
Callback-based functions
Callback-based functions pass results and errors to callbacks which are their last parameters:
fs.readFile('/etc/passwd', {encoding: 'utf-8'},
(err, result) => {
if (err) {
console.error(err);
return;
}
console.log(result);
}
);
This style is explained in more detail in the Node.js documentation.
The Node.js event loop
By default, Node.js executes all JavaScript in a single thread, the main thread. The main thread continuously runs the event loop – a loop that executes chunks of JavaScript. Each chunk is a callback and can be considered a cooperatively scheduled task. The first task contains the code (coming from a module or standard input) that we start Node.js with. Other tasks are usually added later, due to:
A first approximation of the event loop looks like this:

That is, the main thread runs code similar to:
while (true) { // event loop
const task = taskQueue.dequeue(); // blocks
task();
}
The event loop takes callbacks out of a task queue and executes them in the main thread. Dequeuing blocks (pauses the main thread) if the task queue is empty.
We’ll explore two topics later:
Why is this loop called event loop? Many tasks are added in response to events, e.g. ones sent by the operating system when input data is ready to be processed.
How are callbacks added to the task queue? These are common possibilities:
The following code shows an asynchronous callback-based operation in action. It reads a text file from the file system:
import * as fs from 'node:fs';
function handleResult(err, result) {
if (err) {
console.error(err);
return;
}
console.log(result); // (A)
}
fs.readFile('reminder.txt', 'utf-8',
handleResult
);
console.log('AFTER'); // (B)
This is the ouput:
AFTER
Don’t forget!
fs.readFile() executes the code that reads the file in another thread. In this case, the code succeeds and adds this callback to the task queue:
() => handleResult(null, 'Don’t forget!')
Running to completion makes code simpler
An important rule for how Node.js runs JavaScript code is: Each task finishes (“runs to completion”) before other tasks run. We can see that in the previous example: 'AFTER' in line B is logged before the result is logged in line A because the initial task finishes before the task with the invocation of handleResult() runs.
Running to completion means that task lifetimes don’t overlap and we don’t have to worry about shared data being changed in the background. That simplifies Node.js code. The next example demonstrates that. It implements a simple HTTP server:
// server.mjs
import * as http from 'node:http';
let requestCount = 1;
const server = http.createServer(
(_req, res) => { // (A)
res.writeHead(200);
res.end('This is request number ' + requestCount); // (B)
requestCount++; // (C)
}
);
server.listen(8080);
We run this code via node server.mjs. After that, the code starts and waits for HTTP requests. We can send them by using a web browser to go to http://localhost:8080. Each time we reload that HTTP resource, Node.js invokes the callback that starts in line A. It serves a message with the current value of variable requestCount (line B) and increments it (line C).
Each invocation of the callback is a new task and variable requestCount is shared between tasks. Due to running to completion, it is easy to read and update. There is no need to synchronize with other concurrently running tasks because there aren’t any.
Why does Node.js code run in a single thread?
Why does Node.js code run in a single thread (with an event loop) by default? That has two benefits:
As we have already seen, sharing data between tasks is simpler if there is only a single thread.
In traditional multi-threaded code, an operation that takes longer to complete blocks the current thread until the operation is finished. Examples of such operations are reading a file or processing HTTP requests. Performing many of these operations is expensive because we have to create a new thread each time. With an event loop, the per-operation cost is lower, especially if each operation doesn’t do much. That’s why event-loop-based web servers can handle higher loads than thread-based ones.
Given that some of Node’s asynchronous operations run in threads other than the main thread (more on that soon) and report back to JavaScript via the task queue, Node.js is not really single-threaded. Instead, we use a single thread to coordinate operations that run concurrently and asynchronously (in the main thread).
This concludes our first look at the event loop. Feel free to skip the remainder of this section if a superficial explanation is enough for you. Read on to learn more details.
The real event loop has multiple phases
The real event loop has multiple task queues from which it reads in multiple phases (you can check out some of the JavaScript code in the GitHub repository nodejs/node). The following diagram shows the most important ones of those phases:

What do the event loop phases do that are shown in the diagram?
Phase “timers” invokes timed tasks that were added to its queue by:
Phase “poll” retrieves and processes I/O events and runs I/O-related tasks from its queue.
Phase “check” (the “immediate phase”) executes tasks scheduled via:
Each phase runs until its queue is empty or until a maximum number of tasks was processed. Except for “poll”, each phase waits until its next turn before it processes tasks that were added during its run.
Phase “poll”
If this phase takes longer than a system-dependent time limit, it ends and the next phase runs.
Next-tick tasks and microtasks
After each invoked task, a “sub-loop” runs that consists of two phases:

The sub-phases handle:
Next-tick tasks are Node.js-specific, Microtasks are a cross-platform web standard (see MDN’s support table).
This sub-loop runs until both queues are empty. Tasks added during its run, are processed immediately – the sub-loop does not wait until its next turn.
Comparing different ways of directly scheduling tasks
We can use the following functions and methods to add callbacks to one of the task queues:
It’s important to note that when timing a task via a delay, we are specifying the earliest possible time that the task will run. Node.js cannot always run them at exactly the scheduled time because it can only check between tasks if any timed tasks are due. Therefore, a long-running task can cause timed tasks to be late.
Next-tick tasks and microtasks vs. normal tasks
Consider the following code:
function enqueueTasks() {
Promise.resolve().then(() => console.log('Promise reaction 1'));
queueMicrotask(() => console.log('queueMicrotask 1'));
process.nextTick(() => console.log('nextTick 1'));
setImmediate(() => console.log('setImmediate 1')); // (A)
setTimeout(() => console.log('setTimeout 1'), 0);
Promise.resolve().then(() => console.log('Promise reaction 2'));
queueMicrotask(() => console.log('queueMicrotask 2'));
process.nextTick(() => console.log('nextTick 2'));
setImmediate(() => console.log('setImmediate 2')); // (B)
setTimeout(() => console.log('setTimeout 2'), 0);
}
setImmediate(enqueueTasks);
We use setImmediate() to avoid a pecularity of ESM modules: They are executed in microtasks, which means that if we enqueue microtasks at the top level of an ESM module, they run before next-tick tasks. As we’ll see next, that’s different in most other contexts.
This is the output of the previous code:
nextTick 1
nextTick 2
Promise reaction 1
queueMicrotask 1
Promise reaction 2
queueMicrotask 2
setTimeout 1
setTimeout 2
setImmediate 1
setImmediate 2
Observations:
All next-tick tasks are executed immediately after enqueueTasks().
They are followed by all microtasks, including Promise reactions.
Phase “timers” comes after the immediate phase. That’s when the timed tasks are executed.
We have added immediate tasks during the immediate (“check”) phase (line A and line B). They show up last in the output, which means that they were not executed during the current phase, but during the next immediate phase.
Enqueuing next-tick tasks and microtasks during their phases
The next code examines what happens if we enqueue a next-tick task during the next-tick phase and a microtask during the microtask phase:
setImmediate(() => {
setImmediate(() => console.log('setImmediate 1'));
setTimeout(() => console.log('setTimeout 1'), 0);
process.nextTick(() => {
console.log('nextTick 1');
process.nextTick(() => console.log('nextTick 2'));
});
queueMicrotask(() => {
console.log('queueMicrotask 1');
queueMicrotask(() => console.log('queueMicrotask 2'));
process.nextTick(() => console.log('nextTick 3'));
});
});
This is the output:
nextTick 1
nextTick 2
queueMicrotask 1
queueMicrotask 2
nextTick 3
setTimeout 1
setImmediate 1
Observations:
Next-tick tasks are executed first.
“nextTick 2” in enqueued during the next-tick phase and immediately executed. Execution only continues once the next-tick queue is empty.
The same is true for microtasks.
We enqueue “nextTick 3” during the microtask phase and execution loops back to the next-tick phase. These subphases are repeated until both their queues are empty. Only then does execution move on to the next global phases: First the “timers” phase (“setTimeout 1”). Then the immediate phase (“setImmediate 1”).
Starving out event loop phases
The following code explores which kinds of tasks can starve out event loop phases (prevent them from running via infinite recursion):
import * as fs from 'node:fs/promises';
function timers() { // OK
setTimeout(() => timers(), 0);
}
function immediate() { // OK
setImmediate(() => immediate());
}
function nextTick() { // starves I/O
process.nextTick(() => nextTick());
}
function microtasks() { // starves I/O
queueMicrotask(() => microtasks());
}
timers();
console.log('AFTER'); // always logged
console.log(await fs.readFile('./file.txt', 'utf-8'));
The “timers” phase and the immediate phase don’t execute tasks that are enqueued during their phases. That’s why timers() and immediate() don’t starve out fs.readFile() which reports back during the “poll” phase (there is also a Promise reaction, but let’s ignore that here).
Due to how next-tick tasks and microtasks are scheduled, both nextTick() and microtasks() prevent the output in the last line.
When does a Node.js app exit?
At the end of each iteration of the event loop, Node.js checks if it’s time to exit. It keeps a reference count of pending timeouts (for timed tasks):
If the reference count is zero at the end of an event loop iteration, Node.js exits.
We can see that in the following example:
function timeout(ms) {
return new Promise(
(resolve, _reject) => {
setTimeout(resolve, ms); // (A)
}
);
}
await timeout(3_000);
Node.js waits until the Promise returned by timeout() is fulfilled. Why? Because the task we schedule in line A keeps the event loop alive.
In contrast, creating Promises does not increase the reference count:
function foreverPending() {
return new Promise(
(_resolve, _reject) => {}
);
}
await foreverPending(); // (A)
In this case, execution temporarily leaves this (main) task during await in line A. At the end of the event loop, the reference count is zero and Node.js exits. However, the exit is not successful. That is, the exit code is not 0, it is 13 (“Unfinished Top-Level Await”).
We can manually control whether a timeout keeps the event loop alive: By default, tasks scheduled via setImmediate(), setInterval(), and setTimeout() keep the event loop alive as long as they are pending. These functions return instances of class Timeout whose method .unref() changes that default so that the timeout being active won’t prevent Node.js from exiting. Method .ref() restores the default.
Tim Perry mentions a use case for .unref(): His library used setInterval() to repeatedly run a background task. That task prevented applications from exiting. He fixed the issue via .unref().
libuv: the cross-platform library that handles asynchronous I/O (and more) for Node.js
libuv is a library written in C that supports many platforms (Windows, macOS, Linux, etc.). Node.js uses it to handle I/O and more.
How libuv handles asynchronous I/O
Network I/O is asynchronous and doesn’t block the current thread. Such I/O includes:
To handle asynchronous I/O, libuv uses native kernel APIs and subscribes to I/O events (epoll on Linux; kqueue on BSD Unix incl. macOS; event ports on SunOS; IOCP on Windows). It then gets notifications when they occur. All of these activities, including the I/O itself, happen on the main thread.
How libuv handles blocking I/O
Some native I/O APIs are blocking (not asynchronous) – for example, file I/O and some DNS services. libuv invokes these APIs from threads in a thread pool (the so-called “worker pool”). That enables the main thread to use these APIs asynchronously.
libuv functionality beyond I/O
libuv helps Node.js with more than just with I/O. Other functionality includes:
As an aside, libuv has its own event loop whose source code you can check out in the GitHub repository libuv/libuv (function uv_run()).
Escaping the main thread with user code
If we want to keep Node.js responsive to I/O, we should avoid performing long-running computations in main-thread tasks. There are two options for doing so:
The next subsections cover a few options for offloading.
Worker threads
Worker Threads implement the cross-platform Web Workers API with a few differences – e.g.:
Worker Threads have to be imported from a module, Web Workers are accessed via a global variable.
Inside a worker, listening to messages and posting messages is done via methods of the global object in browsers. On Node.js, we import parentPort instead.
We can use most Node.js APIs from workers. In browsers, our choice is more limited (we can’t use the DOM, etc.).
On Node.js, more objects are transferable (all objects whose classes extend the internal class JSTransferable) than in browsers.
On one hand, Worker Threads really are threads: They are more lightweight than processes and run in the same process as the main thread.
On the other hand:
For more information, see the Node.js documentation on worker threads.
Clusters
Cluster is a Node.js-specific API. It lets us run clusters of Node.js processes that we can use to distribute workloads. The processes are fully isolated but share server ports. They can communicate by passing JSON data over channels.
If we don’t need process isolation, we can use Worker Threads which are more lightweight.
Child processes
Child process is another Node.js-specific API. It lets us spawn new processes that run native commands (often via native shells). This API is covered in §12 “Running shell commands in child processes”.
Sources of this chapter
Node.js event loop:
Videos on the event loop (which refresh some of the background knowledge needed for this chapter):
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JavaScript concurrency:
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Packages: JavaScript’s units for software distribution
This chapter explains what npm packages are and how they interact with ESM modules.
Required knowledge: I’m assuming that you are loosely familiar with the syntax of ECMAScript modules. If you are not, you can read chapter “modules” in “JavaScript for impatient programmers”.
What is a package?
In the JavaScripte ecosystem, a package is a way of organizing software projects: It is a directory with a standardized layout. A package can contain all kinds of files - for example:
A package can depend on other packages (which are called its dependencies) which contain:
The dependencies of a package are installed inside that package (we’ll see how soon).
One common distinction between packages is:
The next subsection explains how packages can be published.
Publishing packages: package registries, package managers, package names
The main way of publishing a package is to upload it to a package registry – an online software repository. The de facto standard is the npm registry but it is not the only option. For example, companies can host their own internal registries.
A package manager is a command line tool that downloads packages from a registry (or other sources) and installs them locally or globally. If a package contains bin scripts, it also makes those available locally or globally.
The most popular package manager is called npm and comes bundled with Node.js. Its name originally stood for “Node Package Manager”. Later, when npm and the npm registry were used not only for Node.js packages, the definition was changed to “npm is not a package manager” (source).
There are other popular package managers such as yarn and pnpm. All of these package managers use the npm registry by default.
Each package in the npm registry has a name. There are two kinds of names:
Global names are unique across the whole registry. These are two examples:
minimatch
mocha
Scoped names consist of two parts: A scope and a name. Scopes are globally unique, names are unique per scope. These are two examples:
@babel/core
@rauschma/iterable
The scope starts with an @ symbol and is separated from the name with a slash.
The file system layout of a package
Once a package my-package is fully installed, it almost always looks like this:
my-package/
package.json
node_modules/
[More files]
What are the purposes of these file system entries?
Some packages also have the file package-lock.json that sits next to package.json: It records the exact versions of the dependencies that were installed and is kept up to date if we add more dependencies via npm.
package.json
This is a starter package.json that can be created via npm:
{
"name": "my-package",
"version": "1.0.0",
"description": "",
"main": "index.js",
"scripts": {
"test": "echo \"Error: no test specified\" && exit 1"
},
"keywords": [],
"author": "",
"license": "ISC"
}
What are the purposes of these properties?
Some properties are required for public packages (published on the npm registry):
Other properties for public packages are optional:
main is a property for packages with library code. It specifies the module that “is” the package (explained later in this chapter).
scripts is a property for setting up package scripts – abbreviations for development-time shell commands. These can be executed via npm run. For example, the script test can be executed via npm run test. For more on this topic, see [content not included].
Other useful properties:
dependencies lists the dependencies of a package. Its format is explained soon.
devDependencies are dependencies that are only needed during development.
The following setting means that all files with the name extension .js are interpreted as ECMAScript modules. Unless we are dealing with legacy code, it makes sense to add it:
"type": "module"
bin lists bin scripts, Node.js modules within the package that npm installs as shell scripts. Its format is explained soon.
license specifies a license for the package. Its format is explained soon.
Normally, the properties name and version are required and npm warns us if they are missing. However, we can change that via the following setting:
"private": true
That prevents the package from accidentally being published and allows us to omit name and version.
For more information on package.json, see the npm documentation.
Property "dependencies" of package.json
This is what the dependencies in a package.json file look like:
"dependencies": {
"minimatch": "^5.1.0",
"mocha": "^10.0.0"
}
The properties record both the names of packages and constraints for their versions.
Versions themselves follow the semantic versioning standard. They are up to three numbers (the second and third number are optional and zero by default) separated by dots:
Node’s version ranges are explained in the semver repository. Examples include:
A specific version without any extra characters means that the installed version must match the version exactly:
"pkg1": "2.0.1",
major.minor.x or major.x means that the components that are numbers must match, the components that are x or omitted can have any values:
"pkg2": "2.x",
"pkg3": "3.3.x",
* matches any version:
"pkg4": "*",
>=version means that the installed version must be version or higher:
"pkg5": ">=1.0.2",
<=version means that the installed version must be version or lower:
"pkg6": "<=2.3.4",
version1-version2 is the same as >=version1 <=version2:
"pkg7": "1.0.0 - 2.9999.9999",
^version (as used in the previous example) is a caret range and means that the installed version can be version or higher but must not introduce breaking changes. That is, the major version must be the same:
"pkg8": "^4.17.21",
Property "bin" of package.json
This is how we can tell npm to install modules as shell scripts:
"bin": {
"my-shell-script": "./src/shell/my-shell-script.mjs",
"another-script": "./src/shell/another-script.mjs"
}
If we install a package with this "bin" value globally, Node.js ensures that the commands my-shell-script and another-script become available at the command line.
If we install the package locally, we can use the two commands in package scripts or via the npx command.
A string is also allowed as the value of "bin":
{
"name": "my-package",
"bin": "./src/main.mjs"
}
This is an abbreviation for:
{
"name": "my-package",
"bin": {
"my-package": "./src/main.mjs"
}
}
Property "license" of package.json
The value of property "license" is always a string with a SPDX license ID. For example, the following value denies others the right to use a package under any terms (which is useful if a package is unpublished):
"license": "UNLICENSED"
The SPDX website lists all available license IDs. If you find it difficult to pick one, the website “Choose an open source license” can help – for example, this is the advice if you “want it simple and permissive”:
The MIT License is short and to the point. It lets people do almost anything they want with your project, like making and distributing closed source versions.
Babel, .NET, and Rails use the MIT License.
You can use that license like this:
"license": "MIT"
Archiving and installing packages
Packages in the npm registry are often archived in two different ways:
Either way, the package is archived without its dependencies – which we have to install before we can use it.
If a package is stored in a git repository:
If a package is published to the npm registry:
Dev dependencies (property devDependencies in package.json) are only installed during development but not when we install the package from the npm registry.
Note that unpublished packages in git repositories are handled similarly to published packages during development.
Installing a package from git
To install a package pkg from git, we clone its repository and:
cd pkg/
npm install
Then the following steps are performed:
If the root package doesn’t have a package-lock.json file, it is created during installation (as mentioned, dependencies don’t have this file).
In a dependency tree, the same dependency may exist multiple times, possibly in different versions. There a ways to minimize duplication, but that is beyond the scope of this chapter.
Reinstalling a package
This is a (slightly crude) way of fixing issues in a dependency tree:
cd pkg/
rm -rf node_modules/
rm package-lock.json
npm install
Note that that may result in different, newer, packages being installed. We can avoid that by not deleting package-lock.json.
Creating a new package and installing dependencies
There are many tools and technique for setting up new packages. This is one simple way:
mkdir my-package
cd my-package/
npm init --yes
Afterward, the directory looks like this:
my-package/
package.json
This package.json has the starter content that we have already seen.
Installing dependencies
Right now, my-package doesn’t have any dependencies. Let’s say we want to use the library lodash-es. This is how we install it into our package:
npm install lodash-es
This command performs the following steps:
The package is downloaded into my-package/node_modules/lodash-es.
Its dependencies are also installed. Then the dependencies of its dependencies. Etc.
A new property is added to package.json:
"dependencies": {
"lodash-es": "^4.17.21"
}
package-lock.json is updated with the exact version that was installed.
Referring to modules via specifiers
Code in other ECMAScript modules is accessed via import statements (line A and line B):
// Static import
import {namedExport} from 'https://example.com/some-module.js'; // (A)
console.log(namedExport);
// Dynamic import
import('https://example.com/some-module.js') // (B)
.then((moduleNamespace) => {
console.log(moduleNamespace.namedExport);
});
Both static imports and dynamic imports use module specifiers to refer to modules:
There are three kinds of module specifiers:
Absolute specifiers are full URLs – for example:
'https://www.unpkg.com/browse/yargs@17.3.1/browser.mjs'
'file:///opt/nodejs/config.mjs'
Absolute specifiers are mostly used to access libraries that are directly hosted on the web.
Relative specifiers are relative URLs (starting with '/', './' or '../') – for example:
'./sibling-module.js'
'../module-in-parent-dir.mjs'
'../../dir/other-module.js'
Every module has a URL whose protocol depends on its location (file:, https:, etc.). If it uses a relative specifier, JavaScript turns that specifier into a full URL by resolving it against the module’s URL.
Relative specifiers are mostly used to access other modules within the same code base.
Bare specifiers are paths (without protocol and domain) that start with neither slashes nor dots. They begin with the names of packages. Those names can optionally be followed by subpaths:
'some-package'
'some-package/sync'
'some-package/util/files/path-tools.js'
Bare specifiers can also refer to packages with scoped names:
'@some-scope/scoped-name'
'@some-scope/scoped-name/async'
'@some-scope/scoped-name/dir/some-module.mjs'
Each bare specifier refers to exactly one module inside a package; if it has no subpath, it refers to the designated “main” module of its package. A bare specifier is never used directly but always resolved – translated to an absolute specifier. How resolution works depends on the platform. We’ll learn more soon.
Filename extensions in module specifiers
Style 1: no subpath
Style 2: a subpath without a filename extension. In this case, the subpath works like a modifier for the package name:
'my-parser/sync'
'my-parser/async'
'assertions'
'assertions/strict'
Style 3: a subpath with a filename extension. In this case, the package is seen as a collection of modules and the subpath points to one of them:
'large-package/misc/util.js'
'large-package/main/parsing.js'
'large-package/main/printing.js'
Caveat of style 3 bare specifiers: How the filename extension is interpreted depends on the dependency and may differ from the importing package. For example, the importing package may use .mjs for ESM modules and .js for CommonJS modules, while the ESM modules exported by the dependency may have bare paths with the filename extension .js.
Module specifiers in Node.js
Let’s see how module specifiers work in Node.js.
Resolving module specifiers in Node.js
The Node.js resolution algorithm works as follows:
This is the algorithm:
If a specifier is absolute, resolution is already finished. Three protocols are most common:
If a specifier is relative, it is resolved against the URL of the importing module.
If a specifier is bare:
If it starts with '#', it is resolved by looking it up among the package imports (which are explained later) and resolving the result.
Otherwise, it is a bare specifier that has one of these formats (the subpath is optional):
The resolution algorithm traverses the current directory and its ancestors until it finds a directory node_modules that has a subdirectory matching the beginning of the bare specifier, i.e. either:
That directory is the directory of the package. By default, the (potentially empty) subpath after the package ID is interpreted as relative to the package directory. The default can be overridden via package exports which are explained next.
The result of the resolution algorithm must point to a file. That explains why absolute specifiers and relative specifiers always have filename extensions. Bare specifiers mostly don’t because they are abbreviations that are looked up in package exports.
Module files usually have these filename extensions:
If Node.js executes code provided via stdin, --eval or --print, we use the following command-line option so that it is interpreted as an ES module:
--input-type=module
Package exports: controlling what other packages see
In this subsection, we are working with a package that has the following file layout:
my-lib/
dist/
src/
main.js
util/
errors.js
internal/
internal-module.js
test/
Package exports are specified via property "exports" in package.json and support two important features:
Without property "exports", every module in package my-lib can be accessed via a relative path after the package name – e.g.:
'my-lib/dist/src/internal/internal-module.js'
Once the property exists, only specifiers listed in it can be used. Everything else is hidden from the outside.
Recall the three styles of bare specifiers:
Package exports help us with all three styles
Style 1: configuring which file represents (the bare specifier for) the package
package.json:
{
"main": "./dist/src/main.js",
"exports": {
".": "./dist/src/main.js"
}
}
We only provide "main" for backward-compatibility (with older bundlers and Node.js 12 and older). Otherwise, the entry for "." is enough.
With these package exports, we can now import from my-lib as follows.
import {someFunction} from 'my-lib';
This imports someFunction() from this file:
my-lib/dist/src/main.js
Style 2: mapping extension-less subpaths to module files
package.json:
{
"exports": {
"./util/errors": "./dist/src/util/errors.js"
}
}
We are mapping the specifier subpath 'util/errors' to a module file. That enables the following import:
import {UserError} from 'my-lib/util/errors';
Style 2: better subpaths without extensions for a subtree
The previous subsection explained how to create a single mapping for an extension-less subpath. There is also a way to create multiple such mappings via a single entry:
package.json:
{
"exports": {
"./lib/*": "./dist/src/*.js"
}
}
Any file that is a descendant of ./dist/src/ can now be imported without a filename extension:
import {someFunction} from 'my-lib/lib/main';
import {UserError} from 'my-lib/lib/util/errors';
Note the asterisks in this "exports" entry:
"./lib/*": "./dist/src/*.js"
These are more instructions for how to map subpaths to actual paths than wildcards that match fragments of file paths.
Style 3: mapping subpaths with extensions to module files
package.json:
{
"exports": {
"./util/errors.js": "./dist/src/util/errors.js"
}
}
We are mapping the specifier subpath 'util/errors.js' to a module file. That enables the following import:
import {UserError} from 'my-lib/util/errors.js';
Style 3: better subpaths with extensions for a subtree
package.json:
{
"exports": {
"./*": "./dist/src/*"
}
}
Here, we shorten the module specifiers of the whole subtree under my-package/dist/src:
import {InternalError} from 'my-package/util/errors.js';
Without the exports, the import statement would be:
import {InternalError} from 'my-package/dist/src/util/errors.js';
Note the asterisks in this "exports" entry:
"./*": "./dist/src/*"
These are not filesystem globs but instructions for how to map external module specifiers to internal ones.
Exposing a subtree while hiding parts of it
With the following trick, we expose everything in directory my-package/dist/src/ with the exception of my-package/dist/src/internal/
"exports": {
"./*": "./dist/src/*",
"./internal/*": null
}
Note that this trick also works when exporting subtrees without filename extensions.
Conditional package exports
We can also make exports conditional: Then a given path maps to different values depending on the context in which a package is used.
Node.js vs. browsers. For example, we could provide different implementations for Node.js and for browsers:
"exports": {
".": {
"node": "./main-node.js",
"browser": "./main-browser.js",
"default": "./main-browser.js"
}
}
The "default" condition matches when no other key matches and must come last. Having one is recommended whenever we are distinguishing between platforms because it takes care of new and/or unknown platforms.
Development vs. production. Another use case for conditional package exports is switching between “development” and “production” environments:
"exports": {
".": {
"development": "./main-development.js",
"production": "./main-production.js",
}
}
In Node.js we can specify an environment like this:
node --conditions development app.mjs
Package imports
Package imports let a package define abbreviations for module specifiers that it can use itself, internally (where package exports define abbreviations for other packages). This is an example:
package.json:
{
"imports": {
"#some-pkg": {
"node": "some-pkg-node-native",
"default": "./polyfills/some-pkg-polyfill.js"
}
},
"dependencies": {
"some-pkg-node-native": "^1.2.3"
}
}
The package import # is conditional (with the same features as conditional package exports):
If the current package is used on Node.js, the module specifier '#some-pkg' refers to package some-pkg-node-native.
Elsewhere, '#some-pkg' refers to the file ./polyfills/some-pkg-polyfill.js inside the current package.
(Only package imports can refer to external packages, package exports can’t do that.)
What are the use cases for package imports?
Be careful when using package imports with a bundler: This feature is relatively new and your bundler may not support it.
node: protocol imports
Node.js has many built-in modules such as 'path' and 'fs'. All of them are available as both ES modules and CommonJS modules. One issue with them is that they can be overridden by modules installed in node_modules which is both a security risk (if it happens accidentally) and a problem if Node.js wants to introduce new built-in modules in the future and their names are already taken by npm packages.
We can use the node: protocol to make it clear that we want to import a built-in module. For example, the following two import statements are mostly equivalent (if no npm module is installed that has the name 'fs'):
import * as fs from 'node:fs/promises';
import * as fs from 'fs/promises';
An additional benefit of using the node: protocol is that we immediately see that an imported module is built-in. Given how many built-in modules there are, that helps when reading code.
Due to node: specifiers having a protocol, they are considered absolute. That’s why they are not looked up in node_modules.
An overview of npm (a package manager for JavaScript)
The npm package manager
The npm registry is the de-facto standard for hosting JavaScript packages. Those packages have a particular format and are called npm packages.
Therefore, in the JavaScript ecosystem, a package manager is a command line tool for installing npm packages – from the npm registry or other sources.
The most popular package manager is called npm and comes bundled with Node.js. Its name originally stood for “Node Package Manager”. Later, when npm and the npm registry were used not just for Node.js packages, the definition was changed to “npm is not a package manager” (source).
There are other popular package managers such as yarn and pnpm. All of these package managers use the npm registry by default.
We use npm via the shell command npm which provides several subcommands such as npm install.
Getting help for npm
Getting help on the command line
We can use the npm command to explain itself: On one hand, there is the option -h which can be used after npm and after npm commands. It provides brief explanations:
npm -h # brief explanation of `npm`
npm <cmd> -h # brief explanation of `npm <cmd>`
On the other hand, there is the command npm help which provides longer explanations:
npm help # brief explanation of `npm` (same as `npm -h`)
npm help npm # longer explanation of `npm`
npm help <cmd> # longer explanation of `npm <cmd>`
npm help <topic> # longer explanation of <topic>
Help topics include:
Getting help online
The official npm documentation is also available online.
Common npm commands
These are a few common commands:
npm init “initializes” the current directory to be a package. That is, it creates the file package.json in it. This command is explained in [content not included].
npm install installs npm packages globally or locally. It is explained in [content not included].
npm publish publishes packages to registries: It either creates a new package or updates an existing package. It is explained in [content not included].
npm run (which is short for npm run-script) executes package scripts. Package scripts are explained in [content not included].
npm uninstall removes a package that was installed globally or locally.
npm version prints the object process.versions which records the versions of various components of Node.js and npm:
{
'my-package': '1.0.0', // current package
npm: '8.15.0',
node: '18.7.0',
v8: '10.2.154.13-node.9',
uv: '1.43.0', // libuv
···
tz: '2022a', // version of tz database
unicode: '14.0', // version of Unicode standard
···
}
npx lets us run bin scripts in packages without installing them. It is described in [content not included].
The npm documentation has a list of all npm commands.
Abbreviations for npm commands
Many npm commands have abbreviations – for example:
| Short | Long |
|---|---|
| npm i | npm install |
| npm rm | npm uninstall |
| npm run | npm run-script |
For each npm command it describes, the npm documentation also lists all of its aliases (including abbreviations).
Working with file system paths and file URLs on Node.js
In this chapter, we learn how to work with file system paths and file URLs on Node.js.
Path-related functionality on Node.js
In this chapter, we explore path-related functionality on Node.js:
The three ways of accessing the 'node:path' API
Module 'node:path' is often imported as follows:
import * as path from 'node:path';
In this chapter, this import statement is occasionally omitted. We also omit the following import:
import * as assert from 'node:assert/strict';
We can access Node’s path API in three ways:
We can access platform-specific versions of the API:
path itself always supports the current platform. For example, this is a REPL interaction on macOS:
> path.parse === path.posix.parse
true
Let’s see how function path.parse(), which parses file system paths, differs for the two platforms:
> path.win32.parse(String.raw`C:\Users\jane\file.txt`)
{
dir: 'C:\\Users\\jane',
root: 'C:\\',
base: 'file.txt',
name: 'file',
ext: '.txt',
}
> path.posix.parse(String.raw`C:\Users\jane\file.txt`)
{
dir: '',
root: '',
base: 'C:\\Users\\jane\\file.txt',
name: 'C:\\Users\\jane\\file',
ext: '.txt',
}
We parse a Windows path – first correctly via the path.win32 API, then via the path.posix API. We can see that in the latter case, the path isn’t correctly split into its parts – for example, the basename of the file should be file.txt (more on what the other properties mean later).
Foundational path concepts and their API support
Path segments, path separators, path delimiters
Terminology:
A non-empty path consists of one or more path segments – most often names of directories or files.
A path separator is used to separate two adjacent path segments in a path. path.sep contains the path separator of the current platform:
assert.equal(
path.posix.sep, '/' // Path separator on Unix
);
assert.equal(
path.win32.sep, '\\' // Path separator on Windows
);
A path delimiter separates elements in lists of paths. path.delimiter contains the path delimiter of the current platform:
assert.equal(
path.posix.delimiter, ':' // Path delimiter on Unix
);
assert.equal(
path.win32.delimiter, ';' // Path delimiter on Windows
);
We can see path separators and path delimitors if we examine the PATH shell variable – which contains the paths where the operating system looks for executables when a command is entered in a shell.
This is an example of a macOS PATH (shell variable $PATH):
> process.env.PATH.split(/(?<=:)/)
[
'/opt/homebrew/bin:',
'/opt/homebrew/sbin:',
'/usr/local/bin:',
'/usr/bin:',
'/bin:',
'/usr/sbin:',
'/sbin',
]
The split separator has a length of zero because the lookbehind assertion (?<=:) matches if a given location is preceded by a colon but it does not capture anything. Therefore, the path delimiter ':' is included in the preceding path.
This is an example of a Windows PATH (shell variable %Path%):
> process.env.Path.split(/(?<=;)/)
[
'C:\\Windows\\system32;',
'C:\\Windows;',
'C:\\Windows\\System32\\Wbem;',
'C:\\Windows\\System32\\WindowsPowerShell\\v1.0\\;',
'C:\\Windows\\System32\\OpenSSH\\;',
'C:\\ProgramData\\chocolatey\\bin;',
'C:\\Program Files\\nodejs\\',
]
The current working directory
Many shells have the concept of the current working directory (CWD) – “the directory I’m currently in”:
process is a global Node.js variable. It provides us with methods for getting and setting the CWD:
Node.js uses the CWD to fill in missing pieces whenever a path isn’t fully qualified (complete). That enables us to use partially qualified paths with various functions – e.g. fs.readFileSync().
The current working directory on Unix
The following code demonstrates process.chdir() and process.cwd() on Unix:
process.chdir('/home/jane');
assert.equal(
process.cwd(), '/home/jane'
);
The current working directory on Windows
So far, we have used the current working directory on Unix. Windows works differently:
We can use path.chdir() to set both at the same time:
process.chdir('C:\\Windows');
process.chdir('Z:\\tmp');
When we revisit a drive, Node.js remembers the previous current directory of that drive:
assert.equal(
process.cwd(), 'Z:\\tmp'
);
process.chdir('C:');
assert.equal(
process.cwd(), 'C:\\Windows'
);
Fully vs. partially qualified paths, resolving paths
Fully and partially qualified paths on Unix
Unix only knows two kinds of paths:
Absolute paths are fully qualified and start with a slash:
/home/john/proj
Relative paths are partially qualified and start with a filename or a dot:
. (current directory)
.. (parent directory)
dir
./dir
../dir
../../dir/subdir
Let’s use path.resolve() (which is explained in more detail later) to resolve relative paths against absolute paths. The results are absolute paths:
> const abs = '/home/john/proj';
> path.resolve(abs, '.')
'/home/john/proj'
> path.resolve(abs, '..')
'/home/john'
> path.resolve(abs, 'dir')
'/home/john/proj/dir'
> path.resolve(abs, './dir')
'/home/john/proj/dir'
> path.resolve(abs, '../dir')
'/home/john/dir'
> path.resolve(abs, '../../dir/subdir')
'/home/dir/subdir'
Fully and partially qualified paths on Windows
Windows distinguishes four kinds of paths (for more information, see Microsoft’s documentation):
Absolute paths with drive letters are fully qualified. All other paths are partially qualified.
Resolving an absolute path without a drive letter against a fully qualified path full, picks up the drive letter of full:
> const full = 'C:\\Users\\jane\\proj';
> path.resolve(full, '\\Windows')
'C:\\Windows'
Resolving a relative path without a drive letter against a fully qualified path, can be viewed as updating the latter:
> const full = 'C:\\Users\\jane\\proj';
> path.resolve(full, '.')
'C:\\Users\\jane\\proj'
> path.resolve(full, '..')
'C:\\Users\\jane'
> path.resolve(full, 'dir')
'C:\\Users\\jane\\proj\\dir'
> path.resolve(full, '.\\dir')
'C:\\Users\\jane\\proj\\dir'
> path.resolve(full, '..\\dir')
'C:\\Users\\jane\\dir'
> path.resolve(full, '..\\..\\dir')
'C:\\Users\\dir'
Resolving a relative path rel with a drive letter against a fully qualified path full depends on the drive letter of rel:
That looks as follows:
// Configure current directories for C: and Z:
process.chdir('C:\\Windows\\System');
process.chdir('Z:\\tmp');
const full = 'C:\\Users\\jane\\proj';
// Same drive letter
assert.equal(
path.resolve(full, 'C:dir'),
'C:\\Users\\jane\\proj\\dir'
);
assert.equal(
path.resolve(full, 'C:'),
'C:\\Users\\jane\\proj'
);
// Different drive letter
assert.equal(
path.resolve(full, 'Z:dir'),
'Z:\\tmp\\dir'
);
assert.equal(
path.resolve(full, 'Z:'),
'Z:\\tmp'
);
Getting the paths of standard directories via module 'node:os'
The module 'node:os' provides us with the paths of two important directories:
os.homedir() returns the path to the home directory of the current user – for example:
> os.homedir() // macOS
'/Users/rauschma'
> os.homedir() // Windows
'C:\\Users\\axel'
os.tmpdir() returns the path of the operating system’s directory for temporary files – for example:
> os.tmpdir() // macOS
'/var/folders/ph/sz0384m11vxf5byk12fzjms40000gn/T'
> os.tmpdir() // Windows
'C:\\Users\\axel\\AppData\\Local\\Temp'
Concatenating paths
There are two functions for concatenating paths:
path.resolve(): concatenating paths to create fully qualified paths
path.resolve(...paths: Array<string>): string
Concatenates the paths and return a fully qualified path. It uses the following algorithm:
Without arguments, path.resolve() returns the path of the current working directory:
> process.cwd()
'/usr/local'
> path.resolve()
'/usr/local'
One or more relative paths are used for resolution, starting with the current working directory:
> path.resolve('.')
'/usr/local'
> path.resolve('..')
'/usr'
> path.resolve('bin')
'/usr/local/bin'
> path.resolve('./bin', 'sub')
'/usr/local/bin/sub'
> path.resolve('../lib', 'log')
'/usr/lib/log'
Any fully qualified path replaces the previous result:
> path.resolve('bin', '/home')
'/home'
That enables us to resolve partially qualified paths against fully qualified paths:
> path.resolve('/home/john', 'proj', 'src')
'/home/john/proj/src'
path.join(): concatenating paths while preserving relative paths
path.join(...paths: Array<string>): string
Starts with paths[0] and interprets the remaining paths as instructions for ascending or descending. In contrast to path.resolve(), this function preserves partially qualified paths: If paths[0] is partially qualified, the result is partially qualified. If it is fully qualified, the result is fully qualified.
Examples of descending:
> path.posix.join('/usr/local', 'sub', 'subsub')
'/usr/local/sub/subsub'
> path.posix.join('relative/dir', 'sub', 'subsub')
'relative/dir/sub/subsub'
Double dots ascend:
> path.posix.join('/usr/local', '..')
'/usr'
> path.posix.join('relative/dir', '..')
'relative'
Single dots do nothing:
> path.posix.join('/usr/local', '.')
'/usr/local'
> path.posix.join('relative/dir', '.')
'relative/dir'
If arguments after the first one are fully qualified paths, they are interpreted as relative paths:
> path.posix.join('dir', '/tmp')
'dir/tmp'
> path.win32.join('dir', 'C:\\Users')
'dir\\C:\\Users'
Using more than two arguments:
> path.posix.join('/usr/local', '../lib', '.', 'log')
'/usr/lib/log'
Ensuring paths are normalized, fully qualified, or relative
path.normalize(): ensuring paths are normalized
path.normalize(path: string): string
On Unix, path.normalize():
For example:
// Fully qualified path
assert.equal(
path.posix.normalize('/home/./john/lib/../photos///pet'),
'/home/john/photos/pet'
);
// Partially qualified path
assert.equal(
path.posix.normalize('./john/lib/../photos///pet'),
'john/photos/pet'
);
On Windows, path.normalize():
For example:
// Fully qualified path
assert.equal(
path.win32.normalize('C:\\Users/jane\\doc\\..\\proj\\\\src'),
'C:\\Users\\jane\\proj\\src'
);
// Partially qualified path
assert.equal(
path.win32.normalize('.\\jane\\doc\\..\\proj\\\\src'),
'jane\\proj\\src'
);
Note that path.join() with a single argument also normalizes and works the same as path.normalize():
> path.posix.normalize('/home/./john/lib/../photos///pet')
'/home/john/photos/pet'
> path.posix.join('/home/./john/lib/../photos///pet')
'/home/john/photos/pet'
> path.posix.normalize('./john/lib/../photos///pet')
'john/photos/pet'
> path.posix.join('./john/lib/../photos///pet')
'john/photos/pet'
path.resolve() (one argument): ensuring paths are normalized and fully qualified
We have already encountered path.resolve(). Called with a single argument, it both normalizes paths and ensures that they are fully qualified.
Using path.resolve() on Unix:
> process.cwd()
'/usr/local'
> path.resolve('/home/./john/lib/../photos///pet')
'/home/john/photos/pet'
> path.resolve('./john/lib/../photos///pet')
'/usr/local/john/photos/pet'
Using path.resolve() on Windows:
> process.cwd()
'C:\\Windows\\System'
> path.resolve('C:\\Users/jane\\doc\\..\\proj\\\\src')
'C:\\Users\\jane\\proj\\src'
> path.resolve('.\\jane\\doc\\..\\proj\\\\src')
'C:\\Windows\\System\\jane\\proj\\src'
path.relative(): creating relative paths
path.relative(sourcePath: string, destinationPath: string): string
Returns a relative path that gets us from sourcePath to destinationPath:
> path.posix.relative('/home/john/', '/home/john/proj/my-lib/README.md')
'proj/my-lib/README.md'
> path.posix.relative('/tmp/proj/my-lib/', '/tmp/doc/zsh.txt')
'../../doc/zsh.txt'
On Windows, we get a fully qualified path if sourcePath and destinationPath are on different drives:
> path.win32.relative('Z:\\tmp\\', 'C:\\Users\\Jane\\')
'C:\\Users\\Jane'
This function also works with relative paths:
> path.posix.relative('proj/my-lib/', 'doc/zsh.txt')
'../../doc/zsh.txt'
Parsing paths: extracting various parts of a path (filename extension etc.)
path.parse(): creating an object with path parts
type PathObject = {
dir: string,
root: string,
base: string,
name: string,
ext: string,
};
path.parse(path: string): PathObject
Extracts various parts of path and returns them in an object with the following properties:
Later, we’ll see function path.format() which is the inverse of path.parse(): It converts an object with path parts into a path.
Example: path.parse() on Unix
This is what using path.parse() on Unix looks like:
> path.posix.parse('/home/jane/file.txt')
{
dir: '/home/jane',
root: '/',
base: 'file.txt',
name: 'file',
ext: '.txt',
}
The following diagram visualizes the extent of the parts:
/ home/jane / file .txt
| root | | name | ext |
| dir | base |
For example, we can see that .dir is the path without the base. And that .base is .name plus .ext.
Example: path.parse() on Windows
This is how path.parse() works on Windows:
> path.win32.parse(String.raw`C:\Users\john\file.txt`)
{
dir: 'C:\\Users\\john',
root: 'C:\\',
base: 'file.txt',
name: 'file',
ext: '.txt',
}
This is a diagram for the result:
C:\ Users\john \ file .txt
| root | | name | ext |
| dir | base |
path.basename(): extracting the base of a path
path.basename(path, ext?)
Returns the base of path:
> path.basename('/home/jane/file.txt')
'file.txt'
Optionally, this function can also remove a suffix:
> path.basename('/home/jane/file.txt', '.txt')
'file'
> path.basename('/home/jane/file.txt', 'txt')
'file.'
> path.basename('/home/jane/file.txt', 'xt')
'file.t'
Removing the extension is case sensitive – even on Windows!
> path.win32.basename(String.raw`C:\Users\john\file.txt`, '.txt')
'file'
> path.win32.basename(String.raw`C:\Users\john\file.txt`, '.TXT')
'file.txt'
path.dirname(): extracting the parent directory of a path
path.dirname(path)
Returns the parent directory of the file or directory at path:
> path.win32.dirname(String.raw`C:\Users\john\file.txt`)
'C:\\Users\\john'
> path.win32.dirname('C:\\Users\\john\\dir\\')
'C:\\Users\\john'
> path.posix.dirname('/home/jane/file.txt')
'/home/jane'
> path.posix.dirname('/home/jane/dir/')
'/home/jane'
path.extname(): extracting the extension of a path
path.extname(path)
Returns the extension of path:
> path.extname('/home/jane/file.txt')
'.txt'
> path.extname('/home/jane/file.')
'.'
> path.extname('/home/jane/file')
''
> path.extname('/home/jane/')
''
> path.extname('/home/jane')
''
Categorizing paths
path.isAbsolute(): Is a given path absolute?
path.isAbsolute(path: string): boolean
Returns true if path is absolute and false otherwise.
The results on Unix are straightforward:
> path.posix.isAbsolute('/home/john')
true
> path.posix.isAbsolute('john')
false
On Windows, “absolute” does not necessarily mean “fully qualified” (only the first path is fully qualified):
> path.win32.isAbsolute('C:\\Users\\jane')
true
> path.win32.isAbsolute('\\Users\\jane')
true
> path.win32.isAbsolute('C:jane')
false
> path.win32.isAbsolute('jane')
false
path.format(): creating paths out of parts
type PathObject = {
dir: string,
root: string,
base: string,
name: string,
ext: string,
};
path.format(pathObject: PathObject): string
Creates a path out of a path object:
> path.format({dir: '/home/jane', base: 'file.txt'})
'/home/jane/file.txt'
Example: changing the filename extension
We can use path.format() to change the extension of a path:
function changeFilenameExtension(pathStr, newExtension) {
if (!newExtension.startsWith('.')) {
throw new Error(
'Extension must start with a dot: '
+ JSON.stringify(newExtension)
);
}
const parts = path.parse(pathStr);
return path.format({
...parts,
base: undefined, // prevent .base from overriding .name and .ext
ext: newExtension,
});
}
assert.equal(
changeFilenameExtension('/tmp/file.md', '.html'),
'/tmp/file.html'
);
assert.equal(
changeFilenameExtension('/tmp/file', '.html'),
'/tmp/file.html'
);
assert.equal(
changeFilenameExtension('/tmp/file/', '.html'),
'/tmp/file.html'
);
If we know the original filename extension, we can also use a regular expression to change the filename extension:
> '/tmp/file.md'.replace(/\.md$/i, '.html')
'/tmp/file.html'
> '/tmp/file.MD'.replace(/\.md$/i, '.html')
'/tmp/file.html'
Using the same paths on different platforms
Sometimes we’d like to use the same paths on different platforms. Then there are two issues that we are facing:
As an example, consider a Node.js app that operates on a directory with data. Let’s assume that the app can be configured with two kinds of paths:
Due to the aforementioned issues:
We can’t reuse fully qualified paths between platforms.
We can reuse paths that point into the data directory. Such paths may be stored in configuration files (inside the data directory or not) and in constants in the app’s code. To do that:
The next subsection explains how both can be achieved.
Relative platform-independent paths
Relative platform-independent paths can be stored as Arrays of path segments and turned into fully qualified platform-specific paths as follows:
const universalRelativePath = ['static', 'img', 'logo.jpg'];
const dataDirUnix = '/home/john/data-dir';
assert.equal(
path.posix.resolve(dataDirUnix, ...universalRelativePath),
'/home/john/data-dir/static/img/logo.jpg'
);
const dataDirWindows = 'C:\\Users\\jane\\data-dir';
assert.equal(
path.win32.resolve(dataDirWindows, ...universalRelativePath),
'C:\\Users\\jane\\data-dir\\static\\img\\logo.jpg'
);
To create relative platform-specific paths, we can use:
const dataDir = '/home/john/data-dir';
const pathInDataDir = '/home/john/data-dir/static/img/logo.jpg';
assert.equal(
path.relative(dataDir, pathInDataDir),
'static/img/logo.jpg'
);
The following function converts relative platform-specific paths into platform-independent paths:
import * as path from 'node:path';
function splitRelativePathIntoSegments(relPath) {
if (path.isAbsolute(relPath)) {
throw new Error('Path isn’t relative: ' + relPath);
}
relPath = path.normalize(relPath);
const result = [];
while (true) {
const base = path.basename(relPath);
if (base.length === 0) break;
result.unshift(base);
const dir = path.dirname(relPath);
if (dir === '.') break;
relPath = dir;
}
return result;
}
Using splitRelativePathIntoSegments() on Unix:
> splitRelativePathIntoSegments('static/img/logo.jpg')
[ 'static', 'img', 'logo.jpg' ]
> splitRelativePathIntoSegments('file.txt')
[ 'file.txt' ]
Using splitRelativePathIntoSegments() on Windows:
> splitRelativePathIntoSegments('static/img/logo.jpg')
[ 'static', 'img', 'logo.jpg' ]
> splitRelativePathIntoSegments('C:static/img/logo.jpg')
[ 'static', 'img', 'logo.jpg' ]
> splitRelativePathIntoSegments('file.txt')
[ 'file.txt' ]
> splitRelativePathIntoSegments('C:file.txt')
[ 'file.txt' ]
Using a library to match paths via globs
The npm module 'minimatch' lets us match paths against patterns that are called glob expressions, glob patterns, or globs:
import minimatch from 'minimatch';
assert.equal(
minimatch('/dir/sub/file.txt', '/dir/sub/*.txt'), true
);
assert.equal(
minimatch('/dir/sub/file.txt', '/**/file.txt'), true
);
Use cases for globs:
More glob libraries:
The minimatch API
The whole API of minimatch is documented in the project’s readme file. In this subsection, we look at the most important functionality.
Minimatch compiles globs to JavaScript RegExp objects and uses those to match.
minimatch(): compiling and matching once
minimatch(path: string, glob: string, options?: MinimatchOptions): boolean
Returns true if glob matches path and false otherwise.
Two interesting options:
.dot: boolean (default: false)
If true, wildcard symbols such as * and ** match “invisible” path segments (whose names begin with dots):
> minimatch('/usr/local/.tmp/data.json', '/usr/**/data.json')
false
> minimatch('/usr/local/.tmp/data.json', '/usr/**/data.json', {dot: true})
true
> minimatch('/tmp/.log/events.txt', '/tmp/*/events.txt')
false
> minimatch('/tmp/.log/events.txt', '/tmp/*/events.txt', {dot: true})
true
.matchBase: boolean (default: false)
If true, a pattern without slashes is matched against the basename of a path:
> minimatch('/dir/file.txt', 'file.txt')
false
> minimatch('/dir/file.txt', 'file.txt', {matchBase: true})
true
new minimatch.Minimatch(): compiling once, matching multiple times
Class minimatch.Minimatch enables us to only compile the glob to a regular expression once and match multiple times:
new Minimatch(pattern: string, options?: MinimatchOptions)
This is how this class is used:
import minimatch from 'minimatch';
const {Minimatch} = minimatch;
const glob = new Minimatch('/dir/sub/*.txt');
assert.equal(
glob.match('/dir/sub/file.txt'), true
);
assert.equal(
glob.match('/dir/sub/notes.txt'), true
);
Syntax of glob expressions
This subsection covers the essentials of the syntax. But there are more features. These are documented here:
Matching Windows paths
Even on Windows, glob segments are separated by slashes – but they match both backslashes and slashes (which are legal path separators on Windows):
> minimatch('dir\\sub/file.txt', 'dir/sub/file.txt')
true
Minimatch does not normalize paths
Minimatch does not normalize paths for us:
> minimatch('./file.txt', './file.txt')
true
> minimatch('./file.txt', 'file.txt')
false
> minimatch('file.txt', './file.txt')
false
Therefore, we have to normalize paths if we don’t create them ourselves:
> path.normalize('./file.txt')
'file.txt'
Patterns without wildcard symbols: path separators must line up
Patterns without wildcard symbols (that match more flexibly) must match exactly. Especially the path separators must line up:
> minimatch('/dir/file.txt', '/dir/file.txt')
true
> minimatch('dir/file.txt', 'dir/file.txt')
true
> minimatch('/dir/file.txt', 'dir/file.txt')
false
> minimatch('/dir/file.txt', 'file.txt')
false
That is, we must decide on either absolute or relative paths.
With option .matchBase, we can match patterns without slashes against the basenames of paths:
> minimatch('/dir/file.txt', 'file.txt', {matchBase: true})
true
The asterisk (*) matches any (part of a) single segment
The wildcard symbol asterisk (*) matches any path segment or any part of a segment:
> minimatch('/dir/file.txt', '/*/file.txt')
true
> minimatch('/tmp/file.txt', '/*/file.txt')
true
> minimatch('/dir/file.txt', '/dir/*.txt')
true
> minimatch('/dir/data.txt', '/dir/*.txt')
true
The asterisk does not match “invisible files“ whose names start with dots. If we want to match those, we have to prefix the asterisk with a dot:
> minimatch('file.txt', '*')
true
> minimatch('.gitignore', '*')
false
> minimatch('.gitignore', '.*')
true
> minimatch('/tmp/.log/events.txt', '/tmp/*/events.txt')
false
Option .dot lets us switch off this behavior:
> minimatch('.gitignore', '*', {dot: true})
true
> minimatch('/tmp/.log/events.txt', '/tmp/*/events.txt', {dot: true})
true
The double asterisk (**) matches zero or more segments
´**/ matches zero or more segments:
> minimatch('/file.txt', '/**/file.txt')
true
> minimatch('/dir/file.txt', '/**/file.txt')
true
> minimatch('/dir/sub/file.txt', '/**/file.txt')
true
If we want to match relative paths, the pattern still must not start with a path separator:
> minimatch('file.txt', '/**/file.txt')
false
The double asterisk does not match “invisible” path segments whose names start with dots:
> minimatch('/usr/local/.tmp/data.json', '/usr/**/data.json')
false
We can switch off that behavior via option .dot:
> minimatch('/usr/local/.tmp/data.json', '/usr/**/data.json', {dot: true})
true
Negating globs
If we start a glob with an exclamation mark, it matches if the pattern after the exclamation mark does not match:
> minimatch('file.txt', '!**/*.txt')
false
> minimatch('file.js', '!**/*.txt')
true
Alternative patterns
Comma-separate patterns inside braces match if one of the patterns matches:
> minimatch('file.txt', 'file.{txt,js}')
true
> minimatch('file.js', 'file.{txt,js}')
true
Ranges of integers
A pair of integers separated by double dots defines a range of integers and matches if any of its elements matches:
> minimatch('file1.txt', 'file{1..3}.txt')
true
> minimatch('file2.txt', 'file{1..3}.txt')
true
> minimatch('file3.txt', 'file{1..3}.txt')
true
> minimatch('file4.txt', 'file{1..3}.txt')
false
Padding with zeros is supported, too:
> minimatch('file1.txt', 'file{01..12}.txt')
false
> minimatch('file01.txt', 'file{01..12}.txt')
true
> minimatch('file02.txt', 'file{01..12}.txt')
true
> minimatch('file12.txt', 'file{01..15}.txt')
true
Using file: URLs to refer to files
There are two common ways to refer to files in Node.js:
For example:
assert.equal(
fs.readFileSync(
'/tmp/data.txt', {encoding: 'utf-8'}),
'Content'
);
assert.equal(
fs.readFileSync(
new URL('file:///tmp/data.txt'), {encoding: 'utf-8'}),
'Content'
);
Class URL
In this section, we take a closer look at class URL. More information on this class:
In this chapter, we access class URL via a global variable because that’s how it’s used on other web platforms. But it can also be imported:
import {URL} from 'node:url';
URIs vs. relative references
URLs are a subset of URIs. RFC 3986, the standard for URIs, distinguishes two kinds of URI-references:
Constructor of URL
Class URL can be instantiated in two ways:
new URL(uri: string)
uri must be a URI. It specifies the URI of the new instance.
new URL(uriRef: string, baseUri: string)
baseUri must be a URI. If uriRef is a relative reference, it is resolved against baseUri and the result becomes the URI of the new instance.
If uriRef is a URI, it completely replaces baseUri as the data on which the instance is based.
Here we can see the class in action:
// If there is only one argument, it must be a proper URI
assert.equal(
new URL('https://example.com/public/page.html').toString(),
'https://example.com/public/page.html'
);
assert.throws(
() => new URL('../book/toc.html'),
/^TypeError \[ERR_INVALID_URL\]: Invalid URL$/
);
// Resolve a relative reference against a base URI
assert.equal(
new URL(
'../book/toc.html',
'https://example.com/public/page.html'
).toString(),
'https://example.com/book/toc.html'
);
Resolving relative references against instances of URL
Let’s revisit this variant of the URL constructor:
new URL(uriRef: string, baseUri: string)
The argument baseUri is coerced to string. Therefore, any object can be used – as long as it becomes a valid URL when coereced to string:
const obj = { toString() {return 'https://example.com'} };
assert.equal(
new URL('index.html', obj).href,
'https://example.com/index.html'
);
That enables us to resolve relative references against URL instances:
const url = new URL('https://example.com/dir/file1.html');
assert.equal(
new URL('../file2.html', url).href,
'https://example.com/file2.html'
);
Used this way, the constructor is loosely similar to path.resolve().
Properties of URL instances
Instances of URL have the following properties:
type URL = {
protocol: string,
username: string,
password: string,
hostname: string,
port: string,
host: string,
readonly origin: string,
pathname: string,
search: string,
readonly searchParams: URLSearchParams,
hash: string,
href: string,
toString(): string,
toJSON(): string,
}
Converting URLs to strings
There are three common ways in which we can convert URLs to strings:
const url = new URL('https://example.com/about.html');
assert.equal(
url.toString(),
'https://example.com/about.html'
);
assert.equal(
url.href,
'https://example.com/about.html'
);
assert.equal(
url.toJSON(),
'https://example.com/about.html'
);
Method .toJSON() enables us to use URLs in JSON data:
const jsonStr = JSON.stringify({
pageUrl: new URL('https://exploringjs.com')
});
assert.equal(
jsonStr, '{"pageUrl":"https://exploringjs.com"}'
);
Getting URL properties
The properties of URL instances are not own data properties, they are implemented via getters and setters. In the next example, we use the utility function pickProps() (whose code is shown at the end), to copy the values returned by those getters into a plain object:
const props = pickProps(
new URL('https://jane:pw@example.com:80/news.html?date=today#misc'),
'protocol', 'username', 'password', 'hostname', 'port', 'host',
'origin', 'pathname', 'search', 'hash', 'href'
);
assert.deepEqual(
props,
{
protocol: 'https:',
username: 'jane',
password: 'pw',
hostname: 'example.com',
port: '80',
host: 'example.com:80',
origin: 'https://example.com:80',
pathname: '/news.html',
search: '?date=today',
hash: '#misc',
href: 'https://jane:pw@example.com:80/news.html?date=today#misc'
}
);
function pickProps(input, ...keys) {
const output = {};
for (const key of keys) {
output[key] = input[key];
}
return output;
}
Alas, the pathname is a single atomic unit. That is, we can’t use class URL to access its parts (base, extension, etc.).
Setting parts of a URL
We can also change parts of a URL by setting properties such as .hostname:
const url = new URL('https://example.com');
url.hostname = '2ality.com';
assert.equal(
url.href, 'https://2ality.com/'
);
We can use the setters to create URLs from parts (idea by Haroen Viaene):
// Object.assign() invokes setters when transferring property values
const urlFromParts = (parts) => Object.assign(
new URL('https://example.com'), // minimal dummy URL
parts // assigned to the dummy
);
const url = urlFromParts({
protocol: 'https:',
hostname: '2ality.com',
pathname: '/p/about.html',
});
assert.equal(
url.href, 'https://2ality.com/p/about.html'
);
Managing search parameters via .searchParams
We can use property .searchParams to manage the search parameters of URLs. Its value is an instance of URLSearchParams.
We can use it to read search parameters:
const url = new URL('https://example.com/?topic=js');
assert.equal(
url.searchParams.get('topic'), 'js'
);
assert.equal(
url.searchParams.has('topic'), true
);
We can also change search parameters via it:
url.searchParams.append('page', '5');
assert.equal(
url.href, 'https://example.com/?topic=js&page=5'
);
url.searchParams.set('topic', 'css');
assert.equal(
url.href, 'https://example.com/?topic=css&page=5'
);
Converting between URLs and file paths
It’s tempting to convert between file paths and URLs manually. For example, we can try to convert an URL instance myUrl to a file path via myUrl.pathname. However that doesn’t always work – it’s better to use this function:
url.fileURLToPath(url: URL | string): string
The following code compares the results of that function with the values of .pathname:
import * as url from 'node:url';
//::::: Unix :::::
const url1 = new URL('file:///tmp/with%20space.txt');
assert.equal(
url1.pathname, '/tmp/with%20space.txt');
assert.equal(
url.fileURLToPath(url1), '/tmp/with space.txt');
const url2 = new URL('file:///home/thor/Mj%C3%B6lnir.txt');
assert.equal(
url2.pathname, '/home/thor/Mj%C3%B6lnir.txt');
assert.equal(
url.fileURLToPath(url2), '/home/thor/Mjölnir.txt');
//::::: Windows :::::
const url3 = new URL('file:///C:/dir/');
assert.equal(
url3.pathname, '/C:/dir/');
assert.equal(
url.fileURLToPath(url3), 'C:\\dir\\');
This function is the inverse of url.fileURLToPath():
url.pathToFileURL(path: string): URL
It converts path to a file URL:
> url.pathToFileURL('/home/john/Work Files').href
'file:///home/john/Work%20Files'
Use case for URLs: accessing files relative to the current module
One important use case for URLs is accessing a file that is a sibling of the current module:
function readData() {
const url = new URL('data.txt', import.meta.url);
return fs.readFileSync(url, {encoding: 'UTF-8'});
}
This function uses import.meta.url which contains the URL of the current module (which is usually a file: URL on Node.js).
Using fetch() would have made the previous code even more cross-platform. However, as of Node.js 18.9.0, fetch() doesn’t work for file: URLs yet:
> await fetch('file:///tmp/file.txt')
TypeError: fetch failed
cause: Error: not implemented... yet...
Use case for URLs: detecting if the current module is “main” (the app entry point)
An ESM module can be used in two ways:
If we want a module to be used in both ways, we need a way to check if the current module is the main module because only then do we execute the script functionality. In this chapter, we learn how to perform that check.
Determining if a CommonJS module is main
With CommonJS, we can use the following pattern to detect if the current module was the entry point (source: Node.js documentation):
if (require.main === module) {
// Main CommonJS module
}
Determining if an ESM module is main
As of now, ESM modules have no simple built-in way to check if a module is main. Instead, we have to use the following workaround (based on a tweet by Rich Harris):
import * as url from 'node:url';
if (import.meta.url.startsWith('file:')) { // (A)
const modulePath = url.fileURLToPath(import.meta.url);
if (process.argv[1] === modulePath) { // (B)
// Main ESM module
}
}
Explanations:
import.meta.url contains the URL of the currently executed ESM module.
If we are sure our code always runs locally (which may become less common in the future), we can omit the check in line A. If we do and the code does not run locally, at least we get an exception (and not a silent failure) – thanks to url.fileURLToPath() (see next item).
We use url.fileURLToPath() to convert the URL to a local path. This function throws an exception if the protocol isn’t file:.
process.argv[1] contains the path of the initial module. The comparison in line B works because this value is always an absolute path – Node.js sets it up as follows (source code):
process.argv[1] = path.resolve(process.argv[1]);
Paths vs. file: URLs
When shell scripts receive references to files or export references to files (e.g. by logging them on screen), they are virtually always paths. However, there are two cases where we need URLs (as discussed in previous subsections):
Working with the file system on Node.js
This chapter contains:
Given that the focus of this book is on shell scripting, we only work with textual data.
Concepts, patterns and conventions of Node’s file system APIs
Ways of accessing files
Note that we don’t use (3) in this chapter – (1) and (2) are enough for our purposes.
Function name prefixes
Prefix “l”: symbolic links
Functions whose names start with an “l” usually operate on symbolic links:
Prefix “f”: file descriptors
Functions whose names start with an “f” usually manage file descriptors:
Important classes
Several classes play important roles in Node’s file system APIs.
URLs: an alternative to file system paths in strings
Whenever a Node.js function accepts a file system path in a string (line A), it usually also accepts an instance of URL (line B):
assert.equal(
fs.readFileSync(
'/tmp/text-file.txt', {encoding: 'utf-8'}), // (A)
'Text content'
);
assert.equal(
fs.readFileSync(
new URL('file:///tmp/text-file.txt'), {encoding: 'utf-8'}), // (B)
'Text content'
);
Manually converting between paths and file: URLs seems easy but has surprisingly many pitfalls: percent encoding or decoding, Windows drive letters, etc. Instead, it’s better to use the following two functions:
We don’t use file URLs in this chapter. Use cases for them are described in §7.11.1 “Class URL”.
Buffers
Class Buffer represents fixed-length byte sequences on Node.js. It is a subclass of Uint8Array (a TypedArray). Buffers are mostly used when working with binary files and therefore of less interest in this book.
Whenever Node.js accepts a Buffer, it also accepts a Uint8Array. Thus, given that Uint8Arrays are cross-platform and Buffers aren’t, the former is preferable.
Buffers can do one thing that Uint8Arrays can’t: encoding and decoding text in various encodings. If we need to encode or decode UTF-8 in Uint8Arrays, we can use class TextEncoder or class TextDecoder. These classes are available on most JavaScript platforms:
> new TextEncoder().encode('café')
Uint8Array.of(99, 97, 102, 195, 169)
> new TextDecoder().decode(Uint8Array.of(99, 97, 102, 195, 169))
'café'
Node.js streams
Some functions accept or return native Node.js streams:
Instead of native streams, we can now use cross-platform web streams on Node.js. How is explained in §10 “Using web streams on Node.js”.
Reading and writing files
Reading a file synchronously into a single string (optional: splitting into lines)
fs.readFileSync(filePath, options?) reads the file at filePath into a single string:
assert.equal(
fs.readFileSync('text-file.txt', {encoding: 'utf-8'}),
'there\r\nare\nmultiple\nlines'
);
Pros and cons of this approach (vs. using a stream):
Next, we’ll look into spliting the string we have read into lines.
Splitting lines without including line terminators
The following code splits a string into lines while removing line terminators. It works with Unix and Windows line terminators:
const RE_SPLIT_EOL = /\r?\n/;
function splitLines(str) {
return str.split(RE_SPLIT_EOL);
}
assert.deepEqual(
splitLines('there\r\nare\nmultiple\nlines'),
['there', 'are', 'multiple', 'lines']
);
“EOL” stands for “end of line”. We accept both Unix line terminators ('\n') and Windows line terminators ('\r\n', like the first one in the previous example). For more information, see §8.3 “Handling line terminators across platforms”.
Splitting lines while including line terminators
The following code splits a string into lines while including line terminators. It works with Unix and Windows line terminators (“EOL” stands for “end of line”):
const RE_SPLIT_AFTER_EOL = /(?<=\r?\n)/; // (A)
function splitLinesWithEols(str) {
return str.split(RE_SPLIT_AFTER_EOL);
}
assert.deepEqual(
splitLinesWithEols('there\r\nare\nmultiple\nlines'),
['there\r\n', 'are\n', 'multiple\n', 'lines']
);
assert.deepEqual(
splitLinesWithEols('first\n\nthird'),
['first\n', '\n', 'third']
);
assert.deepEqual(
splitLinesWithEols('EOL at the end\n'),
['EOL at the end\n']
);
assert.deepEqual(
splitLinesWithEols(''),
['']
);
Line A contains a regular expression with a lookbehind assertion. It matches at locations that are preceded by a match for the pattern \r?\n but it doesn’t capture anything. Therefore, it doesn’t remove anything between the string fragments that the input string is split into.
On engines that don’t support lookbehind assertions (see this table), we can use the following solution:
function splitLinesWithEols(str) {
if (str.length === 0) return [''];
const lines = [];
let prevEnd = 0;
while (prevEnd < str.length) {
// Searching for '\n' means we’ll also find '\r\n'
const newlineIndex = str.indexOf('\n', prevEnd);
// If there is a newline, it’s included in the line
const end = newlineIndex < 0 ? str.length : newlineIndex+1;
lines.push(str.slice(prevEnd, end));
prevEnd = end;
}
return lines;
}
This solution is simple, but more verbose.
In both versions of splitLinesWithEols(), we again accept both Unix line terminators ('\n') and Windows line terminators ('\r\n'). For more information, see §8.3 “Handling line terminators across platforms”.
Reading a file via a stream, line by line
We can also read text files via streams:
import {Readable} from 'node:stream';
const nodeReadable = fs.createReadStream(
'text-file.txt', {encoding: 'utf-8'});
const webReadableStream = Readable.toWeb(nodeReadable);
const lineStream = webReadableStream.pipeThrough(
new ChunksToLinesStream());
for await (const line of lineStream) {
console.log(line);
}
// Output:
// 'there\r\n'
// 'are\n'
// 'multiple\n'
// 'lines'
We used the following external functionality:
Web streams are asynchronously iterable, which is why we can use a for-await-of loop to iterate over lines.
If we are not interested in text lines, then we don’t need ChunksToLinesStream, can iterate over webReadableStream and get chunks with arbitrary lengths.
More information:
Web streams are covered in §10 “Using web streams on Node.js”.
Line terminators are covered in §8.3 “Handling line terminators across platforms”.
Pros and cons of this approach (vs. reading a single string):
Writing a single string to a file synchronously
fs.writeFileSync(filePath, str, options?) writes str to a file at filePath. If a file already exists at that path, it is overwritten.
The following code shows how to use this function:
fs.writeFileSync(
'new-file.txt',
'First line\nSecond line\n',
{encoding: 'utf-8'}
);
For information on line terminators, see §8.3 “Handling line terminators across platforms”.
Pros and cons (vs. using a stream):
Appending a single string to a file (synchronously)
The following code appends a line of text to an existing file:
fs.appendFileSync(
'existing-file.txt',
'Appended line\n',
{encoding: 'utf-8'}
);
We can also use fs.writeFileSync() to perform this task:
fs.writeFileSync(
'existing-file.txt',
'Appended line\n',
{encoding: 'utf-8', flag: 'a'}
);
This code is almost the same as the one we used to overwrite existing content (see the previous section for more information). The only difference is that we added the option .flag: The value 'a' means that we append data. Other possible values (e.g. to throw an error if a file doesn’t exist yet) are explained in the Node.js documentation.
Watch out: In some functions, this option is named .flag, in others .flags.
Writing multiple strings to a file via stream
The following code uses a stream to write multiple strings to a file:
import {Writable} from 'node:stream';
const nodeWritable = fs.createWriteStream(
'new-file.txt', {encoding: 'utf-8'});
const webWritableStream = Writable.toWeb(nodeWritable);
const writer = webWritableStream.getWriter();
try {
await writer.write('First line\n');
await writer.write('Second line\n');
await writer.close();
} finally {
writer.releaseLock()
}
We used the following functions:
More information:
Pros and cons (vs. writing a single string):
Appending multiple strings to a file via a stream (asynchronously)
The following code uses a stream to append text to an existing file:
import {Writable} from 'node:stream';
const nodeWritable = fs.createWriteStream(
'existing-file.txt', {encoding: 'utf-8', flags: 'a'});
const webWritableStream = Writable.toWeb(nodeWritable);
const writer = webWritableStream.getWriter();
try {
await writer.write('First appended line\n');
await writer.write('Second appended line\n');
await writer.close();
} finally {
writer.releaseLock()
}
This code is almost the same as the one we used to overwrite existing content (see the previous section for more information). The only difference is that we added the option .flags: The value 'a' means that we append data. Other possible values (e.g. to throw an error if a file doesn’t exist yet) are explained in the Node.js documentation.
Watch out: In some functions, this option is named .flag, in others .flags.
Handling line terminators across platforms
Alas, not all platform have the same line terminator characters that mark the end of line (EOL):
To handle EOL in a manner that works on all platforms, we can use several strategies.
Reading line terminators
When reading text, it’s best to recognize both EOLs.
What might that look like when splitting a text into lines? We can include the EOLs (in either format) at the ends. That enables us to change as little as possible if we modify those lines and write them to a file.
When processing lines with EOLs, it’s sometimes useful to remove them – e.g. via the following function:
const RE_EOL_REMOVE = /\r?\n$/;
function removeEol(line) {
const match = RE_EOL_REMOVE.exec(line);
if (!match) return line;
return line.slice(0, match.index);
}
assert.equal(
removeEol('Windows EOL\r\n'),
'Windows EOL'
);
assert.equal(
removeEol('Unix EOL\n'),
'Unix EOL'
);
assert.equal(
removeEol('No EOL'),
'No EOL'
);
Writing line terminators
When it comes to writing line terminators, we have two options:
Traversing and creating directories
Traversing a directory
The following function traverses a directory and lists all of its descendants (its children, the children of its children, etc.):
import * as path from 'node:path';
function* traverseDirectory(dirPath) {
const dirEntries = fs.readdirSync(dirPath, {withFileTypes: true});
// Sort the entries to keep things more deterministic
dirEntries.sort(
(a, b) => a.name.localeCompare(b.name, 'en')
);
for (const dirEntry of dirEntries) {
const fileName = dirEntry.name;
const pathName = path.join(dirPath, fileName);
yield pathName;
if (dirEntry.isDirectory()) {
yield* traverseDirectory(pathName);
}
}
}
We used this functionality:
The following code shows traverseDirectory() in action:
for (const filePath of traverseDirectory('dir')) {
console.log(filePath);
}
// Output:
// 'dir/dir-file.txt'
// 'dir/subdir'
// 'dir/subdir/subdir-file1.txt'
// 'dir/subdir/subdir-file2.csv'
Creating a directory (mkdir, mkdir -p)
We can use the following function to create directories:
fs.mkdirSync(thePath, options?): undefined | string
options.recursive determines how the function creates the directory at thePath:
This is mkdirSync() in action:
assert.deepEqual(
Array.from(traverseDirectory('.')),
[
'dir',
]
);
fs.mkdirSync('dir/sub/subsub', {recursive: true});
assert.deepEqual(
Array.from(traverseDirectory('.')),
[
'dir',
'dir/sub',
'dir/sub/subsub',
]
);
Function traverseDirectory(dirPath) lists all descendants of the directory at dirPath.
Ensuring that a parent directory exists
If we want to set up a nested file structure on demand, we can’t always be sure that the ancestor directories exist when we create a new file. Then the following function helps:
import * as path from 'node:path';
function ensureParentDirectory(filePath) {
const parentDir = path.dirname(filePath);
if (!fs.existsSync(parentDir)) {
fs.mkdirSync(parentDir, {recursive: true});
}
}
Here we can see ensureParentDirectory() in action (line A):
assert.deepEqual(
Array.from(traverseDirectory('.')),
[
'dir',
]
);
const filePath = 'dir/sub/subsub/new-file.txt';
ensureParentDirectory(filePath); // (A)
fs.writeFileSync(filePath, 'content', {encoding: 'utf-8'});
assert.deepEqual(
Array.from(traverseDirectory('.')),
[
'dir',
'dir/sub',
'dir/sub/subsub',
'dir/sub/subsub/new-file.txt',
]
);
Creating a temporary directory
fs.mkdtempSync(pathPrefix, options?) creates a temporary directory: It appends 6 random characters to pathPrefix, creates a directory at the new path and returns that path.
pathPrefix shouldn’t end with a capital “X” because some platforms replace trailing Xs with random characters.
If we want to create our temporary directory inside an operating-system-specific global temporary directory, we can use function os.tmpdir():
import * as os from 'node:os';
import * as path from 'node:path';
const pathPrefix = path.resolve(os.tmpdir(), 'my-app');
// e.g. '/var/folders/ph/sz0384m11vxf/T/my-app'
const tmpPath = fs.mkdtempSync(pathPrefix);
// e.g. '/var/folders/ph/sz0384m11vxf/T/my-app1QXOXP'
It’s important to note that temporary directories are not automatically removed when a Node.js script terminates. We either have to delete it ourselves or rely on the operating system to periodically clean up its global temporary directory (which it may or may not do).
Copying, renaming, moving files or directories
Copying files or directories
fs.cpSync(srcPath, destPath, options?): copies a file or directory from srcPath to destPath. Interesting options:
This is the function in action:
assert.deepEqual(
Array.from(traverseDirectory('.')),
[
'dir-orig',
'dir-orig/some-file.txt',
]
);
fs.cpSync('dir-orig', 'dir-copy', {recursive: true});
assert.deepEqual(
Array.from(traverseDirectory('.')),
[
'dir-copy',
'dir-copy/some-file.txt',
'dir-orig',
'dir-orig/some-file.txt',
]
);
Function traverseDirectory(dirPath) lists all descendants of the directory at dirPath.
Renaming or moving files or directories
fs.renameSync(oldPath, newPath) renames or moves a file or a directory from oldPath to newPath.
Let’s use this function to rename a directory:
assert.deepEqual(
Array.from(traverseDirectory('.')),
[
'old-dir-name',
'old-dir-name/some-file.txt',
]
);
fs.renameSync('old-dir-name', 'new-dir-name');
assert.deepEqual(
Array.from(traverseDirectory('.')),
[
'new-dir-name',
'new-dir-name/some-file.txt',
]
);
Here we use the function to move a file:
assert.deepEqual(
Array.from(traverseDirectory('.')),
[
'dir',
'dir/subdir',
'dir/subdir/some-file.txt',
]
);
fs.renameSync('dir/subdir/some-file.txt', 'some-file.txt');
assert.deepEqual(
Array.from(traverseDirectory('.')),
[
'dir',
'dir/subdir',
'some-file.txt',
]
);
Function traverseDirectory(dirPath) lists all descendants of the directory at dirPath.
Removing files or directories
Removing files and arbitrary directories (shell: rm, rm -r)
fs.rmSync(thePath, options?) removes a file or directory at thePath. Interesting options:
Let’s use fs.rmSync() to remove a file:
assert.deepEqual(
Array.from(traverseDirectory('.')),
[
'dir',
'dir/some-file.txt',
]
);
fs.rmSync('dir/some-file.txt');
assert.deepEqual(
Array.from(traverseDirectory('.')),
[
'dir',
]
);
Here we use fs.rmSync() to recursively remove a non-empty directory.
assert.deepEqual(
Array.from(traverseDirectory('.')),
[
'dir',
'dir/subdir',
'dir/subdir/some-file.txt',
]
);
fs.rmSync('dir/subdir', {recursive: true});
assert.deepEqual(
Array.from(traverseDirectory('.')),
[
'dir',
]
);
Function traverseDirectory(dirPath) lists all descendants of the directory at dirPath.
Removing an empty directory (shell: rmdir)
fs.rmdirSync(thePath, options?) removes an empty directory (an exception is thrown if a directory isn’t empty).
The following code shows how this function works:
assert.deepEqual(
Array.from(traverseDirectory('.')),
[
'dir',
'dir/subdir',
]
);
fs.rmdirSync('dir/subdir');
assert.deepEqual(
Array.from(traverseDirectory('.')),
[
'dir',
]
);
Function traverseDirectory(dirPath) lists all descendants of the directory at dirPath.
Clearing directories
A script that saves its output to a directory dir, often needs to clear dir before it starts: Remove every file in dir so that it is empty. The following function does that.
import * as path from 'node:path';
function clearDirectory(dirPath) {
for (const fileName of fs.readdirSync(dirPath)) {
const pathName = path.join(dirPath, fileName);
fs.rmSync(pathName, {recursive: true});
}
}
We used two file system functions:
This is an example of using clearDirectory():
assert.deepEqual(
Array.from(traverseDirectory('.')),
[
'dir',
'dir/dir-file.txt',
'dir/subdir',
'dir/subdir/subdir-file.txt'
]
);
clearDirectory('dir');
assert.deepEqual(
Array.from(traverseDirectory('.')),
[
'dir',
]
);
Trashing files or directories
The library trash moves files and folders to the trash. It works on macOS, Windows, and Linux (where support is limited and help is wanted). This is an example from its readme file:
import trash from 'trash';
await trash(['*.png', '!rainbow.png']);
trash() accepts either an Array of strings or a string as its first parameter. Any string can be a glob pattern (with asterisks and other meta-characters).
Reading and changing file system entries
Checking if a file or directory exists
fs.existsSync(thePath) returns true if a file or directory exists at thePath:
assert.deepEqual(
Array.from(traverseDirectory('.')),
[
'dir',
'dir/some-file.txt',
]
);
assert.equal(
fs.existsSync('dir'), true
);
assert.equal(
fs.existsSync('dir/some-file.txt'), true
);
assert.equal(
fs.existsSync('dir/non-existent-file.txt'), false
);
Function traverseDirectory(dirPath) lists all descendants of the directory at dirPath.
Checking the stats of a file: Is it a directory? When was it created? Etc.
fs.statSync(thePath, options?) returns an instance of fs.Stats with information on the file or directory at thePath.
Interesting options:
Properties of instances of fs.Stats:
In the following example, we use fs.statSync() to implement a function isDirectory():
function isDirectory(thePath) {
const stats = fs.statSync(thePath, {throwIfNoEntry: false});
return stats !== undefined && stats.isDirectory();
}
assert.deepEqual(
Array.from(traverseDirectory('.')),
[
'dir',
'dir/some-file.txt',
]
);
assert.equal(
isDirectory('dir'), true
);
assert.equal(
isDirectory('dir/some-file.txt'), false
);
assert.equal(
isDirectory('non-existent-dir'), false
);
Function traverseDirectory(dirPath) lists all descendants of the directory at dirPath.
Changing file attributes: permissions, owner, group, timestamps
Let’s briefly look at functions for changing file attributes:
Working with links
Functions for working with hard links:
Functions for working with symbolic links:
The following functions operate on symbolic links without dereferencing them (note the name prefix “l”):
Other useful functions:
Options of functions that affect how symbolic links are handled:
Further reading
Native Node.js streams
This chapter is an introduction to Node’s native streams. They support asynchronous iteration which makes them easier to work with and which is what we will mostly use in this chapter.
Note that cross-platform web streams are covered in §10 “Using web streams on Node.js”. We will mostly use those in this book. Therefore, you can skip the current chapter if you want to.
Recap: asynchronous iteration and asynchronous generators
Asynchronous iteration is a protocol for retrieving the contents of a data container asynchronously (meaning the current “task” may be paused before retrieving an item).
Asynchronous generators help with async iteration. For example, this is an asynchronous generator function:
/**
* @returns an asynchronous iterable
*/
async function* asyncGenerator(asyncIterable) {
for await (const item of asyncIterable) { // input
if (···) {
yield '> ' + item; // output
}
}
}
In the remainder of the chapter, pay close attention to whether a function is an async function or an async generator function:
/** @returns a Promise */
async function asyncFunction() { /*···*/ }
/** @returns an async iterable */
async function* asyncGeneratorFunction() { /*···*/ }
Streams
A stream is a pattern whose core idea is to “divide and conquer” a large amount of data: We can handle it if we split it into smaller pieces and handle one portion at a time.
Node.js supports several kinds of streams – for example:
Readable streams are streams from which we can read data. In other words, they are sources of data. An example is a readable file stream, which lets us read the contents of a file.
Writable streams are streams to which we can write data. In other words, they are sinks for data. An example is a writable file stream, which lets us write data to a file.
A transform stream is both readable and writable. As a writable stream, it receives pieces of data, transforms (changes or discards) them and then outputs them as a readable stream.
Pipelining
To process streamed data in multiple steps, we can pipeline (connect) streams:
Part (2) is optional.
Text encodings
When creating text streams, it is best to always specify an encoding:
The Node.js docs have a list of supported encodings and their default spellings – for example:
A few different spellings are also allowed. You can use Buffer.isEncoding() to check which ones are:
> buffer.Buffer.isEncoding('utf8')
true
> buffer.Buffer.isEncoding('utf-8')
true
> buffer.Buffer.isEncoding('UTF-8')
true
> buffer.Buffer.isEncoding('UTF:8')
false
The default value for encodings is null, which is equivalent to 'utf8'.
Helper function: readableToString()
We will occasionally use the following helper function. You don’t need to understand how it works, only (roughly) what it does.
import * as stream from 'stream';
/**
* Reads all the text in a readable stream and returns it as a string,
* via a Promise.
* @param {stream.Readable} readable
*/
function readableToString(readable) {
return new Promise((resolve, reject) => {
let data = '';
readable.on('data', function (chunk) {
data += chunk;
});
readable.on('end', function () {
resolve(data);
});
readable.on('error', function (err) {
reject(err);
});
});
}
This function is implemented via the event-based API. We’ll later see a simpler way of doing this – via async iteration.
A few preliminary remarks
Readable streams
Creating readable streams
Creating readable streams from files
We can use fs.createReadStream() to create readable streams:
import * as fs from 'fs';
const readableStream = fs.createReadStream(
'tmp/test.txt', {encoding: 'utf8'});
assert.equal(
await readableToString(readableStream),
'This is a test!\n');
Readable.from(): Creating readable streams from iterables
The static method Readable.from(iterable, options?) creates a readable stream which holds the data contained in iterable. iterable can be a synchronous iterable or an asynchronous iterable. The parameter options is optional and can, among other things, be used to specify a text encoding.
import * as stream from 'stream';
function* gen() {
yield 'One line\n';
yield 'Another line\n';
}
const readableStream = stream.Readable.from(gen(), {encoding: 'utf8'});
assert.equal(
await readableToString(readableStream),
'One line\nAnother line\n');
Creating readable streams from strings
Readable.from() accepts any iterable and can therefore also be used to convert strings to streams:
import {Readable} from 'stream';
const str = 'Some text!';
const readable = Readable.from(str, {encoding: 'utf8'});
assert.equal(
await readableToString(readable),
'Some text!');
At the moment, Readable.from() treats a string like any other iterable and therefore iterates over its code points. That isn’t ideal, performance-wise, but should be OK for most use cases. I expect Readable.from() to be often used with strings, so maybe there will be optimizations in the future.
Reading chunks from readable streams via for-await-of
Every readable stream is asynchronously iterable, which means that we can use a for-await-of loop to read its contents:
import * as fs from 'fs';
async function logChunks(readable) {
for await (const chunk of readable) {
console.log(chunk);
}
}
const readable = fs.createReadStream(
'tmp/test.txt', {encoding: 'utf8'});
logChunks(readable);
// Output:
// 'This is a test!\n'
Collecting the contents of a readable stream in a string
The following function is a simpler reimplementation of the function that we have seen at the beginning of this chapter.
import {Readable} from 'stream';
async function readableToString2(readable) {
let result = '';
for await (const chunk of readable) {
result += chunk;
}
return result;
}
const readable = Readable.from('Good morning!', {encoding: 'utf8'});
assert.equal(await readableToString2(readable), 'Good morning!');
Note that, in this case, we had to use an async function because we wanted to return a Promise.
Reading lines from readable streams via module 'node:readlines'
The built-in module 'node:readline' lets us read lines from readable streams:
import * as fs from 'node:fs';
import * as readline from 'node:readline/promises';
const filePath = process.argv[2]; // first command line argument
const rl = readline.createInterface({
input: fs.createReadStream(filePath, {encoding: 'utf-8'}),
});
for await (const line of rl) {
console.log('>', line);
}
rl.close();
Transforming readable streams via async generators
Async iteration provides an elegant alternative to transform streams for processing streamed data in multiple steps:
To summarize, these are the pieces of such processing pipelines:
readable
→ first async generator [→ … → last async generator]
→ readable or async function
Going from chunks to numbered lines in async iterables
In the next example, we’ll see an example of a processing pipeline as it was just explained.
import {Readable} from 'stream';
/**
* @param chunkIterable An asynchronous or synchronous iterable
* over “chunks” (arbitrary strings)
* @returns An asynchronous iterable over “lines”
* (strings with at most one newline that always appears at the end)
*/
async function* chunksToLines(chunkIterable) {
let previous = '';
for await (const chunk of chunkIterable) {
let startSearch = previous.length;
previous += chunk;
while (true) {
// Works for EOL === '\n' and EOL === '\r\n'
const eolIndex = previous.indexOf('\n', startSearch);
if (eolIndex < 0) break;
// Line includes the EOL
const line = previous.slice(0, eolIndex+1);
yield line;
previous = previous.slice(eolIndex+1);
startSearch = 0;
}
}
if (previous.length > 0) {
yield previous;
}
}
async function* numberLines(lineIterable) {
let lineNumber = 1;
for await (const line of lineIterable) {
yield lineNumber + ' ' + line;
lineNumber++;
}
}
async function logLines(lineIterable) {
for await (const line of lineIterable) {
console.log(line);
}
}
const chunks = Readable.from(
'Text with\nmultiple\nlines.\n',
{encoding: 'utf8'});
await logLines(numberLines(chunksToLines(chunks))); // (A)
// Output:
// '1 Text with\n'
// '2 multiple\n'
// '3 lines.\n'
The processing pipeline is set up in line A. The steps are:
Observation:
Writable streams
Creating writable streams for files
We can use fs.createWriteStream() to create writable streams:
const writableStream = fs.createWriteStream(
'tmp/log.txt', {encoding: 'utf8'});
Writing to writable streams
In this section, we look at approaches to writing to a writable stream:
To demonstrate these approaches, we use them to implement the same function writeIterableToFile().
Method .pipe() of readable streams also supports piping but it has a downside and it’s better to avoid it.
writable.write(chunk)
When it comes to writing data to streams, there are two callback-based mechanisms that help us:
In the following example, we promisify these mechanisms so that we can use them via an async function:
import * as util from 'util';
import * as stream from 'stream';
import * as fs from 'fs';
import {once} from 'events';
const finished = util.promisify(stream.finished); // (A)
async function writeIterableToFile(iterable, filePath) {
const writable = fs.createWriteStream(filePath, {encoding: 'utf8'});
for await (const chunk of iterable) {
if (!writable.write(chunk)) { // (B)
// Handle backpressure
await once(writable, 'drain');
}
}
writable.end(); // (C)
// Wait until done. Throws if there are errors.
await finished(writable);
}
await writeIterableToFile(
['One', ' line of text.\n'], 'tmp/log.txt');
assert.equal(
fs.readFileSync('tmp/log.txt', {encoding: 'utf8'}),
'One line of text.\n');
The default version of stream.finished() is callback-based but can be turned into a Promise-based version via util.promisify() (line A).
We used the following two patterns:
Writing to a writable stream while handling backpressure (line B):
if (!writable.write(chunk)) {
await once(writable, 'drain');
}
Closing a writable stream and waiting until writing is done (line C):
writable.end();
await finished(writable);
Piping readable streams to writable streams via stream.pipeline()
In line A, we use a promisified version of stream.pipeline() to pipe a readable stream readable to a writable stream writable:
import * as stream from 'stream';
import * as fs from 'fs';
const pipeline = util.promisify(stream.pipeline);
async function writeIterableToFile(iterable, filePath) {
const readable = stream.Readable.from(
iterable, {encoding: 'utf8'});
const writable = fs.createWriteStream(filePath);
await pipeline(readable, writable); // (A)
}
await writeIterableToFile(
['One', ' line of text.\n'], 'tmp/log.txt');
// ···
Not recommended: readable.pipe(destination)
Method readable.pipe() also supports piping, but has a caveat: If the readable emits an error, then the writable is not closed automatically. pipeline() does not have that caveat.
Quick reference: stream-related functionality
Module os:
const EOL: string (since 0.7.8)
Contains the end-of-line character sequence used by the current platform.
Module buffer:
Buffer.isEncoding(encoding: string): boolean (since 0.9.1)
Returns true if encoding correctly names one of the supported Node.js encodings for text. Supported encodings include:
Module stream:
Readable.prototype[Symbol.asyncIterator](): AsyncIterableIterator<any> (since 10.0.0)
Readable streams are asynchronously iterable. For example, you can use for-await-of loops in asyc functions or async generators to iterate over them.
finished(stream: ReadableStream | WritableStream | ReadWriteStream, callback: (err?: ErrnoException | null) => void): () => Promise<void> (since 10.0.0)
The returned Promise is settled when reading/writing is done or there was an error.
This promisified version is created as follows:
const finished = util.promisify(stream.finished);
pipeline(...streams: Array<ReadableStream|ReadWriteStream|WritableStream>): Promise<void> (since 10.0.0)
Pipes between streams. The returned Promise is settled when the pipeline is complete or when there was an error.
This promisified version is created as follows:
const pipeline = util.promisify(stream.pipeline);
Readable.from(iterable: Iterable<any> | AsyncIterable<any>, options?: ReadableOptions): Readable (since 12.3.0)
Converts an iterable into a readable stream.
interface ReadableOptions {
highWaterMark?: number;
encoding?: string;
objectMode?: boolean;
read?(this: Readable, size: number): void;
destroy?(this: Readable, error: Error | null,
callback: (error: Error | null) => void): void;
autoDestroy?: boolean;
}
These options are the same as the options for the Readable constructor and documented there.
Module fs:
createReadStream(path: string | Buffer | URL, options?: string | {encoding?: string; start?: number}): ReadStream (since 2.3.0)
Creates a readable stream. More options are available.
createWriteStream(path: PathLike, options?: string | {encoding?: string; flags?: string; mode?: number; start?: number}): WriteStream (since 2.3.0)
With option .flags you can specify if you want to write or append and what happens if a file does or does not exist. More options are available.
The static type information in this section is based on Definitely Typed.
Further reading and sources of this chapter
Using web streams on Node.js
Web streams are a standard for streams that is now supported on all major web platforms: web browsers, Node.js, and Deno. (Streams are an abstraction for reading and writing data sequentially in small pieces from all kinds of sources – files, data hosted on servers, etc.)
For example, the global function fetch() (which downloads online resources) asynchronously returns a Response which has a property .body with a web stream.
This chapter covers web streams on Node.js, but most of what we learn applies to all web platforms that support them.
What are web streams?
Let’s start with an overview of a few fundamentals of web streams. Afterwards, we’ll quickly move on to examples.
Streams are a data structure for accessing data such as:
Two of their benefits are:
We can work with large amounts of data because streams allow us to split them up into smaller pieces (so-called chunks) which we can process one at a time.
We can work with the same data structure, streams, while processing different data. That makes it easier to reuse code.
Web streams (“web” is often omitted) are a relatively new standard that originated in web browsers but is now also supported by Node.js and Deno (as shown in this MDN compatibility table).
In web streams, chunks are usually either:
Kinds of streams
There are three main kinds of web streams:
A ReadableStream is used to read data from a source. Code that does that is called a consumer.
A WritableStream is used to write data to a sink. Code that does that is called a producer.
A TransformStream consists of two streams:
The idea is to transform data by “piping it through” a TransformStream. That is, we write data to the writable side and read transformed data from the readable side. The following TransformStreams are built into most JavaScript platforms (more on them later):
ReadableStreams, WritableStreams and TransformStreams can be used to transport text or binary data. We’ll mostly do the former in this chapter. Byte streams for binary data are briefly mentioned at the end.
Pipe chains
Piping is an operation that lets us pipe a ReadableStream to a WritableStream: As long as the ReadableStream produces data, this operation reads that data and writes it to the WritableStream. If we connect just two streams, we get a convenient way of transferring data from one location to another (e.g. to copy a file). However, we can also connect more than two streams and get pipe chains that can process data in a variety of ways. This is an example of a pipe chain:
A ReadableStream is connected to a TransformStream by piping the former to the writable side of the latter. Similarly, a TransformStream is connected to another TransformStream by piping the readable side of the former to the writable side of the latter. And a TransformStream is connected to a WritableStream by piping the readable side of the former to the latter.
Backpressure
One problem in pipe chains is that a member may receive more data than it can handle at the moment. Backpressure is a technique for solving this problem: It enables a receiver of data to tell its sender that it should temporarily stop sending data so that the receiver doesn’t get overwhelmed.
Another way to look at backpressure is as a signal that travels backwards through a pipe chain, from a member that is getting overwhelmed to the beginning of the chain. As an example, consider the following pipe chain:
ReadableStream -pipeTo-> TransformStream -pipeTo-> WriteableStream
This is how backpressure travels through this chain:
We have reached the beginning of the pipe chain. Therefore, no data accumulates inside the ReadableStream (which is also buffered) and the WriteableStream has time to recover. Once it does, it signals that it is ready to receive data again. That signal also travels back through the chain until it reaches the ReadableStream and data processing resumes.
In this first look at backpressure, several details were omitted to make things easier to understand. These will be covered later.
Support for web streams in Node.js
In Node.js, web streams are available from two sources:
At the moment, only one API has direct support for web streams in Node.js – the Fetch API:
const response = await fetch('https://example.com');
const readableStream = response.body;
For other things, we need to use one of the following static methods in module 'node:stream' to either convert a Node.js stream to a web stream or vice versa:
One other API partially supports web streams: FileHandles have the method .readableWebStream().
Reading from ReadableStreams
ReadableStreams let us read chunks of data from various sources. They have the following type (feel free to skim this type and the explanations of its properties; they will be explained again when we encounter them in examples):
interface ReadableStream<TChunk> {
getReader(): ReadableStreamDefaultReader<TChunk>;
readonly locked: boolean;
[Symbol.asyncIterator](): AsyncIterator<TChunk>;
cancel(reason?: any): Promise<void>;
pipeTo(
destination: WritableStream<TChunk>,
options?: StreamPipeOptions
): Promise<void>;
pipeThrough<TChunk2>(
transform: ReadableWritablePair<TChunk2, TChunk>,
options?: StreamPipeOptions
): ReadableStream<TChunk2>;
// Not used in this chapter:
tee(): [ReadableStream<TChunk>, ReadableStream<TChunk>];
}
interface StreamPipeOptions {
signal?: AbortSignal;
preventClose?: boolean;
preventAbort?: boolean;
preventCancel?: boolean;
}
Explanations of these properties:
The following subsections cover three ways of consuming ReadableStreams:
Consuming ReadableStreams via Readers
We can use Readers to read data from ReadableStreams. They have the following type (feel free to skim this type and the explanations of its properties; they will be explained again when we encounter them in examples):
interface ReadableStreamGenericReader {
readonly closed: Promise<undefined>;
cancel(reason?: any): Promise<void>;
}
interface ReadableStreamDefaultReader<TChunk>
extends ReadableStreamGenericReader
{
releaseLock(): void;
read(): Promise<ReadableStreamReadResult<TChunk>>;
}
interface ReadableStreamReadResult<TChunk> {
done: boolean;
value: TChunk | undefined;
}
Explanations of these properties:
ReadableStreamReadResult may look familiar if you know how iteration works: ReadableStreams are similar to iterables, Readers are similar to iterators, and ReadableStreamReadResults are similar to the objects returned by the iterator method .next().
The following code demonstrates the protocol for using Readers:
const reader = readableStream.getReader(); // (A)
assert.equal(readableStream.locked, true); // (B)
try {
while (true) {
const {done, value: chunk} = await reader.read(); // (C)
if (done) break;
// Use `chunk`
}
} finally {
reader.releaseLock(); // (D)
}
Getting a Reader. We can’t read directly from readableStream, we first need to acquire a Reader (line A). Each ReadableStream can have at most one Reader. After a Reader was acquired, readableStream is locked (line B). Before we can call .getReader() again, we must call .releaseLock() (line D).
Reading chunks. .read() returns a Promise for an object with the properties .done and .value (line C). After the last chunk was read, .done is true. This approach is similar to how asynchronous iteration works in JavaScript.
Example: reading a file via a ReadableStream
In the following example, we read chunks (strings) from a text file data.txt:
import * as fs from 'node:fs';
import {Readable} from 'node:stream';
const nodeReadable = fs.createReadStream(
'data.txt', {encoding: 'utf-8'});
const webReadableStream = Readable.toWeb(nodeReadable); // (A)
const reader = webReadableStream.getReader();
try {
while (true) {
const {done, value} = await reader.read();
if (done) break;
console.log(value);
}
} finally {
reader.releaseLock();
}
// Output:
// 'Content of text file\n'
We are converting a Node.js Readable to a web ReadableStream (line A). Then we use the previously explained protocol to read the chunks.
Example: assembling a string with the contents of a ReadableStream
In the next example, we concatenate all chunks of a ReadableStream into a string and return it:
/**
* Returns a string with the contents of `readableStream`.
*/
async function readableStreamToString(readableStream) {
const reader = readableStream.getReader();
try {
let result = '';
while (true) {
const {done, value} = await reader.read();
if (done) {
return result; // (A)
}
result += value;
}
} finally {
reader.releaseLock(); // (B)
}
}
Conveniently, the finally clause is always executed – now matter how we leave the try clause. That is, the lock is correctly released (line B) if we return a result (line A).
Consuming ReadableStreams via asynchronous iteration
ReadableStreams can also be consumed via asynchronous iteration:
const iterator = readableStream[Symbol.asyncIterator]();
let exhaustive = false;
try {
while (true) {
let chunk;
({done: exhaustive, value: chunk} = await iterator.next());
if (exhaustive) break;
console.log(chunk);
}
} finally {
// If the loop was terminated before we could iterate exhaustively
// (via an exception or `return`), we must call `iterator.return()`.
// Check if that was the case.
if (!exhaustive) {
iterator.return();
}
}
Thankfully, the for-await-of loop handles all the details of asynchronous iteration for us:
for await (const chunk of readableStream) {
console.log(chunk);
}
Example: using asynchronous iteration to read a stream
Let’s redo our previous attempt to read text from a file. This time, we use asynchronous iteration instead of a Reader:
import * as fs from 'node:fs';
import {Readable} from 'node:stream';
const nodeReadable = fs.createReadStream(
'text-file.txt', {encoding: 'utf-8'});
const webReadableStream = Readable.toWeb(nodeReadable);
for await (const chunk of webReadableStream) {
console.log(chunk);
}
// Output:
// 'Content of text file'
Example: assembling a string with the contents of a ReadableStream
We have previously used a Reader to assemble a string with the contents of a ReadableStream. With asynchronous iteration, the code becomes simpler:
/**
* Returns a string with the contents of `readableStream`.
*/
async function readableStreamToString2(readableStream) {
let result = '';
for await (const chunk of readableStream) {
result += chunk;
}
return result;
}
Caveat: Browsers don’t support asynchronous iteration over ReadableStreams
At the moment, Node.js and Deno support asynchronous iteration over ReadableStreams but web browsers don’t: There is a GitHub issue that links to bug reports.
Given that it’s not yet completely clear how async iteration will be supported on browsers, wrapping is a safer choice than polyfilling. The following code is based on a suggestion in the Chromium bug report:
async function* getAsyncIterableFor(readableStream) {
const reader = readableStream.getReader();
try {
while (true) {
const {done, value} = await reader.read();
if (done) return;
yield value;
}
} finally {
reader.releaseLock();
}
}
Piping ReadableStreams to WritableStreams
ReadableStreams have two methods for piping:
readableStream.pipeTo(writeableStream) synchronously returns a Promise p. It asynchronously reads all chunks of readableStream and writes them to writableStream. When it is done, it fulfills p.
We’ll see examples of .pipeTo() when we explore WritableStreams, as it provides a convenient way to transfer data into them.
readableStream.pipeThrough(transformStream) pipes readableStream into transformStream.writable and returns transformStream.readable (every TransformStream has these properties that refer to its writable side and its readable side). Another way to view this operation is that we create a new ReadableStream by connecting a transformStream to a readableStream.
We’ll see examples of .pipeThrough() when we explore TransformStreams, as this method is the main way in which they are used.
Turning data sources into ReadableStreams via wrapping
If we want to read an external source via a ReadableStream, we can wrap it in an adapter object and pass that object to the ReadableStream constructor. The adapter object is called the underlying source of the ReadableStream (queuing strategies are explained later, when we take a closer look at backpressure):
new ReadableStream(underlyingSource?, queuingStrategy?)
This is the type of underlying sources (feel free to skim this type and the explanations of its properties; they will be explained again when we encounter them in examples):
interface UnderlyingSource<TChunk> {
start?(
controller: ReadableStreamController<TChunk>
): void | Promise<void>;
pull?(
controller: ReadableStreamController<TChunk>
): void | Promise<void>;
cancel?(reason?: any): void | Promise<void>;
// Only used in byte streams and ignored in this section:
type: 'bytes' | undefined;
autoAllocateChunkSize: bigint;
}
This is when the ReadableStream calls these methods:
.start(controller) is called immediately after we invoke the constructor of ReadableStream.
.pull(controller) is called whenever there is room in the internal queue of the ReadableStream. It is called repeatedly until the queue is full again. This method will only be called after .start() is finished. If .pull() doesn’t enqueue anything, it won’t be called again.
.cancel(reason) is called if the consumer of a ReadableStream cancels it via readableStream.cancel() or reader.cancel(). reason is the value that was passed to these methods.
Each of these methods can return a Promise and no further steps will be taken until the Promise is settled. That is useful if we want to do something asynchronous.
The parameter controller of .start() and .pull() lets them access the stream. It has the following type:
type ReadableStreamController<TChunk> =
| ReadableStreamDefaultController<TChunk>
| ReadableByteStreamController<TChunk> // ignored here
;
interface ReadableStreamDefaultController<TChunk> {
enqueue(chunk?: TChunk): void;
readonly desiredSize: number | null;
close(): void;
error(err?: any): void;
}
For now, chunks are strings. We’ll later get to byte streams, where Uint8Arrays are common. This is what the methods do:
A first example of implementing an underlying source
In our first example of implementing an underlying source, we only provide method .start(). We’ll see use cases for .pull() in the next subsection.
const readableStream = new ReadableStream({
start(controller) {
controller.enqueue('First line\n'); // (A)
controller.enqueue('Second line\n'); // (B)
controller.close(); // (C)
},
});
for await (const chunk of readableStream) {
console.log(chunk);
}
// Output:
// 'First line\n'
// 'Second line\n'
We use the controller to create a stream with two chunks (line A and line B). It’s important that we close the stream (line C). Otherwise, the for-await-of loop would never finish!
Note that this way of enqueuing isn’t completely safe: There is a risk of exceding the capacity of the internal queue. We’ll see soon how we can avoid that risk.
Using a ReadableStream to wrap a push source or a pull source
A common scenario is turning a push source or a pull source into a ReadableStream. The source being push or pull determines how we will hook into the ReadableStream with our UnderlyingSource:
Push source: Such a source notifies us when there is new data. We use .start() to set up listeners and supporting data structures. If we receive too much data and the desired size isn’t positive anymore, we must tell our source to pause. If .pull() is called later, we can unpause it. Pausing an external source in reaction to the desired size becoming non-positive is called applying backpressure.
Pull source: We ask such a source for new data – often asynchronously. Therefore, we usually don’t do much in .start() and retrieve data whenever .pull() is called.
We’ll see examples for both kinds of sources next.
Example: creating a ReadableStream from a push source with backpressure support
In the following example, we wrap a ReadableStream around a socket – which pushes its data to us (it calls us). This example is taken from the web stream specification:
function makeReadableBackpressureSocketStream(host, port) {
const socket = createBackpressureSocket(host, port);
return new ReadableStream({
start(controller) {
socket.ondata = event => {
controller.enqueue(event.data);
if (controller.desiredSize <= 0) {
// The internal queue is full, so propagate
// the backpressure signal to the underlying source.
socket.readStop();
}
};
socket.onend = () => controller.close();
socket.onerror = () => controller.error(
new Error('The socket errored!'));
},
pull() {
// This is called if the internal queue has been emptied, but the
// stream’s consumer still wants more data. In that case, restart
// the flow of data if we have previously paused it.
socket.readStart();
},
cancel() {
socket.close();
},
});
}
Example: creating a ReadableStream from a pull source
The tool function iterableToReadableStream() takes an iterable over chunks and turns it into a ReadableStream:
/**
* @param iterable an iterable (asynchronous or synchronous)
*/
function iterableToReadableStream(iterable) {
return new ReadableStream({
start() {
if (typeof iterable[Symbol.asyncIterator] === 'function') {
this.iterator = iterable[Symbol.asyncIterator]();
} else if (typeof iterable[Symbol.iterator] === 'function') {
this.iterator = iterable[Symbol.iterator]();
} else {
throw new Error('Not an iterable: ' + iterable);
}
},
async pull(controller) {
if (this.iterator === null) return;
// Sync iterators return non-Promise values,
// but `await` doesn’t mind and simply passes them on
const {value, done} = await this.iterator.next();
if (done) {
this.iterator = null;
controller.close();
return;
}
controller.enqueue(value);
},
cancel() {
this.iterator = null;
controller.close();
},
});
}
Let’s use an async generator function to create an asynchronous iterable and turn that iterable into a ReadableStream:
async function* genAsyncIterable() {
yield 'how';
yield 'are';
yield 'you';
}
const readableStream = iterableToReadableStream(genAsyncIterable());
for await (const chunk of readableStream) {
console.log(chunk);
}
// Output:
// 'how'
// 'are'
// 'you'
iterableToReadableStream() also works with synchronous iterables:
const syncIterable = ['hello', 'everyone'];
const readableStream = iterableToReadableStream(syncIterable);
for await (const chunk of readableStream) {
console.log(chunk);
}
// Output:
// 'hello'
// 'everyone'
There may eventually by a static helper method ReadableStream.from() that provides this functionality (see its pull request for more information).
Writing to WritableStreams
WritableStreams let us write chunks of data to various sinks. They have the following type (feel free to skim this type and the explanations of its properties; they will be explained again when we encounter them in examples):
interface WritableStream<TChunk> {
getWriter(): WritableStreamDefaultWriter<TChunk>;
readonly locked: boolean;
close(): Promise<void>;
abort(reason?: any): Promise<void>;
}
Explanations of these properties:
The following subsections cover two approaches to sending data to WritableStreams:
Writing to WritableStreams via Writers
We can use Writers to write to WritableStreams. They have the following type (feel free to skim this type and the explanations of its properties; they will be explained again when we encounter them in examples):
interface WritableStreamDefaultWriter<TChunk> {
readonly desiredSize: number | null;
readonly ready: Promise<undefined>;
write(chunk?: TChunk): Promise<void>;
releaseLock(): void;
close(): Promise<void>;
readonly closed: Promise<undefined>;
abort(reason?: any): Promise<void>;
}
Explanations of these properties:
.desiredSize indicates how much room there is in this WriteStream’s queue. It is zero if the queue is full and negative if it has exceeded its maximum size. Therefore, if the desired size is zero or negative, we have to stop writing.
.ready returns a Promise that is fulfilled when the desired size changes from non-positive to positive. That means that no backpressure is active and it’s OK to write data. If the desired size later changes back to non-positive, a new pending Promise is created and returned.
.write() writes a chunk to the stream. It returns a Promise that is fulfilled after writing succeeds and rejected if there is an error.
.releaseLock() releases the Writer’s lock on its stream.
.close() has the same effect as closing the Writer’s stream.
.closed returns a Promise that is fulfilled when the stream is closed.
.abort() has the same effect as aborting the Writer’s stream.
The following code shows the protocol for using Writers:
const writer = writableStream.getWriter(); // (A)
assert.equal(writableStream.locked, true); // (B)
try {
// Writing the chunks (explained later)
} finally {
writer.releaseLock(); // (C)
}
We can’t write directly to a writableStream, we first need to acquire a Writer (line A). Each WritableStream can have at most one Writer. After a Writer was acquired, writableStream is locked (line B). Before we can call .getWriter() again, we must call .releaseLock() (line C).
There are three approaches to writing chunks.
Writing approach 1: awaiting .write() (handling backpressure inefficiently)
The first writing approach is to await each result of .write():
await writer.write('Chunk 1');
await writer.write('Chunk 2');
await writer.close();
The Promise returned by .write() fulfills when the chunk that we passed to it, was successfully written. What exactly “successfully written” means, depends on how a WritableStream is implemented – e.g., with a file stream, the chunk may have been sent to the operating system but still reside in a cache and therefore not have actually been written to disk.
The Promise returned by .close() is fulfilled when the stream becomes closed.
A downside of this writing approach is that waiting until writing succeeds means that the queue isn’t used. As a consequence, data throughput may be lower.
Writing approach 2: ignoring .write() rejections (ignoring backpressure)
In the second writing approach, we ignore the Promises returned by .write() and only await the Promise returned by .close():
writer.write('Chunk 1').catch(() => {}); // (A)
writer.write('Chunk 2').catch(() => {}); // (B)
await writer.close(); // reports errors
The synchronous invocations of .write() add chunks to the internal queue of the WritableStream. By not awaiting the returned Promises, we don’t wait until each chunk is written. However, awaiting .close() ensures that the queue is empty and all writing succeeded before we continue.
Invoking .catch() in line A and line B is necessary to avoid warnings about unhandled Promise rejections when something goes wrong during writing. Such warnings are often logged to the console. We can afford to ignore the errors reported by .write() because .close() will also report them to us.
The previous code can be improved by using a helper function that ignores Promise rejections:
ignoreRejections(
writer.write('Chunk 1'),
writer.write('Chunk 2'),
);
await writer.close(); // reports errors
function ignoreRejections(...promises) {
for (const promise of promises) {
promise.catch(() => {});
}
}
One downside of this approach is that backpressure is ignored: We simply assume that the queue is big enough to hold everything we write.
Writing approach 3: awaiting .ready (handling backpressure efficiently)
In this writing approach, we handle backpressure efficiently by awaiting the Writer getter .ready:
await writer.ready; // reports errors
// How much room do we have?
console.log(writer.desiredSize);
writer.write('Chunk 1').catch(() => {});
await writer.ready; // reports errors
// How much room do we have?
console.log(writer.desiredSize);
writer.write('Chunk 2').catch(() => {});
await writer.close(); // reports errors
The Promise in .ready fulfills whenever the stream transitions from having backpressure to not having backpressure.
Example: writing to a file via a Writer
In this example, we create a text file data.txt via a WritableStream:
import * as fs from 'node:fs';
import {Writable} from 'node:stream';
const nodeWritable = fs.createWriteStream(
'new-file.txt', {encoding: 'utf-8'}); // (A)
const webWritableStream = Writable.toWeb(nodeWritable); // (B)
const writer = webWritableStream.getWriter();
try {
await writer.write('First line\n');
await writer.write('Second line\n');
await writer.close();
} finally {
writer.releaseLock()
}
In line A, we create a Node.js stream for the file data.txt. In line B, we convert this stream to a web stream. Then we use a Writer to write strings to it.
Piping to WritableStreams
Instead of using Writers, we can also write to WritableStreams by piping ReadableStreams to them:
await readableStream.pipeTo(writableStream);
The Promise returned by .pipeTo() fulfills when piping finishes successfully.
Piping happens asynchronously
Piping is performed after the current task completes or pauses. The following code demonstrates that:
const readableStream = new ReadableStream({ // (A)
start(controller) {
controller.enqueue('First line\n');
controller.enqueue('Second line\n');
controller.close();
},
});
const writableStream = new WritableStream({ // (B)
write(chunk) {
console.log('WRITE: ' + JSON.stringify(chunk));
},
close() {
console.log('CLOSE WritableStream');
},
});
console.log('Before .pipeTo()');
const promise = readableStream.pipeTo(writableStream); // (C)
promise.then(() => console.log('Promise fulfilled'));
console.log('After .pipeTo()');
// Output:
// 'Before .pipeTo()'
// 'After .pipeTo()'
// 'WRITE: "First line\n"'
// 'WRITE: "Second line\n"'
// 'CLOSE WritableStream'
// 'Promise fulfilled'
In line A we create a ReadableStream. In line B we create a WritableStream.
We can see that .pipeTo() (line C) returns immediately. In a new task, chunks are read and written. Then writableStream is closed and, finally, promise is fulfilled.
Example: piping to a WritableStream for a file
In the following example, we create a WritableStream for a file and pipe a ReadableStream to it:
const webReadableStream = new ReadableStream({ // (A)
async start(controller) {
controller.enqueue('First line\n');
controller.enqueue('Second line\n');
controller.close();
},
});
const nodeWritable = fs.createWriteStream( // (B)
'data.txt', {encoding: 'utf-8'});
const webWritableStream = Writable.toWeb(nodeWritable); // (C)
await webReadableStream.pipeTo(webWritableStream); // (D)
In line A, we create a ReadableStream. In line B, we create a Node.js stream for the file data.txt. In line C, we convert this stream to a web stream. In line D, we pipe our webReadableStream to the WritableStream for the file.
Example: writing two ReadableStreams to a WritableStream
In the following example, we write two ReadableStreams to a single WritableStream.
function createReadableStream(prefix) {
return new ReadableStream({
async start(controller) {
controller.enqueue(prefix + 'chunk 1');
controller.enqueue(prefix + 'chunk 2');
controller.close();
},
});
}
const writableStream = new WritableStream({
write(chunk) {
console.log('WRITE ' + JSON.stringify(chunk));
},
close() {
console.log('CLOSE');
},
abort(err) {
console.log('ABORT ' + err);
},
});
await createReadableStream('Stream 1: ')
.pipeTo(writableStream, {preventClose: true}); // (A)
await createReadableStream('Stream 2: ')
.pipeTo(writableStream, {preventClose: true}); // (B)
await writableStream.close();
// Output
// 'WRITE "Stream 1: chunk 1"'
// 'WRITE "Stream 1: chunk 2"'
// 'WRITE "Stream 2: chunk 1"'
// 'WRITE "Stream 2: chunk 2"'
// 'CLOSE'
We tell .pipeTo() to not close the WritableStream after the ReadableStream is closed (line A and line B). Therefore, the WritableStream remains open after line A and we can pipe another ReadableStream to it.
Turning data sinks into WritableStreams via wrapping
If we want to write to an external sink via a WritableStream, we can wrap it in an adapter object and pass that object to the WritableStream constructor. The adapter object is called the underlying sink of the WritableStream (queuing strategies are explained later, when we take a closer look at backpressure):
new WritableStream(underlyingSink?, queuingStrategy?)
This is the type of underlying sinks (feel free to skim this type and the explanations of its properties; they will be explained again when we encounter them in examples):
interface UnderlyingSink<TChunk> {
start?(
controller: WritableStreamDefaultController
): void | Promise<void>;
write?(
chunk: TChunk,
controller: WritableStreamDefaultController
): void | Promise<void>;
close?(): void | Promise<void>;;
abort?(reason?: any): void | Promise<void>;
}
Explanations of these properties:
.start(controller) is called immediately after we invoke the constructor of WritableStream. If we do something asynchronous, we can return a Promise. In this method, we can prepare for writing.
.write(chunk, controller) is called when a new chunk is ready to be written to the external sink. We can exert backpressure by returning a Promise that fulfills once the backpressure is gone.
.close() is called after writer.close() was called and all queued writes succeeded. In this method, we can clean up after writing.
.abort(reason) is called if writeStream.abort() or writer.abort() were invoked. reason is the value passed to these methods.
The parameter controller of .start() and .write() lets them error the WritableStream. It has the following type:
interface WritableStreamDefaultController {
readonly signal: AbortSignal;
error(err?: any): void;
}
Example: tracing a ReadableStream
In the next example, we pipe a ReadableStream to a WritableStream in order to check how the ReadableStream produces chunks:
const readableStream = new ReadableStream({
start(controller) {
controller.enqueue('First chunk');
controller.enqueue('Second chunk');
controller.close();
},
});
await readableStream.pipeTo(
new WritableStream({
write(chunk) {
console.log('WRITE ' + JSON.stringify(chunk));
},
close() {
console.log('CLOSE');
},
abort(err) {
console.log('ABORT ' + err);
},
})
);
// Output:
// 'WRITE "First chunk"'
// 'WRITE "Second chunk"'
// 'CLOSE'
Example: collecting chunks written to a WriteStream in a string
In the next example, we create a subclass of WriteStream that collects all written chunks in a string. We can access that string via method .getString():
class StringWritableStream extends WritableStream {
#string = '';
constructor() {
super({
// We need to access the `this` of `StringWritableStream`.
// Hence the arrow function (and not a method).
write: (chunk) => {
this.#string += chunk;
},
});
}
getString() {
return this.#string;
}
}
const stringStream = new StringWritableStream();
const writer = stringStream.getWriter();
try {
await writer.write('How are');
await writer.write(' you?');
await writer.close();
} finally {
writer.releaseLock()
}
assert.equal(
stringStream.getString(),
'How are you?'
);
A downside of this approach is that we are mixing two APIs: The API of WritableStream and our new string stream API. An alternative is to delegate to the WritableStream instead of extending it:
function StringcreateWritableStream() {
let string = '';
return {
stream: new WritableStream({
write(chunk) {
string += chunk;
},
}),
getString() {
return string;
},
};
}
const stringStream = StringcreateWritableStream();
const writer = stringStream.stream.getWriter();
try {
await writer.write('How are');
await writer.write(' you?');
await writer.close();
} finally {
writer.releaseLock()
}
assert.equal(
stringStream.getString(),
'How are you?'
);
This functionality could also be implemented via a class (instead of as a factory function for objects).
Using TransformStreams
A TransformStream:
The most common way to use TransformStreams is to “pipe through” them:
const transformedStream = readableStream.pipeThrough(transformStream);
.pipeThrough() pipes readableStream to the writable side of transformStream and returns its readable side. In other words: We have created a new ReadableStream that is a transformed version of readableStream.
.pipeThrough() accepts not only TransformStreams, but any object that has the following shape:
interface ReadableWritablePair<RChunk, WChunk> {
readable: ReadableStream<RChunk>;
writable: WritableStream<WChunk>;
}
Standard TransformStreams
Node.js supports the following standard TransformStreams:
Example: decoding a stream of UTF-8-encoded bytes
In the following example, we decode a stream of UTF-8-encoded bytes:
const response = await fetch('https://example.com');
const readableByteStream = response.body;
const readableStream = readableByteStream
.pipeThrough(new TextDecoderStream('utf-8'));
for await (const stringChunk of readableStream) {
console.log(stringChunk);
}
response.body is a ReadableByteStream whose chunks are instances of Uint8Array (TypedArrays). We pipe that stream through a TextDecoderStream to get a stream that has string chunks.
Note that translating each byte chunk separately (e.g. via a TextDecoder) doesn’t work because a single Unicode code point is encoded as up to four bytes in UTF-8 and those bytes might not all be in the same chunk.
Example: creating a readable text stream for standard input
The following Node.js module logs everything that is sent to it via standard input:
// echo-stdin.mjs
import {Readable} from 'node:stream';
const webStream = Readable.toWeb(process.stdin)
.pipeThrough(new TextDecoderStream('utf-8'));
for await (const chunk of webStream) {
console.log('>>>', chunk);
}
We can access standard input via a stream stored in process.stdin (process is a global Node.js variable). If we don’t set an encoding for this stream and convert it via Readable.toWeb(), we get a byte stream. We pipe it through a TextDecoderStream in order to get a text stream.
Note that we process standard input incrementally: As soon as another chunk is available, we log it. In other words, we don’t wait until standard input is finished. That is useful when the data is either large or only sent intermittently.
Implementing custom TransformStreams
We can implement a custom TransformStream by passing a Transformer object to the constructor of TransformStream. Such has object has the following type (feel free to skim this type and the explanations of its properties; they will be explained again when we encounter them in examples):
interface Transformer<TInChunk, TOutChunk> {
start?(
controller: TransformStreamDefaultController<TOutChunk>
): void | Promise<void>;
transform?(
chunk: TInChunk,
controller: TransformStreamDefaultController<TOutChunk>
): void | Promise<void>;
flush?(
controller: TransformStreamDefaultController<TOutChunk>
): void | Promise<void>;
}
Explanations of these properties:
Each of these methods can return a Promise and no further steps will be taken until the Promise is settled. That is useful if we want to do something asynchronous.
The parameter controller has the following type:
interface TransformStreamDefaultController<TOutChunk> {
enqueue(chunk?: TOutChunk): void;
readonly desiredSize: number | null;
terminate(): void;
error(err?: any): void;
}
What about backpressure in a TransformStream? The class propagates the backpressure from its readable side (output) to its writable side (input). The assumption is that transforming doesn’t change the amount of data much. Therefore, Transforms can get away with ignoring backpressure. However, it could be detected via transformStreamDefaultController.desiredSize and propagated by returning a Promise from transformer.transform().
Example: transforming a stream of arbitrary chunks to a stream of lines
The following subclass of TransformStream converts a stream with arbitrary chunks into a stream where each chunk comprises exactly one line of text. That is, with the possible exception of the last chunk, each chunk ends with an end-of-line (EOL) string: '\n' on Unix (incl. macOS) and '\r\n' on Windows.
class ChunksToLinesTransformer {
#previous = '';
transform(chunk, controller) {
let startSearch = this.#previous.length;
this.#previous += chunk;
while (true) {
// Works for EOL === '\n' and EOL === '\r\n'
const eolIndex = this.#previous.indexOf('\n', startSearch);
if (eolIndex < 0) break;
// Line includes the EOL
const line = this.#previous.slice(0, eolIndex+1);
controller.enqueue(line);
this.#previous = this.#previous.slice(eolIndex+1);
startSearch = 0;
}
}
flush(controller) {
// Clean up and enqueue any text we’re still holding on to
if (this.#previous.length > 0) {
controller.enqueue(this.#previous);
}
}
}
class ChunksToLinesStream extends TransformStream {
constructor() {
super(new ChunksToLinesTransformer());
}
}
const stream = new ReadableStream({
async start(controller) {
controller.enqueue('multiple\nlines of\ntext');
controller.close();
},
});
const transformStream = new ChunksToLinesStream();
const transformed = stream.pipeThrough(transformStream);
for await (const line of transformed) {
console.log('>>>', JSON.stringify(line));
}
// Output:
// '>>> "multiple\n"'
// '>>> "lines of\n"'
// '>>> "text"'
Note that Deno’s built-in TextLineStream provides similar functionality.
Tip: We can also make this transformation via an async generator. It would asynchronously iterate over a ReadableStream and return an asynchronous iterable with lines. Its implementation is shown in §9.4 “Transforming readable streams via async generators”.
Tip: async generators are also great for transforming streams
Due to ReadableStreams being asynchronously iterable, we can use asynchronous generators to transform them. That leads to very elegant code:
const stream = new ReadableStream({
async start(controller) {
controller.enqueue('one');
controller.enqueue('two');
controller.enqueue('three');
controller.close();
},
});
async function* prefixChunks(prefix, asyncIterable) {
for await (const chunk of asyncIterable) {
yield '> ' + chunk;
}
}
const transformedAsyncIterable = prefixChunks('> ', stream);
for await (const transformedChunk of transformedAsyncIterable) {
console.log(transformedChunk);
}
// Output:
// '> one'
// '> two'
// '> three'
A closer look at backpressure
Let’s take a closer look at backpressure. Consider the following pipe chain:
rs.pipeThrough(ts).pipeTo(ws);
rs is a ReadableStream, ts is a TransformStream, ws is a WritableStream. These are the connections that are created by the previous expression (.pipeThrough uses .pipeTo to connect rs to the writable side of ts):
rs -pipeTo-> ts{writable,readable} -pipeTo-> ws
Observations:
Let’s assume that the underlying sink of ws is slow and the buffer of ws is eventually full. Then the following steps happen:
This example illustrates that we need two kinds of functionality:
Let’s explore how these functionalities are implemented in the web streams API.
Signalling backpressure
Backpressure is signalled by entities that are receiving data. Web streams have two such entities:
In both cases, the input is buffered via queues. The signal to apply backpressure is when a queue is full. Let’s see how that can be detected.
These are the locations of the queues:
The desired size of a queue is a number that indicates how much room is left in the queue:
Therefore, we have to apply backpressure if the desired size is zero or less. It is available via the getter .desiredSize of the object which contains the queue.
How is the desired size computed? Via an object that specifies a so-called queuing strategy. ReadableStream and WritableStream have default queuing strategies which can be overridden via optional parameters of their constructors. The interface QueuingStrategy has two properties:
The desired size of a queue is the high water mark minus the current size of the queue.
Reacting to backpressure
Entities sending data need to react to signalled backpressure by exerting backpressure.
Code writing to a WritableStream via a Writer
We can await the Promise in writer.ready. While we do, we are blocked and the desired backpressure is achieved. The Promise is fulfilled once there is room in the queue. Fulfillment is triggered when writer.desiredSize has a value greater than zero.
Alternatively, we can await the Promise returned by writer.write(). If we do that, the queue won’t even be filled.
If we want to, we can additionally base the size of our chunks on writer.desiredSize.
The underlying source of a ReadableStream
The underlying source object that can be passed to a ReadableStream wraps an external source. In a way, it is also a member of the pipe chain; one that comes before its ReadableStream.
Underlying pull sources are only asked for new data whenever there is room in the queue. While there isn’t, backpressure is exerted automatically because no data is pulled.
Underlying push sources should check controller.desiredSize after enqueuing something: If it’s zero or less, they should exert backpressure by pausing their external sources.
The underlying sink of a WritableStream
The underlying sink object that can be passed to a WritableStream wraps an external sink. In a way, it is also a member of the pipe chain; one that comes after its WritableStream.
Each external sink signals backpressure differently (in some cases not at all). The underlying sink can exert backpressure by returning a Promise from method .write() that is fulfilled once writing is finished. There is an example in the web streams standard that demonstrates how that works.
A transformStream (.writable → .readable)
The TransformStream connects its writable side with its readable side by implementing an underlying sink for the former and an underlying source for the latter. It has an internal slot .[[backpressure]] that indicates if internal backpressure is currently active or not.
Method .write() of the underlying sink of the writable side waits asynchronously until there is no internal backpressure before it feeds another chunk to the TransformStream’s transformer (web streams standard: TransformStreamDefaultSinkWriteAlgorithm). The transformer may then enqueue something via its TransformStreamDefaultController. Note that .write() returns a Promise that fulfills when the method is finished. Until that happens, the WriteStream buffers incoming write requests via its queue. Therefore, backpressure for the writable side is signalled via that queue and its desired size.
The TransformStream’s backpressure is activated if a chunk is enqueued via the TransformStreamDefaultController and the queue of the readable side becomes full (web streams standard: TransformStreamDefaultControllerEnqueue).
The TransformStream’s backpressure may be deactivated if something is read from the Reader (web streams standard: ReadableStreamDefaultReaderRead):
.pipeTo() (ReadableStream → WritableStream)
.pipeTo() reads chunks from the ReadableStream via a reader and write them to the WritableStream via a Writer. It pauses whenever writer.desiredSize is zero or less (web streams standard: Step 15 of ReadableStreamPipeTo).
Byte streams
So far, we have only worked with text streams, streams whose chunks were strings. But the web streams API also supports byte streams for binary data, where chunks are Uint8Arrays (TypedArrays):
Next, we’ll learn how to create readable byte streams.
Readable byte streams
What kind of stream is created by the ReadableStream constructor depends on the optional property .type of its optional first parameter underlyingSource:
If .type is omitted or no underlying source is provided, the new instance is a text stream.
If .type is the string 'bytes', the new instance is a byte stream:
const readableByteStream = new ReadableStream({
type: 'bytes',
async start() { /*...*/ }
// ...
});
What changes if a ReadableStream is in 'bytes' mode?
In default mode, the underlying source can return any kind of chunk. In bytes mode, the chunks must be ArrayBufferViews, i.e. TypedArrays (such as Uint8Arrays) or DataViews.
Additionally, a readable byte stream can create two kinds of readers:
“BYOB“ stands for “Bring Your Own Buffer” and means that we can pass a buffer (an ArrayBufferView) to reader.read(). Afterwards, that ArrayBufferView will be detached and no longer usable. But .read() returns its data in a new ArrayBufferView that has the same type and accesses the same region of the same ArrayBuffer.
Additionally, readable byte streams have different controllers: They are instances of ReadableByteStreamController (vs. ReadableStreamDefaultController). Apart from forcing underlying sources to enqueue ArrayBufferViews (TypedArrays or DataViews), it also supports ReadableStreamBYOBReaders via its property .byobRequest. An underlying source writes its data into the BYOBRequest stored in this property. The web streams standard has two examples of using .byobRequest in its section “Examples of creating streams”.
Example: an infinite readable byte stream filled with random data
In the next example, create an infinite readable byte stream that fills its chunks with random data (inspiration: example4.mjs in “Implementing the Web Streams API in Node.js”).
import {promisify} from 'node:util';
import {randomFill} from 'node:crypto';
const asyncRandomFill = promisify(randomFill);
const readableByteStream = new ReadableStream({
type: 'bytes',
async pull(controller) {
const byobRequest = controller.byobRequest;
await asyncRandomFill(byobRequest.view);
byobRequest.respond(byobRequest.view.byteLength);
},
});
const reader = readableByteStream.getReader({mode: 'byob'});
const buffer = new Uint8Array(10); // (A)
const firstChunk = await reader.read(buffer); // (B)
console.log(firstChunk);
Due to readableByteStream being infinite, we can’t loop over it. That’s why we only read its first chunk (line B).
The buffer we create in line A is transferred and therefore unreadable after line B.
Example: compressing a readable byte stream
In the following example, we create a readable byte stream and pipe it through a stream that compresses it to the GZIP format:
const readableByteStream = new ReadableStream({
type: 'bytes',
start(controller) {
// 256 zeros
controller.enqueue(new Uint8Array(256));
controller.close();
},
});
const transformedStream = readableByteStream.pipeThrough(
new CompressionStream('gzip'));
await logChunks(transformedStream);
async function logChunks(readableByteStream) {
const reader = readableByteStream.getReader();
try {
while (true) {
const {done, value} = await reader.read();
if (done) break;
console.log(value);
}
} finally {
reader.releaseLock();
}
}
Example: reading a web page via fetch()
The result of fetch() resolves to a response object whose property .body is a readable byte stream. We convert that byte stream to a text stream via TextDecoderStream:
const response = await fetch('https://example.com');
const readableByteStream = response.body;
const readableStream = readableByteStream.pipeThrough(
new TextDecoderStream('utf-8'));
for await (const stringChunk of readableStream) {
console.log(stringChunk);
}
Node.js-specific helpers
Node.js is the only web platform that supports the following helper functions that it calls utility consumers:
import {
arrayBuffer,
blob,
buffer,
json,
text,
} from 'node:stream/consumers';
These functions convert web ReadableStreams, Node.js Readables and AsyncIterators to Promises that are fulfilled with:
Binary data is assumed to be UTF-8-encoded:
import * as streamConsumers from 'node:stream/consumers';
const readableByteStream = new ReadableStream({
type: 'bytes',
start(controller) {
// TextEncoder converts strings to UTF-8 encoded Uint8Arrays
const encoder = new TextEncoder();
const view = encoder.encode('"😀"');
assert.deepEqual(
view,
Uint8Array.of(34, 240, 159, 152, 128, 34)
);
controller.enqueue(view);
controller.close();
},
});
const jsonData = await streamConsumers.json(readableByteStream);
assert.equal(jsonData, '😀');
String streams work as expected:
import * as streamConsumers from 'node:stream/consumers';
const readableByteStream = new ReadableStream({
start(controller) {
controller.enqueue('"😀"');
controller.close();
},
});
const jsonData = await streamConsumers.json(readableByteStream);
assert.equal(jsonData, '😀');
Further reading
All of the material mentioned in this section was a source for this chapter.
This chapter doesn’t cover every aspect of the web streams API. You can find more information here:
More material:
Stream recipes
Writing to standard output (stdout)
These are three options for writing to stdout:
Writing to stdout via `console.log()
console.log(format, ...args) writes to stdout and always appends a newline '\n' (even on Windows). The first argument can include placeholders which are interpreted in the same way as they are by util.format():
console.log('String: %s Number: %d Percent: %%', 'abc', 123);
const obj = {one: 1, two: 2};
console.log('JSON: %j Object: %o', obj, obj);
// Output:
// 'String: abc Number: 123 Percent: %'
// 'JSON: {"one":1,"two":2} Object: { one: 1, two: 2 }'
All arguments after the first one always show up in the output, even if there are not enough placeholders for them.
Writing to stdout via a Node.js stream
process.stdout is an instance of stream.Readable. That means that we can use it like any other Node.js stream – for example:
process.stdout.write('two');
process.stdout.write(' words');
process.stdout.write('\n');
The previous code is equivalent to:
console.log('two words');
Note that there is no newline at the end in this case because console.log() always adds one.
If we use .write() with large amounts of data, we should take backpressure into consideration, as explained in §9.5.2.1 “writable.write(chunk)”.
The following recipes work with process.stdout: §11.4 “Node.js stream recipes”.
Writing to stdout via a web stream
We can convert process.stdout to a web stream and write to it:
import {Writable} from 'node:stream';
const webOut = Writable.toWeb(process.stdout);
const writer = webOut.getWriter();
try {
await writer.write('First line\n');
await writer.write('Second line\n');
await writer.close();
} finally {
writer.releaseLock()
}
The following recipes work with webOut: §11.5 “Web stream recipes”.
Writing to standard error (stderr)
Writing to stderr works similarly to writing to stdout:
See the previous section for more information.
Reading from standard input (stdin)
These are options for reading from stdin:
Reading from stdin via a Node.js stream
process.stdin is an instance of stream.Writable. That means that we can use it like any other Node.js stream:
// Switch to text mode (otherwise we get chunks of binary data)
process.stdin.setEncoding('utf-8');
for await (const chunk of process.stdin) {
console.log('>', chunk);
}
The following recipes work with webIn: §11.4 “Node.js stream recipes”.
Reading from stdin via a web stream
We first have to convert process.stdin to a web stream:
import {Readable} from 'node:stream';
// Switch to text mode (otherwise we get chunks of binary data)
process.stdin.setEncoding('utf-8');
const webIn = Readable.toWeb(process.stdin);
for await (const chunk of webIn) {
console.log('>', chunk);
}
The following recipes work with webIn: §11.5 “Web stream recipes”.
Reading from stdin via module 'node:readline'
The built-in module 'node:readline' lets us prompt users to enter information interactively – for example:
import * as fs from 'node:fs';
import * as readline from 'node:readline/promises';
const rl = readline.createInterface({
input: process.stdin,
output: process.stdout,
});
const filePath = await rl.question('Please enter a file path: ');
fs.writeFileSync(filePath, 'Hi!', {encoding: 'utf-8'})
rl.close();
For more information on module 'node:readline', see:
Node.js stream recipes
Readable streams:
Writable streams:
Web stream recipes
Creating a ReadableStream from:
Reading from a ReadableStream:
Transforming ReadableStreams:
Using WritableStreams:
Running shell commands in child processes
In this chapter, we’ll explore how we can execute shell commands from Node.js, via module 'node:child_process'.
Overview of this chapter
Module 'node:child_process' has a function for executing shell commands (in spawned child processes) that comes in two versions:
We’ll first explore spawn() and then spawnSync(). We’ll conclude by looking at the following functions that are based on them and relatively similar:
Windows vs. Unix
The code shown in this chapter runs on Unix, but I have also tested it on Windows – where most of it works with minor changes (such as ending lines with '\r\n' instead of '\n').
Functionality we often use in the examples
The following functionality shows up often in the examples. That’s why it’s explained here, once:
Assertions: assert.equal() for primitive values and assert.deepEqual() for objects. The necessary import is never shown in the examples:
import * as assert from 'node:assert/strict';
Function Readable.toWeb() converts Node’s native stream.Readable to a web stream (an instance of ReadableStream). It is explained in §10 “Using web streams on Node.js”. Readable is always imported in the examples.
The asynchronous function readableStreamToString() consumes a readable web stream and returns a string (wrapped in a Promise). It is explained in the chapter on web streams. This function is assumed to available in the examples.
Spawning processes asynchronously: spawn()
How spawn() works
spawn(
command: string,
args?: Array<string>,
options?: Object
): ChildProcess
spawn() asynchronously executes a command in a new process: The process runs concurrently to Node’s main JavaScript process and we can communicate with it in various ways (often via streams).
Next, there is documentation for the parameters and the result of spawn(). If you prefer to learn by example, you can skip that content and continue with the subsections that follow.
Parameter: command
command is a string with the shell command. There are two modes of using this parameter:
Both modes are demonstrated later in this chapter.
Parameter: options
The following options are most interesting:
Look at process.env (e.g. in the Node.js REPL) to see what variables exist.
We can use spreading to non-destructively override an existing variable – or create it if it doesn’t exist yet:
{env: {...process.env, MY_VAR: 'Hi!'}}
options.stdio
Each of the standard I/O streams of the child process has a numeric ID, a so-called file descriptor:
There can be more file descriptors, but that’s rare.
options.stdio configures if and how the streams of the child process are piped to streams in the parent process. It can be an Array where each element configures the file descriptor that is equal to its index. The following values can be used as Array elements:
'pipe':
'ignore': Ignore the child’s stream.
'inherit': Pipe the child’s stream to the corresponding stream of the parent process.
Native Node.js stream: Pipe to or from that stream.
Other values are supported, too, but that’s beyond the scope of this chapter.
Instead of specifying options.stdio via an Array, we can also abbreviate:
Result: instance of ChildProcess
spawn() returns instances of ChildProcess.
Interesting data properties:
Interesting methods:
.kill(signalCode?: number | string = 'SIGTERM'): boolean
Sends a POSIX signal to the child process (which usually results in the termination of the process):
This method is demonstrated later in this chapter.
Interesting events:
We’ll see later how events can be turned into Promises that can be awaited.
When is the shell command executed?
When using the asynchronous spawn(), the child process for the command is started asynchronously. The following code demonstrates that:
import {spawn} from 'node:child_process';
spawn(
'echo', ['Command starts'],
{
stdio: 'inherit',
shell: true,
}
);
console.log('After spawn()');
This is the output:
After spawn()
Command starts
Command-only mode vs. args mode
In this section, we specify the same command invocation in two ways:
Command-only mode
import {Readable} from 'node:stream';
import {spawn} from 'node:child_process';
const childProcess = spawn(
'echo "Hello, how are you?"',
{
shell: true, // (A)
stdio: ['ignore', 'pipe', 'inherit'], // (B)
}
);
const stdout = Readable.toWeb(
childProcess.stdout.setEncoding('utf-8'));
// Result on Unix
assert.equal(
await readableStreamToString(stdout),
'Hello, how are you?\n' // (C)
);
// Result on Windows: '"Hello, how are you?"\r\n'
Each command-only spawning with arguments requires .shell to be true (line A) – even if it’s as simple as this one.
In line B, we tell spawn() how to handle standard I/O:
In this case, we are only interested in the output of the child process. Therefore, we are done once we have processed the output. In other cases, we might have to wait until the child exits. How to do that, is demonstrated later.
In command-only mode, we see more pecularities of shells – for example, the Windows Command shell output includes double quotes (last line).
Args mode
import {Readable} from 'node:stream';
import {spawn} from 'node:child_process';
const childProcess = spawn(
'echo', ['Hello, how are you?'],
{
shell: true,
stdio: ['ignore', 'pipe', 'inherit'],
}
);
const stdout = Readable.toWeb(
childProcess.stdout.setEncoding('utf-8'));
// Result on Unix
assert.equal(
await readableStreamToString(stdout),
'Hello, how are you?\n'
);
// Result on Windows: 'Hello, how are you?\r\n'
Meta-characters in args
Let’s explore what happens if there are meta-characters in args:
import {Readable} from 'node:stream';
import {spawn} from 'node:child_process';
async function echoUser({shell, args}) {
const childProcess = spawn(
`echo`, args,
{
stdio: ['ignore', 'pipe', 'inherit'],
shell,
}
);
const stdout = Readable.toWeb(
childProcess.stdout.setEncoding('utf-8'));
return readableStreamToString(stdout);
}
// Results on Unix
assert.equal(
await echoUser({shell: false, args: ['$USER']}), // (A)
'$USER\n'
);
assert.equal(
await echoUser({shell: true, args: ['$USER']}), // (B)
'rauschma\n'
);
assert.equal(
await echoUser({shell: true, args: [String.raw`\$USER`]}), // (C)
'$USER\n'
);
Similar effects occur with other meta-characters such as asterisks (*).
These were two examples of Unix shell meta-characters. Windows shells have their own meta-characters and their own ways of escaping.
A more complicated shell command
Let’s use more shell features (which requires command-only mode):
import {Readable} from 'node:stream';
import {spawn} from 'node:child_process';
import {EOL} from 'node:os';
const childProcess = spawn(
`(echo cherry && echo apple && echo banana) | sort`,
{
stdio: ['ignore', 'pipe', 'inherit'],
shell: true,
}
);
const stdout = Readable.toWeb(
childProcess.stdout.setEncoding('utf-8'));
assert.equal(
await readableStreamToString(stdout),
'apple\nbanana\ncherry\n'
);
Sending data to the stdin of the child process
So far, we have only read the standard output of a child process. But we can also send data to standard input:
import {Readable, Writable} from 'node:stream';
import {spawn} from 'node:child_process';
const childProcess = spawn(
`sort`, // (A)
{
stdio: ['pipe', 'pipe', 'inherit'],
}
);
const stdin = Writable.toWeb(childProcess.stdin); // (B)
const writer = stdin.getWriter(); // (C)
try {
await writer.write('Cherry\n');
await writer.write('Apple\n');
await writer.write('Banana\n');
} finally {
writer.close();
}
const stdout = Readable.toWeb(
childProcess.stdout.setEncoding('utf-8'));
assert.equal(
await readableStreamToString(stdout),
'Apple\nBanana\nCherry\n'
);
We use the shell command sort (line A) to sort lines of text for us.
In line B, we use Writable.toWeb() to convert a native Node.js stream to a web stream (for more information, see §10 “Using web streams on Node.js”).
How to write to a WritableStream via a writer (line C) is also explained in the chapter on web streams.
Piping manually
We previously let a shell execute the following command:
(echo cherry && echo apple && echo banana) | sort
In the following example, we do the piping manually, from the echoes (line A) to the sorting (line B):
import {Readable, Writable} from 'node:stream';
import {spawn} from 'node:child_process';
const echo = spawn( // (A)
`echo cherry && echo apple && echo banana`,
{
stdio: ['ignore', 'pipe', 'inherit'],
shell: true,
}
);
const sort = spawn( // (B)
`sort`,
{
stdio: ['pipe', 'pipe', 'inherit'],
shell: true,
}
);
//==== Transferring chunks from echo.stdout to sort.stdin ====
const echoOut = Readable.toWeb(
echo.stdout.setEncoding('utf-8'));
const sortIn = Writable.toWeb(sort.stdin);
const sortInWriter = sortIn.getWriter();
try {
for await (const chunk of echoOut) { // (C)
await sortInWriter.write(chunk);
}
} finally {
sortInWriter.close();
}
//==== Reading sort.stdout ====
const sortOut = Readable.toWeb(
sort.stdout.setEncoding('utf-8'));
assert.equal(
await readableStreamToString(sortOut),
'apple\nbanana\ncherry\n'
);
ReadableStreams such as echoOut are asynchronously iterable. That’s why we can use a for-await-of loop to read their chunks (the fragments of the streamed data). For more information, see §10 “Using web streams on Node.js”.
Handling unsuccessful exits (including errors)
There are three main kinds of unsuccessful exits:
The child process can’t be spawned
The following code demonstrates what happens if a child process can’t be spawned. In this case, the cause is that the shell’s path doesn’t point to an executable (line A).
import {spawn} from 'node:child_process';
const childProcess = spawn(
'echo hello',
{
stdio: ['inherit', 'inherit', 'pipe'],
shell: '/bin/does-not-exist', // (A)
}
);
childProcess.on('error', (err) => { // (B)
assert.equal(
err.toString(),
'Error: spawn /bin/does-not-exist ENOENT'
);
});
This is the first time that we use events to work with child processes. In line B, we register an event listener for the 'error' event. The child process starts after the current code fragment is finished. That helps prevent race conditions: When we start listening we can be sure that the event hasn’t been emitted yet.
An error happens in the shell
If the shell code contains an error, we don’t get an 'error' event (line B), we get an 'exit' event with a non-zero exit code (line A):
import {Readable} from 'node:stream';
import {spawn} from 'node:child_process';
const childProcess = spawn(
'does-not-exist',
{
stdio: ['inherit', 'inherit', 'pipe'],
shell: true,
}
);
childProcess.on('exit',
async (exitCode, signalCode) => { // (A)
assert.equal(exitCode, 127);
assert.equal(signalCode, null);
const stderr = Readable.toWeb(
childProcess.stderr.setEncoding('utf-8'));
assert.equal(
await readableStreamToString(stderr),
'/bin/sh: does-not-exist: command not found\n'
);
}
);
childProcess.on('error', (err) => { // (B)
console.error('We never get here!');
});
A process is killed
If a process is killed on Unix, the exit code is null (line C) and the signal code is a string (line D):
import {Readable} from 'node:stream';
import {spawn} from 'node:child_process';
const childProcess = spawn(
'kill $$', // (A)
{
stdio: ['inherit', 'inherit', 'pipe'],
shell: true,
}
);
console.log(childProcess.pid); // (B)
childProcess.on('exit', async (exitCode, signalCode) => {
assert.equal(exitCode, null); // (C)
assert.equal(signalCode, 'SIGTERM'); // (D)
const stderr = Readable.toWeb(
childProcess.stderr.setEncoding('utf-8'));
assert.equal(
await readableStreamToString(stderr),
'' // (E)
);
});
Note that there is no error output (line E).
Instead of the child process killing itself (line A), we could have also paused it for a longer time and killed it manually via the process ID that we logged in line B.
What happens if we kill a child process on Windows?
Waiting for the exit of a child process
Sometimes we only want to wait until a command is finished. That can be achieved via events and via Promises.
Waiting via events
import * as fs from 'node:fs';
import {spawn} from 'node:child_process';
const childProcess = spawn(
`(echo first && echo second) > tmp-file.txt`,
{
shell: true,
stdio: 'inherit',
}
);
childProcess.on('exit', (exitCode, signalCode) => { // (A)
assert.equal(exitCode, 0);
assert.equal(signalCode, null);
assert.equal(
fs.readFileSync('tmp-file.txt', {encoding: 'utf-8'}),
'first\nsecond\n'
);
});
We are using the standard Node.js event pattern and register a listener for the 'exit' event (line A).
Waiting via Promises
import * as fs from 'node:fs';
import {spawn} from 'node:child_process';
const childProcess = spawn(
`(echo first && echo second) > tmp-file.txt`,
{
shell: true,
stdio: 'inherit',
}
);
const {exitCode, signalCode} = await onExit(childProcess); // (A)
assert.equal(exitCode, 0);
assert.equal(signalCode, null);
assert.equal(
fs.readFileSync('tmp-file.txt', {encoding: 'utf-8'}),
'first\nsecond\n'
);
The helper function onExit() that we use in line A, returns a Promise that is fulfilled if an 'exit' event is emitted:
export function onExit(eventEmitter) {
return new Promise((resolve, reject) => {
eventEmitter.once('exit', (exitCode, signalCode) => {
if (exitCode === 0) { // (B)
resolve({exitCode, signalCode});
} else {
reject(new Error(
`Non-zero exit: code ${exitCode}, signal ${signalCode}`));
}
});
eventEmitter.once('error', (err) => { // (C)
reject(err);
});
});
}
If eventEmitter fails, the returned Promise is rejected and await throws an exception in line A. onExit() handles two kinds of failures:
Terminating child processes
Terminating a child process via an AbortController
In this example, we use an AbortController to terminate a shell command:
import {spawn} from 'node:child_process';
const abortController = new AbortController(); // (A)
const childProcess = spawn(
`echo Hello`,
{
stdio: 'inherit',
shell: true,
signal: abortController.signal, // (B)
}
);
childProcess.on('error', (err) => {
assert.equal(
err.toString(),
'AbortError: The operation was aborted'
);
});
abortController.abort(); // (C)
We create an AbortController (line A), pass its signal to spawn() (line B), and terminate the shell command via the AbortController (line C).
The child process starts asynchronously (after the current code fragment is executed). That’s why we can abort before the process has even started and why we don’t see any output in this case.
Terminating a child process via .kill()
In the next example, we terminate a child process via the method .kill() (last line):
import {spawn} from 'node:child_process';
const childProcess = spawn(
`echo Hello`,
{
stdio: 'inherit',
shell: true,
}
);
childProcess.on('exit', (exitCode, signalCode) => {
assert.equal(exitCode, null);
assert.equal(signalCode, 'SIGTERM');
});
childProcess.kill(); // default argument value: 'SIGTERM'
Once again, we kill the child process before it has started (asynchronously!) and there is no output.
Spawning processes synchronously: spawnSync()
spawnSync(
command: string,
args?: Array<string>,
options?: Object
): Object
spawnSync() is the synchronous version of spawn() – it waits until the child process exits before it synchronously(!) returns an object.
The parameters are mostly the same as those of spawn(). options has a few additional properties – e.g.:
The function returns an object. Its most interesting properties are:
With the asynchronous spawn(), the child process ran concurrently and we could read standard I/O via streams. In contrast, the synchronous spawnSync() collects the contents of the streams and returns them to us synchronously (see next subsection).
When is the shell command executed?
When using the synchronous spawnSync(), the child process for the command is started synchronously. The following code demonstrates that:
import {spawnSync} from 'node:child_process';
spawnSync(
'echo', ['Command starts'],
{
stdio: 'inherit',
shell: true,
}
);
console.log('After spawnSync()');
This is the output:
Command starts
After spawnSync()
Reading from stdout
The following code demonstrates how to read standard output:
import {spawnSync} from 'node:child_process';
const result = spawnSync(
`echo rock && echo paper && echo scissors`,
{
stdio: ['ignore', 'pipe', 'inherit'], // (A)
encoding: 'utf-8', // (B)
shell: true,
}
);
console.log(result);
assert.equal(
result.stdout, // (C)
'rock\npaper\nscissors\n'
);
assert.equal(result.stderr, null); // (D)
In line A, we use options.stdio to tell spawnSync() that we are only interested in standard output. We ignore standard input and pipe standard error to the parent process.
As a consequence, we only get a result property for standard output (line C) and the property for standard error is null (line D).
Since we can’t access the streams that spawnSync() uses internally to handle the standard I/O of the child process, we tell it which encoding to use, via options.encoding (line B).
Sending data to the stdin of the child process
We can send data to the standard input stream of a child process via the options property .input (line A):
import {spawnSync} from 'node:child_process';
const result = spawnSync(
`sort`,
{
stdio: ['pipe', 'pipe', 'inherit'],
encoding: 'utf-8',
input: 'Cherry\nApple\nBanana\n', // (A)
}
);
assert.equal(
result.stdout,
'Apple\nBanana\nCherry\n'
);
Handling unsuccessful exits (including errors)
There are three main kinds of unsuccessful exits (when the exit code isn’t zero):
The child process can’t be spawned
If spawning fails, spawn() emits an 'error' event. In contrast, spawnSync() sets result.error to an error object:
import {spawnSync} from 'node:child_process';
const result = spawnSync(
'echo hello',
{
stdio: ['ignore', 'inherit', 'pipe'],
encoding: 'utf-8',
shell: '/bin/does-not-exist',
}
);
assert.equal(
result.error.toString(),
'Error: spawnSync /bin/does-not-exist ENOENT'
);
An error happens in the shell
If an error happens in the shell, the exit code result.status is greater than zero and result.signal is null:
import {spawnSync} from 'node:child_process';
const result = spawnSync(
'does-not-exist',
{
stdio: ['ignore', 'inherit', 'pipe'],
encoding: 'utf-8',
shell: true,
}
);
assert.equal(result.status, 127);
assert.equal(result.signal, null);
assert.equal(
result.stderr, '/bin/sh: does-not-exist: command not found\n'
);
A process is killed
If the child process is killed on Unix, result.signal contains the name of the signal and result.status is null:
import {spawnSync} from 'node:child_process';
const result = spawnSync(
'kill $$',
{
stdio: ['ignore', 'inherit', 'pipe'],
encoding: 'utf-8',
shell: true,
}
);
assert.equal(result.status, null);
assert.equal(result.signal, 'SIGTERM');
assert.equal(result.stderr, ''); // (A)
Note that no output was sent to the standard error stream (line A).
If we kill a child process on Windows:
Asynchronous helper functions based on spawn()
In this section, we look at two asynchronous functions in module node:child_process that are based on spawn():
We ignore fork() in this chapter. Quoting the Node.js documentation:
fork() spawns a new Node.js process and invokes a specified module with an IPC communication channel established that allows sending messages between parent and child.
exec()
exec(
command: string,
options?: Object,
callback?: (error, stdout, stderr) => void
): ChildProcess
exec() runs a command in a newly spawned shell. The main differences with spawn() are:
import {exec} from 'node:child_process';
const childProcess = exec(
'echo Hello',
(error, stdout, stderr) => {
if (error) {
console.error('error: ' + error.toString());
return;
}
console.log('stdout: ' + stdout); // 'stdout: Hello\n'
console.error('stderr: ' + stderr); // 'stderr: '
}
);
exec() can be converted to a Promise-based function via util.promisify():
import * as util from 'node:util';
import * as child_process from 'node:child_process';
const execAsync = util.promisify(child_process.exec);
try {
const resultPromise = execAsync('echo Hello');
const {childProcess} = resultPromise;
const obj = await resultPromise;
console.log(obj); // { stdout: 'Hello\n', stderr: '' }
} catch (err) {
console.error(err);
}
execFile()
execFile(file, args?, options?, callback?): ChildProcess
Works similarly to exec(), with the following differences:
Like exec(), execFile() can be converted to a Promise-based function via util.promisify().
Synchronous helper functions based on spawnAsync()
execSync()
execSync(
command: string,
options?: Object
): Buffer | string
execSync() runs a command in a new child process and waits synchronously until that process exits. The main differences with spawnSync() are:
import {execSync} from 'node:child_process';
try {
const stdout = execSync('echo Hello');
console.log('stdout: ' + stdout); // 'stdout: Hello\n'
} catch (err) {
console.error('Error: ' + err.toString());
}
execFileSync()
execFileSync(file, args?, options?): Buffer | string
Works similarly to execSync(), with the following differences:
Useful libraries
tinysh: a helper for spawning shell commands
tinysh by Anton Medvedev is a small library that helps with spawning shell commands – e.g.:
import sh from 'tinysh';
console.log(sh.ls('-l'));
console.log(sh.cat('README.md'));
We can override the default options by using .call() to pass an object as this:
sh.tee.call({input: 'Hello, world!'}, 'file.txt');
We can use any property name and tinysh executes the shell command with that name. It achieves that feat via a Proxy. This is a slightly modified version of the actual library:
import {execFileSync} from 'node:child_process';
const sh = new Proxy({}, {
get: (_, bin) => function (...args) { // (A)
return execFileSync(bin, args,
{
encoding: 'utf-8',
shell: true,
...this // (B)
}
);
},
});
In line A, we can see that if we get a property whose name is bin from sh, a function is returned that invokes execFileSync() and uses bin as the first argument.
Spreading this in line B enables us to specify options via .call(). The defaults come first, so that they can be overridden via this.
node-powershell: executing Windows PowerShell commands via Node.js
Using the library node-powershell on Windows, looks as follows:
import { PowerShell } from 'node-powershell';
PowerShell.$`echo "hello from PowerShell"`;
Choosing between the functions of module 'node:child_process'
General constraints:
Asynchronous functions – choosing between spawn() and exec() or execFile():
Synchronous functions – choosing between spawnSync() and execSync() or execFileSync():
Choosing between exec() and execFile() (the same arguments apply to choosing between execSync() and execFileSync()):
Where are the remaining chapters?
You are reading a preview version of this book. You can either read all chapters online or you can buy the full version.