SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 13, 95-100 (1983)

Short Communication

A PORTABLE INPUT/
OUTPUT SYSTEM

DAVID R. HANSON

Department of Computer Science, The University
of Arizona, Tucson, Arizona 85721, U.S.A.

SUMMARY

Input and output are essential and often
aggravating hurdles to be overcome in writ~
ing portable software. Idiosyncratic i/o can
negate the portability of an otherwise por-
table system. Typical approaches to portable
i/o rely on the definition of a small set of low-
level ifo primitives that can be implemented
easily using the ‘middle-level’ io facilities on
the host computer. These approaches can
result in ifo systems that are inefficient and
lack richness, which limit their range of
applicability. These conventional portable
ifo systems manipulate machine-dependent
files via a few machine-independent primi-
tives. This note describes the design, imple-
mentation and application of a portable ijo
systemm that manipulates machine-inde-
pendent files via primitives that provide ifo
capabilities atypical of many operating
systems.

KEY WORDS Portability I/O systems UNIX Ratfor

INTRODUCTION

Input/output is one of the most machine-depen-
dent aspects of programming and one of the more
aggravating hurdles to be overcome in producing
portable software. Indeed, since most portable
systems rely on ijo to some extent, each is bur-
dened with a serious a priori machine dependency.
The range of ifo capabilities among computers is
so large that the portability of even the most
carefully engineered software can be thwarted by
1jo idiosyncracies.

A typical solution to this dilemma is to use the
‘standard’ ifo primitives defined by the language in
which the portable system is written.! For
example, in Fortran it is common to use the ijo
statements defined in the ANSI standard, and

0038-0644/83/010095-06%01.00
© 1983 by John Wiley & Sons, Ltd.

to use verifiers that detect of non-standard
constructs.?

Another common approach, based on abstract
machine modelling,? is to define a small set of
relatively low-level ifo routines that can be im-
plemented easily and can model common i/o
devices,” 7 Funnelling -all ifo through these
routines isolates portability problems in their
machine-dependent implementation. The wide-
spread use of the software described in Reference 6
attests to the success of this approach.

Despite the success of the abstract machine
modelling approach, it suffers from several pro-
blems. To achieve portability, the ifo primitives
are usually designed to accommodate the ‘lowest
common denominator’ in ifo capabilities of the
intended host systems. The primitives must neces-
sarily exclude all but the most basic i/o capabilities,
which limits their applicability and constricts the
systems in which they are used. Most designs, for
example, provide only sequential ifo involving
character files. Enhancements may of course be
added, but at the expense of implementation com-
plexity or a reduction in the number of machines
on which they can be realized. The i/o primitives
used by the software in Reference 6 are a good
example of this trade-off. Those primitives, drawn
from UNIX,’ provide more capabilities than are
present in many host systems including a flexible
random access scheme. The efficient implementa-
tion of these primitives is non-trivial, however, and
typically requires approximately 6 man-months
even on ‘friendly’ systems.®

Another problem is efficiency. The lowest
common denominator approach often relies on the
‘use of ‘middle-level’ i/o facilities such as a Fortran
i/o system. This additional layer is required for
portability reasons, but adds overhead. In addi-
tion, any semantic mismatch between the middle-
level facilities and the portable i/o primitives they
are used to implement results in an inefficient ifo
system. The primitives in Reference 6 again pro-
vide an example: Their implementation using
Fortran i/o is dreadfully slow. Any ‘real’ use of that
software requires a finely tuned assembly language
implementation,

The heart of the problem with traditional
approaches to portable i/o systems is the attempt to
manipulate highly machine-dependent objects—

Received 27 April 1982
Revised 18 August 1982



96 SHORT COMMUNICATIONS

host machine files. It is this restriction that neces-
sitates the use of middle-level ijo systems, which
turns the problem of manipulating machine-
dependent files into one of interfacing with pos-
sibly machine-dependent middle-level ifo systems.
Thus, to accommodate many computers, a por-
table system must be designed to rely on only the
intersection of the capabilities of the wvarious
middle-level systems, i.e. the lowest common
denominator. )

This note describes a portable ifo ystem, PIOS,
that avoids some of these limitations by making
files themselves machine-independent, obviating
the need for middle-level assistance. There are
several advantages to this approach. First, and
most importantly, the PIOS primitives are not
limited by the capabilities of middle-level systems.
For example, there is no reason to exclude capa-
bilities such as random access ifo. Indeed, PIOS
provides capabilities, such as random access, mul-
tiple access and automatic expansion of files, that
are not found in some commercial systems.
Second, the overhead of the middle-level routines
and inefficiency induced by semantic mismatch are
avoided. Last, as described below, the imple-
mentation of the PIOS primitives is often simpli-
fied because the file format can be adjusted to best
suit the host computer.

THE INPUT/OUTPUT SYSTEM

On most systems, ifo primitives provide the means
for accessing named files. Such primitives rely—at
least conceptually—on two subsystems: a directory
system and an ifo system. The distinction between
these two systems is rarely made because they are
usually combined as a single entity in existing
operating systems. Portability constraints, how-
ever, focus attention on the distinction, and force a
precise characterization of the dependencies invol-
ved in order to accommmeodate a wide range of hosts
and applications.

Directory systems map names to files, and ifo
systems operate on those files. The mapping from
names to files can range from a very simple 1-1
mapping to more complex hierarchical many-1
mapping. Directory systems also provide other
services such as access control. Adherence to this
distinction between directory and ifo sybsystems
simplifies their implementatoon and enhances
flexibility.®

PIOS is an ifo subsystem. Its primitives operate
on files, but not on names; it is independent of any
specific directory system. It may be used with a
machine-dependent or a portable directory system.
Portable directory systems provide a machine-
independent method for naming files. For
example, the portable directory system PDS!'C

supports a hierarchical directory structure, similar
to that in UNIX and Multics.!' and a set of
primitives for manipulating that structure.
Combining PIOS with potentially any directory
systemn adds flexibility and increases applicability.

Since P1IOS does not operate on names, it is not
normally called by the user directly, but is called
by applications-level primitives that first map
names to files. One way to view PIOS is as a
portable middle-level ifo system similar to those
described above. An advantage of PIOS is that it is
a known quantity—its usage does not change from
computer to computer. In addition, it provides
capabilities not normally found in middle-level
systems such as Fortran ifo systems, and its imple-
mentation is designed to be more efficient than
those systems.

A PIOS file is a finite sequence of charcters or
bytes as in Multics!? and UNIX. PIOS is insensi-
tive to the range of byte values, so it can accommo-
date both ‘binary’ and ‘character’ files. Primitives
create, delete and open files, and read and write
characters anywhere within a file. Files are as large
as is necessary to accommodate what is written to
them, but are otherwise featureless.

There are six PIOS primitives. Most return a
value indicating the success or failure of the opera-
tion. Files are created by createi(id, hostname). As
described below, PIOS uses host files in order to
implement its concept of files; hostname is the
name of that file. If the creation succeeds, createi
places a character string identifying the new file in
id and returns a success indication as its value.
Details of id are described below.

The primitive open(id, file) opens the file in-
dicated by id. It returns in file a structure des-
cribing an opened file. The important two fields of
the structure are zop and size. The value of the size
field is the current size of the file in characters. The
iop field contains an ‘ifo pointer’ whose value is
used to indicate where in the file the next ijo
transfer is to occur. The other fields are used
internally by PIOS. The primitive closei(file) closes
the opened file indicated by file.

Note that openi does not require an argument to
indicate how the file is to be opened (e.g. ‘read’,
‘write’, ‘append’, etc.). At the PIOS level, files are
simply opened, and may be read or written as
desired. Constraints on the mode of access to an
opened file must be enforced by the applications-
level primitives. Doing so within PIOS would
require a priori knowledge of what modes are
meaningful for all applications.

The values of id returned by createi and used by
openi are the range of the mapping function per-
formed by the directory system. A typical imple-
mentation of an applications-level file creation
routine, for example, calls the directory system to




SHORT COMMUNICATIONS 97

map the name into an zd and, if that succeeds, calls
openi with the resulting id and a uninitialized file
structure. The initialized file structure returned by
openi 1s then used as an argument to other ijo
primitives.

Data transfer to and from opened files is per-
formed by readi and writei: readi(buffer, count, file)
reads up to count characters from the opened file
indicated by file into buffer, one character per
word. Characters are read starting at the position
indicated by the current value of file.Zop, which is
incremented by the number of characters read.

_readi returns the number of characters actually
read, which may be 0 if file.iop is greater than or
equal to file.size. Writing is similar to reading:
writei(buffer, count, file) writes count characters
from bujffer to the file indicated by file. Writing
starts at the position indicated by the current value
of file.iop, which is incremented by the number of
characters written. Unlike reading, however, writ-
ing beyond the current size of the file is permitted.
In that case, the file is automatically extended to
accommodate what is written to it, and its size is
increased accordingly. Writing even apparently
non-contiguous parts of a file is permitted. In this
case, the logical size of the file is the largest value
ever assumed by the i/o pointer. Unwritten parts of
the file are not physically allocated unless
necessary.

A file may be opened for reading more than once
and each open is treated separately. A file may be
opened for reading and writing at the same time,
but the data read may depend on the data written.
In practice, the potential for collision does not
cause problems for simple applications. If it is a
problem in more sophisticated applications, such
as data base applications, checks to prohibit mul-
tiple access to a file opened for writing can be
performed by the applications-level primitives.
Indeed, the absence of such a priori restrictions is
one of the advantages of PIOS and similar sys-
tems;!3 the user can enforce whatever constraints
are appropriate for the application.

Files are deleted by deletei(id) where id is the
identifying string returned by createi. Deletion of
opened files 1s permitted; the file is actually deleted
upon the removal of the last reference to it. After
deletion, all space occupied for the file is available
for reuse.

As the above primitives illustrate, PIOS
occuples a unique position in the continuum of i/o
systems that range from the machine-independent
to the machine-specific. It is generally less efficient
than less portable systems and more efficient
than more portable systems. For example, the

applications-level primitives described below are
typically less efficient, but only slightly more por-
table, when implemented with Fortran i/o than
with PIOS. Moreover, the additional capabilities
of PIOS offset the slight loss of portability.

IMPLEMENTATION

PIOS is a set of procedures, written in Ratfor
(and hence Fortran), which is loaded with the
program or system that uses it. The implementa-
tion relies on a few simple host machine ifo
operations, facilitating implementation on a large
number of machines.

The PIOS primitives are simple in concept, but
their direct implementation can be very difficult on
some systems. The random access aspect of read:
and writer and the automatic extension of files often
cause problems. The implementation techniques
used in PIOS are based on those of Multics!? and
UNIX,!5 and are designed so that it can be
implemented on even the most hostile systems,
such as those in which files are fixed length and
have a specific record structure. The basic tech-
nique is to- spatially multiplex many PIOS files
within one large host system file and access that file
via four simple machine-dependent primitives.

The host file is assumed to be divided into a
sequence of fixed-size blocks of characters (the
actusal size of the blocks is a compile-time para-
meter). In addition to open and close routines,
machine-dependent routines to read and write
arbitrary blocks are required. Alli/o to the host file
1s in terms of complete blocks.*

PIOS files are identified by strings of the form
‘-n hostname’ where n is the block number within
the host file hostname that contains information
necessary for accessing the file. It is this form of
string that is returned by create: as the file id.

A file consists of data blocks and information
blocks used for accessing the file. Whereas data
blocks consist simply of m characters, where m is
the block size, information blocks consist of & non-
negative integers, which are usually interpreted as
block numbers. The precise value of & depends on
the radix chosen for its representation, the block
size, and largest value of & required, which must at
least be the size of the host file in blocks. For
example, using radix 256 in an implementation
involving 512 8-bit bytes per block amounts to a
binary representation. The initial implementation
on the DEC-10 involving 640 7-bit characters per
block used radix 10, which yields a character-
oriented representation. Such representation de-

6, 14

*The use of one large host file is inessential. On systems that discourage large files, the sequence of fixed-size blocks
can be simulated by a number of small files, providing they can be accessed given a single name.



98

tails are not fixed by the implementation and can
be tuned to the host computer.

The value of 7 in an 7d is the block number of the
root information block for the file. Denoting an
information block by the array b6[1:%], the root
block has the following layout: 5[1] indicates the
arrangement of the remaining information blocks;
6[2] and b[3] give the size of the file in characters;
and b[4] to b[k] contain block numbers of data or
additional information blocks depending on the
value of b[1]. -

Addressing of data blocks is similar to the
scheme used in UNIX and WFS.1® If 5[1] is 0, b[4]
to b[K] contain block numbers of data blocks,
which accommodates ‘smail’ files of up to
mx (k—3) characters. If p[1] is 1, b[4] to &[]
contain block numbers of additional addressing
blocks, each of which contains %k block numbers of
data blocks, permitting ‘large’ files of up to
mx kx(k—3) characters. Information and data
blocks are allocated automatically on demand. It is
possible, for example, to have a ‘holes’ in a file.

Block allocation is handled by keeping a linked
list of free blocks, much as is done in UNIX. The
first block of the host file is used to store the head of
this list along with the size in blocks of the host file.

PIOS handles up to a fixed number of host files
simultaneously. It also maintains a software cache
of the most recently accessed blocks. Including this
machinery within PIOS permits very simple
implementations of the machine-dependent
primitives without a significant loss of efficiency.
For example, on the DEC-10 the primitives
occupy about a page of assembly language. These
features do, however, require that extra care be
taken to ensure that the data structures in the host
file are kept up to date. PIOS updates these
structures periodically depending on the modifica-
tion frequency. In addition, update: may be called
to cause them to be updated, for example, after
closing the last opened file.

APPLICATIONS

PIOS is useful in applications where a machine-
independent representation of files and flexible ifo
capabilities would enhance utility. It may be used
with or without a directory system. Simple por-
table data base systems and self-contained lan-

SHORT COMMUNICATIONS

guage systems, such as APL, are examples of
systems where PIOS could be used without a
directory system. An implementation of a set of
general-purpose tools, such as those described in
Reference 6, on computers with limited ifo facili-
ties is an example where an interface to a directory
system would be necessary.

This latter usage is the typical use of PIOS. For
example, the applications-level primitives used in
Reference 6 have been implemented with a simple
directory system that provides a 1-1 mapping from
names to PIOS files. Those primitives, which
amount to 65 lines of Ratfor, include routines for
opening and closing files and reading and writing
single characters. File creation is handled as a form
of opening. Files are opened by open(name, mode)
where name names the file, and miode is either
READ or WRITE, indicating how the file is to be
accessed. open returns a file descriptor, which is an
index into a table of file structures and is used to
access the opened file. Descriptors, similar to
Fortran unit numbers, are never inspected
explicitly; they are passed to other applications-
level primitives to indicate the opened file on
which they should operate. Files are closed by
close(fd), which amounts to a call to closer and
updating the table of file structures maintained by
open.

Files are read, a character at a time, by
getch(c, fd) where fd is the file descriptor returned
by opea. getch reads the next character and returns
it in ¢ and as the function value. It returns the
distinguished character EOF at end of file. Files
are written by putch(c, fd).

The implementation of getch and putch is a
straightforward usage of readi and writei. The
actual ifo being performed by readi and write: is
done in units of blocks. PIOS permits
applications-level primitives to be designed to
accommodate the application with minimal con-
cern about the efficiency of the actual 1fo.

Table I gives transfer rates for these primitives
implemented using three different ifo svstems on
two computers {operating systems are indicated in
parenthesis). The rates are normalized to those of
the Fortran ijo systems. The machine-specific ifo
systems are implementations of the above primi-
tives in assembly language. Implementation using
PIOS and the Fortran ifo systemn required essen-
tially the same effort (2 days).

Table L. I/O system transfer rates

i/o system DEC-10 (TOPS-10) Cyber-175 (XOS/BE)
Fortran ijo 1-00 1-00
Portable 1/o 1-34 1-24
Machine-specific ifo 3-49 1-82




SHORT COMMUNICATIONS 99

These measurements were obtained by imple-
menting the primitives using each of the indicated
1/o systems and using those implementations to
copy a 70,000-byte file. A more favourable
comparison for PIOS appears in other tests that
exercise its cache, such as reading the same file a
number of times, or use features that are difficult to
realize with Fortran ifo, such as random access. In
addition, proportionally larger transfer rates are
obtained by reading and writing more than one
character at a time. Such modifications are typi-
cally easier to make and are more effective in PIOS
than in a Fortran-based ijo system.

As suggested earlier, the implementation of
these primitives using PIOS is more efficient than
their Fortran implementation and less efficient
than their machine-specific implementation. As
indicated by the data in Table I, the increase in
efficiency of using PIOS is larger on computers for
which there is a large difference in efficiency
between Fortran and assembly language i/o.
Fortran ifo on the Cyber-173, for example, is more
efficient relative to assembly language i/o than on
the DEC-10, and the efficiency advantage is corre-
spondingly less. While there is less to be gained in
terms of efficiency by using PIOS on the Cyber-
175, PIOS offers capabilities not readily available
on that computer.

Another, more complicated, example of the use
of PIOS is in a set of primitives that use PDS as the
directory system. That implementation provides
capabilities similar to those in UNIX and mirrors
most of the capabilities of PIOS at a higher level.
Totalling about 180 lines of Ratfor, it has primi-
tives for file creation, deletion and renaming, per-
mits opening files for reading, writing, or both, and
can read and write arbitrary sequences of charac-
ters in both sequential and random access modes.

The facilities of PDS and PIOS significantly
simplified the implementation of this latter
example. Using the subsystems permitted most of
the design effort to be concentrated on functional
capabilities. For example, the implementation in
actual use, which totals 230 lines, was enhanced to
provide an interface to two i/o systems, PIOS and
the conventional DEC-10 file system. The result is
a single set of applications-level primitives for
accessing both DEC-10 and PIOS files. This
enhancement was particularly useful for the editor
described in Reference 6. It uses a random-access
scratch file in addition to the sequential input and
output files. Since random access is difficult for the
standard DEC-10 file system, a PIOS scratch file
was used. The editor thus uses host i/o facilities for
the relatively simple sequential access to user-
specified files and PIOS facilities for the more
complex random access to the hidden scratch
file.

CONCILUSIONS

PIOS demonstrates that portability need not limit
the flexibility and efficiency of ijo systems. Perhaps
more importantly, it also demonstrates that flexible
ifjo systems do not have to be complicated. It
therefore serves not only as a usable piece of soft-
ware, but as a model for the design of machine-
dependent 1f/o systems.

UNIX was the starting point for the initial
design of PIOS (and of PDS), and much of its
influence appears in the end result. There are,
however, significant differences induced by porta-
bility requirements. The most notable difference is
the logical and physical separation of the directory
system and the ifo system. This separation re-
quired an accurate characterization of what in-
formation is required by each subsystem. For
example, the ifo subsystem needs location and size
information about a file, but not access rights
information; the reverse is the case for the direc-
tory subsystem. In most systems, UNIX being an
example, such information is typically treated to-
gether. While this view of the information is
adequate for machine-dependent systems, it is too
restrictive for machine-independent systems that,
to be useful, must accommodate a wide range of
applications.

The other difference is an additional degree of
freedom provided in PIOS. In UNIX, all of the
files in a directory must reside in the same ‘file
system’ as the directory, which corresponds to
requiring all files in a directory to reside in the
same host file in PIOS. Such restrictions do not
apply to PIOS. More importantly, however, they
may be enforced by the user of PIOS if desired.

Using separate directory and ifo systems also
simplifies modifications since the two sybsystems
are each simpler than their combination. For
example, specialized protection mechanisms can
be added to PDS without affecting PIOS.!°
Likewise, additional i/o capabilities can be added
to PIOS with no impact on PDS. The major
disadvantage of separate directory and ifo systems
is that they may get out of synchronization due to
either software faults or subversion. Experience to
date and similar experience elsewhere® 13-15 in-
dicates that the separation does not induce ad-
ditional problems and can actually aid in the repair
of errors due to software faults. The safety and
security of such systems relative to traditional
systems has yet to be investigated, however.

An important contribution of PIOS is that it
provides a machine-independent concept of ‘file’,
When integrating PIOS with other software, how-
ever, this contribution can be a disadvantage.
Other software, a Fortran compiler for example,
cannot read a PIOS file. As a result, a utility to
copy files in and out of PIOS is required. This



100

problem is another reason why the application-
level primitives for the DEC-10, described above,
are interfaced to two ifo systems. While this solu-
tion is not difficult, it is aggravating and requires
more effort in the design of such primitives than is
desirable.

Another disadvantage is that PIOS is limited to a
single user. Two users simultaneously updating
the same host file will result in chaos. This prob-
lem is very machine-dependent, and any portable
solution will require assumptions about host sys-
tems that may not be valid for all systems.
However, the PIOS would suit the increasingly
common single-user, personal systems, and it
could serve as the basis of a centralized, multi-user
ifo system.

ACKNOWLEDGEMENTS

The many comments and suggestions of Chris
Fraser and of the referees resulted in improve-
ments in both the portable ifo system and this
presentation. Gregg Townsend and Steve
Wampler provided valuable assistance and advice
on the Cyber implementation. This work was
supported by the U.S. National Science Founda-
tion under Grant MCS-7802545.

REFERENCES

1. A. S. Tannenbaum, P. Klint and W. Bohm, ‘Guide-
lines for program portability’, Softwware—Practice
and Experience, 8, 681-698 (1978).

2. B. G. Ryder, “The PFORT verifier’, Software—
Practice and Experience, 4, 359-377 (1974).

3. M. C. Newey, P. C. Poole and W. M. Waite,
‘Abstract machine modelling to produce portable
software—a review and evaluation’, Software—
Practice and Experience, 2, 107-136 (1972).

4

10.

11.

13.

14.

16.

SHORT COMMUNICATIONS

. R. C. Dunn, ‘Design of a higher-level language trans-
port system’, Ph.D. Dissertation, University of
Colorado, Boulder, 1975.

. W. M. Waite, ‘System interface’, in Softwware Porta-
bility, An Adevanced Course (EA. P. J. Brown), Cam-
bridge University Press, London, 1977.

. B. W. Kernighan and P. ]. Plauger, Software Tools,
Addison-Wesleyv, Reading, Mass., 1976.

. D. M. Ritchie and K. Thompson, ‘The vxIx time-
sharing system’, Communications of the ACM, 17,
365-375 (1974).

. D. R. Hanson, ‘Iustalling version 3 of the software
tools’, Tech. Rep. TR 81-23, Department of
Computer Science, University of Arizona. Tucson,
1981.

. A. D. Birrel and R. M. Needham, ‘A universal file

server’, JEEE Transactions on Softwware Engineering,

SE-6, 450433 (1980).

D. R. Hanson, ‘A portable file directory system’,

Software—Practice and Experience, 10, 623-634

(1980).

E. L. Organick, The Multics System: An Examination

of its Structure, MIT Press, Cambridge, 1972.

2. R. J. Feiertag and E. I. Organick, ‘The Multics

input-output system’, Proceedings of the Third
Symposium on Operating Systems, 3541 (1971).

D. Swinehart, G. McDaniel and D. R. Boggs, ‘WFS:
a simple shared file system for a distributed environ-
ment’, Proceedings of the Seventh Symposium on
Operating Systems, 9-17 (1979).

B. W. Kernighan, ‘Ratfor—a preprocessor for a
rational Fortran’, Softicare—Practice and
Experience, 4, 396—106 (1975).

. K. Thompson, ‘U'Nix implementation’, Bell System
Technical Fournal, 57, 1931-1946 (1978).

B. W. Lampson and R. F. Sproull, “An open operat-
ing system for a single-user machine’, Proceedings of
the Seventh Symposium on Operating Systems,
98-105(1979).



