A Portable File System*

David R. Hanson

Department of Computer Science. The University of Arizona
Tucson, Arizona 85721

1. Introduction

Input, output is one of the most machine-dependent aspects of pro-
gramming. especially for portable software. The large rangeof i o and
file system capabilities among existing computer systems makes it
extremely difficult to avoid idiosyncratic problems in even the most
carefully enginesred portable systems. A’ typical solution to this
dilemma is to use the ‘standard’ i.0 and file primitives defined in the
language in which the portable system is written [tan?8). In Fortran,
for example, it is common practice to use only the forms of the ijo
statements defined in the ANSI standard. and to use verifiers thar aid
in the detection of non-standard constructs {ryd74] Another common
approach is to define a small set of relatively low-level i o routines that
can be easily implemented and can mode! the capabilities of most com-
monly availabie file systems. By funnelling all i o through these rou-
tines, portability problems are isolated in their machine-dependent
implemnentation. The software described in [ker76} is evidence of the
success of this approach.

A problem with these traditional approaches is they invanably sacrifice
capability and efficiency for portability. Designs based on these
approaches 1end 1o have only the "lowest common denominator’ in
capabilities of the intended host systems, such as sequential i ‘0 tochar-
acter files of restricted names. Enhancements may of course be added.
but at the expense of an increase in implementation complexity and a
reduction in portability.

The heart of the problem with traditional approaches 1o portable ijo
systems lies in their attempt to manipulate highly machine-dependent
objects—host machine files and file names. This paper describes a
portable file system that makes files and their names machine-
independent. The most important advantage of this approach is that
ifo is not limited by the target systems. For example. capabilities such
as random access, multiple access, and automatic expansion of files.
which are absent in some commercial operating systems, are provided
by the portable file system.

The portabie file system—pFs for short—is the combination of a port-
able file directory system [han30s, han81] and a portabie i, o system
[han80b) It provides machine-independent files and file names, a

hierarchical directory structure in which to organize files. and a set of
directory manipulation and i, o primitives. The directory structure and
primitives are similar to the structure and primitives of the L NIX [rit74)
file system. The PFS s, in large part. a portable implementation of the
UNIX file system. It is packaged as a set of Ratfor [ker75]) (and hence
Fortran) functions and subroutines. which is loaded with the program
or systemn that uses it. The implementation techniques are similar to
those used in UNIX (tho78] and are described in {han80a] and [hand0b].

2. Directories

The directory structure in the PFS is a rooted tree structure in which the
leaves are files or directories and the nodes are directories. A directory
is simply a list of files and directories. The root of the tree is denoted
by /. and files and directories are denoted by their “path’, which speci-
fies their absolute position in the tree.

A path is composed of the names of the nodes on the path from the
root to the desired file or directory. The path components are
separated by slashes, e.g /source/pfs/ailoc.rat. The names*. and .’
refer, respectively. to the directory itself. and to its immed:ate ancestor.
These names may be used as path components, providing a explicit
means of using the structural properties of the tree. If a file name does
not begin with/, it is taken to be rooted at the ‘current directory’. For
example, if the current directory is at /source/pfs. the name alloc.rat

Reprinted from Proceedings of the JPL-SIGNUM Conference on the Computing Environment for Mathematical Software. 17-18. July
1981, JPL Publication 81-67.

refers 1o /source/pls:alioc.cat. Files and directories are equinalent
with the exception that directories cannot be written by the user.

The primitives that deal exclusively with the ditectory structure are
summartzed in Tabie 1.

Table L. ks Directory Primitives

chdir{name) change current directory to name
link(namel.name2) make alink to name1 namad name2
mkdir{name) make a directory named name
rmdir(name) remove directory named name
stat{name.array) return information about file name

The current directory is changed by chdir. link sstablishes alternate
names for a file. Directories are created by mkdir and. once empty. are
deleted by rmdir. Information about a file {or directory). such as its
size and date of creation, 1s returned by stat.

3. Primitives

A PFS file 1s simular to a file in UNIX and may be thought of as a finite
sequence of characters or bytes. The PFS is insensitive to the range of
byte values. so it can accommodate both ‘hinary’ and ‘character” files.
Primitives are provided to create. delete, and open files. and to read
and write characters anywhere within a file. Files are as large as is
necessary to accommodate what is written to them. but are otherwise
featureless. The basic primitives are summarized in Table I1I. Most
primitives return a value indicating the success or failure of the opera-
tion.

Table 11. PFs 10O Primitives

{d = fopen{name mode) open file name
1d = tcreate{(name.mode) create and open file name
fclose(fd) close a file

n = tread{buffer,count.fd} read from a file

n = twrite(buffer.count.fd) write to a file

pos = tpos(offsettype.td) position i o pointer’
fremove(name) delete file name

Existing files are opened for i'o by fopen. The argument name is the
name of the file and mode is READ, WRITE. READWRITE, or
APPEND and indicates *how " the file is to be accessed. if the file exists,
fopen returns a file descriptor’, which may be thought of as a “handle’
that is used to access an opened file. Descriptors are similar in concept
to channel numbers or Fortran unit numbers. Their values are never
inspected explicitly but are passed to other primitives to indicate the
opened file on which they should operate.

New files are created by fcreate, which creates the named file and
opens it as if fopen had been called. If the file already exists. it is trun-
cated to zero length and opened.

Opened.files are closed by fclose(fd).

Data transfer to and from opened files is performed by fread and
fwrite. fread reads up to count characters from the opened file indi-
cated by the file descriptor fd into buffer. It returns the number of
characters actually read. which may be 0 when the end of the file is
reached. fwrite writes count characters from buffer to the file indi-
cated by fd. Writing beyond the current size of the file is permitted.
and the file 1s automatically extended to accommodate what is written
to it. For symmetry with fread. fwrite returns the number of charac-
ters actually wntten.

An ‘i, o pointer’ is associated with ecach opened file and is advanced by
fread and fwrite. It can be repositioned by fpos according to the
values of offset and type. If typa is 0. offset specifies a position rela-
tive to the beginning of the file; if type is 1. offset specifies a position
relative to the end of the file: and if type is 2, offset specifies a position
relative to the current positon of the file. fpos returns the previous
position of the {ile.

Files are deieted by fremove. Deletion of opened files and files wath
aliases is permutted: the file is actually deleted upon the remaoval of the
last reference to it. Afier deletion, all space occupied for the filke is
available for reuse.

4. Conclusions

The portable file system provides 3 machine-independent concept of
file and i o primitives that offer greater flexibility than is found in
many operating systems. [t 1s typically more efficient than the tradi-
tional approaches to portable 1 v systems. For example. measure-
ments on a DEC-10 and Cyber 175 show a 25-35 percent improvement
over Fortran i; o for seguential character files.

Perhuaps the best characterization of PFS is an abstract data type ‘file’.
1t provides a data steucture, file. and a set of operations on that
structure. This characterization clarifies the important difference
between the PFS approach and traditional approaches. which attempt
to provide a set of operations on uaspecified and highly machine-
dependent data structures —host machine files.

References

{hansta)
Hamson. D. R. A Portable File Directory Sysizm, Sofinare— Practice &
Expertence 108 (\ug. 19%50). 623-634

{han80b]
Hamson, D. R. A Portable Input Quiput System. Tech. Report 79-17a,
Dept. of Computer Science, The University of Arirona. Tucson, Nov
19%0

[han8l)
Hanson. D. R. Algorithm 568: PDS—A Portable Direvtory Sustem.
ACM TOPLAS 3. 2(Apr. 19811, 162-16°.

[ker™s)
Kernighan, B W. Raifor—A Preprocessor for 2 Rational Fortran.
Software— Practive & Experience 5. 4(Dec. 1975). 396-306.

[ker™6)
Kernighan, B. W. and Plauger, P. J. Sofivaez Tools. Addion-Westey.
Reading. MA. 1976.

[rin74]
Ritchie. D. M. and Thompson, K. The UNIX Timesharing Sysiem.
Comm. ACM 17, 6(Jul. 1974), 365-375.

fryd™4)
Ryder. B. G. The PFORT Verificr. Software— Practice and Experience 4.
2(Dec. 1973).359-377.

[tan™s)
Tannenbaum. A S.. Khint, P_and Bohm. W. Guidetines for Program Por-
tatnitty. Software—Practi e and Expenence 5.6 (Nas. 1978), 6a1-698.

[tho78)
Thompson. K. UNIX Implementation. Befl Sistem Tech. J. 57, 6 (Jul.
1978), 1931-1946.

*Ths work sas supponed by the Vanonal Science Foundation under Grant MCS-
TRO2S4S.

