
Distributed EZ

Alvaro E. Campos and David R. Hanson
Department of Computer Science

Princeton University
Princeton, NJ 08544 USA

Reprinted from Proceedings of the 16th Annual International Computer Software and Applications Confer-
ence, Chicago, Sep. 1992, pp. 136-142.
Copyright 1992, IEEE Inc., reprinted by permission.

Abstract

EZ is a system that integrates traditional operating sys-
tems and programming languages into a very high-level ,
persistent, string processing language. This paper describes
the design and initial implementation of a distributed mem-
ory manager that distributes EZ’s virtual address space
transparently among a network of homogeneous computers.
The design adapts the techniques used in recent implemen-
tations of shared virtual memory for use in EZ’s persis-
tent environment. Unlike most implementations of shared
virtual memory, control information is distributed and mi-
grates. This memory manager works in concert with a dis-
tributed mark-and-sweep garbage collector, which is also
concurrent and real-time. This collector trades time for
space and minimal disruption of mutators, which reduces
communication costs.

1 Introduction

A system that integrates language and operating
system concepts into a single system offers a different
perspective on some time-honored features of tradi-
tional operating systems. Traditional file systems are
an example; there is no reason why files cannot be re-
garded simply as persistent values bound to variables.
Once this “traditional barrier” is breached, it is natu-
ral to view all objects — records, arrays, procedures —
as persistent values, which leads to one language that
supports both programming and manipulating the en-
vironment.

EZ is a language-based, exploratory programming
environment that supports this view [9, 15]. It ac-
complishes this integration by encapsulating system
services as features in a very high-level language, and
by providing a large, persistent virtual address space.

Past research on EZ focused mainly on language
design — finding suitable linguistic encapsulations for
system services. This approach has worked well for
some services, e.g., file systems and processes, but
other services strain this approach. Tough examples
include interactive devices and distributed systems.

This paper reports on the different, but complemen-
tary, approach used to accommodate distribution in
EZ. Instead of language design, this approach focuses
on language implementation — finding suitable tech-
niques for distributing the EZ virtual address space
transparently among a network of homogeneous com-
puters.

2 The EZ system

EZ is a high-level string processing language with
a persistent memory that permits it to double as a
programming environment. Services provided by tra-
ditional operating systems are cast as EZ language
features. Values exist indefinitely or until changed,
so EZ’s strings and associative tables subsume tra-
ditional file and directory services. Associative ta-
bles are also used for procedure activations [9] and
for threads, i.e., lightweight processes, and low-level
synchronization [15].

References [9] and [15] describe the syntax and se-
mantics of EZ in detail. Briefly, EZ is derived from
Icon [12] and its predecessors. It shares many of their
attributes, such as run-time flexibility, typed values
and untyped variables, heterogeneous structures, au-
tomatic type conversions, and mechanisms for run-
time scope control. EZ’s built-in types include numer-
ics, strings, procedures, and associative tables. EZ has
the usual control constructs, which are driven by the
absence or presence of values. Everything in EZ, in-
cluding program code, resides in a single, persistent,
32-bit virtual address space.

EZ is not the only system that offers persistence.
APL systems have always operated in a persistent
workspace, and some Smalltalk and Lisp systems offer
similar facilities [19, 22, 28]. Others have added per-
sistent data types and procedures to Pascal-like lan-
guages [3], some languages have mechanisms for trans-
mitting arbitrary values between programs and hence
long-term storage [16], and most object-oriented lan-
guages have facilities for saving some objects on disk
for later retrieval [20]. Persistence is also an important

aspect of some programming environments for tradi-
tional languages [30] and for maintaining program-
ming environment databases [29]. The key difference
between these systems and EZ is that most offer per-
sistence as a separate facility and usually restrict it
to data. Persistence pervades EZ and applies to both
data and active objects, like procedure activations and
processes.

As described in Reference [15], EZ has an
interpreter-based implementation similar in detail to
other very high-level languages [11]. The virtual ad-
dress space resides on disk and is managed by a virtual
memory manager that caches pages in memory. Cur-
rently, all memory management is done by software.
The interface between the interpreter and memory
manager consists of two functions: GetPage(a, mode)
returns a “handle” to the page that encompasses ad-
dress a, and PutPage(h, dirty) releases the page given
by handle h. mode indicates access mode and is either
read or write, and dirty indicates whether or not a
writable page was actually modified. Handles are sim-
ply the memory address of the in-cache copy of the
page. Flushing the cache saves the system state.

Unlike the clients of memory managers in operat-
ing systems, the EZ interpreter is a “trusted” client
and is therefore given complete ownership of pages re-
quested via GetPage. Other interpreter threads can
request the same page. As in classical readers/writers
applications, multiple read requests are granted, but
write requests are given exclusive access. The inter-
preter itself is written to avoid deadlock, but it is pos-
sible to write EZ processes that deadlock just as it is
possible to write programs with threads in Mach [5]
that deadlock, for example.

3 Distribution

The EZ address space is distributed transparently
among a set of homogeneous processors by replac-
ing the memory manager by one that is based on
the recent implementations of shared virtual mem-
ory [18, 21, 25]. The shared virtual memory man-
ager attempts to collect recently accessed pages at the
processor that accesses them. In this design, identical
copies of the new memory manager run at each proces-
sor, and the entire virtual address space is distributed
among the secondary storage devices of the individual
processors. Each manager caches the pages that its
interpreter clients are using, and these pages are ac-
cessed via GetPage as described above. The managers
hide all distribution details. Managers replicate pages
to permit multiple readers, but permit only one writer
in order to maintain coherence.

3.1 Coherence

Since GetPage yields ownership of a page to the
client interpreter, the managers cannot use invalida-
tion techniques [18] to maintain coherence. Page own-
ership migrates to the manager that needs to grant
write access to the page. At any time, each page is
owned by exactly one manager, and that owner is re-
sponsible for maintaining the disk copy of the page.
Consequently, pages migrate among local disks.

Each cached page is known to a manager as invalid,
shared , or unique. Invalid pages are those owned by
other managers for which the cached copy is known
to be out of date. A new copy must be fetched from
its owner the next time access is requested. Shared
pages are those for which the cached copy might be
up to date and other managers might also have shared
copies. Read requests for shared pages can be granted
if the local copy is known to be valid or after the owner
confirms the copy’s validity. Unique pages are those
that are owned by the local manager and for which
there are no valid copies elsewhere. Read and write
requests for these pages can be granted without com-
municating with other managers.

As suggested above, a manager maintains a page
cache and an ownership table, which lists all of the
pages owned by the manager and their disk addresses.
For each cached page, the cache entry holds a pointer
to the local copy of the page, the page status (invalid,
shared, or unique), a reference count, a queue of pend-
ing access requests, an ownership hint, a valid copies
hint, and a dirty bit. The last two entries apply only
to locally owned pages.

For remote pages (i.e., pages owned by another
manager), the reference count is the number of out-
standing read accesses that have been granted in re-
sponse to GetPages from local interpreter threads. For
owned (and hence local) pages, this count is the num-
ber of local read or write accesses that have been
granted plus the number of remote managers that have
granted read access to their copies of the page (which
they obtain on the first access request). PutPages
decrement the count. For remote pages, a message
is sent to the owner when the count reaches 0, and the
owner then decrements its counter.

Write requests are queued until the count becomes
0. Once granted, the count becomes 1. For remote
pages, write requests cause the local manager to ask
the page’s owner to transfer ownership to the local
manager, which occurs when the owner’s count be-
comes 0. Once transferred, the write request is granted
as above.

The ownership hint identifies owned pages and

gives the probable identities of their owners. The
owner’s identity accompanies the copies of remote
pages when they are fetched. Responses always in-
clude the owner’s identity, which updates this field, if
necessary.

The valid copies hint is a bitmap that identifies
other managers to which valid copies of the page have
been sent. It is used to avoid sending copies of pages
unnecessarily.

Pages with a 0 reference count and no pending re-
quests may appear on one of four LRU lists, which are
consulted for page replacement. When the manager
must replace a cache entry, it uses the first entry on
the list of invalid pages. If this list is empty, it uses the
first entry on the list of remote shared pages. Doing
so obligates the local manager to fetch a new copy of
the replaced page, if it is accessed again.

If both of these lists are empty, the first entry on the
list of unique pages is used. Selecting a page from this
list obligates the manager to reread it, if it is accessed
again, but there is no network cost associated with
this choice.

If all else fails, the first entry on the list of owned
shared pages is used. There are valid copies of these
pages elsewhere, but the manager must “forget” about
these copies because it is about to reuse the valid
copies hint in the cache entry. Consequently, subse-
quent read requests from remote managers will cause
the page to be resent, perhaps unnecessarily.

3.2 Communication

Communication is based on reliable byte streams
between managers, and it is assumed that the commu-
nication subsystem preserves message order. Request
messages have a type, which identifies the request, a
sender, which identifies the initiating manager and its
processor, and an address, which is the virtual address
of interest in the request. Acknowledgment messages
have a similar form and an optional page, which is
a copy of the page itself. In acknowlegments, sender
identifies the owner of the page (which might soon
change), and type indicates whether or not an optional
page follows.

The sender helps managers differentiate between lo-
cal and remote requests. The addresses in remote re-
quests always specify pages; local requests mirror the
semantics of GetPage and can specify any virtual ad-
dress and the page containing that address is returned.

Calls to GetPage and PutPage generate four mes-
sage types. GetPage generates read and write re-
quests. PutPage generates clean requests, which in-
dicate that the client is finished with the page and has

not modified it, and dirty requests, which indicate that
the client is finished with the page and modified it.

Most requests are for pages that the local manager
owns, and handling these is straightforward. Requests
for pages that the local manager does not own require
communication with other managers, specifically the
owner of the requested page. There are seven mes-
sage types involved in this communication, which are
refinements of the four types described above.

GetPage for read access is granted immediately if
the local manager knows that its copy of the page
is valid, e.g., another local interpreter is reading the
page. If the local manager has a copy of the page that
it believes is valid, a read request is sent to the owner.
The owner simply grants access, but includes a copy
of the page if it is possible that the requester’s copy is
invalid. Finally, if the local manager does not have a
valid copy of the page, it sends a copy request to the
page’s owner who grants the request by sending a copy
of the page. When a read-only page is returned via
PutPage, the local manager decrements its reference
count on the page and, when the count reaches 0, sends
the owner a decrement request, which is the remote
equivalent of clean.

Calls to GetPage that request write access cause
page ownership to transfer to the requester. The lo-
cal manager sends the owner a write or fetch request
depending on whether or not it may hold a valid copy
of the page. The owner grants the request, including
a copy of the page, if necessary, and marks its copy of
the page as invalid since it is no longer the owner and
its copy of the page is now obsolete.

If a requesting manager does not know the owner of
the desired page (e.g., because it does not hold a valid
copy of the page), it broadcasts equivalents of the mes-
sage types described above to all managers. Only the
actual owner responds to these messages, which iden-
tifies the owner for subsequent requests and reduces
broadcast traffic. Messages directed to a manager that
is no longer the owner of the desired page are turned
into broadcast messages by the recipient or simply for-
warded if the recipient has an ownership hint for the
page.

3.3 Implementation

The implementation of the memory manager in-
cluding the communication package consists of about
1,500 lines of ANSI C. The thread package is another
350 lines. The interpreter and run-time system consist
of 5,000 lines, and the compiler is about 1,800 lines.

The memory manager operates on pages upon
which EZ’s internal values and data structures are im-
plemented. Most pages hold only one value or internal

data structure. For example, strings are implemented
by lists of pages, arrays are implemented as pointers to
pages of additional pointers to pages of values, which
is similar to the allocation of file space on Unix [27],
and the hash tables for associative tables fit in a page.
These kinds of techniques collaborate to minimize in-
ternal fragmentation and gratuitous inter-page refer-
ences.

Each cached page is served by a thread, which pro-
cesses requests from a per-page FIFO service queue.
When the queue becomes empty, the thread termi-
nates. Requests that cannot be satisfied immediately
because the page is busy are queued and serviced when
previous requests complete. Using one thread per page
serializes requests and simplifies programming.

Other threads accept requests from remote man-
agers and append them to the service queue of the ap-
propriate page. These threads also initiate per-page
threads as necessary.

4 Garbage collection

Earlier versions of EZ used an off-line garbage col-
lector to reclaim inaccessible pages in the disk repre-
sentation of the virtual address space. This approach
is fine for a prototype and perhaps adequate for a non-
distributed, “single-user” EZ system that is subject to
frequent idle periods, but an off-line approach is un-
suitable for a distributed system.

Distributed EZ will use a distributed garbage col-
lector that works in concert with the shared virtual
memory manager described above. It is a distributed
mark-and-sweep collector [4, 6, 24], and it is concur-
rent and real-time. Technically, algorithms based on
reference counting [10, 17] are more efficient, but re-
quire additional data for every pointer that might re-
fer to a page on another processor, or additional syn-
chronization between subsets of the processors at each
reference. Besides, these algorithms cannot handle cy-
cles, which makes them unsuitable for EZ where cycles
abound.

Likewise, copying collectors are also more efficient
and can be made both concurrent and real-time [1].
Most designed for distributed address spaces are not
concurrent or real-time, and some require special hard-
ware to be efficient [13] or impose restrictions on inter-
processor pointers, such as double indirection [23].
More importantly, objects in EZ’s virtual address
space cannot move in order to simplify the implemen-
tation of the persistent address space.

For systems with large, persistent address spaces,
efficiency is less important than concurrency; a collec-
tor must not pause and must cope with network and

node failures, even at the cost of collector efficiency.
Indeed, all that is required is that the collector replen-
ish the supply of free pages fast enough so that appli-
cations rarely have to wait to allocate a new page, and
that it eventually collects all inaccessible pages.

An identical copy of the collector runs forever on
each processor (technically, there is a collector for each
memory manager). As usual, a collector marks all
pages that hold accessible objects starting from a few
system “root” objects. It also marks pages referenced
from within objects on marked pages, which may cause
some inaccessible pages to be marked. Indeed, the
collector is conservative: it marks a superset of the
accessible pages and collects only a subset of the inac-
cessible ones [6]. It repeats the collection continuously,
so it eventually reclaims all inaccessible pages.

Each collector processes only the pages owned by
its cooperating memory manager. After marking the
accessible owned pages, a collector exchanges informa-
tion about inter-processor references with the collec-
tors on the other processors. This information feeds
another marking cycle that expands the local collec-
tor’s set of accessible pages. This activity continues
until no collector can expand its accessible page set.

Concurrent collectors need the cooperation of mu-
tators when updating references. In particular, when
a reference is updated, either the old target or the
new target must be marked atomically. Failure to do
so may cause the collector to reclaim either the old
or new target erroneously. Most collectors mark the
new target to avoid hanging on to the page holding
the old target unnecessarily. EZ’s collector, however,
marks the old target for two reasons. First, marking
the new target requires direct mutator assistance. Sec-
ond, marking the old target permits the collector to
use virtual memory hardware to mark pages referenced
by a page before it is modified [2]. At the beginning of
a collection, all owned pages are set to read only. The
first write to a page causes a page fault, and pages
referenced within the faulted page are marked before
the fault handler approves write access to the page.
Marking the referents of a page before it is updated
is equivalent to marking the old targets of updates.
Similar comments apply to calls to GetPage for write
access, but virtual memory hardware is unnecessary.

At any time during marking, each page is marked
with either white, grey, or black. Stop-and-collect,
uniprocessor collectors that are not concurrent use
only two colors; the third, grey, labels pages that have
been marked but not yet traversed for pointers.

At the beginning of each collection, locally owned
pages have the same color, say, white. After marking,
pages will be colored either white or black, and white

pages can be reclaimed. As suggested above, some
black pages may really be inaccessible, but they will
be reclaimed during a subsequent collection. Pseudo-
code for the collection algorithm is shown in Figure 1.
Initially, retain and gather are black and white, re-
spectively. The colors reverse roles in subsequent col-
lections. The owned and free pages sets and the per-
page data are shared by the collector and the memory
manager with appropriate locking.

Collection begins by coloring locally free pages
black so that the memory manager can allocate them
without help from the collector. The access for owned
pages is set to readonly so that the referents for these
pages will be marked if they are modified, as described
above. Writes to these pages are caught at faults or
calls to GetPage and the page requested is scanned
before write access is granted. This action is the only
interaction between the mutator and the collector. As
shown in Figure 1, scanning a page shades its referents,
colors the page black, and unprotects it. The referents
of the local roots are colored by Shade, which colors
owned white pages grey or adds remote pages to m,
which is empty initially.

Marking then begins to cycle. In each cycle, locally
owned grey pages are scanned. Scanning a page may
yield another grey page, but this activity ends eventu-
ally. Once all grey owned pages are scanned, all pages
reachable from local roots are colored black, and m
is the set of all remote pages that should have been
colored grey.

A subset of m is broadcast to other processors. This
subset is the set of pages that have not been announced
by previous broadcasts. cycle records the size of this
subset, and m is added to M , which accumulates re-
mote pages announced by any processor. The collector
then consumes similar messages from the other collec-
tors, accumulates their sizes in cycle, and shades the
pages mentioned in the messages. This shading colors
owned white pages grey or adds remote pages to M .
These messages serve not only to communicate the re-
mote page references between collectors, but also to
synchronize them.

As collection progresses, each collector’s M be-
comes larger until m − M becomes empty, i.e., until
all grey pages everywhere have been colored black. At
that point, all owned white pages are added to the set
of free pages, the roles of white and black are reversed
and collection begins anew.

If a page migrates during collection, it is scanned
before it is sent to its new owner, if necessary. The
memory manager triggers this scan by simulating a
local write, which causes the page to be scanned, as
described above. The new owner colors the page black.

retain ← black
gather ← white
do forever

M ← m← ∅
for every p ∈ free pages do Color(p) ← retain
for every p ∈ owned do Access(p) ← readonly
for every reference r in the local roots do

Shade(Page(r), m)
do

while ∃p ∈ owned ∧ Color(p) = grey do
Scan(p, m)

cycle ← |m−M |
broadcast m−M
M ←M ∪m
for every other processor P do

receive message k from P
cycle ← cycle + |k|
for every p ∈ k do Shade(p, M)

m← ∅
while cycle > 0
for every p ∈ owned do

if Color(p) = gather then
free pages ← free pages ∪ {p}

gather, retain ← retain, gather

Shade(p, s):
if p ∈ owned then

if Color(p) = gather then Color(p) ← grey
else s← s ∪ {p}

Scan(p, s):
for every reference r in p do Shade(Page(r), s)
Color(p) ← retain
Access(p) ← read/write

Figure 1: Garbage Collection Algorithm.

Space efficiency and minimal disruption of muta-
tors are more important than time efficiency of the
algorithm itself. There are reasonably efficient repre-
sentations for all of the data structures used in the
algorithm. Marks are kept in a private bitmap, 2 bits
per page. Page sets for k, m, and M are represented
as lists of arrays of page numbers or page ranges, and
most page ranges can fit in 32 bits as a 23-bit page
number and a 9-bit spread or as two 16-bit page num-
bers. The memory manager already maintains owned
as a bitmap, and a subset of this bitmap identifies
owned grey pages. Finally, free pages is a list of avail-
able pages represented by a list of arrays of page ranges
stored in disk blocks as in Unix [27]. It is accessed as a
LIFO list, so the first disk block is often in the memory
manager’s cache.

5 Discussion

The memory manager and its associated communi-
cations layer have been integrated into the EZ system,
and implementation of the garbage collector is under-
way. These changes also necessitated basic changes in
the EZ virtual machine in order to ensure atomicity
and consistency.

Previously, many primitives that accessed shared
memory (as opposed to per-thread memory) accepted
pointers into the cache as operands because the pre-
vious version of GetPage was atomic and uninterrupt-
ible. To avoid deadlock, these kinds of primitives had
to be decomposed and re-cast in terms of three opera-
tions on associative tables: membership testing, inser-
tion, and deletion. These operations are atomic with
respect to the tables on which they operate, but can
be interrupted by other, unrelated operations.

Performance measurements will undoubtedly in-
duce modifications to the design and to the current
implementation. For example, even though relatively
few shared pages are actually modified, EZ’s adher-
ence to strict consistency may lead to thrashing, which
might be attacked by selective use of release consis-
tency within the interpreter, or by instituting a min-
imum ownership time [8], which would give owners
time to complete several modification operations be-
fore a page changed owner because of a write request.

Other than the interface via GetPage and PutPage,
there is little in the virtual memory system that is spe-
cific to EZ. These techniques can be applied to other
distributed persistent languages and environments.

EZ’s 32-bit virtual address space is too small, es-
pecially in light of the impending availability of 64-
bit processors. The techniques described in this paper
can accommodate such large address spaces, but other
techniques might have advantages. Pointer “swiz-
zling” [31] could be used for a non-distributed EZ, but
it is unclear how to adapt this technique to distributed
systems.

Another alternative design under consideration ac-
commodates multiple virtual address spaces anywhere
in a network and achieves distribution by inter-address
space references. This approach can be viewed as the
complement of the distributed memory manager ap-
proach. Here, the original memory manager remains
nearly untouched, but the language, interpreter and
run-time system are modified.

References to other address spaces are made
through inter-address space pointers. These point-
ers are functionally equivalent to capabilities used in
some distributed systems [26]. They contain an ad-
dress space identifier and an address within that ad-

dress space. Capability-like rights could be added to
restrict the set of legal operations.

The attraction of this approach is that address
spaces could be encapsulated as tables much like
strings encapsulate files. The cost, however, is that
the interpreter must take special action in order to ac-
cess these tables. Efficient implementation techniques
for this kind of dereferencing have been used in other
high-level language systems [11], in heterogeneous sys-
tems [7], and for implementing implicit synchroniza-
tion [14]. Pages would not migrate in this approach,
which simplifies memory management and increases
reliability. Remote dereferencing translates into essen-
tially remote procedure calls to GetPage and PutPage.

Reliability and fault tolerance for distributed per-
sistent systems like EZ remains an important area for
future work. Currently, distributed EZ uses timeouts
to recover from network and machine failures. These
timeouts cause the memory manager to terminate the
requesting EZ process. This somewhat unsatisfying
approach works for user-level processes, but is unac-
ceptable for system-level processes, like the garbage
collector, and other mechanisms are under investiga-
tion.

References

[1] A. W. Appel, J. R. Ellis, and K. Li. Real-time con-
current collection on stock multiprocessors. Proceed-
ings of the SIGPLAN’88 Conference on Programming
Language Design and Implementation, SIGPLAN No-
tices, 23(7):11–20, July 1988.

[2] A. W. Appel and K. Li. Virtual memory primitives for
user programs. In Proceedings of the Fourth Interna-
tional Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages
96–107, Santa Clara, CA, Apr. 1991.

[3] M. P. Atkinson and R. Morrison. Procedures as
persistent data objects. ACM Transactions on Pro-
gramming Languages and Systems, 7(4):539–559, Oct.
1985.

[4] L. Augusteijn. Garbage collection in a distributed
environment. In J. W. de Bakker, A. J. Nijman,
and P. C. Treleaven, editors, PARLE, Parallel Archi-
tectures and Languages Europe, Volume II: Parallel
Languages (LNCS 259), pages 75–93. Springer-Verlag,
Berlin, 1987.

[5] E. C. Cooper and R. P. Draves. C threads. Tech-
nical Report CMU-CS-88-154, School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA,
June 1988.

[6] E. W. Dijkstra, L. Lamport, A. J. Martin, C. S.
Scholten, and E. F. M. Steffens. On-the-fly garbage
collection: An exercise in cooperation. Communica-
tions of the ACM, 21(11):966–975, Nov. 1978.

[7] R. B. Esick IV. The Cross-Architecture Procedure
Call. PhD thesis, The University of Illinois at Urbana-
Champaign, Urbana, IL, 1987.

[8] B. Fleisch and G. J. Popek. Mirage: A coherent dis-
tributed shared memory design. In ACM Symposium
on Operating Systems Principles, pages 211–223, Dec.
1989.

[9] C. W. Fraser and D. R. Hanson. High-level language
facilities for low-level services. In Conference Record
of the ACM Symposium on Principles of Program-
ming Languages, pages 217–224, New Orleans, LA,
Jan. 1985.

[10] B. Goldberg. Generational reference counting: A
reduced-communication distributed storage reclama-
tion scheme. Proceedings of the SIGPLAN’89 Con-
ference on Programming Language Design and Im-
plementation, SIGPLAN Notices, 24(7):313–321, July
1989.

[11] R. E. Griswold and M. T. Griswold. The Implemen-
tation of the Icon Programming Language. Princeton
University Press, Princeton, NJ, 1986.

[12] R. E. Griswold and M. T. Griswold. The Icon Pro-
gramming Language. Prentice Hall, Englewood Cliffs,
NJ, second edition, 1990.

[13] R. H. Halstead, Jr. Implementation of Multilisp: Lisp
on a multiprocessor. In ACM Conference on LISP and
Functional Programming, pages 9–17, Austin, TX,
Aug. 1984.

[14] R. H. Halstead, Jr. Multilisp: A language for concur-
rent symbolic computation. ACM Transactions on
Programming Languages and Systems, 7(4):501–538,
Oct. 1985.

[15] D. R. Hanson and M. Kobayashi. EZ processes. In
Proceedings of the International Conference on Com-
puter Languages, pages 90–97, New Orleans, LA, Mar.
1990.

[16] M. Herlihy and B. H. Liskov. A value transmission
method for abstract data types. ACM Transactions
on Programming Languages and Systems, 4(4):527–
551, Oct. 1982.

[17] C.-W. Lermen and D. Maurer. A protocol for dis-
tributed reference counting. In ACM Conference on
LISP and Functional Programming, pages 343–350,
Cambridge, MA, Aug. 1986.

[18] K. Li and P. Hudak. Memory coherence in shared
virtual memory systems. ACM Transactions on Com-
puter Systems, 7(4):321–359, Nov. 1989.

[19] C. Low. A shared, persistent object store. In S. Gjess-
ing and K. Nygaard, editors, ECOOP’88: European
Conference on Object-Oriented Programming (LNCS
322), pages 390–410, Berlin, Aug. 1988. Springer-
Verlag.

[20] B. Meyer. Eiffel: The Language. Prentice Hall Inter-
national, London, 1992.

[21] B. Nitzberg and V. Lo. Distributed shared memory:
A survey of issues and algorithms. IEEE Computer,
24(8):52–60, Aug. 1991.

[22] A. Paepcke. PCLOS: A flexible implementation of
CLOS persistence. In S. Gjessing and K. Nygaard,
editors, ECOOP’88: European Conference on Object-
Oriented Programming (LNCS 322), pages 374–389,
Berlin, Aug. 1988. Springer-Verlag.

[23] M. Rudalics. Distributed copying garbage collec-
tion. In ACM Conference on LISP and Functional
Programming, pages 364–372, Cambridge, MA, Aug.
1986.

[24] M. Schelvis and E. Bledoeg. The implementation of a
distributed Smalltalk. In S. Gjessing and K. Nygaard,
editors, ECOOP’88: European Conference on Object-
Oriented Programming (LNCS 322), pages 212–232,
Berlin, Aug. 1988. Springer-Verlag.

[25] M. Stumm and S. Zhou. Algorithms implement-
ing distributed shared memory. IEEE Computer,
23(5):54–64, May 1990.

[26] A. S. Tanenbaum, R. van Renesse, H. van Staveren,
G. J. Sharp, S. J. Mullender, J. Jansen, and G. van
Rossum. Experiences with the Amoeba distributed
operating system. Communications of the ACM,
33(12):46–63, Dec. 1990.

[27] K. Thompson. UNIX implementation. Bell System
Technical Journal, 57(6):1931–1946, July 1978.

[28] S. R. Vegdahl. Moving structures between Smalltalk
images. OOPSLA’86 Conference Proceedings, SIG-
PLAN Notices, 21(11):466–471, Nov. 1986.

[29] D. Wiebe. A distributed repository for immutable
persistent objects. OOPSLA’86 Conference Proceed-
ings, SIGPLAN Notices, 21(11):453–465, Nov. 1986.

[30] J. C. Wileden, A. L. Wolf, C. D. Fisher, and P. L.
Tarr. PGRAPHITE: An experiment in persistent
typed object management. Proceedings of SIG-
SOFT’88: Third Symposium on Software Develop-
ment Environments, SIGPLAN Notices, 24(2):130–
142, Feb. 1989.

[31] P. R. Wilson. Pointer swizzling at page fault time: Ef-
ficiently supporting huge address spaces on standard
hardware. Computer Architecture News, 19(4):6–13,
June 1991.

