
1 of 21

Deet

A Simple and Extensible
Graphical Debugger

Jeffrey Korn and Dave Hanson
Princeton University

January 9, 1997

2 of 21

Motivation

Debuggers are notorious for being:

• Hard to port

• Hard to use

• Hard to program

• Hard to modify

• Complex

3 of 21

The Deet Approach

• Write the debugger on top of a small, simple
system API:
•Machine-independent
•Distributed

• Use a suitable language to implement the
debugger:
•Graphical
•Programmable
•Extensible

Result: Simplicity

4 of 21

Related Work

• Machine Independence
•smld [LFP 90]
•ldb [SIGPLAN 92]

• Graphical Debuggers
•Blit Debugger, pi [USENIX 86]
•ddd [SIGPLAN notices 95]
•Microsoft Visual C++

• Debugging Languages
•ups, Acid [USENIX 94]
•Dalek [USENIX 90], duel [USENIX 93]
•NeD [USENIX 92]
•Solaris dbx

5 of 21

The Debugging Nub

• Interface between debugger and target

• Contains all dependencies

• Minimal functionality, small API

• Can have different implementations

• Allows debugger to be on different machine

Target

Nub Interface

Deet UI

Nub Implementation

pipe/socket

(1,500 lines)

(800 lines)

6 of 21

A Machine Independent Nub
mAiN(args)
{

pipe();
spawn(DEBUGGER);
main(args);

}

_Nub_init
_Nub_src
...

foo.c

bar.c

a.out

cdbldlcc -Wo-g4

nub.o

foo.o

bar.o

Augmented code

Augmented code

% DEBUGGER=cdb a.out
cdb> b 7
Sweep and send one of the following commands:
b test/wf.c:7.6
b test/wf.c:7.18
b test/lookup.c:7.2
cdb>

7 of 21

The Nub Interface

•Symbol table implemented on top of nub interface
(not specified by nub)

_Nub_init Initialize nub.

_Nub_set
_Nub_remove

Set and remove breakpoints.

_Nub_src Walk through breakpoints with
given pattern.

_Nub_frame Information about stack.

_Nub_fetch
_Nub_store

Manipulate memory in target.

8 of 21

The Deet Language

• Uses Tksh, a superset of Tcl

• Parses and interprets Tcl code or ksh scripts

• Written, used and programmed with Tksh

• Uses set of built-in nub commands:
deet_continue Begin / resume execution

deet_breakpoint Set and remove breakpoints.

deet_getval Get value at given address.

deet_gettype Get type information.

deet_frame Get/Set current frame.

deet_sym Lookup symbol.

9 of 21

Why Debug With Tksh?

• Good for interactive use
Job control
Command line editing
Easy to work with files and processes

• Backward compatibility
No need to learn a new language
Conformance to standards (POSIX 1003.2 / ISO 9945-2)

• Ksh is a good programming language
Superset of Tcl, better syntax than Perl
Good performance
Language features

10 of 21

11 of 21

12 of 21

13 of 21

Programming Deet

function nullElements
{

typeset arr=$1
integer s=$(arraySize $arr)
for ((i=0 ; i < s ; i++))
do

if [[$(var "$arr[$i]") == 0x0]]
then

print "Element $arr[$i] null"
fi

done
}

toplevel .null

pack $(button .null.b -text "Print Null Elements" \
-command "nullElements hashtable")

14 of 21

Example: Implementation of where

• Complex debugger function written on top of nub
interface:

function where
{

integer i=0
while deet_frame $i 2> /dev/null
do

set -A frame $(deet_frame)
set -A params $(deet_sym -params)
... # Print frame (< 30 lines)
((i++))

done
}

15 of 21

Example: Drawing Structures

count
 1

left
 0x1400003a0

right
 0x140000380

word
 'env'

count
 2

left
 0x140000420

right
 0x0

word
 'dev'

count
 3

left
 0x0
right

 0x1400003c0
word
 'exec'

count
 2

left
 0x0
right
 0x0

word
 'debug'

NULL

NULL

NULL

NULL

count
 2

left
 0x140000400

right
 0x1400003e0

word
 'tty'

count
 1

left
 0x1400004a0

right
 0x140000440

word
 'geometry'

count
 1

left
 0x140000480

right
 0x0

word
 'wm'

count
 1

left
 0x0
right
 0x0

word
 'gdbnub'

count
 2

left
 0x1400004c0

right
 0x140000460

word
 'library'

NULL

NULL

count
 2

left
 0x0
right
 0x0

word
 'ksh'

count
 1

left
 0x0
right

 0x1400004e0
word
 'pwd'

NULL

NULL

NULL

count
 1

left
 0x0
right
 0x0

word
 'script'

NULL

NULL

count
 1

left
 0x0
right
 0x0

word
 'ui'

NULL

NULL

NULL

• Tksh function drawval (< 60 lines)
generates graph for external
program dotty.

16 of 21

Piece-parts Design

deet
UI

Gdb Nub

Gdb

target

lcc target
with

embedded
nub

Java Nub

Java target

nub interface nub interface nub interface

RemoteDebugger
API

17 of 21

Gdb Nub Implementation

deet_breakpoint

"b main.c:54"

"Breakpoint 3" set...
"No line"...
"No source file"...

"select-frame 1"
"up 0"

"#1 lookup("...
"No frame 1"

gdb

deet_frame gdb

18 of 21

Implementation of gdb UI

• Implements enough of gdb to support ddd

ddd

gdb

target
target

deet gdb

nub

ddd

(gdb) frame
#0 lookup (word=0x11ffff8e0 "a", p=0x140000010) at test/lookup.c:15

19 of 21

The Bad News...

• Deet cannot support:

•Stepping through assembly
•Hardware data watchpoints

• Deet can but currently does not support:

•Interrupting the target
•Debugging already running target
•Calling target functions
•Debugging core files
•Signal handling
•Threads

20 of 21

The Good News...

• Demonstrates feasibility of nub interface

• Uses familiar high level debugging language

• Provides an extensible user interface

• Makes use of existing external tools

• Achieves simplicity
•Deet nub: 800 lines of C
•Deet UI: 1,500 lines of Tksh

•Gdb: 150,000 lines of C (47,000 machine dependent)
•DDD: 90,000 lines of C++

21 of 21

Future Work

• Support missing features

• Performance evaluation

• Expression evaluation

• Additional nubs:
•Other languages
•Native object files (e.g. ELF)
•Microsoft Debug API

http://www.cs.princeton.edu/~jlk/deet

