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Motivation

Debuggers are notorious for being:

• Hard to port

• Hard to use

• Hard to program

• Hard to modify

• Complex
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The Deet Approach

• Write the debugger on top of a small, simple 
system API:
•Machine-independent
•Distributed

• Use a suitable language to implement the 
debugger:
•Graphical
•Programmable
•Extensible

Result: Simplicity
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Related Work

• Machine Independence
•smld [LFP 90]
•ldb [SIGPLAN 92]

• Graphical Debuggers
•Blit Debugger, pi [USENIX 86]
•ddd [SIGPLAN notices 95]
•Microsoft Visual C++

• Debugging Languages
•ups, Acid [USENIX 94]
•Dalek [USENIX 90], duel [USENIX 93]
•NeD [USENIX 92]
•Solaris dbx
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The Debugging Nub

• Interface between debugger and target

• Contains all dependencies

• Minimal functionality, small API

• Can have different implementations

• Allows debugger to be on different machine

Target

Nub Interface

Deet UI

Nub Implementation

pipe/socket

(1,500 lines)

(800 lines)
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A Machine Independent Nub
mAiN(args)
{

pipe();
spawn(DEBUGGER);
main(args);

}

_Nub_init
_Nub_src
...

foo.c

bar.c

a.out

cdbldlcc -Wo-g4

nub.o

foo.o

bar.o

Augmented code

Augmented code

% DEBUGGER=cdb a.out
cdb> b 7
Sweep and send one of the following commands:
b test/wf.c:7.6
b test/wf.c:7.18
b test/lookup.c:7.2
cdb> 
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The Nub Interface

•Symbol table implemented on top of nub interface
(not specified by nub)

_Nub_init Initialize nub.

_Nub_set
_Nub_remove

Set and remove breakpoints.

_Nub_src Walk through breakpoints with 
given pattern.

_Nub_frame Information about stack.

_Nub_fetch
_Nub_store

Manipulate memory in target.
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The Deet Language

• Uses Tksh, a superset of Tcl

• Parses and interprets Tcl code or ksh scripts

• Written, used and programmed with Tksh

• Uses set of built-in nub commands:
deet_continue Begin / resume execution

deet_breakpoint Set and remove breakpoints.

deet_getval Get value at given address.

deet_gettype Get type information.

deet_frame Get/Set current frame.

deet_sym Lookup symbol.
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Why Debug With Tksh?

• Good for interactive use
Job control
Command line editing
Easy to work with files and processes

• Backward compatibility
No need to learn a new language
Conformance to standards (POSIX 1003.2 / ISO 9945-2)

• Ksh is a good programming language
Superset of Tcl, better syntax than Perl
Good performance
Language features



10 of 21



11 of 21



12 of 21



13 of 21

Programming Deet

function nullElements
{

typeset arr=$1
integer s=$(arraySize $arr)
for (( i=0 ; i < s ; i++ ))
do

if [[ $(var "$arr[$i]") == 0x0 ]]
then

print "Element $arr[$i] null"
fi

done
}

toplevel .null

pack $(button .null.b -text "Print Null Elements" \
-command "nullElements hashtable")
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Example: Implementation of where

• Complex debugger function written on top of nub 
interface:

function where
{

integer i=0
while deet_frame $i 2> /dev/null
do

set -A frame $(deet_frame)
set -A params $(deet_sym -params)
... # Print frame (< 30 lines)
((i++))

done
}
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Example: Drawing Structures

count 
 1

left 
 0x1400003a0

right 
 0x140000380

word 
 'env'

count 
 2

left 
 0x140000420

right 
 0x0

word 
 'dev'

count 
 3

left 
 0x0
right 

 0x1400003c0
word 
 'exec'

count 
 2

left 
 0x0
right 
 0x0

word 
 'debug'

NULL

NULL

NULL

NULL

count 
 2

left 
 0x140000400

right 
 0x1400003e0

word 
 'tty'

count 
 1

left 
 0x1400004a0

right 
 0x140000440

word 
 'geometry'

count 
 1

left 
 0x140000480

right 
 0x0

word 
 'wm'

count 
 1

left 
 0x0
right 
 0x0

word 
 'gdbnub'

count 
 2

left 
 0x1400004c0

right 
 0x140000460

word 
 'library'

NULL

NULL

count 
 2

left 
 0x0
right 
 0x0

word 
 'ksh'

count 
 1

left 
 0x0
right 

 0x1400004e0
word 
 'pwd'

NULL

NULL

NULL

count 
 1

left 
 0x0
right 
 0x0

word 
 'script'

NULL

NULL

count 
 1

left 
 0x0
right 
 0x0

word 
 'ui'

NULL

NULL

NULL

• Tksh function drawval (< 60 lines) 
generates graph for external 
program dotty.
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Piece-parts Design

deet
UI

Gdb Nub

Gdb

target

lcc target 
with 

embedded 
nub

Java Nub

Java target

nub interface nub interface nub interface

RemoteDebugger 
API
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Gdb Nub Implementation

deet_breakpoint

"b main.c:54"

"Breakpoint 3" set...
"No line"...
"No source file"...

"select-frame 1"
"up 0"

"#1 lookup("...
"No frame 1"

gdb

deet_frame gdb
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Implementation of gdb UI

• Implements enough of gdb to support ddd

ddd

gdb

target
target

deet gdb

nub

ddd

(gdb) frame
#0  lookup (word=0x11ffff8e0 "a", p=0x140000010) at test/lookup.c:15
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The Bad News...

• Deet cannot support:

•Stepping through assembly
•Hardware data watchpoints

• Deet can but currently does not support:

•Interrupting the target
•Debugging already running target
•Calling target functions
•Debugging core files
•Signal handling
•Threads
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The Good News...

• Demonstrates feasibility of nub interface

• Uses familiar high level debugging language

• Provides an extensible user interface

• Makes use of existing external tools

• Achieves simplicity
•Deet nub: 800 lines of C
•Deet UI: 1,500 lines of Tksh

•Gdb: 150,000 lines of C (47,000 machine dependent)
•DDD: 90,000 lines of C++
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Future Work

• Support missing features

• Performance evaluation

• Expression evaluation

• Additional nubs:
•Other languages
•Native object files (e.g. ELF)
•Microsoft Debug API

http://www.cs.princeton.edu/~jlk/deet


