Deet

A Simple and Extensible
Graphical Debugger

Jeffrey Korn and Dave Hanson
Princeton University
January 9, 1997

1of21

M otivation

Debuggers are notorious for being:

e Hard to port

e Hard to use

e Hard to program
e Hard to modify

e Complex

20f21

The Deet Approach

* Writethedebugger on top of asmall, smple
system API:

- Machine-independent
- Distributed

» Use a suitable language to implement the
debugger:

- Graphical
- Programmable
- Extensible

Result: Smplicity

3of21

Related Work

 Machine Independence

- smid [LFP 90]
-Idb [SIGPLAN 92]

» Graphical Debuggers

- Blit Debugger, pi [USENIX 86]
- ddd [SIGPLAN notices 95]
- Microsoft Visual C++

* Debugging L anguages

- ups, Acid [USENIX 94]

- Dalek [USENIX 90], duel [USENIX 93]
- NeD [USENIX 92]

- Solaris dbx

4 of 21

The Debugging Nub

-

&

Deet Ul

(1,500 lines)

Nub Interface

~

t

pipe/socket

e

&

\
Target
Nub Implementation
(800 lines) -
t

* | nterface between debugger and tar get

e Contains all dependencies

e Minimal functionality, small API

e Can have different implementations

 Allows debugger to be on different machine

50f 21

A Machine Independent Nub

foo.c

| cc

-Wo- g4

?Ai N(ar gs) nub.o

pi pe();
spawn(DEBUGGER) ;
mai n(ar gs) ;

}

_Nub_init
_Nub_src

|
|
' cdbl d
|
|

bar.c

-

foo.o

Augmented code

-

bar.o

Augmented code

% DEBUGGER=cdb a. out
cdb> b 7
and send one of the foll ow ng commands:
b test/w.c:7.6

b test/wf.c:7.18
b test/|ookup.c:7.2

Sweep

cdb>

6 of 21

The Nub Interface

_Nub_init Initialize nub.

_Nub_set Set and remove breakpoints.
_Nub_renove

_Nub_src Walk through breakpoints with
given pattern.

_Nub_frane | nformation about stack.

_Nub_fetch Manipulate memory in target.
_Nub_store

- Symbol table implemented on top of nub interface
(not specified by nub)

7of21

The Deet Language

e Uses Tksh, a superset of Tcl
e Parsesand interprets Tcl code or ksh scripts
e Written, used and programmed with Tksh

o Uses set of built-in nub commands:
deet conti nue Begin / resume execution

deet breakpoi nt Set and remove breakpoints,

deet getval Get value at given address.
deet gettype Get typeinformation.
deet frane Get/Set current frame.

deet _sym L ookup symbol.

8 of 21

Why Debug With Tksh?

 Good for interactive use

Job control
Command line editing
Easy to work with files and processes

e Backward compatibility

No need to learn a new language
Conformance to standards (Posix 1003.2/1S0 9945-2)

e Ksh isa good programming language

Superset of Tcl, better syntax than Perl
Good performance
L anguage features

9of21

— Deet: wf.c

File Program Window Extensions

Continue | Step | Next | Print | Breakpoints | Stack | Dumpl

Flle:lwf.c
E I: += .la.l _ 'I.EI.'Ij
T if (c »= ‘&’ && c <= ‘')
g return c;

12 static int getword(char *buf) {

13 char *s;

14 int c;

15

16 while {({c = getchari)) I= -1 &% i1sletteric) == 0]
17 ;

13 for (s = buf; (c = 1slettec(c)) != 0; c = getchar())
19 *5++ = [

20 *z = [;

21 if (s > buf)

28 return 1;

23 return 0;

24)

25

26 woid tprinti(struct node *tree) {

27 1f (tree) {

28 tprint{tree->left);

Breakpoint in file wf.c, line 9

10 of 21

= Ereakpaints o e o |

Breakpoints
File lookup.c, line 31 char 1 - ETETEE = _|H
File wf.c, line 26 char 1 | Select a frame:
File lookup.c, line 27 char 1)
testiwf.c 91

File wf.c, line 12 char 1
* 0 isletter{c=32) at testfwf.c:9.1

1 getword{buf="this") at testfwf.c:18.1
Z main{argyc=1, angv=0xeffffGec) at testfwf.c:39.1

il Cancel |

~L_ L

Condition

1 N —

v

Update | Delete | Close

11 of 21

\ariables o e o |

Close | Expand | Watch | Modify

(struct node *) tree

(int) tree-:count = 2

(struct node *) tree-:xleft = 0x20f48
(struct node *) tree—>riqht = [Ox0

(char *) tree-sword =

0x20£38 Al

{int) tree-rleft-rcount = 1
(struckt node *) tree-:left->left = OxBO£5E

(struct node *) tree-:left->right = O0x2Z0L£65
(char *) tree-:left-»word = "1is"

{int) tree-»left-rright-:count = 1
(struct node *) tree-:left-:right-:left = 0xE0f7T3 I\

(struct node *) tree-:left-:right-:right = 0x0
{char *) tree-:left- }rlqht »word = "test"

e }rlght L J
(struct node *) tree-:left-:right-:left-:>left = Ox0

istruct node *) tree-:left->raight-:left-rright = OxR0fE8

(char *) tree-:left-:right-:left-word = "of" f
Expression: | Compute |

Double Click to Expand

12 of 21

Programming Deet

function null El enents

{
typeset arr=$1
i nt eger s=$(arraySi ze $arr)
for ((1=0; 1 <s ; 1++))
do
if [[$(var "$arr[$i]") == 0x0]]
t hen
print "Elenment $arr[$i] null"”
fi
done
}

t opl evel . null

pack $(button .null.b -text "Print Null
-command "nul | El ements hasht abl e")

—| null _}{J al
Print Null Elements |

El enent s"

\

13 of 21

Example: Implementation of wher e

e Complex debugger function written on top of nub
Interface:

functi on where

{
| nteger i1 =0
whil e deet franme $i 2> /dev/null

do
set -Afrane $(deet frane)
set -A parans $(deet _sym - parans)
... # Print frame (< 30 |ines)
((1++))

done

14 of 21

Example: Drawing Structures

e Tksh function dr awal (<60 lines)
generates graph for external

1 NULL
programdotty. L
0x0
count right L~ NULL
2 0x0
et L—" NULL word
0x0 ‘gdbnub’ count
right 2
count ox0 [NULL Teft | NULL
2 word 0x0
left 'debug’ right
0x140000420 count 0x0 [NULL
right 1 count word
count / 0x0 —— = NULL Tt 5 Ksh'
L word 0x140000420 Teft
left 'dev' right 0x1400004c0 count
0x140000320 0x140000440 right 1 | Nt
o 123(;‘50 w60 count UL word 0x140000460 | [T Tt
3 ‘geometry’ word 0x0
VYO“’, ~~ Teft — 'library' right coulnt
env .Ox 0 — 0x1400004e0 Teft L NULL
right 2 word 0x0
0x1400003c0 o count pwd fight
word 0x140000400 count 1 0x0 [T NuULL
exec Tight 1 left [NULL word
0x1400003€0 | left ox0 ‘script’
word 0x140000480 right
ity right 0x0
oy 0x0 word [NULL
word ‘ui'
wim'
NULL

15 of 21

Piece-parts Design

deet
Ul

nub interface nub interface nub interface

o

| ~,

Icc target
with Java Nub Gdb Nub
embedded RemoteDebugger
nub API

Java target

16 of 21

Gdb Nub I mplementation

deet_breakpoint

“"b mai n. c: 54"

1 gdb

deet_frame

"Breakpoint 3" set...
"No |1 ne". ..
"No source file"...

"select-frame 1"

n up OII

1 gdb

"#1 | ookup("...
"No franme 1"

17 of 21

| mplementation of gdb Ul

ddd ddd
gdb deet gdb.

L b
@arget] [gJ

 Implements enough of gdb to support ddd

(gdb) frane
#0 | ookup (word=0x11ffff8e0 "a", p=0x140000010) at test/|ookup.c: 15

18 of 21

The Bad News...

e Deet cannot support:
- Stepping through assembly
- Hardwar e data watchpoints

 Deet can but currently does not support:

- Interrupting the tar get

- Debugging already running tar get
- Calling tar get functions

- Debugging corefiles

- Signal handling

- Threads

19 of 21

The Good News...

e Demonstrates feasibility of nub interface

» Uses familiar high level debugging language
* Provides an extensible user interface
 Makes use of existing external tools

e Achieves simplicity

« Deet nub: 800 linesof C
« Deet Ul: 1,500 lines of Tksh

- Gdb: 150,000 lines of C (47,000 machine dependent)
- DDD: 90,000 lines of C++

20 of 21

Future Work

e Support missing features
 Performance evaluation
e EXpression evaluation

e Additional nubs:

- Other languages
- Native object files (e.g. ELF)
- Microsoft Debug API

http://www.cs.princeton.edu/~j lk/deet

21 of 21

