
Reprinted from the Proceedings of the USENIX 1997 Annual Technical Conference, Anaheim, CA, Jan. 1997, pp. 183-174.

A Simple and Extensible Graphical Debugger

David R. Hanson and Jeffrey L. Korn
Department of Computer Science, Princeton University,

35 Olden St., Princeton, NJ 08544
{drh ,jlk }@cs.princeton.edu

Abstract

deet is a simple but powerful debugger for ANSI C and
Java. It differs from conventional debuggers in that it
is machine-independent, graphical, programmable, dis-
tributed, extensible, and small. Low-level operations are
performed by communicating with a “nub,” which is a
small set of machine-dependent functions that are em-
bedded in the target program at compile-time, or are im-
plemented on top of existing debuggers.deet has a
set of commands that communicate with the target’s nub.
The target anddeet communicate by passing messages
through a pipe or socket, so they can be on a different
machines. deet is implemented intksh , an exten-
sion of the Korn shell that provides the graphical facil-
ities of Tcl/Tk. Users can browse source files, set break-
points, watch variables, and examine data structures by
pointing and clicking. Additional facilities, like condi-
tional breakpoints, can be written in either Tcl or the
shell. Most debuggers are large and complicated,deet
is less than 1,500 lines of shell plus a few hundred lines
of machine-specific nub code. It is thus easy to under-
stand, modify, and extend. We describe an implementa-
tion of the nub API for Java and an implementation that
is layered on top ofgdb . We have also implemented a
version ofgdb using the nub API, which demonstrates
the modularity of the design.

1 Introduction

Traditional UNIX debuggers are indispensable tools for
locating and fixing program errors. Despite their impor-
tance and pervasiveness, they continue to harbor inad-
equacies that limit their usability. For example, UNIX
debuggers typically have textual user interfaces that are
cryptic at best. When debuggers are hard to use, pro-
grammers tend to litter their programs with print state-
ments instead of using a debugger.

While most PC debuggers run on only one operat-
ing system and one architecture, UNIX debuggers must
deal with portability issues. Debuggers are notoriously
machine-dependent programs; they depend on the tar-

get architecture, operating system, compiler, and linker.
Thus, porting a debugger from one variant of UNIX
to another can require a substantial amount of effort.
For example, about one-third ofgdb ’s source code is
machine-dependent.

Few debuggers have programming facilities in which,
for example, programmers can write application-specific
debugging code. Such code is useful for nontrivial
queries of data structures, such as displaying the second
to last element in a linked list, or all the positive elements
in an array. Other examples include setting conditional
breakpoints and automating program testing. Debuggers
that support programming facilities do exist, but often
the language is idiosyncratic to either the debugger or
the source language, or both, and hard to learn.

Most debuggers are large and complex programs; for
example,gdb [14] is about 150,000 lines of C. This
complexity has some unfortunate consequences. First,
debuggers are often themselves buggy, because, like any
large program, their complexity and size makes them
prone to errors and to inconsistent behaviors on differ-
ent platforms. Second, debuggers are usually difficult
to extend, because their implementations may be hard to
understand and to modify.

deet (desktoperror elimination tool) addresses these
shortcomings. It provides both textual and graphical in-
terfaces to make it easy to use. Users can perform most
debugging actions by pointing and clicking, and data
structures can be displayed graphically. The GUI is writ-
ten with Tk [12]. deet is also programmable: Its ca-
pabilities can be extended by writing in either Tcl or in
tksh , a variant of the Korn shell [8].

Nearly all of deet ’s implementation is machine-
independent. It uses a small “nub” that provides facilities
for communicating with the debugger and controlling the
target. The nub-based approach permitsdeet to debug
a target running on another machine. Figure 1 shows the
screen of a typical debugging session.deet doesn’t at-
tempt to match debuggers likegdb feature-for-feature;
for example,deet can’t examine core dumps, evalu-
ate arbitrary C expressions, or debug at the assembly-
language level. Nevertheless, its implementation is sur-

Figure 1:deet screen dump

prisingly simple. Its complete source is approximately
2,500 lines of shell and C.

2 Usingdeet

deet ’s features are best explained by seeing it in action.
First, the target program is compiled bylcc [3] with the
appropriate debugging option to embed the nub in the
target:

$ lcc -Wf-g4 wf.c lookup.c

Here and in the displays below,slanted type iden-
tifies user input. When the generateda.out is exe-
cuted, the debugger specified by the environment vari-
ableDEBUGGERis also started, so

$ DEBUGGER=deet a.out

starts botha.out anddeet . At this point, the source
window shown in Figure 2 appears. The user is prompted
for textualdeet commands in the shell window from

which a.out was invoked, but most debugging actions
are performed with the mouse.

Single-clicking on a line highlights that line if it con-
tains a breakpoint; double-clicking on the line sets the
breakpoint. deet can set breakpoints on expressions,
not just statements, so there may be more than one break-
point in a line. When a line has multiple breakpoints,
double-clicking sets the breakpoint closest to the cursor.
Breakpoints are indicated in the window in lighter shad-
ing or in yellow (see Figure 2). Double-clicking on a
breakpoint that has already been set removes the break-
point.

The breakpoints window, like the one shown in Fig-
ure 3, displays a list of all breakpoints and related infor-
mation about each breakpoint, such as its location and
break condition. These conditions aredeet expressions
that are evaluated whenever the breakpoint is reached;
if the condition is true, the target stops. When the tar-
get stops at a breakpoint, the current source window
shows the file and line number of the breakpoint, and re-
verse video highlights the line containing the breakpoint.

Figure 2: Source window

A condition can be changed by highlighting the break-
point in the breakpoints window and editing the condi-
tion field, and a breakpoint can also be removed by click-
ing the “Delete” button in this window.

The stack can be shown by clicking on the “Stack” but-
ton in the source window (see Figure 2). This displays a
new window that shows each frame on the stack, from
the top down, as illustrated in the right middle portion
of Figure 1. An individual frame can be selected, and
clicking a button in the stack window performs the corre-
sponding action on that frame. For instance, by clicking
the “Dump” button, the names and values of the parame-
ters and locals for that frame are displayed. Clicking the
“OK” button causes the source window to display the file
and line number of the call to the selected frame.

Highlighting a variable in the source window and
clicking “Print” causes a pop-up window to display the
value of that variable (see the upper right corner of Fig-
ure 2). If the variable is a pointer, a structure, or a union,
double-clicking on the variable expands its value. For
pointers, the value of the referent is displayed; for struc-
tures and unions, the values of the fields are displayed.
deet also displays the values of variables in balloon
help pop-up windows when the cursor is left on top of
the variables for sufficient time, similar to Microsoft’s
Visual C++ debugger [11].

A variable can be modified by clicking “Modify” in
the variable window, which prompts the user to enter
a new value. A variable may also be watched, which
causes its value to be displayed in the variable window
and updated as execution passes each potential break-
point.

Figure 3: Breakpoints window

Commands may be typed at the debugger in the shell
window in a manner similar togdb . For instance, the
breakpoints command displays the current break-
points:

deet> breakpoints
The following breakpoints are set:
File test/wf.c, line 4 char 28
File test/lookup.c, line 14 char 50

Commands are justtksh commands, so shell com-
mands likehistory , pwd, andmake can be entered
as well.

Most of the state in adeet debugging session can be
saved and restored later in a subsequent, separate debug-
ging session. This state includes breakpoints and their
conditions, locations of files, and user-definedtksh
functions.deet saves the state by writing a shell script
that can be interpreted to restore the state.

3 Design

deet divides cleanly into two parts: One part interacts
with the programmer, and the other part interacts with
the target program. The user-interface part is written in
tksh , a version of the new Korn shell [2, 7] that has
been extended to support Tcl [12]. The target program
is controlled by a nub, which provides debugging primi-
tives, as detailed below.deet ’s implementation of and
interaction with the nub is also written intksh . Thus,
programmers can modify and extendbothparts ofdeet
by writing tksh code.

target

debugger

nub

Figure 4:cdb ’s design

3.1 Cdb anddeet

deet is based oncdb [6]. cdb is a machine indepen-
dent debugger that eliminates machine dependencies by
adding a small amount of information into the target pro-
gram at compile time.cdb communicates with the target
through a nub—a small machine-independent interface
that constitutes the core functionality of the debugger, as
suggested by Figure 4. The nub implementation can be
made machine-independent, ascdb shows, but machine-
dependent implementations are also possible and are un-
doubtedly more efficient. The nub is small enough that
re-implementing it for new platforms is nearly as easy as
porting the machine-independent implementation.

There are four components ofcdb :

1. The nub interface, which stands between the debug-
ger and machine-dependent target manipulations.

2. The nub implementation, which consists of the
nub interface functions, special code emitted by
the compiler to support the nub, and a wrapper
around the linker to load the nub and the machine-
independent symbol table.

3. A machine-independent symbol table format, which
is emitted by the compiler and linked into the target.

4. A simple, text-based debugger that uses the nub to
provide minimal functionality; this debugger is in-
tended to be replaced with more sophisticated de-
buggers, likedeet .

Any of the last three components can be replaced with
alternative implementations. For instance, the nub can be
replaced with a machine-dependent implementation that
uses theptrace system call like most UNIX-specific
debuggers, or by one that is layered on top ofgdb . The
machine-independent symbol tables could be replaced
with the usual machine-dependent “stab” symbol tables
embedded in UNIX executables. Finally, the debugger it-
self could be replaced with any program that uses the nub
interface.deet is a replacement for this fourth compo-
nent. Usingdeet does not directly involve changes to

any of the other components, but implementingdeet
did induce additions to the nub and to the symbol-table
format beyond their original designs.

deet is written in tksh , which includes a C library
that can be used to manipulate the state of the Tcl inter-
preter, such as reading and writing variables and creat-
ing new built-in commands.tksh can run any library
written on top of the Tcl library, which includes the Tk
graphics library. Thus, Tk commands, likebutton and
pack , can be invoked fromtksh scripts.

tksh should be thought of as an extension to Tcl
rather than as an alternative to it.tksh allows Tcl
scripts to be run directly with thesource command.
Tcl scripts share variables and functions withtksh , al-
lowing Tcl scripts to work with shell scripts.

tksh is used as the debugging language fordeet
primarily because of its strengths as an interactive com-
mand language. Debuggers are interactive programs.
deet takes advantage of the interactive facilities of
tksh , such as command-line editing, job control and
pipelines. Using the command-line interface todeet
feels like using a shell because the debugger itself is an
extension ofksh . tksh also offers two familiar, high-
level languages. Many programmers already know how
to write shell and Tcl scripts, which is 90% of what’s
needed to usedeet . However, aperl or python pro-
grammer could rewrite thedeet front end and still use
existing nub implementations.

deet also includes additional built-in commands for
debugging.deet ’s code is simpler to understand than
the corresponding C code would be, because it’s written
in a high-level language.deet can also can be modified
during a debugging session to suit specific applications.

3.2 The Nub Interface

The nub interface is designed to be as small as possi-
ble while supporting the fundamental debugging oper-
ations common to all debuggers [6]. Figure 5 summa-
rizes the complete API. The nub does not support high-
level facilities, such as expression evaluation or specific
symbol-table formats, because these facilities can be im-
plemented by other interfaces or by debuggers them-
selves.

Nub set and Nub remove set and remove break-
points, which are specified by a file name, line number,
and character position. Unlike most debuggers, break-
points specify the locations of expressions, not lines. So,
for example, it is possible to set a breakpoint on the in-
crement part of a C for loop.

Nub src accepts incomplete breakpoints, in which
any of the file name, line number, or character position
are omitted, and invokes a debugger callback on all pos-
sible breakpoints that “match” the incomplete one.deet

Nub init initialize the nub
Nub set set a breakpoint
Nub remove remove a breakpoint
Nub src visit breakpoints with a given pattern
Nub frame move to a specific stack frame
Nub fetch read the target’s memory
Nub store write the target’s memory

Figure 5: The nub interface

uses this function to determine which breakpoint to set
when a user clicks on a line.

Nub fetch and Nub store access the target’s
memory. They accept a buffer address, a byte count, and
an address space identifier, and read/write data from/to
the target. The address space identifier may specify an
operating-system address space, such as the text or code
segments. It can also specify logical address spaces that
may not be part of the target, like the symbol table, for
example. It is the nub’s responsibility to access the ap-
propriate data. Debuggers can view all data about the
target as if they were stored in memory.

lcc emits machine-independent symbol tables in the
target’s address space, andNub fetch reads these
data. Anothercdb -specific, but machine-independent,
interface provides a higher-level view of the C symbol
table as an inverted tree of symbol objects. If we were
using the nub with, say, Modula-3, this high-level in-
terface would have to be replaced with one specific to
Modula-3, and that interface would useNub fetch to
read the symbol table generated by the Modula-3 com-
piler. There’s nothing special aboutlcc ; other C com-
pilers could be used given an appropriate nub implemen-
tation. It’s the nub that’s the critical component, not the
compiler.

3.3 Thedeet Nub Interface

deet includes versions of the nub and symbol-table
functions for use with Tcl ortksh . Thesetksh com-
mands differ from the C routines in two ways: They are
at a higher level, because they manipulate source-level
symbols, types, and values, and they accept and return
strings, so that they can be used in Tcl ortksh scripts.
The complete list appears in Figure 6.

deet breakpoint is a combination ofNub set ,
Nub remove , and Nub src . The -set option sets

all of the given breakpoints, which might be incomplete;
that is, file can be"" , and line and charactercan be
zero. The-delete option removes breakpoints, and
the-list option lists possible breakpoints.

deet frame is equivalent toNub frame : With no

arguments, it returns the current frame as a Tcl list con-
taining the frame number, the function name, and a file,
line number, character number triple that gives location
of execution within that frame. With an integer argu-
mentn, deet frame makes framen the current frame
and returns the null string. Frames are numbered from
the top of the stack, beginning with zero.

deet getval and deet putval commands are
similar to Nub fetch and Nub store , but require
type information to be specified along with the value,
because Tcl deals only with strings. Tcl cannot, for ex-
ample, deal directly with binary floating-point values or
with structures. Types are specified by type identifiers,
which are just generated strings.deet getval returns
a string representation for the value oftypeat address,
anddeet putval writes thevalueof typeto locations
beginning ataddress.

deet sym anddeet type return symbol table data.
A symbol-table entry is a Tcl list{ name, type, address}.
deet sym’s -all option returns a list of all of the sym-
bols in the target; that is, a list of three-element lists.
The -files option returns a list of all of the source
files in the target. The-locals and-params options
return lists of the locals and parameters for the current
frame. The-name namereturns the symbol-table entry
for name, or an error ifnameis not a visible symbol.

deet type returns a string describing the type rep-
resented by the identifiertype. If type represents int,
deet type returns"int" . Similarly, if type repre-
sentsT * , E [n] , or a structure type,deet type re-
turns, respectively, the type identifier forT , n and the
type identifier forE, and a list of names and type identi-
fiers for the fields.

NeD [10] is another debugger built on a set of de-
bugging primitives. This set is larger than the set of
nub functions and the NeD primitives are at a some-
what higher level. NeD’s primitives are written in Tcl
extended with a set of debugging functions. While
these functions present a nearly platform-independent
interface, their implementation appears to be platform-
dependent and perhaps nontrivial. Also, NeD has no user
interface per se; it uses Tcl in the same way asdeet

deet open initialize the target
deet breakpoint { -set | -delete | -list } file line character

set, remove, and list breakpoints
deet frame [n] get/set current frame
deet getval type address read a value oftypefrom address
deet putval type address value write thevalueof typeto address
deet continue resume execution
deet sym { -all | -files | -locals | -params | -name name }

finds the symbol-table entries
deet type type getsymbol’s type information

Figure 6:deet ’s nub interface

uses the nub functions, whiledeet uses Tcl as its user-
interface language, as illustrated in the next section.

4 Programming in deet

Much of deet itself is written in Tcl andtksh , using
thedeet * nub commands described above. Users can
extenddeet by writing Tcl andtksh commands; for
example, features like conditional breakpoints and non-
trivial program queries can be written intksh . deet
can also be extended by external programs. This section
illustrates some typical extensions.

Simple extensions can be written directly intksh .
For example, the following script displays all of the null
elements in an array, the name of which is supplied as an
argument.

function nullElements {
typeset arr=$1
integer i s=$(arraySize $arr)
for ((i=0 ; i < s ; i++)); do

if [[$(var "$arr[$i]") == 0x0]]
then

print "Element $arr[$i] null"
fi

done
}

nullElements uses two externaltksh functions:
arraySize , which returns the number of elements in
an array, andvar , which returns the value of a variable.
These functions are provided as part ofdeet . The for
loop visits each element of the array specified by the first
argument, retrieves its value, and prints the array name
and index of the null elements.

User-defined functions can also manipulatedeet ’s
interface. For example, if we’re checking repeatedly for
null elements inhashtable , we can construct a button
to do the job in one click:

toplevel .null
pack $(button .null.b \

-text "Print Null Elements" \
-command "nullElements hashtable")

This code builds the button:

Tcl scripts can be invoked with thesource com-
mand, which is atksh built-in. source uses the Tcl
parser to parse its input, and usestksh variables and
functions in variable and command substitutions. Here’s
a simple example:

function foo {
X=37
print "$(bar test)"

}

source <<’EOT’
proc bar {args} {

global X
set X [expr $X + 1]
return "bar: args: $args, X: $X"

}
EOT

A call to foo prints

bar: args: test, X: 38

Note that the Tcl procedurebar can use and modify the
shell variableX. Tcl source code can also invoketksh
functions and built-ins.

deet ’s name space is separate from the target’s name
space. Accessing a target variable from atksh script
requires a special function,var , which uses the target’s
symbol table to lookup the variable name and retrieve its

value.var is sufficient for one-shot lookups, but it’s te-
dious for repeated uses of specific target variables. For
these uses,deet provideslinkvar name, which cre-
ates a new shell variable that is essentially an alias for
the target variablename. linkvar is implemented with
discipline functions, which are similar to trapped vari-
ables in SNOBOL4 [5]. A discipline function is a shell
function that is associated with a variable, and that func-
tion is invoked whenever the variable is read or written.
Thus, associating the function

function foo.get {
foo="$(var foo)"

}

with foo arranges for the target variable to be fetched
every time the shell variablefoo is read.

deet ’s capabilities are easily extended by writing Tcl
and tksh scripts that use the built-in debugger com-
mands. An important advantage using a shell as the de-
bugging language is that the shell can useany external
tool. For example, it’s relatively easy to extenddeet
to display linked data structures graphically as directed
graphs. This feature is similar to that provided by the
Data Display Debugger (ddd) [16], but the implementa-
tion is much simpler, becausedeet uses existing tools
instead of building its own facilities.deet runsdotty ,
a program for drawing directed graphs [9], to draw the
graph, sending it the appropriate input for the data struc-
ture of interest. Figure 7 shows an example ofdotty ’s
output. Thetksh script that invokesdotty is only
about 60 lines of code, and it handles any linked data
structure.

5 Implementation

deet is written in tksh ; eachdeet command is im-
plemented as one or moretksh functions that call the
built-in Tcl nub commands. An example is theb function
shown in Figure 8, which usesdeet breakpoint to
set breakpoints. The size of this function is as important
as its details: most debugging features are easily imple-
mented in tens of lines oftksh code.

b begins by converting its first argument into file, line
number, and character number values. When an incom-
plete breakpoint is specified, some of these values will
be converted to null values. For example,b 8 causes the
cvtbp function for the argument8 to become the value
of line and for file andchar to be null. Next,b
invokesdeet breakpoint -list to list all break-
points matching the incomplete breakpoint. If there is
more than one match, a list of possible breakpoints is
displayed and no breakpoints are set. If there are no

matches, a diagnostic is issued. Finally, if there is ex-
actly one match, that breakpoint is set. The associative
arraybreakpoint keeps track of the set breakpoints.
The nub doesn’t keep track of breakpoints because it is
designed to do as little as possible. If the second argu-
ment specifies a condition for the breakpoint, it’s stored
as the value for thebreakpoint array entry. Finally,
the source window (if it exists) is updated to highlight
the set breakpoint.

The nub interface can set and remove breakpoints, but
it cannot single-step the target [6].deet ’s step func-
tion implements single-stepping by setting and removing
breakpoints:

function step {
if [[$cdbMode != "step"]]; then

deet_breakpoint -set "" 0 0
fi
cdbMode=step
cdbgo # resume execution

}

Calling deet breakpoint with null values for the
file, line number, and character number sets every break-
point. Implemented naively, setting every breakpoint is
expensive in large programs. But the nub could recog-
nize this special case and use a more efficient implemen-
tation. As described in Section 6.2, our implementation
of the Tcl nub functions on top ofgdb exploits this pos-
sibility.

6 Replacing the Nub

An important aspect ofdeet ’s “piece-parts” design is
that superior replacements could be used for each part
without disturbing the others. For example, a more ef-
ficient, machine-specific nub could be used in place of
cdb ’s machine-independent nub; or a better or more fa-
miliar user interface could be used.

To demonstrate this flexibility, we’ve implemented
three alternative versions ofdeet ’s pieces: a version of
the nub for Java [1], a nub that works by communicat-
ing with gdb , and a replacement for the user-interface
component that emulatesgdb ’s command-line inter-
face. These limited experiments also reveal strengths and
weaknesses in the nub-based design. Ifgdb cannot em-
ulate the nub, for example, then a simple nub offers fa-
cilities beyond those of some popular debuggers. If the
nub cannot supportgdb , then the nub is missing some
important facilities.

6.1 A Nub for Java

The Java Developer’s Kit contains a debugging package
(a set of classes) that can be used to explore and con-

count
 1

left
 0x1400003a0

right
 0x140000380

word
 ’env’

count
 2

left
 0x140000420

right
 0x0

word
 ’dev’

count
 3

left
 0x0
right

 0x1400003c0
word
 ’exec’

count
 2

left
 0x0
right
 0x0

word
 ’debug’

NULL

NULL

NULL

NULL

count
 2

left
 0x140000400

right
 0x1400003e0

word
 ’tty’

count
 1

left
 0x1400004a0

right
 0x140000440

word
 ’geometry’

count
 1

left
 0x140000480

right
 0x0

word
 ’wm’

count
 1

left
 0x0
right
 0x0

word
 ’gdbnub’

count
 2

left
 0x1400004c0

right
 0x140000460

word
 ’library’

NULL

NULL

count
 2

left
 0x0
right
 0x0

word
 ’ksh’

count
 1

left
 0x0
right

 0x1400004e0
word
 ’pwd’

NULL

NULL

NULL

count
 1

left
 0x0
right
 0x0

word
 ’script’

NULL

NULL

count
 1

left
 0x0
right
 0x0

word
 ’ui’

NULL

NULL

NULL

Figure 7: Tree generated withdeet anddotty

function b { # breakpoint [action]
integer char=0 line=0
typeset file point="$1" action="${2-’:’}" msg
eval set -- $(cvtbp "$point")
file="$1" line="$2" char="$3"
typeset bp="$(deet_breakpoint -list "$file" "$line" "$char")"
eval set -- $bp
if (($# > 1)); then

msg="Pick one of $bp"
elif (($# < 1)); then

msg="No breakpoint in on line $line char $char"
else

deet_breakpoint -set "$file" "$line" "$char"
set -- $1
breakpoint["$1:$2.$3"]="$action"
[[$CdbWindow]] && TextDispBpOn $2

fi
[[$msg]] && print -- "$msg"

}

Figure 8: Implementation of theb command

trol the state of a target Java program. These classes
are designed to support a variety of Java debuggers.
Java comes withjdb , a simple command-line debug-
ger, that is implemented with the debugging package,
and this package is intended to be used to write more so-
phisticated graphical debuggers. The package works by
spawning an instance of the Java runtime with the target
and communicating with it via message passing.

Although the Java nub itself could spawn the runtime
and the target, it’s simpler to use the debugging package.
Implementing a nub for Java required writing the nub
interface in terms of Java’s debugging methods, which
takes only a couple hundred lines of Java. The routines in
the nub read messages from a socket, process them using
the methods in the Java debugger package, and write the
result messages back to the socket. A central method
reads messages, decodes them, and calls the appropriate
methods for each message.

Figure 9 shows the methodframeCmd , which per-
forms the same task asdeet frame . When called with
an argument,frameCmd sets the current frame to the
number specified by the argument by finding the current
frame with the getCurrentFrameIndex method
and calling theup anddown methods as needed. If there
is no argument,frameCmd returns information about
the current frame. This information is returned by call-
ing methods in the debugging classesRemoteThread ,
RemoteStackFrame , andRemoteClass .

Thus, with a couple hundred lines of Java code,deet
can be used to debug Java programs with the same set of
features that are used to debug C. Unfortunately, the nub
interface does not currently support threads, which limits
the usefulness of the Java debugger.

A similar approach can probably be used on any sys-
tem that has a debugging interface. For example,deet
can be ported to Windows by implementing a nub in
terms of Microsoft’s debugging API.

6.2 Usinggdb as a Nub

We’ve usedgdb to build a variant ofdeet that uses
gdb as the nub, and a variant that usesgdb as the user
interface.

Figure 10 shows howgdb replaces the nub.gdbnub
communicates withgdb , which runs as a separate pro-
cess. gdbnub translates nub function calls intogdb
commands, sends these commands togdb , and parses
gdb ’s responses. Another approach would have been to
modify gdb ’s code, but past experience shows that mod-
ifying gdb is a painstaking process [4]. Usingtksh
makes the approach illustrated in Figure 10muchsim-
pler: the implementation takes only about 500 lines.

The only nub feature that was not possible to imple-
ment withgdb was setting breakpoints on any expres-

gdbnub

deet

nub

gdb

target

Figure 10: Emulating the nub withgdb

sion. Some nub functions were relatively easy to imple-
ment, but not efficiently. For example,gdb doesn’t pro-
vide a way to list all of the possible breakpoints in a file.
This was implemented by attempting to set a breakpoint
at every line in each file, and checking which breakpoints
were successfully set. Fortunately, listing all of the pos-
sible breakpoints is rarely done; listing the breakpoints
in a specific line is the common usage.

As described at the end of Section 5,deet steps
through a program by issuing the nub command to set
every breakpoint in the target, which is very inefficient.
gdbnub takes advantage ofgdb ’s single-stepping fea-
ture by using thedeet breakpoint implementation
shown in Figure 11. When null values are passed to the
-set option, a variable is set that puts thegdbnub into
“stepping” mode when execution is resumed. Similarly,
when null values are supplied with the-delete option,
gdbnub reverts to “continuation” mode, and all tempo-
rary breakpoints are removed.

Whengdb is used as the nub,deet can be thought
of as a graphical front end togdb . It provides facili-
ties similar toddd ’s, which is also a front end forgdb .
However,ddd is as not programmable.

6.3 A Nub for gdb

Implementinggdb on top of the nub is difficult, be-
causegdb is a huge program and has a large number
of features. Some of the features ingdb are inherently
absent in the nub. For instance,gdb allows the target
to be examined at the machine level;gdb can exam-
ine registers and single-step instructions. The nub inter-
face is machine-independent, so it cannot provide these

public void frameCmd(RemoteThread t, String args[]) throws Exception {
if (args.length == 2) {

int oldFrame = t.getCurrentFrameIndex();
int newFrame = Integer.parseInt(args[1]);
try {

if (oldFrame < newFrame)
t.up(newFrame-oldFrame);

else if (oldFrame > newFrame)
t.down(oldFrame-newFrame);

} catch (ArrayIndexOutOfBoundsException e) {
outputError();

}
} else {

RemoteStackFrame s = t.getCurrentFrame();
RemoteClass c = s.getRemoteClass();
outputItem(t.getCurrentFrameIndex());
outputItem(c.getName() + "." + s.getMethodName());
outputItem(c.getSourceFileName());
outputItem(s.getLineNumber());
outputItem("0"); /* No support for char position */

}
}

Figure 9: Implementation ofdeet frame for Java

function deet_breakpoint {
typeset i action=list
case $1 in
-l*) shift ;;
-s*) action=set ; shift

if [[$1 = "" && $2 = "0" && $3 = "0"]]; then
sendCommand "b main"
CONT_CMD="step"
return 0

fi ;;
-d*) action=delete ; shift

if [[$1 = "" && $2 = "0" && $3 = "0"]]; then
sendCommand "delete"
for i in "${!GdbBreakpoint[@]}"
do unset GdbBreakpoint[$i]
done
CONT_CMD="cont"
return 0

fi ;;
esac
...

}

Figure 11: Implementing single-stepping

target

ddd

nub

nub-based
gdb

Figure 12: Runninggdb with the nub

machine-dependent features. Similar caveats apply to
data watchpoints, whichgdb supports on machines with
the appropriate hardware.gdb also supports features
that are irrelevant to debugging, per se, such as control-
ling terminal modes and displayinggdb -specific online
help.

Our third experiment thus focuses on only thosegdb
features used by a graphical front end, likeddd . Fig-
ure 12 shows the organization of this experiment.

The implementation ofgdb using the nub was written
with deet commands.gdb ’s frame command illus-
trates the general approach.frame controls the current
frame in the stack of the target. Invokingframe with
an argument directsgdb ’s attention to a specific frame.
If no argument is specified, the current function with its
arguments and location is displayed. For example:

(gdb) frame
#0 lookup (word=0x11ffff8e0 "a",

p=0x140000010) at test/lookup.c:15

Figure 13 shows thetksh implementation offrame .
The function usesdeet frame to move the nub’s at-
tention to a new frame. It also usesdeet sym and
deet getval to fetch and display the frame’s parame-
ters and their values.

This implementation ofgdb , although incomplete, is
only around 1,000 lines ofksh . It implements enough
features to supportddd . gdb features that were not im-
plemented include:

• Debugging a target that is already running, which
gdb can on machines where this is possible.

• Invoking target functions from the debugger; the
nub doesn’t support this feature, because a separate
evaluation facility can support it [13].

• Examining core dumps; this feature could be sup-
ported by writing a nub specifically for browsing
core dumps.

• Interrupting a running target.

• Handling signals.

7 Discussion

deet ’s front end runs on any machine on whichtksh
runs, which currently includes virtually all UNIX vari-
ants, Windows NT and Windows 95. Graphical debug-
gers that work consistently under both UNIX and Win-
dows are scarce, and having a uniform interface can be
important. Programmers writing code for multiple plat-
forms can debug applications without having to learn
multiple environments. Another advantage of a uniform
interface is that one set of debugging scripts is often suf-
ficient for all platforms.

The nub hides of most of the difficult portability is-
sues. deet is available on all oflcc ’s platforms, be-
cause its nub interface is machine-independent.deet
is also available on platforms that supportgdb , because
it can use the nub that runs on top ofgdb . deet can
be made available on other platforms by writing a new,
platform-specific nub. Typical nub implementations take
less than a thousand lines of code, so they aren’t triv-
ial, but the effort required is tiny compared to porting a
machine-specific debugger.

deet demonstrates that it is possible to build a us-
able debugger with a graphical user interface from sim-
pler components, and, as thedotty example illustrates,
that the result is more than just the sum of the parts.
deet also confirmscdb ’s premise that most of a de-
bugger is machine-independent, and that the fundamen-
tal machine-specific debugging facilities can be encapsu-
lated in a small, machine-independent nub interface.

deet doesn’t have all of the features offered by PC
debuggers and UNIX debuggers likegdb . But it does
provide the most important ones—at a fraction of the
implementation cost.deet is about 1,500 lines oftksh
code, and the machine-independent nub and related com-
piler support (inlcc) total around 800 lines of C. These
2,300 lines of code are orders of magnitude smaller than
gdb ’s 150,000 lines andddd ’s 90,000 lines.

Programmers interact with most debuggers in the tar-
get’s source language plus a few debugger-specific com-
mands. For example, programmers throw C expressions
at gdb to browse the state of a buggy target. The ad-
vantage of this approach is that programmers don’t have
to learn another language to use the debugger. But, as
Acid [15] and Duel [4] demonstrate, exploring a pro-
gram’s state is fundamentally different than writing the

function frame { # [num]
[[$1 != ""]] && deet_frame $1 2> /dev/null
set -- $(deet_frame)
typeset num=$1 name=$2 file=$3 line=$4 char=$5
typeset params="$(deet_sym -params)" p result
result="#$num $name("
eval set -A parm $params
for p in "${parm[@]}"; do

set -- $p
result="$result${1##*:}=$(deet_getval "$2" "$3"), "

done
print -- "${result%’, ’}) at $file:$line"

}

Figure 13:ksh implementation ofgdb ’s frame command

program in the first place, and this exploration can be
done much more effectively in a higher-level language.
deet also supports this view; Tcl andtksh seem to
be better languages for writing debugging code than lan-
guages like C and C++. Similar comments may apply to
other high-level scripting languages, like Perl.

References

[1] K. Arnold and J. Gosling.The Java Programming
Language. Addison-Wesley, Reading, MA, 1996.

[2] M. Bolsky and D. Korn.The New KornShell Com-
mand and Programming Language. Prentice Hall,
Upper Saddle River, NJ, second edition, 1995.

[3] C. W. Fraser and D. R. Hanson.A Retargetable C
Compiler: Design and Implementation. Addison-
Wesley, Menlo Park, CA, 1995.

[4] M. Golan and D. R. Hanson. DUEL—a very high-
level debugging language. InProceedings of the
Winter USENIX Technical Conference, pages 107–
117, San Diego, CA, Jan. 1993.

[5] D. R. Hanson. Variable associations in SNOBOL4.
Software—Practice and Experience, 6(2):245–254,
Apr. 1976.

[6] D. R. Hanson and M. Raghavachari. A machine-
independent debugger.Software—Practice and Ex-
perience, 26(11):1277–1299, Nov. 1996.

[7] D. G. Korn. ksh: An extensible high level lan-
guage. InProceedings of the Very High Level Lan-
guages Symposium (VHLL), pages 129–146, Santa
Fe, NM, October 1994.

[8] J. L. Korn. Tksh: A Tcl library for KornShell.
In Proceedings of the USENIX Tcl/Tk Workshop,
pages 149–159, Monterey, CA, July 1996.

[9] E. Koutsofios and S. C. North. Applications of
graph visualization. InProceedings of Graphics
Interface 1994 Conference, pages 235–245, Banff,
Canada, May 1994.

[10] P. Maybee. NeD: The network extensible debug-
ger. InProceedings of the Winter USENIX Techni-
cal Conference, pages 145–153, San Antonio, TX,
July 1992.

[11] Microsoft Corp., Redmond, WA.Microsoft Visual
C++, Reference Volume II, 1993.

[12] J. K. Ousterhout.Tcl and the Tk Toolkit. Addison-
Wesley, Reading, MA, 1994.

[13] N. Ramsey and D. R. Hanson. A retargetable de-
bugger. Proceedings of the SIGPLAN’92 Confer-
ence on Programming Language Design and Im-
plementation, SIGPLAN Notices, 27(7):22–31, July
1992.

[14] R. M. Stallman and R. H. Pesch. Using GDB: A
guide to the GNU source-level debugger, GDB ver-
sion 4.0. Technical report, Free Software Founda-
tion, Cambridge, MA, July 1991.

[15] P. Winterbottom. Acid: A debugger built from a
language. InProceedings of the Winter USENIX
Technical Conference, pages 211–222, San Fran-
cisco, CA, Jan. 1994.

[16] A. Zeller and D. Lütkehaus. DDD — a free graph-
ical front-end for UNIX debuggers.SIGPLAN No-
tices, 31(1):22–27, January 1996.

