Reprinted from the Proceedings of the USENIX 1997 Annual Technical Conference, Anaheim, CA, Jan. 1997, pp. 183-174.

A Simple and Extensible Graphical Debugger

David R. Hanson and Jeffrey L. Korn
Department of Computer Science, Princeton University,
35 Olden St., Princeton, NJ 08544
{drh jjlk }@cs.princeton.edu

Abstract get architecture, operating system, compiler, and linker.
Thus, porting a debugger from one variant of UNIX
deet is a simple but powerful debugger for ANSI C and to another can require a substantial amount of effort.
Java. It differs from conventional debuggers in that itFor example, about one-third gfdb’s source code is
is machine-independent, graphical, programmable, dismachine-dependent.
tributed, extensible, and small. Low-level operations are Few debuggers have programming facilities in which,
performed by communicating with a “nub,” which is a for example, programmers can write application-specific
small set of machine-dependent functions that are emdebugging code. Such code is useful for nontrivial
bedded in the target program at compile-time, or are imqueries of data structures, such as displaying the second
plemented on top of existing debuggerdeet has a to last elementin alinked list, or all the positive elements
set of commands that communicate with the target's nubin an array. Other examples include setting conditional
The target andeet communicate by passing messagesbreakpoints and automating program testing. Debuggers
through a pipe or socket, so they can be on a differenthat support programming facilities do exist, but often
machines. deet is implemented intksh , an exten- the language is idiosyncratic to either the debugger or
sion of the Korn shell that provides the graphical facil- the source language, or both, and hard to learn.
ities of Tcl/Tk. Users can browse source files, set break- Most debuggers are large and complex programs; for
points, watch variables, and examine data structures bgxample,gdb [14] is about 150,000 lines of C. This
pointing and clicking. Additional facilities, like condi- complexity has some unfortunate consequences. First,
tional breakpoints, can be written in either Tcl or the debuggers are often themselves buggy, because, like any
shell. Most debuggers are large and complicatiee large program, their complexity and size makes them
is less than 1,500 lines of shell plus a few hundred linesrone to errors and to inconsistent behaviors on differ-
of machine-specific nub code. It is thus easy to underent platforms. Second, debuggers are usually difficult
stand, modify, and extend. We describe an implementato extend, because their implementations may be hard to
tion of the nub API for Java and an implementation thatunderstand and to modify.
is layered on top ofdb. We have also implemented a deet (desktoperror eliminationtool) addresses these
version ofgdb using the nub API, which demonstrates shortcomings. It provides both textual and graphical in-

the modularity of the design. terfaces to make it easy to use. Users can perform most
debugging actions by pointing and clicking, and data
1 Introduction structures can be displayed graphically. The GUI is writ-

ten with Tk [12]. deet is also programmable: Its ca-

Traditional UNIX debuggers are indispensable tools forPabilities can be extended by writing in either Tcl or in
locating and fixing program errors. Despite their impor-tksh , a variant of the Korn shell [8].
tance and pervasiveness, they continue to harbor inad- Nearly all of deet 's implementation is machine-
equacies that limit their usability. For example, UNIX independent. It uses a small “nub” that provides facilities
debuggers typically have textual user interfaces that arr communicating with the debugger and controlling the
cryptic at best. When debuggers are hard to use, prdarget. The nub-based approach perrdést to debug
grammers tend to litter their programs with print state-2 target running on another machine. Figure 1 shows the
ments instead of using a debugger. screen of a typical debugging sessidleet doesn't at-
While most PC debuggers run on only one operatiempt to match debuggers lilggdb feature-for-feature;
ing system and one architecture, UNIX debuggers musfor example,deet can't examine core dumps, evalu-
deal with portability issues. Debuggers are notoriouslyate arbitrary C expressions, or debug at the assembly-
machine-dependent programs; they depend on the talanguage level. Nevertheless, its implementation is sur-

E Dt lachup EErE E Wariabies IFEEF

| P Program Wit EXBskiG by Qose | Erparsl Walch | sl Ty
i wl | Istzuct nade *) brwe-ilaft = (eEOF4
cossre | I ‘L [atmaot ndds *) tome-aright = M
| Fe Pogam Wsilew Exiensim | lckar &3 brgpiwgrd w 1,ﬂ.-
e [0k f i ' | 152} trae-slatr-ropme = 1
Covsre | Step | Mest | Pt | Areskpomiz | S |;hhm hede 4} ErapedlaftesLeft = (sOWEE
"I.I'E:.I.Ih k-

! |:L'n.|.:: nada *) u-:-.-l-it-:-fa.gﬂ_:t = Be30FEA

L B

ures Lude - =
sincluge o Ffefc I
#uncluse = ! fanz) trma-3 ﬁﬁ.-lifb-:-:mt =1
Bkl ! | [atauat neds *h tose—slaft-rLafb-2140% = DS
= ': statio isr petsacd (char Buf) | | o' e B oy FURENESER I I =,
e char #al | - A
I bk & | iire} vees=nlafe-rraghe-resme = 1
- |) - - - -
skatic w whils {fe = gutchar(d] |= -1 G& saletbmris) == 0 iw [
is - .
o | Por {s = buds {0 = ilekior(e)) Is Do a = gatekar () | ErmEsien: | Compute |
dga - 1 1
e s S diahs 1 Deuiske (ck i Expand
L = Framas FREF
Fwin Scdert o frame;

wie 271 |
=0 g L= R) e 2T
© 1 muingargee1, aneleed [P | ol wid ool 8

unt [wEruct nads tErasl

Lpraakiboaman 1
LE: ankf (" hd EERn®, Eres-scounk. Tres-sword) |
CABE g right] « 7

=
=

[Broakpeist se1 a8 e 08 chard

rache desi? il e .
o
= = : NULL
| ChRGE 1 [T
- ! | ool Ol cam
DafieT rigat 2 I
= nght CoBAE L it L=
" NULL el | wors i B
ward | g L= =
teet’ "y o
i =

Figure 1:deet screen dump

prisingly simple. Its complete source is approximatelywhicha.out was invoked, but most debugging actions

2,500 lines of shell and C. are performed with the mouse.
Single-clicking on a line highlights that line if it con-
2 Usingdeet tains a breakpoint; double-clicking on the line sets the

breakpoint. deet can set breakpoints on expressions,
deet s features are best explained by seeing it in actionN0tjust statements, so there may be more than one break-

First, the target program is compiled kg [3] with the point in a line. When a line has multiple breakpoints,
appropriate debugging option to embed the nub in th&louble-clicking sets the breakpoint closest to the cursor.

target: Breakpoints are indicated in the window in lighter shad-
get: . . . e

ing or in yellow (see Figure 2). Double-clicking on a
$ lcc -Wf-g4 wf.c lookup.c breakpoint that has already been set removes the break-

point.

The breakpoints window, like the one shown in Fig-
» i .ure 3, displays a list of all breakpoints and related infor-
cuted, the debugger specified by the environment varip,ation about each breakpoint, such as its location and
ableDEBUGGER also started, so break condition. These conditions afeet expressions
$ DEBUGGER=deet a.out j[hat are ev_a_luat_ed whenever the breakpoint is reached,;

if the condition is true, the target stops. When the tar-
starts botha.out anddeet . At this point, the source get stops at a breakpoint, the current source window
window shown in Figure 2 appears. The user is prompteghows the file and line number of the breakpoint, and re-
for textualdeet commands in the shell window from verse video highlights the line containing the breakpoint.

Here and in the displays below/anted type iden-
tifies user input. When the generataghut is exe-

| = Breakpaints FREREE
| Breakpoints

i e File lookup.c, line 31 char 1 I
- e] File wf.c, line 26 char 1 |
i i e e e G oEodw te] | File lookup.c, line 27 char 1
B crburn = |)
_' File wf.c, line 12 char 1
1
:I.I 2
:3 u:r.“;r‘.'.qu.ww- aar “huf) ’Ilf
14 ant ©: L I
& o0
:t vhile ({r = guicheril} I= -1 &6 1nlettacich == 6 Cﬂl‘ldltlﬂn
1
:Ié. Eor |» = buf; (e = ialstkecic)) I= O © = guichas(]} 5 == huf
149 L]
] . L |—
[t af {w ¥ dnafl
ﬁ & .]:n.lrr. 1 J
ES'I- | cwbarn ‘f'
E? m’:?:::ﬁ:’ﬁ““ Lt e Update | Delete | Close |
i Epriskitoow-lnft} |

Brmakpnt in e wi ., b 9

Figure 3: Breakpoints window
Figure 2: Source window

Commands may be typed at the debugger in the shell

A condition can be changed by highlighting the break-window in a manner similar tgdb. For instance, the
point in the breakpoints window and editing the condi-breakpoints ~ command displays the current break-
tion field, and a breakpoint can also be removed by clickpoints:
ing the “Delete” button in this window.]

The stack can be shown by clicking on the “Stack” but-deet> breakpoints
ton in the source window (see Figure 2). This displays al e following breakpoints are set:
new window that shows each frame on the stack, fronfile testiwf.c, line 4 char 28
the top down, as illustrated in the right middle portion File testlookup.c, line 14 char 50

of Figure 1. An individual frame can be selected, and~, .\ mands are justksh commands, so shell com-
clicking a button in the stack window performs the corre- - nds likehistory pwd, andmake 1can be entered
sponding action on that frame. For instance, by clicking, ¢\ a1 ’ ’

the “Dump” button, the names and values of the parame- Most of the state in deet debugging session can be

‘t‘ers,:emd locals for that frame are'd|splayed.. Clicking t,hesaved and restored later in a subsequent, separate debug-
OK” button causes the source window to display the file

. ing session. This state includes breakpoints and their
and line number of the call to the selected frame. ging P

Hiahliahti iable in th ind q conditions, locations of files, and user-definikgh
g '9 “.”91 a variable In the source window and (¢ n.ions deet saves the state by writing a shell script
clicking “Print” causes a pop-up window to display the

.) .~ that can be interpreted to restore the state.
value of that variable (see the upper right corner of Fig-

ure 2). If the variable is a pointer, a structure, or a union,)

double-clicking on the variable expands its value. For3 Design

pointers, the value of the referent is displayed; for struc- o] .

tures and unions, the values of the fields are displayedi€et divides cleanly into two parts: One part interacts

deet also displays the values of variables in balloonWith the programmer, and the other part interacts with

help pop-up windows when the cursor is left on top of the target program. The user-interface part is written in

the variables for sufficient time, similar to Microsoft's tksh , a version of the new Korn shell [2, 7] that has

Visual C++ debugger [11]. peen extended to support Tcl [12]. The target program
A variable can be modified by clicking “Modify” in 1S controlled by a nub, which provides debugging primi-

the variable window, which prompts the user to entertives, as detailed belowdeet 's implementation of and

a new value. A variable may also be watched, whichinteraction with the nub is also written tksh . Thus,

causes its value to be displayed in the variable windowProgrammers can modify and extebathparts ofdeet

and updated as execution passes each potential bredRy Writingtksh - code.

point.

any of the other components, but implementahegt

target did induce additions to the nub and to the symbol-table
__, 4>), format b?yonq the?r original dgsigns. .
nub deet is written intksh , which includes a C library
that can be used to manipulate the state of the Tcl inter-
v preter, such as reading and writing variables and creat-
debugger ing new built-in commandstksh can run any library

written on top of the Tcl library, which includes the Tk
graphics library. Thus, Tk commands, liketton and
Figure 4:cdb’s design pack , can be invoked fronksh scripts.
tksh should be thought of as an extension to Tcl
rather than as an alternative to ittksh allows Tcl
3.1 Cdb anddeet scripts to be run directly with theource command.
deet is based ortdb [6]. cdb is a machine indepen- Tcl scripts share variables and functions wiitsh , al-
dent debugger that eliminates machine dependencies Bgwing Tcl scripts to work with shell scripts.
adding a small amount of information into the target pro- tksh is used as the debugging language deet
gram at compile timecdb communicates with the target Primarily because of its strengths as an interactive com-
through a nub—a small machine-independent interfacénand language. Debuggers are interactive programs.
that constitutes the core functionality of the debugger, agleet takes advantage of the interactive facilities of
suggested by Figure 4. The nub implementation can b&sh , such as command-line editing, job control and
made machine-independentcalh shows, but machine- pipelines. Using the command-line interfacedeet
dependent implementations are also possible and are ufeels like using a shell because the debugger itself is an
doubtedly more efficient. The nub is small enough thatextension oksh . tksh also offers two familiar, high-
re-implementing it for new platforms is nearly as easy adevel languages. Many programmers already know how
porting the machine_independentimp|ementation_ to write shell and Tcl SCTiptS, which is 90% of what's
There are four componentsaodb : needed to usdeet . However, gerl orpython pro-
grammer could rewrite thdeet front end and still use
1. The nub interface, which stands between the debugexisting nub implementations.
ger and machine-dependent target manipulations. deet also includes additional built-in commands for
debugging.deet ’s code is simpler to understand than
the corresponding C code would be, because it’s written
in a high-level languagealeet can also can be modified

2. The nub implementation, which consists of the
nub interface functions, special code emitted by
the compiler to support the nub, and a V\/r"’lpperduring a debugging session to suit specific applications
around the linker to load the nub and the machine- '

independent symbol table.
3.2 The Nub Interface

3. Amachine-independent symbol table format, which

is emitted by the compiler and linked into the target. The nub interface is designed to be as small as possi-

ble while supporting the fundamental debugging oper-

4. A simple, text-based debugger that uses the nub tations common to all debuggers [6]. Figure 5 summa-
provide minimal functionality; this debugger is in- rizes the complete API. The nub does not support high-
tended to be replaced with more sophisticated delevel facilities, such as expression evaluation or specific
buggers, likedeet . symbol-table formats, because these facilities can be im-

_ plemented by other interfaces or by debuggers them-
Any of the last three components can be replaced withggyes.

alternative implementations. For instance, the nubcanbe Nyp_set and_Nub.remove set and remove break-
replaced with a machine-dependent implementation thgoints, which are specified by a file name, line number,
uses theptrace system call like most UNIX-specific anq character position. Unlike most debuggers, break-
debuggers, or by one that is layered on todb. The oints specify the locations of expressions, not lines. So,
machine-independent symbol tables could be replacegh example, it is possible to set a breakpoint on the in-
with the usual machine-dependent “stab” symbol tablegrement part of a C for loop.

embedded in UNIX executables. Finally, the debuggerit- Nyb_src accepts incomplete breakpoints, in which
self could be replaced with any program that uses the nuy of the file name, line number, or character position
interface.deet is a replacement for this fourth compo- 4. omitted, and invokes a debugger callback on all pos-
nent. Usingdeet does not directly involve changes 1o sjple breakpoints that “match” the incomplete odeet

_Nub_init initialize the nub

_Nub_set set a breakpoint

_Nub_remove remove a breakpoint

_Nub_src visit breakpoints with a given pattern
_Nub_frame move to a specific stack frame
_Nub_fetch read the target’s memory
_Nub_store write the target’'s memory

Figure 5: The nub interface

uses this function to determine which breakpoint to searguments, it returns the current frame as a Tcl list con-
when a user clicks on a line. taining the frame number, the function name, and a file,
_Nub_fetch and _Nub_store access the target's line number, character number triple that gives location
memory. They accept a buffer address, a byte count, andf execution within that frame. With an integer argu-
an address space identifier, and read/write data from/tmentn, deet _frame makes frame: the current frame
the target. The address space identifier may specify aand returns the null string. Frames are numbered from
operating-system address space, such as the text or cotle top of the stack, beginning with zero.
segments. It can also specify logical address spaces thatdeet _getval anddeet _putval commands are
may not be part of the target, like the symbol table, forsimilar to _Nub_fetch and _Nub_store , but require
example. It is the nub’s responsibility to access the aptype information to be specified along with the value,
propriate data. Debuggers can view all data about théecause Tcl deals only with strings. Tcl cannot, for ex-
target as if they were stored in memory. ample, deal directly with binary floating-point values or
Icc emits machine-independent symbol tables in thewith structures. Types are specified by type identifiers,
target's address space, andub_fetch reads these which are just generated stringieet _getval returns
data. Anothercdb -specific, but machine-independent, a string representation for the valuetgpe at address
interface provides a higher-level view of the C symbolanddeet _putval writes thevalueof typeto locations
table as an inverted tree of symbol objects. If we werebeginning ataddress
using the nub with, say, Modula-3, this high-level in- deet _symanddeet _type returnsymboltable data.
terface would have to be replaced with one specific toA symbol-table entry is a Tcl list name type address}.
Modula-3, and that interface would uddub_fetch to deet _sym's-all optionreturns a list of all of the sym-
read the symbol table generated by the Modula-3 combols in the target; that is, a list of three-element lists.
piler. There’s nothing special abolet ; other C com- The -files option returns a list of all of the source
pilers could be used given an appropriate nub implemenfiles in the target. Thdocals and-params options
tation. It's the nub that's the critical component, not thereturn lists of the locals and parameters for the current

compiler. frame. Thename namereturns the symbol-table entry
for name or an error ifnameis not a visible symbol.

3.3 Thedeet Nub Interface deet _type returns a string describing the type rep-
resented by the identifigype If type represents int,

deet includes versions of the nub and symbol-tabledeet type returnsint" . Similarly, if type repre-

functions for use with Tcl otksh . Thesetksh com- sents7 * | [n] , or a structure typedeet _type re-
mands differ from the C routines in two ways: They are turns’ respective|y, the type identifier f@'h n and the

at a higher level, because they manipulate source-levg|pe identifier forE, and a list of names and type identi-
symbols, types, and values, and they accept and retusers for the fields.

strings, so that they can be used in Tckksh scripts. NeD [10] is another debugger built on a set of de-
The complete list appears in Figure 6. bugging primitives. This set is larger than the set of
deet _breakpoint is a combination ofNub_set , nyp functions and the NeD primitives are at a some-

Nub_remove , and_Nub_src . The-set option sets \yhat higher level. NeD’s primitives are written in Tcl

all of the given breakpoints, which might be incomplete; extended with a set of debugging functions. While

that is, file can be™ , andline and charactercan be these functions present a nearly platform-independent

zero. The-delete option removes breakpoints, and interface, their implementation appears to be platform-

the-list option lists possible breakpoints. dependent and perhaps nontrivial. Also, NeD has no user
deet _frame is equivalenttaNub_frame : Withno jnterface per se; it uses Tcl in the same waydest

deet _open initialize the target

deet _breakpoint { -set | -delete | -list } file line character
set, remove, and list breakpoints

deet frame [n] get/set current frame

deet _getval type address read a value ofypefrom address

deet _putval type address value write thevalueof typeto address

deet _continue resume execution

deet sym { -all | -files | -locals | -params | -name name }
finds the symbol-table entries

deet _type type getsymbok type information

Figure 6:deet ’s nub interface

uses the nub functions, whitkeet uses Tcl as its user- toplevel .null
interface language, as illustrated in the next section. pack $(button .null.b \
-text "Print Null Elements" \

4 Programming in deet -command "nullElements hashtable")

: . . ,) This code builds the button:
Much of deet itself is written in Tcl andksh , using

thedeet _* nub commands described above. Users can =T E R EE
extenddeet by writing Tcl andtksh commands; for
example, features like conditional breakpoints and non-
trivial program queries can be written tksh . deet
can also be extended by external programs. This section Tcl scripts can be invoked with thgource com-
illustrates some typical extensions. mand, which is @ksh built-in. source uses the Tcl
Simple extensions can be written directlytikeh . parser to parse its input, and ugksh variables and
For example, the following script displays all of the null functions in variable and command substitutions. Here’s
elements in an array, the name of which is supplied as aa simple example:

Print Hull Elements

argument.
function foo {
function nullElements { X=37
typeset arr=%$1 print "$(bar test)"
integer i s=$(arraySize $arr) }
for (=0 ; i < s ; i+t)); do
if [[$(var "$arr[$i]") == 0x0]] source <<'EOT
then proc bar {args} {
print "Element $arr[$i] null" global X
fi set X [expr $X + 1]
done return "bar: args: $args, X: $X"
} }

. EOT
nullElements uses two externatksh functions:

arraySize , which returns the number of elements in A call to foo prints
an array, andrar , which returns the value of a variable.
These functions are provided as partdelet . The for ~ bar: args: test, X: 38

loop visits each element of the array specified by the firstNOte that the Tcl procedutsar can use and modify the
argument, retrieves its value, and prints the array name, .|| variablex. Tcl source code can also involesh
and index of the null elements. functions and Built-ins

. tUsfer—de'f:med functllon'? ca’n aI:F‘]o er1'an|puIdm:t drls ¢ deet 's name space is separate from the target’'s name
Intertace. or example, 1T were checking repeatedly Orspace. Accessing a target variable frortksh script

tnulc; eltehm.entt)s. |masht?bll(? , We can construct a button requires a special functiomar , which uses the target's
0 dothe Job In one click. symbol table to lookup the variable name and retrieve its

value.var is sufficient for one-shot lookups, but it's te- matches, a diagnostic is issued. Finally, if there is ex-
dious for repeated uses of specific target variables. Foactly one match, that breakpoint is set. The associative
these usegjeet provideslinkvar name which cre- arraybreakpoint keeps track of the set breakpoints.
ates a new shell variable that is essentially an alias fofrhe nub doesn’t keep track of breakpoints because it is
the target variableame linkvar is implemented with designed to do as little as possible. If the second argu-
discipline functionswhich are similar to trapped vari- ment specifies a condition for the breakpoint, it's stored
ables in SNOBOLA4 [5]. A discipline function is a shell as the value for théreakpoint array entry. Finally,
function that is associated with a variable, and that functhe source window (if it exists) is updated to highlight
tion is invoked whenever the variable is read or written.the set breakpoint.

Thus, associating the function The nub interface can set and remove breakpoints, but
it cannot single-step the target [G]eet 's step func-

tion implements single-stepping by setting and removing
breakpoints:

function foo.get {
foo="$(var foo)"

’ function step {
with foo arranges for the target variable to be fetched if [[$cdbMode != "step"]]; then
every time the shell variabfeo is read. deet_breakpoint -set "™ 0 O

deet ’s capabilities are easily extended by writing Tcl ~ fi
andtksh scripts that use the built-in debugger com- cdbMode=step
mands. An important advantage using a shell as the de- cdbgo # resume execution
bugging language is that the shell can asg external }
tool. For example, it's relatively easy to exteddet
to display linked data structures graphically as directe
graphs. This feature is similar to that provided by the
Data Display Debuggedfid) [16], but the implementa-

d{Calling deet _breakpoint with null values for the

ile, line number, and character number sets every break-
point. Implemented naively, setting every breakpoint is
o . L expensive in large programs. But the nub could recog-
tion is much simpler, becaugteet uses existing tools nize this special case and use a more efficient implemen-

:?&Zﬁ;&b]%:dé?gvﬁ gvé?r;iigglzs:j;;r:s r[g?SSoog?‘/an thetation. As described in Section 6.2, our implementation
o oS ' f the Tcl f i loits thi -
graph, sending it the appropriate input for the data s'[ruc-0 the Tel nub functions on top @fdb exploits this pos

ture of interest. Figure 7 shows an examplelofty sibility.

output. Thetksh script that invokedotty is only _

about 60 lines of code, and it handles any linked datd ~Replacing the Nub
structure.

An important aspect ofleet 's “piece-parts” design is
i that superior replacements could be used for each part
5 Implementation without disturbing the others. For example, a more ef-
ficient, machine-specific nub could be used in place of
cdb’s machine-independent nub; or a better or more fa-
miliar user interface could be used.

deet is written intksh ; eachdeet command is im-
plemented as one or motksh functions that call the

built-in Tcl nub commands. An example is théunction To demonstrate this flexibility, we've implemented

shown in Flgure 8, Wh'.Ch useia:eet _br('aakpomt' 0 hree alternative versions deet s pieces: a version of
set breakpoints. The size of this function is as important, o b for Java [1], a nub that works by communicat-
as its details: most debugging features are easily impleg, \yith gdb, and a replacement for the user-interface
mintt)ed n tins of Ime; d’k.Sh .code. . e i component that emulategdb’s command-line inter-
egins by converting its first argument into fi €, IN€ tace. These limited experiments also reveal strengths and
number, and character number values. When an incomy .o nesses in the nub-based desiggdf cannot em-
plete breakpoint is specified, some of these values W"hlate the nub, for example, then a simple nub offers fa-

be gonverteq to null \rgalues. For exant:mes cal;ses tlhe cilities beyond those of some popular debuggers. If the
CVtI. P func(tj|on f‘?l” e ar%urner& to becorrlllet e vabue nub cannot suppodb, then the nub is missing some
of line and forfile andchar to be null. Next, important facilities.

invokesdeet _breakpoint -list to list all break-

points matching the mcomplete breakpomt. If thgre ISc 1 A Nub for Java

more than one match, a list of possible breakpoints is

displayed and no breakpoints are set. If there are nThe Java Developer’s Kit contains a debugging package
(a set of classes) that can be used to explore and con-

count
1 NULL
left L —
0x0
count right I = NULL
2 0x0
et |L_—— NULL word
0x0 "gdbnub’ count
right 2
count 0x0 — NULL et | » NULL
2 word 0x0
Teft " debug’ right
0x140000420 count 0x0 = NuLL
right 1 count word
count ox0 [NUuLL Teft 2 ksh'
= word 0x140000420 Teft
"dev’ right 0x1400004c0 count
°X1f'i%?](t’°3ao 0x140000440 fight 1 NULL
d 0x140000460 Teft
0x140000380 count NULL , e X ~—
3 geometry’ word 0x0 COUNt
W;:\(/j ™~ Teft L 'library’ right 1
0x0 Sount 0x1400004e0 et |_» NULL
right 5 word 0x0
0x1400003c0 count pwd Tiont
—~ left g
\Y/vordy 0x140000400 count 1 0x0 [NULL
& right 1 left 1 . NuLL word
0x1400003€0 left 0x0 " script’
word 0x140000480 right
thy? right 0x0
Yy 0x0 word | ™ NULL
word "ui’
W'
NULL

Figure 7: Tree generated witteet anddotty

function b { # breakpoint [action]
integer char=0 line=0

typeset file point="$1" action="${2-"'}" msg

eval set -- $(cvtbp "$point”)
file="$1" line="$2" char="$3"

typeset bp="$(deet_breakpoint -list "$file" "$line" “$char")"

eval set -- $bp

if ($# > 1)); then
msg="Pick one of $bp"

elif (($# < 1)); then

msg="No breakpoint in on line $line char $char"

else

deet_breakpoint -set "$file" "$line" "$char"

set -- $1
breakpoint['$1:$2.$3"]="$action"

[[$CdbWindow]] && TextDispBpOn $2

fi
[$msg J] && print -- "$msg"

Figure 8: Implementation of the command

trol the state of a target Java program. These classes
are designed to support a variety of Java debuggers.
Java comes witlidb , a simple command-line debug-
ger, that is implemented with the debugging package,
and this package is intended to be used to write more so-
phisticated graphical debuggers. The package works by
spawning an instance of the Java runtime with the target
and communicating with it via message passing.

Although the Java nub itself could spawn the runtime
and the target, it's simpler to use the debugging package.
Implementing a nub for Java required writing the nub
interface in terms of Java's debugging methods, which
takes only a couple hundred lines of Java. The routinesin
the nub read messages from a socket, process them using
the methods in the Java debugger package, and write the
result messages back to the socket. A central method
reads messages, decodes them, and calls the appropriate
methods for each message.

Figure 9 shows the methddameCmd, which per- Figure 10: Emulating the nub witldb
forms the same task @eet _frame . When called with
an argumentframeCmd sets the current frame to the
number specified by the argument by finding the curren
frame with the getCurrentFramelndex method
and calling thaip anddown methods as needed. If there
is no argumentframeCmd returns information about
the current frame. This information is returned by call-
ing methods in the debugging clasg&moteThread
RemoteStackFrame , andRemoteClass . . P

in a specific line is the common usage.

Thus, with a couple hundred lines of Java catkst . .
us, Wi upienu ! v fAs described at the end of Section @get steps

can be used to debug Java programs with the same setiyp h by issuing th b dt ¢
features that are used to debug C. Unfortunately, the nu rough a program Dy 1Ssuing the nub command to se
every breakpoint in the target, which is very inefficient.

interface does not currently support threads, which limits L .
the usefulness of the Java debugger. gdbnub te}kes advantage @db.s smg_le-stepplng fea—

A similar approach can probably be used on any sysIure by.us”f‘g theleet _breakpoint implementation
tem that has a debugging interface. For exampéet shown in Figure 11. When null values are passed to the

can be ported to Windows by implementing a nub in-Set option, a variable is set that puts thébnub into
terms of Microsoft's debugging API “stepping” mode when execution is resumed. Similarly,

when null values are supplied with thielete option,

i gdbnub reverts to “continuation” mode, and all tempo-

6.2 Usinggdb as a Nub rary breakpoints are removed.

We've usedgdb to build a variant ofdeet that uses =~ Whengdb is used as the nullleet can be thought

gdb as the nub, and a variant that uggth as the user Of as a graphical front end tgdb. It provides facili-

interface. ties similar toddd’s, which is also a front end faydb .
Figure 10 shows howgdb replaces the nulgdbnub ~ Howeverddd is as not programmable.

communicates witlydb, which runs as a separate pro-

cess. gdbnub translates nub function calls inigdb 6.3 A Nub for gdb

commands, sends these commandgdb, and parses bmplementinggdb on top of the nub is difficult, be-

gdb’s responses. Another approach would have been t db i h dh | b
modify gdb’s code, but past experience shows that mog-causegadb 1S a huge program and nas a farge number
ifying gdb is a painstaking process [4]. Usiriigsh of features. Some of the featuresgdb are inherently

makes the approach illustrated in Figure rhQchsim- absent in th.e nub. For mstanagzdb allows the target

pler: the implementation takes only about 500 lines. f[o be gxammed at. the machme Ievgblb can exam-
The only nub feature that was not possible to imple-Ine re_g|sters gnd.smgle-step mstrgchons. The H.Ub Inter-

ment withgdb was setting breakpoints on any expres-face is machine-independent, so it cannot provide these

target

Is,ion. Some nub functions were relatively easy to imple-
ment, but not efficiently. For examplgdb doesn’t pro-
vide a way to list all of the possible breakpoints in a file.
This was implemented by attempting to set a breakpoint
at every line in each file, and checking which breakpoints
were successfully set. Fortunately, listing all of the pos-
sible breakpoints is rarely done; listing the breakpoints

public void frameCmd(RemoteThread t, String args[]) throws Exception {
if (args.length == 2) {
int oldFrame = t.getCurrentFramelndex();
int newFrame = Integer.parselnt(args[1]);
try {
if (oldFrame < newFrame)
t.up(newFrame-oldFrame);
else if (oldFrame > newFrame)
t.down(oldFrame-newFrame);
} catch (ArraylndexOutOfBoundsException e) {
outputError();

} else {
RemoteStackFrame s = t.getCurrentFrame();
RemoteClass ¢ = s.getRemoteClass();
outputltem(t.getCurrentFramelndex());
outputltem(c.getName() + "." + s.getMethodName());
outputltem(c.getSourceFileName());
outputltem(s.getLineNumber());
outputltem("0"); /* No support for char position */

Figure 9: Implementation afeet _frame for Java

function deet_breakpoint {
typeset i action=list

case $1 in
-I*) shift ;;
-s*) action=set ; shift
if[[$1 =™ && $2 = "0" && $3 = "0"]; then

sendCommand "b main"
CONT_CMD="step"
return O
fi ;;
-d*) action=delete ; shift
if [$1 =™ && $2 = "0" && $3
sendCommand "delete"
for i in "${!{GdbBreakpoint[@]}"
do unset GdbBreakpoint[$i]
done
CONT_CMD="cont"
return 0
fi ;;
esac

"0"]; then

Figure 11: Implementing single-stepping

|

e Examining core dumps; this feature could be sup-
ddd ported by writing a nub specifically for browsing
core dumps.

e Interrupting a running target.

nub-based o
gdb e Handling signals.
7 Discussion
nub - |
deet s front end runs on any machine on whitksh

target runs, which currently includes virtually all UNIX vari-
, ants, Windows NT and Windows 95. Graphical debug-
gers that work consistently under both UNIX and Win-
Figure 12: Runningdb with the nub dows are scarce, and having a uniform interface can be
important. Programmers writing code for multiple plat-
forms can debug applications without having to learn
machine-dependent features. Similar caveats apply tghyltiple environments. Another advantage of a uniform
data watchpoints, whicdb supports on machines with jnterface is that one set of debugging scripts is often suf-
the appropriate hardwaregdb also supports features ficient for all platforms.
that are irrelevant to debugging, per se, such as control- The nub hides of most of the difficult portability is-
ling terminal modes and displayirggb -specific online gyes. deet is available on all ofcc s platforms, be-

help. _ cause its nub interface is machine-independetetet

Our third experiment thus focuses on only th@stb s a1s0 available on platforms that suppgdb , because
features used by a graphical front end, lit@d. Fig- it can use the nub that runs on topgdb. deet can
ure 12 shows the organization of this experiment. be made available on other platforms by writing a new,

‘The implementation ofdb using the nub was written p|atform-specific nub. Typical nub implementations take
with deet commands.gdb’s frame command illus- |ess than a thousand lines of code, so they aren't triv-
trates the general approadhame controls the current 51 put the effort required is tiny compared to porting a
frame in the stack of the target. Invokifiggme with machine-specific debugger.
an argument directgdb’s attention to a specific frame. geet demonstrates that it is possible to build a us-
If no argument is specified, the current function with its gp|e debugger with a graphical user interface from sim-

arguments and location is displayed. For example: pler components, and, as thetty example illustrates,
(gdb) frame that the result i; more ,than ju;t the sum of the parts.
#0 lookup (word=0x11ffff8e0 "a", deet a!so conf!rm$db s premise that most of a de-
p=0x140000010) at test/lookup.c:15 bugger is machm_e_-mdependent, a.n.o! that the fundamen-
tal machine-specific debugging facilities can be encapsu-
Figure 13 shows théksh implementation oframe . lated in a small, machine-independent nub interface.
The function usesleet _frame to move the nub’s at- deet doesn’t have all of the features offered by PC

tention to a new frame. It also useleet _sym and debuggers and UNIX debuggers ligelb. But it does
deet _getval to fetch and display the frame’s parame- provide the most important ones—at a fraction of the
ters and their values. implementation costleet is about 1,500 lines dksh
This implementation ofjdb, although incomplete, is code, and the machine-independent nub and related com-
only around 1,000 lines dfsh . It implements enough piler support (incc) total around 800 lines of C. These
features to suppoddd. gdb features that were not im- 2,300 lines of code are orders of magnitude smaller than
plemented include: gdb’s 150,000 lines anddd’s 90,000 lines.
)))) Programmers interact with most debuggers in the tar-
» Debugging a target that is already running, which get's source language plus a few debugger-specific com-
gdb can on machines where this is possible. mands. For example, programmers throw C expressions
¢ Invoking target functions from the debugger; the atgdb to brqwse the sta'Fe of a buggy target Th,e ad-
nub doesn't support this feature, because a separa%’O Téi?r? Z;Lﬁﬁeﬁg:;izgstt:itsir?ﬁéaég?j;s:mé:tavaes
evaluation facility can supportit [13]. Acid [15] and Duel [4] demonstrate, exploring a pro-
gram'’s state is fundamentally different than writing the

function frame { # [num]
[$1 '= "]] && deet_frame $1 2> /dev/null
set -- $(deet_frame)
typeset num=$1 name=%$2 file=$3 line=$4 char=$5
typeset params="$(deet_sym -params)" p result
result="#$num $name("
eval set -A parm $params
for p in "${parm[@]}"; do

set -- $p

result="$result${1##*:}=$(deet_getval "$2" "$3"), "
done
print -- "${result%o’, '}) at $file:$line"

Figure 13:ksh implementation ofjdb’s frame command

program in the first place, and this exploration can be [9] E. Koutsofios and S. C. North. Applications of
done much more effectively in a higher-level language.
deet also supports this view; Tcl anitsh seem to

be better languages for writing debugging code than lan-

guages like C and C++. Similar comments may apply to

other high-level scripting languages, like Perl.

References

[1] K. Arnold and J. Gosling.The Java Programming [11]

(2]

[3]

[4]

[5]

[6]

[7]

(8]

Language Addison-Wesley, Reading, MA, 1996.

[10

graph visualization. IrProceedings of Graphics
Interface 1994 Conferencpages 235-245, Banff,
Canada, May 1994.

P. Maybee. NeD: The network extensible debug-
ger. InProceedings of the Winter USENIX Techni-
cal Conferencegpages 145-153, San Antonio, TX,
July 1992.

Microsoft Corp., Redmond, WAMicrosoft Visual
C++, Reference Volume |11993.

M. Bolsky and D. Korn.The New KornShell Com- [12] J. K. OusterhoutTcl and the Tk ToolkitAddison-

mand and Programming LanguagPrentice Hall,
Upper Saddle River, NJ, second edition, 1995.

Wesley, Reading, MA, 1994.

[13] N. Ramsey and D. R. Hanson. A retargetable de-

C. W. Fraser and D. R. Hanso®\ Retargetable C
Compiler: Design and ImplementatiorAddison-
Wesley, Menlo Park, CA, 1995.

M. Golan and D. R. Hanson. DUEL—a very high-
level debugging language. roceedings of the
Winter USENIX Technical Conferengeages 107—
117, San Diego, CA, Jan. 1993.

D. R. Hanson. Variable associations in SNOBOLA4.
Software—Practice and Experienég2):245-254,
Apr. 1976.

D. R. Hanson and M. Raghavachari. A machine-
independent debugge3oftware—Practice and Ex-
perience 26(11):1277-1299, Nov. 1996.

D. G. Korn. ksh: An extensible high level lan-
guage. InProceedings of the Very High Level Lan-
guages Symposium (VHLlpages 129-146, Santa
Fe, NM, October 1994.

J. L. Korn. Tksh: A Tcl library for KornShell.
In Proceedings of the USENIX Tcl/Tk Workshop
pages 149-159, Monterey, CA, July 1996.

(16]

(14]

(15]

bugger. Proceedings of the SIGPLAN’92 Confer-
ence on Programming Language Design and Im-
plementation, SIGPLAN Notice&7(7):22-31, July
1992.

R. M. Stallman and R. H. Pesch. Using GDB: A
guide to the GNU source-level debugger, GDB ver-
sion 4.0. Technical report, Free Software Founda-
tion, Cambridge, MA, July 1991.

P. Winterbottom. Acid: A debugger built from a
language. InProceedings of the Winter USENIX
Technical Conferengepages 211-222, San Fran-
cisco, CA, Jan. 1994.

A. Zeller and D. Litkehaus. DDD — a free graph-
ical front-end for UNIX debuggersSIGPLAN No-
tices 31(1):22-27, January 1996.

