SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 9, 921-924 (1979)

A Simple Technique for Controlled Communication
Among Separately Compiled Modules

DAVID R. HANSON
Department of Computer Science, The University of Arizona, Tucson, Arizona 85721, U.S. 4.

SUMMARY

A simple technique for communication among separately compiled modules using the
existing facilities of most operating systems is proposed. The access control capabilities of
existing hierarchical file systems can be used to control access to shared objects (e.g. pro-
cedures, types, data structures). Information about shared objects, such as type and date/time
of compilation, is stored in description files, and access to a description file implies access to
those objects. Declarations cause the appropriate information to be maintained in the
description files. The advantage of this approach is that it is based on existing mechanisms
with which most programmers are well acquainted.

KEY WORDS Separate compilation Module interconnections Access control Program maintenance File
systems UNIX

INTRODUCTION

One of the major problems in the development of a large program is controlling the com-
munication among program components such as procedures and data modules.’ ? Such
communication is usually controlled by programming language constructs, e.g. parameter
transmission techniques, scope rules, block structure and access to shared (global) objects.
The facilities of most languages, however, are designed to provide a means of sharing within
a single compilation unit. Global references are usually the only means of communication
among separately compiled modules.

Separate compilation is an invaluable aid to the development of large programs. Not only
does separate compilation conserve computing resources, but it is much simpler to work with
the components of a program (procedures, data modules, etc.) than with the system as a
whole. It might .be impossible to work with the entire system if several programmers are
working on different components, each at their own speed. In addition, debugging a
component in the environment of an incomplete and untested system is extremely difficult
and error-prone. In short, separate compilation permits programmers to work efficiently
on small, manageable components of the system without interfering with each other.

There are several disadvantages of separate compilation as embodied in most languages.
First, most languages provide only an ‘all or nothing’ external reference capability. There is
no way to control the scope of external definitions and references. As a result, naming
conflicts and references to the wrong objects are common problems. Second, type informa-
tion is usually available only during compilation. Many of the advantages of a strong type
system are lost when referring to external objects. For example, most languages rely on
programmer-supplied type information for such references. There is, however, a way to

0038-0644/79/1109-0921$01.00 Received 21 February 1979
© 1979 by John Wiley & Sons, Ltd.

921

922 DAVID R. HANSON

check this information at link time.? Finally, there is usually no way to specify dependencies
among separately compiled modules. When a module is changed, the programmer must
understand the entire system well enough to determine which other modules require
recompilation. While there exist programs that aid in this task,* dependency relationships
can be determined automatically if a more suitable means of intermodule communication
is provided.

Reconciling the conflicting goals of separate compilation and strong tvpe checking at
compile time is a difficult problem.2 Much recent research in programming languages has
been directed toward integrating strong typing with facilities for intermodule communica-
tion and access control.k % % 6 7 8 Comparatively little work has been done in proposing
facilities for communication among separately compiled modules that can be applied to
existing languages supporting separate compilation.

This paper proposes a simple technique for controlling intermodule communication.
The scheme described below is not intended to be a comprehensive solution to this difficult
problem. For example, it does not provide access control capabilities as comprehensive as
some other proposals.™ ® It can, however, be easily incorporated into existing languages,
and, perhaps more important, is based on facilities with which most programmers are well
acquainted. It therefore provides a usable vehicle for experimentation upon which to base
subsequent research.

THE IMPORT/EXPORT FACILITY

The basic idea is to use an existing mechanism for controlled sharing instead of adding a
new mechanism to an existing language or design an entirely new language. The file system
supplied by the operating system is an example of the kind of existing facility that provides
some of the necessary features. The access and protection mechanisms imbedded in hier-
archical file systems, such as provided by UNIX,? can be used to control communication
among separately compiled modules. In addition, programmers are likely to be intimately
familiar with the use of their file system. Thus programmers can control communication
among separately compiled modules without having to acquire additional knowledge.

The file system can be used for this purpose by storing appropriate information about
external objects, such as type and time of compilation, in files whose access is controlled by
the programmer.

The declaration

export x to filename

directs the compiler to store type information and other characteristics of x in file filename.
Object x is accessible from other modules only if filename is accessible to the programmers
responsible for those modules. These files, called description files, are constructed and
maintained by the compiler; they are never edited by programmers.

The declaration

import x from filename

causes the compiler to obtain the characteristics of x from the description file filename,
provided it is accessible. Note that if x is a procedure or a variable, references to x are
external references, which must be resolved at a later time. The type checking associated
with operations on x can be performed at compile-time, however, since the necessary
information is kept in the description file. Link-time type checking can also be performed
as a check on the correctness of the compiler.

CONTROLLED COMMUNICATION 923

The kinds of objects shared using this mechanism are not restricted to variables and
procedures. The import/export declarations can also be used to share type definitions,
compile-time parameters and macro definitions, for example. Most programming languages
distinguish between sharing compile-time definitions and external objects by supplying a
different mechanism for each kind of sharing (e.g. %INCLUDE and EXTERNAL in
PL/T). The use of description files permits both kinds of sharing to be handled by a single
mechanism.

The general forms of the import and export declarations are

export x1, x2, . .., xntof1,f2,..., fm
import x1, x2, . . ., xn from f1

If the protection mechanisms of the available file system are inadequate, these declarations
can be augmented with access control information that is placed in the description files.
For example, an access list containing module names can be associated with each object.
The names in the access lists specify to which modules the object may be imported. The
information contained in description files would also be useful for the automatic generation
of system documentation.

Another common problem in large systems is that a change in one module may require
recompilation of other modules. This is particularly important when data structures have
been changed. This kind of dependency information can also be kept in description files.
The export declaration causes information concerning the definition of the objects, such as
the name and location of the source file and the date/time of compilation, to be stored in the
indicated description file. The import declaration causes dependency information to be
added to the déscription file. For example, if the name of the dependent source file and the
date/time of importation is added to the description file, subsequent exportation can trigger
recompilation of the dependent module. This scheme is similar to that used by Make.*

Note that this scheme cannot handle ‘mutual’ dependencies. For example, suppose module
@ contains

export f to f1;
impeort g from f2;
procedure f(. . .)

g);
end
and module 5 contains
export g to f2;

import f from f1;

procedure g(. . .)
)

end

Module @ must be compiled before module & and vice versa. The obvious solution is to
construct a module containing both f and’g. Alternatively, a means for explicitly editing
description files can be provided.

For instance, if the language is modified to permit the definition of procedure f without
the accompanying procedure body, the ‘first cut’ at module @ can contain only the export
declaration and the definition for f. Module & can then be compiled. Finally, a can be

924 DAVID R. HANSON

‘fleshed out’ and compiled using the information in description file f2 to check the con-
sistency of the definition of f. This approach is similar to the way in which abstractions are
entered into the CLU library.” The specification of the exported object is all that is really
required in order to make an entry in the description file.

Like most high-level language features, the import/export feature imposes a particular
structure on programs. While cases that do not ‘fit’ into this structure can always be found,
the imposition of structure is an aid to program construction just as are the various structured
control statements and type systems found in recent languages.

CONCLUSIONS

The proposed import/export facility provides a means of partially controlling the access
to shared objects among separately compiled modules at compile-time. The important
aspect of this approach is that it is based on existing facilities. While there are drawbacks to
using existing facilities, there seems to be a tendency to include new features in pro-
gramming languages without sufficient experimentation. Inclusion of features that purport
to solve some of the difficult problems associated with intermodule communication should
undergo experimental tests. In many programming environments, existing file svstems
provide many of semantic capabilities necessary to control communication adequately
among separately compiled modules. This paper has proposed a simple syntactic construct
to make use of those existing capabilities thereby providing a usable experimental facility.

REFERENCES

1. F. DeRemer and H. H. Kron, ‘Programming-in-the-large versus programming-in-the-small’,
IEEE Trans. Software Eng., SE-2, 80-86 (1976).

2. J. W. Thomas, Module Interconnection in Programming Systems Supporting Abstraction, Ph.D. Diss.,
Tech. Rep. CS-16, Comp. Sci. Dept., Brown Univ., Providence (1976).

3. R. G. Hamlet, ‘High-level binding with low-level linkers’, Comm. ACM, 19. 642-644 (1976).

4. S. I. Feldman, ‘Make—a program for maintaining computer programs’, Software Practice and
Experience, 9, 4, 255-266 (1979).

5. C. M. Geschke,]J. H. Morris and E. H. Satterwaite, ‘Early experience with Mesa’, Comm. ACM, 20,
540-553 (1977).

6. A. K. Jones and B. H. Liskov, ‘A language extension for controlling access to shared data’, IEEE
Trans. Software Eng., SE-2, 277-285 (1976).

7. B. H. Liskov et al., * Abstraction mechanisms in CLU’, Comm. ACM, 20, 564-576 (1977).

8. N. Wirth, ‘Medula: a language for modular multiprogramming’, Software Practice and Experience,

7, 3-35 (1977).

D. M. Ritchie and K. Thompson, ‘The UNIX time-sharing system’, Comm. AC17, 17, 365-375

(1974).

»

