
Language Facilities for Programmable Backtracking

Ralph E. Griswold

Department of Computer Science, The University of Arizona,
Tucson, Arizona 85721

t
David R. Hanson

Department of Computer Science, Yale University,
New Haven, Connecticut 06520

Most languages intended for artificial intelligence applications include a searchand back-
tracking facility. While built-ln backtracking facilities are convenient, they are often
too inflexible for use beyond a limited range of applicability. Other mechanisms, such as
those based on explicit manipulations of bindings or stack frames, tend to be very unstruc-
tured, and give the progr~,,er little control over the backtracking process. This paper
describes the SL5 programming language and its use for "programmable backtracking." SL5
includes a general procedure mechanism that permits procedures to be used as recursive
functions or as coroutines. Using this mechanism, the programmer can construct control
hierarchies that are tailored to the specific application. A string pattern-matching fa-
cility is given as an example of the use of the SL5 facilities.

i. Introduction

Search and backtracking facilities are a tradi-
tional component of many programming languages
designed for artificial intelligence applica-
tions [i]. Such facilities are used, for example,
in pattern-directed search of data bases in theo-
rem proving systems.

Some languages, such as PLANNER [2,3], include
a built-in mechanism for automatic backtracking.
While automatic backtracking facilities are ade-
quate for some problems, it has been noted that
they just as often "get in the way" 14]. CON-
NIVER [4] was derived from PLANNER and contains no
automatic backtracking mechanisms, but provides a
means for the programmer to construct a backtrack-
ing control regime. This is accomplished using
global variables and gotos, and by permitting ex-
plicit manipulations of bindings. One problem
with CONNIVER is that backtracking is achieved in
a rather unstructured manner [5J.. In short, while
CONNIVER does not "get in the way" in cases where
PLANNER does, CONNIVER provides insufficient con-
trol of the backtracklng process and its associ-
mted data. There appears to be a need for lin-
guistic mechanisms that facilitate "programmable
backtracking,J' enabling the progrsam~er to adapt a

This work was supported in part by the National
Science Foundation under Grant DCR75-01307.

tPresent address: Department of Computer Science,
The University of Arizona, Tucson, Arizona 85721.

general mechanism to a specific application in a
structured manner.

This paper describes the use of the SL5 pro-
gramming language [6,7] for programmable back-
tracking. SL5 was not designed for AI per 8e, but
its procedure mechanism seems particularly well-
suited for such application. The SL5 procedure
mechanism is quite general, permitting procedures
to be used as recursive functions or as corou-
tines. This generality is accomplished by treat-
ing activation records for procedures as data ob-
jects and by decomposing procedure invocation into
more elementary operations. The resulting mecha-
nism facilitates a structured approach to program-
mable backtracking.

2. The SL5 Programming Language

SL5 is a high-level expresslon-orlented lan-
guage designed as a research tool for studies in
programming language control mechanisms and in ad-
vanced string and structure processing. SL5 de-
rives many of its characteristics from SNOBOL4 but
departs from that language in several essential
areas. For example, SL5 includes most of the
"modern" control structures. Like SNOBOL4, SL5
has no type declarations but it supports a variety
of datatypes with runtlme coercion where appro-
priate.

An SL5 expression returns a result, which is

94

composed of two parts: a value and a signal. The
value component is used in the traditiohal fashion.
The signal, which is a small nonnegative integer,
is used to derive control expressions. By conven-
tion, the signal i means "success" and the signal
0 means "failure." An arbitrary result may be com-
posed using the & operator; el & e2 derives its
value component from the value of ed and its sig-
nal component from the value of e2 (the signals of
eJ and e2 are ignored). Most built-in functions
and operators transmit the result ""&0 if the eval-
uation of any of their arguments produces a failure
signal.

Signals are used to derive control expressions.
For example, in the expression if el then e2 else
e3, el is evaluated first. If the resulting sig-
nal is i, the result of the if expression is the
result of e2, otherwise the result is the result
of e$. Other typical control expressions include

while eJ do e2
until el do e2
unless ed do e2
repeat e
{el; e2; ...; en}

The while, until, and unless expressions behave in
the conventional manner. The repeat expression
evaluates e repeatedly until e signals failure.
The braces enclose a sequence of expressions.

Procedures and their environments (activation
records) are data objects that are created at run-
time. For example, the expression

genlab := proceldure (p, n, i)

repeat {
return P II n; # If is concatenation
n :=n+i
}

end

assigns to genlab a procedure whose environments
can be used as label generators as described be-
low.

The expression

return exp

returns the result of evaluating exp as the result
of the procedure. The expressions

succeed V
fail v

are provided and are equivalent, respectively, to

return V&l
return V&0

If v is omitted, the null string is assumed.
In addition to the usual function notation,

namely f(x), procedure invocation may be decomposed
into three components: environment creation, argu-
ment binding, and procedure resumption. The create
expression takes a procedure as argument and
creates an environment for the execution of the
procedure. For example, the expression

x := create genlab

assigns to x an environment for genlab. The with
expression is used to bind the actual arguments to
an environment. The expresiion

y := X with ("L", i0, i)

binds the actual arguments to the formal arguments
in the environment for genlab and assigns that
environment to y. Procedure resumption is accom-

plished by the resume expression. For example,

next := resume y

which assigns the label "LI0" to next. Subsequent
resumptions of y proceed from where y left off
(the return expression). Thus, because of the
repeat loop, a resumption of y produces the next
label.

The form

resume (e, r)

may be used to transmit the result of r to e upon
resumption. The result r becomes the result of
the expression that caused the suspension of e.
The expression

fresume e

is equivalent to

resume (e, '"'&0)

In other words, e is resumed with a failure sig-
nal.

The decomposition of procedure invocation and
the treatment of environments as data onjects per-
mit SL5 procedures to be used as recursive func-
tions or as coroutines.

The scope of identifiers is determined by de-
clarations: identifiers may be decla£c4 either
public or private. Identifiers that do not appear
in any procedure declarations are termed nonlocal.

Private identifiers are accessible only to the
proce re in which they are declared. Public
identifiers are accessible to the procedure in
which they are declared and to other procedures
containing nonlocal identifiers by the same names
whose environments are within the dynamic scope
of the environment for the procedure containing
the public declaration.

Further details concerning procedure referen-
cing environments are given in Reference 7.

3. String Pattern-Matching

A string pattern-matching facility, similar to
that in SNOBOL4, illustrates the use of the SL5
mechanisms for programmable backtracking. A
string pattern-matching facility, based on the co-
routine model of pattern-matching [8], is imple-
mented by writing a set of procedures that work in
concert to achieve the necessary backtracking con-
trol regime. The required "cooperation" among the
procedures is accomplished by observing program-
ming conventions and communication protocols.

Pattern-matching is performed by match(s, e),
where 8 is the subject string to be scanned and e
is environment that controls the scanning. The
separate notions of "pattern" and "matcher" in
SNOBOL4 are embodied in the scanning environment
e. Roughly speaking, scanning environments con-
stitute both the data component (pattern) and con-
trol component (marcher) found in most pattern
matching systems. Various "patterns" are con-
structed by forming a network of scanning environ-
ments. Some scanning environments direct other
scanning environments in various control relation-
ships, such as alternation ala SNOBOL4. Other
scanning environments analyze the subject string.

Communication among scanning environments is
provided by the global variables subject, which
contains the subject string, and cursor, which

95

indicates the current position of attention in the
subject.

Cooperation among scanning environments is ac-
complished by establishing programming conventions
and a communication protocol that is suitable to
this particular application.

A scanning environment e is resumed (resume e)
when a match for that environment is needed.

If e is able to perform the match, it returns
with a success signal (succeed) to indicate the
successful match. On the other hand, if e is un-
able to perform the match, it returns with a fail-
ure signal (fail).

If a scanning environment successfully matches,
it may be resumed again, which indicates a request
for an alternate match. Some environments may be
able to match more than one way, while others may
have no alternative match. As on initial resump-
tion, the success or failure signal is used on
return as appropriate.

By convention, once an environment fails, it is
not resumed again; to do so would be a programming
error. This convention embodies a particular as-

pect of the kind of pattern matching implemented
here, not a general property of all search
strategies.

Scanning environments have the responsibility
for all the "global" effects they may cause. Thus
an environment that moves the cursor is responsible
for this action. This responsibility requires an
environment to reverse any effect (for example,
restoring the cursor to its original position) that
is a result of a previous match. For example, if
an alternative is requested, but none exists, the

environment to which the request is made must re-
store any global variables to the values they had
before the environment was initially resumed.

In some circumstances, backtracking to an
earlier situation is necessary. In this case, an
alternative match by a current environment may
not be desired, but this environment may nonethe-
less have caused effects that need to be reversed
before backtracking. To assure reversal of ef-
fects, an environment is resumed with a failure

signal (fresume e) as an indication that effects
are to be reversed, as opposed to resumption with
a success signal, which indicates a request for
an alternative match.

Several scanning procedures are given below to
illustrate programming techniques and the use of
the conventions and communication protocol des-
cribed above.

The actual code for match(s, e) is simple:
The communication variables are initialized and

e is resumed.

match := procedure (s, e)
subject := 8;
cursor := O;
if resume copy(e) then

succeed
else

fail
end

The built-in function copy(e) copies an environ-

ment. The copy is "reset" so that execution will
begin at the beginning of the procedure. The en-
vironment is copied in order to avoid possible in-
terference resulting from the resumption of the
same environment in different places.

Scanning environments are created from scanning
procedures. For example, a procedure to match

literal strings is

slit := procedure (8) private c;

if section(subject,cursor,length)) == s
then {
c := cursor
cursor := cursor + length(s);
succeed;
cursor := c; # reverse the effect of slit
fail
}

else
fail

end

(The built-in function section(s, i, j) returns
the substring of s starting at character i and of
length j. The operator 81 == 82 succeeds if 81
and 82 are the same string.) The procedure slit
increments the cursor by the length of s if the
subject contains 8 at the current cursor position.
If, following a successful return, the environ-
ment is again resumed, the original value of

cursor is restored (reversing the effects of slit)
and slit fails, since there are no alternatives.

An example of the use of slit is

match(s, create slit with "language")

which causes a search of 8 for the string "lan-

guage."
Several improvements can be made in the nota-

tion. The awkwardness of constructing environ-
ments for the second argument of match can be
avoided by coercing the arguments of match to be
the desired datatypes. This is accomplished by
transmitters, attached to the formal parameters,
which process the actual arguments during bind-
ing [7]. A transmitter is specified in the pro-
cedure parameter list by appending a colon and
the transmitter to the parameter. For match, the
procedure heading is

match := procedure (s:string, e:environment)

where string in a built-in conversion function
and environment is a procedure that converts
strings to environments for slit, as follows:

environment := procedure (x)
envxronment" if datatype(x) == " " then

succeed x
else if datatype(x) == "string" then

succeed create slit with x
else

fail
end

An additional cosmetic improvement can be ob-
tained by using an operator instead of the func-
tion name match. SL5 permits assigning procedures
to operators as well as identifiers. In the case
of operators, the print name is used. An operator
print name is a string that consists of the opera-

tor symbol with parentheses indicating argument
placement to distinguish prefix, infix, and suffix
uses of the same symbol. Thus the print name of
the infix operator ? is ")?(". Values of strings
are accessed by the built-in function value(s).
Thus the matching procedure ~bove can be associ-
ated with the infix ? operator by

value(")?(") :=
procedure (s:string, e:environment)

96

Using these two improvements, the example above
then becomes

8 ? "language"

Various matching procedures can be developed.
A simple one is smove, which moves the cursor by a
fixed amount.

smove := procedure (n) prlvate c;
C := c i cP80 r ;
cz, l~80r := o~..~80r + n ;

i f c u r s o r >= 0 and
cursor <= length(subject) then

succeed;
cursor := c;
fail

end

If 8move is resumed a second time, it has no alter-
native. Before it fails, it restores the cursor to
its former value, thus reversing the effect that it
caused. A procedure to construct scanning environ-
ments for 8move is

move := procedure (n:integer)
return create 8move with n

end

Alternation (el "or" e2) is an example of a
scanning procedure that performs a control func-
tion. The procedure for alternation, 8alt, has two
arguments, ed and e2. It first applies el. If el
matches, salt succeeds indicating a successful
match. If el does not match, e2 is ~pplied. Note
the use of fresume to reverse effects by the argu-
ments of salt. Although salt causes no effects of
its own, the environment that it resumes may cause
effects.

salt := procedure (el, e2)
el := copy(el);
while resume el do

unless succeed do {
fresume el;
fall
};

e2 := copy(e2);
while resume e2 do

unless succeed do {
fresume e2;
fail

fail
end

A procedure for applying two environments in se-
quence (el "then" e2) is

8seq := procedure (el, e2)
el := copy(e~);
while resume el d.~o {

e2 := copy(e2);
while resume e2 do

unless succeed do {
fresume e2;
fresnme e/;
fall
}

};
fail

end

Procedures to construct environments for alterna-
tion and the successive application of other scan-
ning environments are similar to move. Using the
infix operators I and -- for the two, respectively,

the procedures are:

value (") I (") :=
procedure (el:environment, e2:environment)
return create salt with (el, e2)

end

value(")--(") :=
procedure (el:environment, e2:environment)
return create sseq with (el, e2)

end

For example, the expression

s ? ("DECI0" I "HP3000") ~- " computer"

matches either "DECI0 computer" or "HP3000 compu-
ter."

"Recusive" pattern-matching specifications pre-
sent an interesting problem. The expression

x := "a" I Cb"--x)

appears to specify a recursive reference to x, but
actually refers to the previous value of x, which
is used in the construction of environments for
the right side. The effect of'recursion can be
achieved by deferring evaluation of a variable
until it is encountered during pattern matching.
A procedure to accomplish this is

sdefer := procedure (v:ref) private e;
unless e := copy(environment(v)) do fail;
while resume e do

unless succeed do {
fresume e;
fail
}

end

(ref is a built-ln transmitter that transmits by
reference in the style of FORTRAN. Note the use
of environment(V) to coerce the value of v to be
an environment.) If a procedure to construct
scanning environments for sdefer is assigned to
the prefix operator *, a recursive pattern speci-
fication corresponding to the example above is

x := "a" [("b *x)

This pattern matches strings of the form a, ba,
bba, and so forth.

Scanning environments can be thought of as
data objects with specified procedures and argu-
ments that are either literals or other scanning
environments. The application of the alternation
and succession operators produces tree structures
of environments. For example, the expression

("DECI0" I "HP3000") -- "computers"

produces t ~

' ~ " D E C I0" ~ "HP3000"

97

The ability to manipulate environments explic-
itly and to establish customized conventions such
as those given above makes possible, and even
encourages, novel programming styles. For example,
consider the scanning procedure 8~bno(e) that
matches zero or more consecutive occurrences of
whatever e matches. Its first alternative matches
the null string. Its second matches e, its third
matches e followed by e, and so on (similar to
ARBNO in SNOBOL4).

While it is possible to write 8c~bno directly,
a more interesting approach is to fabricate an ap-
propriate environment network from existing scan-
ning procedures. The behavior of 8ca~bno(e) is
equivalent to

.... I e I (e - - e) J (e - - e - - e) I . . .
which is equivalent to the recursive specification

= : I (e -- * x)
This behavior can be accomplished by building a
"structural loop" in which the *x in e -- *x
refers to the structure

"" I ~ - - - * X

The procedure ~bn~:~(e) constructs such a network
(note the use of salt):

arbno := procedure (e:environment) private x;
x := create salt;
return (x with (8null, copy(e) --x))

end

8null is a scanning environment that matches the
null string, i.e.,

snull := create procedure
succeed;
fail

end

Viewing this as a structure as illustrated above,
the result of a/-bno(x) is

~ snu~± ~ s s e q

e

Here, the control regime is imbedded in the
structural loop. Other control regimes are easy
to construct. For example, c~bno(e) is "reluc-
tant," attempting to match as few instances of e
as context will allow. A more "enthusiastic" pro-
cedure is

z~t := procedure (e:environment) private x;
x := create salt;
return (x with (copy(e) --x, snull))

end

which attempts to match as many instances of e as
context will allow. The procedure z~t builds a
structure that is the equivalent of the recursive
pattern

x := ~ -- *x J ""
An environment returned by z~t matches one less
instance of e each time it is resumed. Environ-
ments built by z~t have the form

~ s s e q ~ s n u l l

Many other pattern matching procedures and struc-
tures are possible. Unlike a language such as
SNOBOL4 in which the pattern-matching primitives
are fixed and built into the language, SL5 per-
mits construction of pattern-matching operations
that can be tailored to the needs of specific sit-
uations. Further details of string pattern-match-
ing in SL5 are given in Refernces 9 and i0;
another example of backtracking in SL5 is given in
Reference Ii.

4. Conclusions

Although SL5 was not designed specifically for
AI applications, it seems to represent an alter-
nate approach to the problems of control in pro-
gramming languages that has received much attention
recently (see Reference 12).

As demonstrated by the string pattern-matching
example, the SL5 facilities permit the programmer
to construct whatever control hierarchies and rel-
ationshfps best suit the particular application.
The SL5 procedure mechanism provides a way to
achieve this flexibility in a reasonably struc-
tured fashion.

In the pattern-matching example, it is important
to note that the model used, as well as the speci-
fic procedures, are not restricted to string pat-
tern matching, but can be extended to the more

98

general data structures that are typically found
in AI applications. This is particularly true of
those scanning procedures such as salt and 8seq,
and the construction procedures G2bno(e) and ~pt(e)
that serve only to establish control relationships.
The scanning environments that they control could
equally well synthesize strings or parse trees.
Similarly, the subject could be an. arbitrary struc-
ture. The concept of a cursor is also easily gen-
eralized. The procedure 8move can be easily gen-
eralized to index through an array, advanced
through a linked llst, or sequence through a data
base.

Acknowledgments

SL5 is the result of the work of several per-
sons. Significant contributions have been made by
Dlanne E. Brltton, Frederick C. Druselkls, and
John T. Korb. Discussions with Drew V. McDermott
concerning AI and AI progralmlng languages were
especially helpful.

8. F. C. Druselkls and J. N. Doyle. A Procedural
Approach to Pattern Matching in SNOBOL4, Proc. ACM
Annual Conf., Nov. 1974, 311-317.

9. R. E. Griswold. String Analysis and Synthesis
in SL5, Proc. ACM Annual Conf., Oct. 1976, 410-414

i0. R. E. Griswold. The SL5 Programming Language
and Its Use for Goal-Directed Programming, Proc.
Fifth Texas Conf. on Computing Systems, Oct. 1976,
1-5.

ii. D. R. Hanson. A Procedure Mechanism for
Backtrack Programming, Proc. ACM Annual Conf.,
Oct. 1976, 401-405.

12. C. E. Hewitt and B. Smith. Towards a Pro-
gramming Apprentice, IEEE Trans. on Software Eng.,
SE-I, March 1976, 26-45.

References

i. D. G. Bobrow and B. Rapheal. New Programming
Languages for Artificial Intelligence Research,
Comp. Surveys, 6, Sept. 1974, 153-174.

2. C. E. Hewltt. PLANNER: A Language for Mani-
pulating Models and Proving Theorems in a Robot,
Proc. IJCAI-69, May 1969, 295-301.

3. I. Grief and C. E. Hewltt. Actor Semantics
for PLANNER-73~ Conf. Rec. ACM Symp. on Prlnc, of
Prog. Lang., Jan. 1975, 67-77.

4. D. V. McDermott and G. J. Sussman. From
PLANNER to CONNIVER - A Genetic Approach, Proc.
FJCC, 1972, 1171-1179.

5. G. L. Steele. LAMBDA, The Ultimate Declara-
tive, AI Memo 379, Mass. Inst. of Tech., Nov. 1976.

6. R. E. Griswold and D. R. Hanson. An Overview
of SLb, SlGPLAN Notices, 12, April 1977, 40-50.

7. D. R. Hanson and R. E. Griswold. The SL5 Pro-
cedure Mechanism, Comm. ACM, to appear.

99

