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Most languages intended for artificial intelligence applications include a searchand back- 
tracking facility. While built-ln backtracking facilities are convenient, they are often 
too inflexible for use beyond a limited range of applicability. Other mechanisms, such as 
those based on explicit manipulations of bindings or stack frames, tend to be very unstruc- 
tured, and give the progr~,,er little control over the backtracking process. This paper 
describes the SL5 programming language and its use for "programmable backtracking." SL5 
includes a general procedure mechanism that permits procedures to be used as recursive 
functions or as coroutines. Using this mechanism, the programmer can construct control 
hierarchies that are tailored to the specific application. A string pattern-matching fa- 
cility is given as an example of the use of the SL5 facilities. 

i. Introduction 

Search and backtracking facilities are a tradi- 
tional component of many programming languages 
designed for artificial intelligence applica- 
tions [i]. Such facilities are used, for example, 
in pattern-directed search of data bases in theo- 
rem proving systems. 

Some languages, such as PLANNER [2,3], include 
a built-in mechanism for automatic backtracking. 
While automatic backtracking facilities are ade- 
quate for some problems, it has been noted that 
they just as often "get in the way" 14]. CON- 
NIVER [4] was derived from PLANNER and contains no 
automatic backtracking mechanisms, but provides a 
means for the programmer to construct a backtrack- 
ing control regime. This is accomplished using 
global variables and gotos, and by permitting ex- 
plicit manipulations of bindings. One problem 
with CONNIVER is that backtracking is achieved in 
a rather unstructured manner [5J.. In short, while 
CONNIVER does not "get in the way" in cases where 
PLANNER does, CONNIVER provides insufficient con- 
trol of the backtracklng process and its associ- 
mted data. There appears to be a need for lin- 
guistic mechanisms that facilitate "programmable 
backtracking,J' enabling the progrsam~er to adapt a 
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general mechanism to a specific application in a 
structured manner. 

This paper describes the use of the SL5 pro- 
gramming language [6,7] for programmable back- 
tracking. SL5 was not designed for AI per 8e, but 
its procedure mechanism seems particularly well- 
suited for such application. The SL5 procedure 
mechanism is quite general, permitting procedures 
to be used as recursive functions or as corou- 
tines. This generality is accomplished by treat- 
ing activation records for procedures as data ob- 
jects and by decomposing procedure invocation into 
more elementary operations. The resulting mecha- 
nism facilitates a structured approach to program- 
mable backtracking. 

2. The SL5 Programming Language 

SL5 is a high-level expresslon-orlented lan- 
guage designed as a research tool for studies in 
programming language control mechanisms and in ad- 
vanced string and structure processing. SL5 de- 
rives many of its characteristics from SNOBOL4 but 
departs from that language in several essential 
areas. For example, SL5 includes most of the 
"modern" control structures. Like SNOBOL4, SL5 
has no type declarations but it supports a variety 
of datatypes with runtlme coercion where appro- 
priate. 

An SL5 expression returns a result, which is 
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composed of two parts: a value and a signal. The 
value component is used in the traditiohal fashion. 
The signal, which is a small nonnegative integer, 
is used to derive control expressions. By conven- 
tion, the signal i means "success" and the signal 
0 means "failure." An arbitrary result may be com- 
posed using the & operator; el & e2 derives its 
value component from the value of ed and its sig- 
nal component from the value of e2 (the signals of 
eJ and e2 are ignored). Most built-in functions 
and operators transmit the result ""&0 if the eval- 
uation of any of their arguments produces a failure 
signal. 

Signals are used to derive control expressions. 
For example, in the expression if el then e2 else 
e3, el is evaluated first. If the resulting sig- 
nal is i, the result of the if expression is the 
result of e2, otherwise the result is the result 
of e$. Other typical control expressions include 

while eJ do e2 
until el do e2 
unless ed do e2 
repeat e 
{el; e2; ...; en} 

The while, until, and unless expressions behave in 
the conventional manner. The repeat expression 
evaluates e repeatedly until e signals failure. 
The braces enclose a sequence of expressions. 

Procedures and their environments (activation 
records) are data objects that are created at run- 
time. For example, the expression 

genlab := proceldure (p, n, i) 

repeat { 
return P II n; # If is concatenation 
n :=n+i 
} 

end 

assigns to genlab a procedure whose environments 
can be used as label generators as described be- 
low. 

The expression 

return exp 

returns the result of evaluating exp as the result 
of the procedure. The expressions 

succeed V 
fail v 

are provided and are equivalent, respectively, to 

return V&l 
return V&0 

If v is omitted, the null string is assumed. 
In addition to the usual function notation, 

namely f(x), procedure invocation may be decomposed 
into three components: environment creation, argu- 
ment binding, and procedure resumption. The create 
expression takes a procedure as argument and 
creates an environment for the execution of the 
procedure. For example, the expression 

x := create genlab 

assigns to x an environment for genlab. The with 
expression is used to bind the actual arguments to 
an environment. The expresiion 

y := X with ("L", i0, i) 

binds the actual arguments to the formal arguments 
in the environment for genlab and assigns that 
environment to y. Procedure resumption is accom- 

plished by the resume expression. For example, 

next := resume y 

which assigns the label "LI0" to next. Subsequent 
resumptions of y proceed from where y left off 
(the return expression). Thus, because of the 
repeat loop, a resumption of y produces the next 
label. 

The form 

resume (e, r) 

may be used to transmit the result of r to e upon 
resumption. The result r becomes the result of 
the expression that caused the suspension of e. 
The expression 

fresume e 

is equivalent to 

resume (e, '"'&0) 

In other words, e is resumed with a failure sig- 
nal. 

The decomposition of procedure invocation and 
the treatment of environments as data onjects per- 
mit SL5 procedures to be used as recursive func- 
tions or as coroutines. 

The scope of identifiers is determined by de- 
clarations: identifiers may be decla£c4 either 
public or private. Identifiers that do not appear 
in any procedure declarations are termed nonlocal. 

Private identifiers are accessible only to the 
proce re in which they are declared. Public 
identifiers are accessible to the procedure in 
which they are declared and to other procedures 
containing nonlocal identifiers by the same names 
whose environments are within the dynamic scope 
of the environment for the procedure containing 
the public declaration. 

Further details concerning procedure referen- 
cing environments are given in Reference 7. 

3. String Pattern-Matching 

A string pattern-matching facility, similar to 
that in SNOBOL4, illustrates the use of the SL5 
mechanisms for programmable backtracking. A 
string pattern-matching facility, based on the co- 
routine model of pattern-matching [8], is imple- 
mented by writing a set of procedures that work in 
concert to achieve the necessary backtracking con- 
trol regime. The required "cooperation" among the 
procedures is accomplished by observing program- 
ming conventions and communication protocols. 

Pattern-matching is performed by match(s, e), 
where 8 is the subject string to be scanned and e 
is environment that controls the scanning. The 
separate notions of "pattern" and "matcher" in 
SNOBOL4 are embodied in the scanning environment 
e. Roughly speaking, scanning environments con- 
stitute both the data component (pattern) and con- 
trol component (marcher) found in most pattern 
matching systems. Various "patterns" are con- 
structed by forming a network of scanning environ- 
ments. Some scanning environments direct other 
scanning environments in various control relation- 
ships, such as alternation ala SNOBOL4. Other 
scanning environments analyze the subject string. 

Communication among scanning environments is 
provided by the global variables subject, which 
contains the subject string, and cursor, which 
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indicates the current position of attention in the 
subject. 

Cooperation among scanning environments is ac- 
complished by establishing programming conventions 
and a communication protocol that is suitable to 
this particular application. 

A scanning environment e is resumed (resume e) 
when a match for that environment is needed. 

If e is able to perform the match, it returns 
with a success signal (succeed) to indicate the 
successful match. On the other hand, if e is un- 
able to perform the match, it returns with a fail- 
ure signal (fail). 

If a scanning environment successfully matches, 
it may be resumed again, which indicates a request 
for an alternate match. Some environments may be 
able to match more than one way, while others may 
have no alternative match. As on initial resump- 
tion, the success or failure signal is used on 
return as appropriate. 

By convention, once an environment fails, it is 
not resumed again; to do so would be a programming 
error. This convention embodies a particular as- 

pect of the kind of pattern matching implemented 
here, not a general property of all search 
strategies. 

Scanning environments have the responsibility 
for all the "global" effects they may cause. Thus 
an environment that moves the cursor is responsible 
for this action. This responsibility requires an 
environment to reverse any effect (for example, 
restoring the cursor to its original position) that 
is a result of a previous match. For example, if 
an alternative is requested, but none exists, the 

environment to which the request is made must re- 
store any global variables to the values they had 
before the environment was initially resumed. 

In some circumstances, backtracking to an 
earlier situation is necessary. In this case, an 
alternative match by a current environment may 
not be desired, but this environment may nonethe- 
less have caused effects that need to be reversed 
before backtracking. To assure reversal of ef- 
fects, an environment is resumed with a failure 

signal (fresume e) as an indication that effects 
are to be reversed, as opposed to resumption with 
a success signal, which indicates a request for 
an alternative match. 

Several scanning procedures are given below to 
illustrate programming techniques and the use of 
the conventions and communication protocol des- 
cribed above. 

The actual code for match(s, e) is simple: 
The communication variables are initialized and 

e is resumed. 

match := procedure (s, e) 
subject := 8; 
cursor := O; 
if resume copy(e) then 

succeed 
else 

fail 
end 

The built-in function copy(e) copies an environ- 

ment. The copy is "reset" so that execution will 
begin at the beginning of the procedure. The en- 
vironment is copied in order to avoid possible in- 
terference resulting from the resumption of the 
same environment in different places. 

Scanning environments are created from scanning 
procedures. For example, a procedure to match 

literal strings is 

slit := procedure (8) private c; 

if section(subject,cursor,length)) == s 
then { 
c := cursor 
cursor := cursor + length(s); 
succeed; 
cursor := c; # reverse the effect of slit 
fail 
} 

else 
fail 

end 

(The built-in function section(s, i, j) returns 
the substring of s starting at character i and of 
length j. The operator 81 == 82 succeeds if 81 
and 82 are the same string.) The procedure slit 
increments the cursor by the length of s if the 
subject contains 8 at the current cursor position. 
If, following a successful return, the environ- 
ment is again resumed, the original value of 

cursor is restored (reversing the effects of slit) 
and slit fails, since there are no alternatives. 

An example of the use of slit is 

match(s, create slit with "language") 

which causes a search of 8 for the string "lan- 

guage." 
Several improvements can be made in the nota- 

tion. The awkwardness of constructing environ- 
ments for the second argument of match can be 
avoided by coercing the arguments of match to be 
the desired datatypes. This is accomplished by 
transmitters, attached to the formal parameters, 
which process the actual arguments during bind- 
ing [7]. A transmitter is specified in the pro- 
cedure parameter list by appending a colon and 
the transmitter to the parameter. For match, the 
procedure heading is 

match := procedure (s:string, e:environment) 

where string in a built-in conversion function 
and environment is a procedure that converts 
strings to environments for slit, as follows: 

environment := procedure (x) 
envxronment" if datatype(x) == " " then 

succeed x 
else if datatype(x) == "string" then 

succeed create slit with x 
else 

fail 
end 

An additional cosmetic improvement can be ob- 
tained by using an operator instead of the func- 
tion name match. SL5 permits assigning procedures 
to operators as well as identifiers. In the case 
of operators, the print name is used. An operator 
print name is a string that consists of the opera- 

tor symbol with parentheses indicating argument 
placement to distinguish prefix, infix, and suffix 
uses of the same symbol. Thus the print name of 
the infix operator ? is ")?(". Values of strings 
are accessed by the built-in function value(s). 
Thus the matching procedure ~bove can be associ- 
ated with the infix ? operator by 

value(")?(") := 
procedure (s:string, e:environment) 
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Using these two improvements, the example above 
then becomes 

8 ? "language" 

Various matching procedures can be developed. 
A simple one is smove, which moves the cursor by a 
fixed amount. 

smove := procedure (n) prlvate c; 
C :=  c i cP80 r ;  
cz, l~80r :=  o~..~80r + n ;  

i f  c u r s o r  >= 0 and  
cursor <= length(subject) then 

succeed; 
cursor := c; 
fail 

end 

If 8move is resumed a second time, it has no alter- 
native. Before it fails, it restores the cursor to 
its former value, thus reversing the effect that it 
caused. A procedure to construct scanning environ- 
ments for 8move is 

move := procedure (n:integer) 
return create 8move with n 

end 

Alternation (el "or" e2) is an example of a 
scanning procedure that performs a control func- 
tion. The procedure for alternation, 8alt, has two 
arguments, ed and e2. It first applies el. If el 
matches, salt succeeds indicating a successful 
match. If el does not match, e2 is ~pplied. Note 
the use of fresume to reverse effects by the argu- 
ments of salt. Although salt causes no effects of 
its own, the environment that it resumes may cause 
effects. 

salt := procedure (el, e2) 
el := copy(el); 
while resume el do 

unless succeed do { 
fresume el; 
fall 
}; 

e2 := copy(e2); 
while resume e2 do 

unless succeed do { 
fresume e2; 
fail 

fail 
end 

A procedure for applying two environments in se- 
quence (el "then" e2) is 

8seq := procedure (el, e2) 
el := copy(e~); 
while resume el d.~o { 

e2 := copy(e2); 
while resume e2 do 

unless succeed do { 
fresume e2; 
fresnme e/; 
fall 
} 

}; 
fail 

end 

Procedures to construct environments for alterna- 
tion and the successive application of other scan- 
ning environments are similar to move. Using the 
infix operators I and -- for the two, respectively, 

the procedures are: 

value (") I (") := 
procedure (el:environment, e2:environment) 
return create salt with (el, e2) 

end 

value(")--(") := 
procedure (el:environment, e2:environment) 
return create sseq with (el, e2) 

end 

For example, the expression 

s ? ("DECI0" I "HP3000") ~- " computer" 

matches either "DECI0 computer" or "HP3000 compu- 
ter." 

"Recusive" pattern-matching specifications pre- 
sent an interesting problem. The expression 

x := "a" I Cb"--x) 

appears to specify a recursive reference to x, but 
actually refers to the previous value of x, which 
is used in the construction of environments for 
the right side. The effect of'recursion can be 
achieved by deferring evaluation of a variable 
until it is encountered during pattern matching. 
A procedure to accomplish this is 

sdefer := procedure (v:ref) private e; 
unless e := copy(environment(v)) do fail; 
while resume e do 

unless succeed do { 
fresume e; 
fail 
} 

end 

(ref is a built-ln transmitter that transmits by 
reference in the style of FORTRAN. Note the use 
of environment(V) to coerce the value of v to be 
an environment.) If a procedure to construct 
scanning environments for sdefer is assigned to 
the prefix operator *, a recursive pattern speci- 
fication corresponding to the example above is 

x := "a" [ ("b .... *x) 

This pattern matches strings of the form a, ba, 
bba, and so forth. 

Scanning environments can be thought of as 
data objects with specified procedures and argu- 
ments that are either literals or other scanning 
environments. The application of the alternation 
and succession operators produces tree structures 
of environments. For example, the expression 

("DECI0" I "HP3000") -- "computers" 

produces t ~  

' ~ " D E C  I0" ~ "HP3000" 
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The ability to manipulate environments explic- 
itly and to establish customized conventions such 
as those given above makes possible, and even 
encourages, novel programming styles. For example, 
consider the scanning procedure 8~bno(e) that 
matches zero or more consecutive occurrences of 
whatever e matches. Its first alternative matches 
the null string. Its second matches e, its third 
matches e followed by e, and so on (similar to 
ARBNO in SNOBOL4). 

While it is possible to write 8c~bno directly, 
a more interesting approach is to fabricate an ap- 
propriate environment network from existing scan- 
ning procedures. The behavior of 8ca~bno(e) is 
equivalent to 

.... I e I ( e - - e )  J ( e - - e - - e )  I . . .  
which is equivalent to the recursive specification 

= : . . . . .  I (e -- * x )  
This behavior can be accomplished by building a 
"structural loop" in which the *x in e -- *x 
refers to the structure 

"" I ~ - - -  * X  

The procedure ~bn~:~(e) constructs such a network 
(note the use of salt): 

arbno := procedure (e:environment) private x; 
x := create salt; 
return (x with (8null, copy(e) --x)) 

end 

8null is a scanning environment that matches the 
null string, i.e., 

snull := create procedure 
succeed; 
fail 

end 

Viewing this as a structure as illustrated above, 
the result of a/-bno(x) is 

~ snu~± ~ s s e q  

e 

Here, the control regime is imbedded in the 
structural loop. Other control regimes are easy 
to construct. For example, c~bno(e) is "reluc- 
tant," attempting to match as few instances of e 
as context will allow. A more "enthusiastic" pro- 
cedure is 

z~t := procedure (e:environment) private x; 
x := create salt; 
return (x with (copy(e) --x, snull) ) 

end 

which attempts to match as many instances of e as 
context will allow. The procedure z~t builds a 
structure that is the equivalent of the recursive 
pattern 

x := ~ -- *x J "" 
An environment returned by z~t matches one less 
instance of e each time it is resumed. Environ- 
ments built by z~t have the form 

~ s s e q  ~ s n u l l  

Many other pattern matching procedures and struc- 
tures are possible. Unlike a language such as 
SNOBOL4 in which the pattern-matching primitives 
are fixed and built into the language, SL5 per- 
mits construction of pattern-matching operations 
that can be tailored to the needs of specific sit- 
uations. Further details of string pattern-match- 
ing in SL5 are given in Refernces 9 and i0; 
another example of backtracking in SL5 is given in 
Reference Ii. 

4. Conclusions 

Although SL5 was not designed specifically for 
AI applications, it seems to represent an alter- 
nate approach to the problems of control in pro- 
gramming languages that has received much attention 
recently (see Reference 12). 

As demonstrated by the string pattern-matching 
example, the SL5 facilities permit the programmer 
to construct whatever control hierarchies and rel- 
ationshfps best suit the particular application. 
The SL5 procedure mechanism provides a way to 
achieve this flexibility in a reasonably struc- 
tured fashion. 

In the pattern-matching example, it is important 
to note that the model used, as well as the speci- 
fic procedures, are not restricted to string pat- 
tern matching, but can be extended to the more 
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general data structures that are typically found 
in AI applications. This is particularly true of 
those scanning procedures such as salt and 8seq, 
and the construction procedures G2bno(e) and ~pt(e) 
that serve only to establish control relationships. 
The scanning environments that they control could 
equally well synthesize strings or parse trees. 
Similarly, the subject could be an. arbitrary struc- 
ture. The concept of a cursor is also easily gen- 
eralized. The procedure 8move can be easily gen- 
eralized to index through an array, advanced 
through a linked llst, or sequence through a data 
base. 
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