Information Processing Letters 24 (1987) 391-395
North-Holland

6 April 1987

OPTIMIZATION OF ARGUMENT EVALUATION ORDER *

Christopher W. FRASER

Department of Computer Science. The University of Arizona, Tucson, AZ 85721, U.S.A.

David R. HANSON

Department of Computer Science. Princeton University, Princeton. NJ 08544, U.S. A.

Communicated by G.R. Andrews
Received 9 May 1986
Revised 30 June 1986

Keywords: Peephole optimization. expression evaluation. code generation

1. Introduction

In many languages. the order of evaluation of
arguments is undefined or only partially defined.
For example. in the C expression [4]

(g(). h()

either g or h will be invoked first. depending on
the implementation. Similar situations arise in
PasCAL and Apa [1].

Incomplete definition of evaluation order may
lead to erroneous programs or unnecessary verbos-
ity. For example. to insure that g is evaluated first
in the expression above. the programmer must
write

t=g()
ft. h());

Even apparently innocuous expressions can
yield incorrect results. For example. in f(a, g()).
if a 1s a global variable that is modified by g. the
value of a passed to f depends on the order of
evaluation of the arguments. If the arguments are
evaluated left-to-right, the value a before the call

* This work was supported in part by the National Science
Foundation under Grants MCS-8302398 and DCR-8320257.

to g is passed: if the order is right-to-left. the
value of a after calling g is passed. Program
checkers that identify nonportable and error-prone
constructs. such as lint [2], often miss these kinds
of constructs.

While some of these examples can be critized as
poor programming style (e.g.. g modifying a). a
well-defined evaluation order would at least give a
precise interpretation for all expressions. obviate
the need for useless temporary variables. and make
bugs independent of implementation details.

A Justification for leaving the evaluation order
undefined is efficiency. The freedom to evaluate
expressions in any order permits the implementor
to tailor evaluation order to the architectural
properties of the target computer. such as the
direction of stack growth [3]. The remainder of
this article describes a simple opuimization that
permits the evaluation order of arguments to be
defined without sacrificing code quality for most
calls. Calls with arguments that do not depend on
the evaluation order are optimized to best suit the
architecture of the target computer. For calls with
arguments that do depend on the order of evalua-
tion. the code is not as good. but it ensures a
well-defined order of evaluation. Since most calls
fall into the former category. the overall reduction
in code quality is slight for most programs.

0020-0190/87/53.50 € 1987, Elsevier Science Publishers B.V. (North-Holland) 391

Volume 24. Number 6

The purpose of most optimizations is to get
better object code from the same source code. The
purpose of this optimization is to get the same
object code from clearer source code. Thus. most
optimizations are judged by quantitative improve-
ments in object code. but this one must be judged
by qualitative improvements in source code. such
as the removal of hidden machine-dependencies.

2. Argument evaluation

In most languages with recursive functions.
evaluation of call f(e,..... e,) involves some com-
bination of allocation of stack space for the n
arguments. evaluation of the argument expres-
sions. e;. storing the resulting argument values
into the allocated space. transferring 1o the entry
point of the function. and deallocation of the
argument space. The precise details of these steps
depend mainly on the order of evaluation of the
arguments, the direction of stack growth, and the
layout of activation records. or frames. on the
stack.

Details of stack growth are generally fixed by
the architecture of the target machine. Frame
layout is often dictated by constraints on based
addressing since arguments are usually accessed
by an offset from a dedicated base register, which
is often called the frame or argument pointer. For
example, on the IBM 370. such offsets must be
nonnegative. Constraints concerning the alloc-
ation and addressing of local variables may also
influence frame layout.

Frame layout can also be influenced by lan-
guage features and compiler implementation con-
siderations. For example. in languages that permit
functions with a variable number of arguments.
frames should be designed so that offsets to argu-
ments are independent of the number of actual
arguments. This criterion also simplifies code gen-
eration. Implementation of tail recursion can also
impact frame layout [6).

In languages that do not specify the order of
argument evaluation. the order that yields the
most efficient calling sequence and argument
addressing is typically used. Let a; denote the
location of the irh argument. e; — a; denote the

392

INFORMATION PROCESSING LETTERS

6 April 1987

evaluation of the ith argument and assignment of
the resulting value to a;, and allocare k denote the
allocation of stack space for k arguments. Using
this notation, a call f(e,..... ¢,) in which the argu-
ments are evaluated left-to-right might be express-
ed as

allocate 1
e, —a,

allocate 1
€A,

call f
deallocate n

where call { denotes the transfer to f. including
establishing the return address. and deallocate
deallocates the space allocated by allocare. Many
machines have a "push’ instruction, which com-
bines the effect of allocate and e; - a,. ie.

allocate 1

= push e,

€ —a;
But push can be used only if the resulting order of
the arguments agrees with the frame layout. The
order of argument evaluation is usually changed
to meet this constraint.

For example. Fig. 1 shows the frame layout for
the VAX. Frames are constructed in part by the
call instruction. The stack grows ‘down’ toward

(higher addresses)

argument n 4*n(ap)
argument 2 8(ap)
argument 1 4(ap)

argument count, n —ap
saved registers

return address
previous 1p
previous ap
program status word
0 — {p

local variables

+—B8p

(lower addresses)

Fig. 1. Frame layout for the VAX.

P

Volume 24, Number 6

lower addresses. and arguments are addressed by
offsets from the argument pointer. ap. In order
for the argument offsets to be independent of the
number of arguments. the arguments must be
pushed in the order n,n—1..... 1. which is
accomplished by the following calling sequence:

push e,

pu&h e,
call {
deallocate n

Because this sequence is best for the VAX. most
VAX C compilers evaluate arguments from night
to left. Other frame layouts. stack growth direc-
tions, and instruction sets induce the opposite
order.

It is possible to specify the order of argument
evaluation and use a calling sequence that is nearly
as good as that given above by evaluating the
arguments. saving the resulting values in registers.
and pushing the registers in the correct order. This
sequence on the VAX, for example. is

€= n

€n - Ta
push 1

pu:sh n
call £
deallocate n

where r; denotes a register. The disadvantage of
this approach is that it may require n — 1 registers
in addition to those necessary to evaluate the
arguments. and registers may be scarce. Also. there
may not be enough registers to evaluate the later
arguments without using temporaries. resulting in
poor code.

3. Optimizing argument evaluation

It is possible to resolve the dilemma between
specifying argument evaluation order and gener-
ating efficient calling sequences by using a simple
optimization. The resulting code quality suffers

INFORMATION PROCESSING LETTERS

6 April 1987

only for calls with arguments whose values appear
to depend on the order of evaluation. In this case.
the code is as good as if the programmer had
changed the source code to establish the evalua-
tion order explicitly. Suppose that the language
specifies left-to-right argument evaluation. The
calling sequence for a call f(e,.. .., e,)1s

allocate n
e, —a,

& —a,
call f
deallocate n

For machines on which the desired order of push
operations is 1. 2..... n, the optimizations

allocare k push ¢;
e, —a; allocare k — 1
allocate 0 = —

combine to convert the calling sequence above to
one that uses push operations.

For machines on which the desired order of
push operations is n, n — 1....,1. the appropriate
optimizations are

allocate k push e,
€ — ay allocate k — 1
allocate 0 = —

but these cannot be applied to the calling se-
quence above becauses the e; = a; are in the in-
correct order. The correct order can be established
by applying

€ —a;
€ —a;

€ —a;

if i <j and if the evaluation of ¢; does not depend
on the outcome of evaluating e;. which is a com-
mon occurrence in many programs. The indepen-
dence of the two expressions can be determined
by conventional dataflow analysis or approxi-
mated by assuming that expressions are indepen-
dent if and only if neither expression performs an
assignment or a procedure call. It seems likely that
the less expensive approximation will suffice in
most cases.

Code quality suffers only when the evaluation

393

Volume 24. Number 6

of some of the arguments depends on other argu-
ments. but some improvement is often possible.
For example. if e, depends on e, in f(e;. ¢,. €;. &)
the optimuzed calling sequence is

push e,

push e;

allocate 2

e, —a,

e.—a.

call

deallocare n

The C expression f(a, a=b + 1, ¢, d) is an exam-
ple of this specific dependency. Further improve-
ments depend on architectural details. and their
value must be weighed against their implementa-
tion cost and the expected importance of such
calls. For example. if some register r is available,
the preceding sequence can be improved to

push e,
push e,

€ =T

push e,
push t

call f
deallocate n

The optimization involving allocate k above is
the special case of i =] in the optimization

allocare 1 — j
= push e;
allocate j — 1

allocate 1
€3

where 1 < j. This optimization allocates stack space
for 1 arguments by distributing it between iwo
allocations and a push. For example. if ¢; depends
on &, in f(e;. &,. ;. ¢,). the optimized sequence is

push e,
allocate 2
push ¢,
e;—a.
€3 a,

call f
deallocate n

Indiscriminate application of this last optimiza-
tion can lengthen the sequence. making the code
worse. It should be applied only when either i —
orj—1is0.

394

INFORMATION PROCESSING LETTERS

6 April 1987

This optimization can be implemented during
code generation. Consider. for example. a com-
piler that generates code while walking an expres-
sion tree. The tree can be extended with nodes for
allocate n. e; —» a;. and push a;. The permutations
specified by the optimization rules above can be
implemented as the tree is traversed by editing the
nodes as described in the rules and by changing
the traversal order.

This optimization can also be implemented at
the instruction level using traditional peephole
optimization techniques [5]. On the VAX. for
example. the correspondences between the ab-
stract operations and VAX instructions are

allocate n subl2 $4=*n. sp
push r, pushl ri

call f

deallocate n
The subl2 instruction decrements sp so that it
points to the location ultimately occupied by a,.
the first argument: thus. a; refers to an offset of
4*(1—1) from sp (see Fig. 1). Using these corre-
spondences and the calling sequence given at the
beginning of this section. the initial code for f(a,
b+1,¢)is

calls $n.f

subl2 $12, sp allocate 3
movl a, 0(sp) e, = a,
movl b, r2 e, —a,
addi2 $1,r2

movl r2, 4(sp)

movl ¢, 8(sp) €;—>a,

calls 83, f

The movl instructions that reference sp store
argument values into the stack. In order 10 replace
the subl2 and movl instructions by pushl instruc-
tions. the movl instructions must appear in the
opposite order from that shown. If argument
evaluation order was undefined. the desired order
could have been generated initially. The desired
order can be obtained with the optimizations

call f: deallocate 3

movl any. i(sp) —, Movl any. j(sp)
movl any. j(sp) movl any. i(Sp)

where i < j (this condition ensures that the rules
will not endlessly exchange a pair of movl instruc-
tions). any specifies any operand, and the two

-

Volume 24. Number 6

movl instructions commute,

movl any. i(sSp) _, inst
inst movl any. i(Sp)

where inst specifies any other instruction that
commutes with the movi instruction. and

subl2 $k, sp _ inst
inst subi2 3k, sp

where inst is any instruction that commutes with
the subi2 instruction. Instructions x and y com-
mute if the execution sequence X y is equivalent to
y z. After two applications of the second and third
optimizations. the above example becomes

movl b, r2
addi2 $1,r2
subl2z $12, sp
movl a, 0(sp)
movl r2, 4(sp)
movl ¢, 8(sp)
calis $3,f

Three applications of the first optimization change
the sequence to

movl b, r2
addli2 $1,r2
subl2 $12, sp
movl ¢, 8(sp)
movl r2, 4(sp)
movl a, O(sp)
calls $3,f

The subl2 instruction is now in the position nec-

INFORMATION PROCESSING LETTERS

6 April 1987

essary to apply the optimization
subl2 $4=*n.sp
movl any. 4x(n— 1)sp
pushl any
subl2 $4+(n-1). sp
Three applications of this optimization followed
by applying
subl2 30, (sp)=—

yields
movl b, r2
addiz $1,r2
pushi c
pushl r2
pushl a
calls $3, f

References

(1] ADA, Reference Manual for the ADA Programming Lan-
guage. Dept. of Defense, Washington, D.C.. 1980.

{2] S.C. Johnson. Lint—a C program checker, Computing
Science Tech. Rept. 65. Bell Laboratories, Murray Hill, NJ.
December 1977.

[3] S.C. Johnson and D.M. Ritchie. The C language calling
sequence. Computing Science Tech. Rept. 102, Bell Labora-
tories, Murray Hill, NJ. September 1981.

{4] B.W. Kernighan and D.M. Ritchie. The C Programming
Language (Prentice-Hall. Englewood Cliffs. NJ. 1978).

[5] D.A. Lamb, Construction of a peephole optimizer. Soft-
ware— Practice & Experience 11 (12) (1981) 639-648.

(6] G.L. Steele. Jr.. Debunking the expensive procedure call”
myth, or procedure call implementations considered harm-
ful. or LAMBDA: The ultimate GOTO. Proc. ACM Ann.
Conf.. Seattle. WA (1977) 153-162.

395

