
6/25/2001

Dynamic Variables

David R. Hanson and Todd A. Proebsting

Programming Language Systems Group
Microsoft Research

http://www.research.microsoft.com/pls/

6/25/2001 2

One-Slide Summary

Dynamic scope is useful
Customize execution environments, e.g., GUI libraries
Provide “thread-local” variables

Two new statements for statically scoped languages:
Instantiate variables with dynamic scope
Reference them

Intentionally minimalist design—use sparingly

Implementations
Simple
Better

6/25/2001 3

Example: Compiling Loops and Switches in lcc

Compile

while (e1)
if (e2)

s1
else if (e2)

s2
else {

s3;
break;

}

Recursive-descent tree-walk

while

if

if

stmtlist

e1

e2

e3 s2

s3

s1

break

exit

label

6/25/2001 4

Example: Compiling Loops and Switches in lcc

Recursively pass loop and switch handles to every
parsing function
void statement(int loop, Swtch *switchp) {

…
forstmt(newlabel(), switchp);
…
switchstmt(loop, newswitch());
…

}

while/for/do statements produce loop
switch statements produce switchp
break and continue statements consume loop
case/default statements consume switchp

These arguments are almost never used!

6/25/2001 5

An Old (and Persistent) Problem

Ad hoc, problem-specific solutions
(E.g., global variables, environment parameters)

Inefficient
Don’t scale
Lack formal specs.

Dynamic scope solution:
Simple mechanism
Type-safe, amenable to formal specs.
Easy to distinguish lexically
Treated rigorously (and supported enthusiastically) in Lewis et.
al, POPL’2000: “implicit parameters” in Haskell

6/25/2001 6

Our Simple Design: Instantiate and Bind

Instantiate a “dynamic variable” with set statement
set id : T = e in S
Create id with type T, and initialize it to e
id has dynamic scope within S
id dies when S terminates

Bind to a dynamic variable with use statement
use id : T in S
Binds local id to the most recently created dynamic variable V
such that

V == id
type of V is a subtype of T

Static scope of id is restricted to S

6/25/2001 7

Simple Binding Semantics

A() {

set x : T3 = … in { … B() … }

}

B() {

set x : T2 = … in { C() }

}

C() {

use x : T1 in { … }

}

(Sub-)Type discrimination vital to component-based applications

T2 T3

T1

T3

T2 T1

Example 1

Example 2

6/25/2001 8

Example Revisited: Compiling Loops/Switches in lcc

Use set in producers, use in consumers: Zap clutter
void statement() { // without parameters!

…
forstmt();
…
breakstmt();
…

}
void forstmt() {

set loop: int = newlabel() in { … statement() … }
}
void breakstmt() {

use loop: int in { … }
}

Usable C++ implementation available; see paper

6/25/2001 9

Our Implementation Techniques

Simple implementation (C++ in paper)
Reasonably efficient: no allocation, linear search
Easy to get correct

set id : T = e in S
T id = e
push { address of id : T } onto a per-thread stack
S
pop

use id : T in S
search stack for id : T upon statement entry only
S (access id by indirection)

6/25/2001 10

Simple Implementation—Set

set id : T = e in S

T id = e;
current = & dVar { // “push” dynamic descriptor

name = “id”, // name for dynamic lookup
type = T, // type for dynamic lookup
address = &id, // address for “use” binding
link = current // link to previous descriptor

};

S
current = current->link;// “pop” dynamic scope

Linked list with no runtime allocation:
dynamic variable descriptors are locals

6/25/2001 11

Shadow Stack Via Linked List

current

… …

dVar

dVar.link

Frame

6/25/2001 12

Simple Implementation—Use

use id : T in S

T *idptr = dSearch(“id”, T)
S // access id indirectly via idptr within S

void *dSearch(char *name, Type *type) {
dVar *p = current;
for (; p != 0; p = p->link)

if (p->name == name
&& type is a subtype of p->type)

return p->address;
raise VariableNotFound;

}

Names are “internalized”—one copy of each name

6/25/2001 13

“Novel” Implementation

Builds on existing compiler infrastructure for exceptions

“Standard” exception-handling table entries (e.g. Java)
void *from start of PC range
void *to end of PC range
Type *type exception type
void *handler address of exception handler

Adapt tables with two entries for set statements
void *from start of set statement
void *to end of set statement
Type *type identifier type
char *name identifier name
int offset frame offset

Like the try statement, set has no time overhead
use walks stack, interprets tables

6/25/2001 14

Novel Implementation—Set

set id : T = e in S translates to

code:
T id = e;

start: S
end:

Per function table:
from to type name offset
start end T “id” id’s offset

Note: Table has one entry per ‘set’ dynamic variable

6/25/2001 15

Novel Implementation—Use

use id : T in S

T *idptr = dLookup(“id”, T)
S // access id indirectly via idptr within S

void *dLookup(char *name, Type *type) {
for each stack frame f

for each table entry t
if (pc >= t.from && pc < t.to
&& t.name == name
&& type is a subtype of t.type)

return f + t.offset;
raise VariableNotFound;

}

6/25/2001 16

Lexical scoping + set/use = no “funarg” problem

use inside lambda:
binds to dynamic variable
visible from caller

void f() {
fn = lambda() {

use free : T in {
… free …

}
}
return fn;

}

use outside lambda:
binds to dynamic variable
visible from parent

void f() {
use free : T in {

fn = lambda() {
… free …

}
}
return fn;

}

funarg problem solved with
lexical scoping
controlled dynamic scoping: distinguish binding from using
variable

6/25/2001 17

Dynamic Variables: Thread-Local Variables

Some languages provide “thread-local” variables
Global scope—per thread
Lifetimes associated with thread lifetimes
Microsoft Visual C++ uses Windows “thread-local storage”
Doesn’t work in libraries loaded at runtime (!)

Dynamic variables are automatically thread-local
Set them in thread’s initial function
Use them in other functions

Unappreciated benefit of all dynamic scope mechanisms

6/25/2001 18

Enhancement?: Default values

Design is intentionally minimalist
Dynamic variables are best used sparingly—like
exceptions, but…

Handling missing variables…
Raise exception on missing variables
Boolean isdynamic(id, T) ala instanceof(…)
Mechanism for default values of missing variables?

6/25/2001 19

Acceptance?

Exceptions are a control construct with dynamic scope
Avoids clutter
Helps build reliable and adaptable software
Exception handling is now widely accepted

Dynamic variables are a data construct with dynamic
scope

Avoids clutter
Easy/efficient addition to languages with exception handling

What happens next?
Experimental implementation in C# (someday)
Proposed for addition to C# (not likely…)

