Dynamic Variables

David R. Hanson and Todd A. Proebsting

Programming Language Systems Group
Microsoft Research

http://www.research.microsoft.com/pls/

6/25/2001

One-Slide Summary

Dynamic scope is useful
& Customize execution environments, e.g., GUI libraries
& Provide "thread-local” variables

= Two new statements for statically scoped languages:
¢ Instantiate variables with dynamic scope
& Reference them

Intentionally minimalist design—use sparingly

Implementations
¢ Simple
¢ Better

6/25/2001

Example: Compiling Loops and Switches in lcc

6/25/2001

Compile

while (el)

it (e2)

else if (e2)

el se {

sl
S22

S3;
br eak:

Recursive-descent tree-walk

/

| f

N\

sl | f

/1N

e3 s2 stntli st

/

N

br eak

Example: Compiling Loops and Switches in lcc

Recursively pass loop and switch handles to every
parsing function

void statenent(int | oop, Swtch *swtchp) {
f.é)rst nt (new abel (), switchp);

SWI tchstnt (| oop, newsw tch());

& while/for/do statements produce | oop

& switch statements produce swit chp

¢ break and continue statements consume | oop
& case/default statements consume swi t chp

These arguments are almost never used!

6/25/2001

An Old (and Persistent) Problem

= Ad hoc, problem-specific solutions
(E.g., global variables, environment parameters)
¢ Inefficient
¢ Don't scale
¢ Lack formal specs.

= Dynamic scope solution:
¢ Simple mechanism
& Type-safe, amenable to formal specs.
¢ Easy to distinguish lexically

& Treated rigorously (and supported enthusiastically) in Lewis et.
al, POPL'2000: “implicit parameters” in Haskell

6/25/2001

Our Simple Design: Instantiate and Bind

= Instantiate a "dynamic variable” with set statement
set /d: T=eins
& Create /d with type T, and initialize it to e
¢ /d has dynamic scope within S
¢ /ddies when 5 terminates

= Bind to a dynamic variable with use statement
use /d: Tins

¢ Binds local /dto the most recently created dynamic variable V
such that

= V == id
-~ type of V is a subtype of T
& Static scope of /idis restricted to S

6/25/2001

Simple Binding Semantics

A) 1

. Example 1
set x : T3 = ..in{ ..B() ...}

T1
T2 T3
set x . T2 = ...in { C() }

Example 2

T2 T1
use x @ T1 in { ...} l
} T3

¢ (Sub-)Type discrimination vital to component-based applications

6/25/2001

Example Revisited: Compiling Loops/Switches in lcc

6/25/2001

Use set in producers, use in consumers: Zap clutter

void statenent() { // w thout paraneters!
fbrstnt();
breakstnt () ;

}
void forstm () {

set loop: int = newabel() in{ ...statenent() ...}

}
voi d breakstnt () {

use loop: int in{ ...}

}

Usable C++ implementation available; see paper

Our Implementation Techniques

= Simple implementation (C++ in paper)
& Reasonably efficient: no allocation, linear search
¢ Easy to get correct

= set/id: T=ein s
Tid=e
push { address of /d: T} onto a per-thread stack
S

Pop

« use/d: Tins

search stack for /d: T upon statement entry only
S (access /id by indirection)

6/25/2001

Simple Implementation—Set

set /id: T=einsS

6/25/2001

T id = e

current = & dvar { /]
nane = “/d", /]
type = 7, Il
address = &/d /]
| i nk = current [/

b

S

current = current->link; //

“push” dynam c descri ptor

nanme for dynam c | ookup
type for dynam c | ookup
address for “use” binding
link to previous descriptor

“pop” dynam c scope

Linked list with no runtime allocation:
dynamic variable descriptors are locals

10

Shadow Stack Via Linked List

dVar. |1 nk

m- current

6/25/2001

11

Simple Implementation—Use

use /d: Tin S

T *idptr = dSearch(“ /", T)
S //access id indirectly via idptr within S

voi d *dSearch(char *nane, Type *type) {
dvar *p = current;
for (; p!'=0; p = p->link)
| f (p->nane == nane
&& type is asubtype of p->type)
return p->address;
rai se Vari abl eNot Found,;

Names are “internalized”"—one copy of each name

6/25/2001

"Novel” Implementation

6/25/2001

Builds on existing compiler infrastructure for exceptions

"Standard” exception-handling table entries (e.g. Java)

void *from start of PC range

void *to end of PC range

Type *type exception type

voi d *handl er address of exception handler

Adapt tables with two entries for set statements

void *from start of set statement
void *to end of set statement
Type *type identifier type

char *nane identifier name

i nt of f set frame offset

Like the t ry statement, set has no time overhead
use walks stack, interprets tables

13

Novel Implementation—Set

set /id: T=eins transiates to
code.
Tid= e
start: S
end:

Per function table:

from to type nanme offset
start end T “id" id’s offset

Note: Table has one entry per 'set’ dynamic variable

6/25/2001

14

Novel Implementation—Use

use /d: Tin S

T *iaptr = dLookup(“/d", T)
S //access id indirectly via idptr within S

voi d *dLookup(char *nane, Type *type) {
for each stack frame f
for each table entry t
I1f (pc >= t.from&& pc < t.to

&& . nane == nane
&& type is asubtype of t.type)
return f + t. of fset;
rai se Vari abl eNot Found;

6/25/2001

15

Lexical scoping + set/use = no “funarg” problem

= funarg problem solved with
& lexical scoping
controlled dynamic scoping: distinguish binding from using

variable
= use /nside lambda: = Use outside lambda:
binds to dynamic variable binds to dynamic variable
visible from caller visible from parent
void f() { void f() { |
fn = [anbda() { use free : T in {
use free : T in { fn = lanbda() {
..freefree ..
} }
} }
return fn; return fn;

) }

6/25/2001

16

Dynamic Variables: Thread-Local Variables

= Some languages provide “thread-local” variables
¢ Global scope—per thread
¢ Lifetimes associated with thread lifetimes
¢ Microsoft Visual C++ uses Windows "thread-local storage”
¢ Doesn't work in libraries loaded at runtime (1)

= Dynamic variables are automatically thread-local
¢ Set them in thread's initial function

¢ Use them in other functions

= Unappreciated benefit of all dynamic scope mechanisms

6/25/2001

17

Enhancement?: Default values

6/25/2001

Design is intentionally minimalist

Dynamic variables are best used sparingly—like
exceptions, but...

Handling missing variables...
¢ Raise exception on missing variables
& Booleani sdynam c(/d, T) ala i nstanceof (..
& Mechanism for default values of missing variables?

18

Acceptance?

= Exceptions are a control construct with dynamic scope
& Avoids clutter
¢ Helps build reliable and adaptable software
& Exception handling is now widely accepted

= Dynamic variables are a data construct with dynamic
scope
& Avoids clutter
& Easy/efficient addition to languages with exception handling

= What happens next?
& Experimental implementation in C# (someday)
¢ Proposed for addition to C# (not likely...)

6/25/2001

19

