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SUMMARY

C# is the new flagship language in the Microsoft .NET platform. C# is an attractive vehicle for language
design research not only because it shares many characteristics with Java, the current language of choice
for such research, but also because it is likely to see wide use. Language research needs a large investment
in infrastructure, even for relatively small studies. This paper describes a new C# compiler designed
specifically to provide that infrastructure. The overall design is deceptively simple. The parser is generated
automatically from a possibly ambiguous grammar, accepts C# source, perhaps with new features, and
produces an abstract syntax tree, or AST. Subsequent phases—dubbed visitors—traverse the AST, perhaps
modifying it, annotating it or emitting output, and pass it along to the next visitor. Visitors are specified
entirely at compilation time and are loaded dynamically as needed. There is no fixed set of visitors,
and visitors are completely unconstrained. Some visitors perform traditional compilation phases, but
the more interesting ones do code analysis, emit non-traditional data such as XML, and display data
structures for debugging. Indeed, most usage to date has been for tools, not for language design experiments.
Such experiments use source-to-source transformations or extend existing visitors to handle new language
features. These approaches are illustrated by adding a statement that switches on a type instead of a value,
which can be implemented in a few hundred lines. The compiler also exemplifies the value of dynamic
loading and of type reflection. Copyright © 2004 John Wiley & Sons, Ltd.

KEY WORDS: compiler architecture; abstract syntax trees; .NET; C# programming language; visitor pattern;
object-oriented programming

INTRODUCTION

C# [1,2] is the preeminent programming language in the Microsoft .NET platform. The .NET platform
includes tools, technologies, and methodologies for writing Internet applications [3]. It includes
programming languages, tools that support XML Web services, and new infrastructure for writing
HTML pages and Windows applications. At its core are a new virtual machine and an extensive
runtime environment. Compilers for C# and other .NET languages generate code for this virtual
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machine, called the .NET Common Intermediate Language or MSIL for short. MSIL provides
a low-level, executable, type-safe program representation that can be verified before execution,
much in the same way as the Java Virtual Machine (VM) [4] provides a verifiable representation
for Java programs. It is, however, designed specifically to support multiple languages on modern
processors.

C# is a high-level, type-safe, object-oriented programming language. It has many of the same
features as Java, but it also has language-level support for properties, events, attributes, and
interoperability with other languages. C# also has operator overloading, enumerations, value types,
and language constructs for iterating over collections.

Java is often the language of choice for experimental programming language research. Research
focuses either on the Java VM or on changes to Java itself. Adding generics to Java is an example of
the latter focus [5]. C# is an attractive platform for language research because it is in the same language
‘family’ as Java and because it is likely to become used widely. Microsoft’s C# is available on Windows
and on FreeBSD as part of the Rotor [6] distribution, and the Mono Project [7] is developing a C#
compiler for Linux, so language researchers seeking wide impact for their results may want to use C#.
Also, C# will undoubtedly evolve over time and is thus open to future additions, so language research
results might find their way into wide use. Again, adding generics to C# and to MSIL [8] is an example
of the possibilities.

Programming language research on new language features and their implementation requires a
significant investment in a suitable compilation infrastructure. At the minimum, such work needs
a compiler that accepts the full language, is easily changed, and can compile significant programs
quickly. Besides the usual complexity inherent in all non-trivial compilers, there is a natural tension
between flexibility and performance, both of the compiler itself and of the generated code. Wonderfully
flexible compilers that accept only a subset of the language, are too slow, or produce incorrect or very
inefficient code do not get used. The same fate befalls compilers that generate highly optimized code
but that are too complex to understand and modify easily.

This note describes a new C# compiler designed specifically for use in language research. The goal
of this compiler, named Icsc (for local C sharp compiler), is to facilitate experiments with a wide range
of language-level features that require new syntax and semantics. Examples include simple additions
like a Modula-3 TYPECASE statement [9] to more exotic features like Icon iterators [10], program
histories [11], and dynamically scoped variables [12]. Lcsc is not designed for code generation research
per se because it has no support specifically for native code generation, but there is nothing in its design
that precludes such work. By default, it emits MSIL.

The design of lcsc is particularly simple and it is easy to modify and to extend. In addition, it is fast
enough for experimental purposes, albeit perhaps an order of magnitude slower than the production C#
compiler in .NET. However, implementation languages account for some of the speed difference: lcsc
is written in C# and makes heavy use of automatic memory management and the .NET compiler is
written in C++. Early experience with Icsc confirms that it is easy to extend and to modify, particularly
if the new features can be modeled in C# itself.

Perhaps surprisingly, most of the use of Icsc to date is for C# language tools and program analysis,
and not for language research. Of course, there are more tool developers than language researchers,
but this usage was not anticipated and was not factored into the design. The end result is, however, that
Iesc’s design, which is based on abstract-syntax trees, is a good infrastructure for language-level tools.
Using a similar approach for other languages might harvest similar benefits.

Copyright © 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 34:1211-1224
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DESIGN

From 30000 ft, Icsc’s design is dead simple: the parser reads the C# source input and builds an abstract
syntax tree [13], or AST, and subsequent phases, such as type checking and code generation, traverse
the AST, perhaps leaving annotations on its nodes. The details are, of course, more involved, but the
basic design dictates little beyond the ASTs.

The design is intentionally lean: there is no explicit support for parsing fragments of the grammar,
incremental compilation, etc., and there is no GUI interactive development or support for using one.
Some of these features could be provided by adding new start symbols to the grammar and specialized
AST traversals, and the Eclipse Platform [14] may be an appropriate development environment
infrastructure.

To date, Icsc has been used only for experiments and tools involving C#. While its components are
specific to C#, they could, in principle, be revised for other, similar languages.

Parsing

The parser is generated automatically from a C# BNF grammar that is nearly identical to the grammar
given in the language specification [1]. This grammar is ambiguous, and the home-grown parser
generator accepts ambiguous grammars. The generated parser is a generalized LR parser [15,16]; for
inputs that have ambiguous parses, the parser builds multiple parse trees. The number of parse trees is
theoretically unbounded, but for practical programming language grammars, there are few alternatives,
which can usually be resolved by inspecting the alternative subtrees, as described below.

The parser generator also emits code to build an AST bottom-up from the parse trees.
Code fragments that return AST nodes are associated with each production in the grammar, as
exemplified by the productions for the if-statement:

if-statement 1t ( boolean-expression ) embedded-statement
statement new if_statement (a3,a5,null)

if-statement 1t ( boolean-expression ) embedded-statement el se embedded-statement
statement new if_statement (a3,a5,a7)

In the productions, non-terminals appear in italics and terminals in a typewriter font. The code
fragment—the ‘action’ in grammar parlance—appears on the far right in the lines following the
productions. The occurrences of statement identify the abstract type of the AST nodes returned
by the new expressions. The a3, a5, and a7 refer to the AST values returned by the corresponding
grammar symbols in the rule in the order in which they occur, e.g. boolean-expression, and the two
occurrences of embedded-statement.

Ambiguities are resolved during AST construction by examining alternative parse trees. If a parse
tree node has more than one alternative, the set of alternatives is passed to the user-defined method
resolve, which inspects the alternatives and perhaps the context in which they occur, chooses
one, and returns the appropriate AST node. While this ad hoc approach does require some iteration
to discover and handle all the ambiguities, its cost is too small to warrant more sophisticated
mechanisms [17]. Per-node resolution code is short, usually less than a dozen lines; the C# if-statement
takes 17 lines and is one of the most complicated. The entire body of resolve for C#is only 114 lines.
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A novelty of the parser generator is that it reads the grammar specification from Excel spreadsheets,
which eliminates much of the code that parses the grammar specification in other generators, provides
some error checking, and serves as a simple GUI to the grammar. Nonterminals, rules, types, and
actions each appear in separate columns, one production per row. The type column, which holds
statement in the if-statement example above, is computed using Excel formulas. A separate ‘sheet’
in the spreadsheet lists the AST type for each nonterminal, and formulas are used to propagate those
types into the third column of the 476 productions in the grammar sheet. Separate sheets are also used
to list keywords and operator tokens.

The types sheet also gives the default AST expression for each nonterminal, which is used when an
optional occurrence of a nonterminal appears in a rule. For example,

block { statement-list,p; } statement newblock_statement(a2)

specifies that a block is an optional statement-list enclosed in braces. If statement-list is omitted,
its default from the types sheet (a zero-length statementList) is supplied as the value of a2.
Incidentally, optional elements are written exactly as this example shows, with a subscript ‘opt’.

Using an Excel spreadsheet makes the grammar easy to augment. Additional columns can be added
for, say, comments or annotations for other tools, without modifying the parser generator, which
inspects only specific columns. Finally, the parser generator accepts one or more spreadsheets, so
language extensions can be specified in a separate spreadsheet without modifying the core C# grammar.

There are, of course, disadvantages to using Excel. Even viewing the grammar requires running
Excel. While it is easy to extract the spreadsheet data as plain text in several formats, some are
idiosyncratic. The 330-line parser-generator module that extracts the grammar is thus Excel specific
and cannot be reused easily. Packaging the grammar and its associated data as XML is an attractive
alternative, in part because XML is ubiquitous and platform independent, and there are many XML-
related tools. A good XML editor could, for example, provide a GUI for grammar and structured
editing much as Excel does.

Semantics

The parser returns a single AST for each input source file. For multiple source files, these ASTs
are stitched together into a single AST for subsequent processing. Semantic processing is specified
entirely by command-line options, which specify AST ‘visitors’ and the order in which they are
invoked. Visitors are packaged as separate classes in .NET dynamically linked libraries, DLLs for
short. For example,

lcsc -visitor:XML foo.cs

parses f£oo. cs and passes the resulting AST to the XML class in XML . d11. By convention, the AST
is passed to the static method visit; there are provisions for passing additional string arguments,
when necessary, and for specifying the DLL file name.

Visitor classes [18] traverse the AST, perhaps annotating it, transforming it, or emitting output, and
return the AST for subsequent passes. For example, traditional compilation is accomplished by

lcsc -visitor:bind -visitor:typecheck
-visitor:rewrite -visitor:ilgen foo.cs

Copyright © 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 34:1211-1224
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which parses foo. cs, binds names, type checks, rewrites some ASTs, and generates and assembles
MSIL code. The bind visitor hangs symbols on the AST nodes and collects symbols into symbol tables,
and typecheck uses these data to compute the types for expressions and drops types on those nodes.
Rewrite modifies some ASTs to simplify code generation, e.g. it turns post-increment expressions into
additions and assignments. Finally, most of ilgen simply emits MSIL code, but even ilgen annotates
some nodes: it assigns internal label numbers to loop and iteration statements.

Dynamic loading permits visitors to access data structures built by other visitors directly. Without
dynamic loading, the AST and its associated data structures would have to have been serialized and
passed via files or pipes to subsequent visitors. This approach has often been used by us and others
(see, for example, [19]), but it is slower, can induce restrictions on data structures, and may be prone
to serialization errors. From a packaging viewpoint, dynamic loading is much simpler.

There are 164 AST node classes, 16 of which are abstract classes. For example, statement and
expression are abstract classes. The ASTs describe the source-level structure of the input program;
the class for an if-statement is typical:

public class if statement: statement {
public if statement (expression expr, statement thenpart,
statement elsepart) {
this.expr = expr;
this.thenpart = thenpart;
this.elsepart = elsepart;
}
public expression expr;
public statement thenpart;
[MayBeNull] public statement elsepart;
public override void visit (ASTVisitor prefix, ASTVisitor postfix) {...}

}

An if_statement node is created by a new expression, which calls the constructor to fill in the
fields. The visit method is described below. Nodes with multiple children use type-safe lists that
can be indexed like arrays, e.g. the —-List types in

public class class declaration: declaration {
public class declaration(IList attrs, IList mods, InputElement id,
IList bases, IList body) {...}
public attribute sectionList attrs;
public typeList bases;
public declarationList body;
public InputElement id;

}

InputElements are tokens and identify the token type, the specific token instance, and its location
in the source code.

Much of the code in a visitor is boilerplate traversal code. Included with Icsc is mkvisitor, a tool that
uses type reflection to generate a complete visitor that can be subsequently edited to suit its specific
task. For example,

mkvisitor -args "SymbolTable bindings" >visitor.cs

Copyright © 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 34:1211-1224
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generates the following C# code for the i f_statement class shown above:

void if statement (if statement ast, SymbolTable bindings) {
expression (ast.expr, bindings) ;
statement (ast.thenpart, bindings) ;
if (ast.elsepart != null)
statement (ast.elsepart, bindings) ;

}

The [MayBeNull] annotation on the field elsepart in the declaration of if_statement above
is a C# attribute, and it indicates that the field may be null. These kinds of attributes are used in
mkvisitor and other program generation tools to emit appropriate guards to avoid traversing valid null
ASTs. Typical visitors run around 2000 lines of C# of which about 830 are generated by mkvisitor.

Mkvisitor uses type reflection to discover the AST vocabulary, but this approach is not, of course,
the only one. Mkvisitor could read the AST source code, or it could read some other specification of
the ASTs. But using reflection is perhaps the easiest of these approaches and it fits well into the lcsc
build process: whenever the AST source code is revised and recompiled, mkvisitor gets the revised
definitions automatically.

While the full visitor machinery is used for most compilation passes, there is a simpler mechanism
that is useful for one-shot applications. Each AST node includes a visit method that implements
both a prefix and postfix walk. For instance, the visit method in if_statement is

public override void visit (ASTVisitor prefix, ASTVisitor postfix) {
prefix(this) ;
expr.visit (prefix, postfix);
thenpart.visit (prefix, postfix);
if (elsepart != null)
elsepart.visit (prefix, postfix);
postfix(this) ;

}

The arguments prefix and postfix are instances of ASTVisitor delegates, which are
essentially type-safe function pointers. These delegates are particularly useful for tools that need to
examine only parts of the AST or that look for specific patterns. For example, C# statements of the
form

if (...) throw

mimic assertions. The expression

ast.visit (new ASTVisitor(doit), new ASTVisitor (donothing)) ;

finds occurrences of this pattern in an AST rooted at ast, where doit and donothing are defined
as follows.

public static void doit (AST ast)
if (ast is if statement

&& ((if statement)ast) .thenpart is throw statement

&& ((if statement)ast) .elsepart == null)
Console.WriteLine("{0}: Possible assertion", ast.begin);

}

public static void donothing (AST ast) { }

Copyright © 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 34:1211-1224
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The begin and end fields in an AST give the beginning and ending locations in the source code
spanned by the AST.

APPLICATIONS

Finding code fragments that look like assertions typifies the use of lcsc to find patterns in C#.
Elaborations of this usage are used for code-auditing tools, for example. Pattern matching on an AST
instead of text makes it easy to consider context and to fine tune matches to avoid voluminous output.

XML is an increasing popular way to exchange data, and there are numerous tools available for
editing and viewing XML. The XML visitor emits an AST as XML for consumption by XML-based
tools or external compilation tools that accept XML. C# includes extensive support for reflection,
which makes it possible to discover class information during execution. The 70-line XML visitor uses
reflection to discover the details of the AST classes necessary to emit XML and is thus automatically
upward compatible with future additions to the AST vocabulary.

The visitor architecture helps write metaprogramming tools, e.g. tools that write programs. The .NET
platform includes a tree-based API for creating programs, typically those used in Web services
applications. This API defines a language-independent code document object model, also known as
CodeDOM. 1t is possible, for example, to build a CodeDOM tree and pass it to C#, Visual Basic, or
to any language that offers a ‘code provider’ interface. A common approach to writing CodeDOM
applications is to write, say, C# source code and translate it by hand into the API calls that build
the CodeDOM tree for that C# code. The Icsc codedom visitor automates this process: given a
C# program P, it emits a C# program that, when executed, builds the CodeDOM tree for P.

The source visitor is similarly useful: it emits C# source code from an AST. When coupled with
visitors that modify the AST, source provides a source-to-source transformation facility. As detailed in
the next section, source is useful for C# language extensions that can be modeled in C# itself. It is also
useful for writing code reorganization tools. A simple example is sortmembers, which alphabetizes the
fields and methods in all of the classes in its input C# program. For instance, the command

lcsc -visitor:sortmembers -visitor:source old.cs >new.cs

sorts the class members in old.cs and writes the C# output to new. cs. The sortmember visitor
simply rearranges the declaration subtrees in each class declaration and lets source emit the now-sorted
results.

A limitation of the source visitor is that it cannot reproduce the C# input exactly, because the ASTs
do not include comments and white space. So, source cannot be used as a pretty printer, for instance,
or for applications that demand full comment fidelity, e.g. systems that generate code documentation
from structured comments. Comments and white space could, in principal, be associated with AST
nodes.

Incidentally, source turns out to document the ASTs nicely because, for each node type, it shows
how to emit the corresponding C# source. Writers of new visitors often start with a copy of source and
edit it to suit their own purposes. At any point, the output shows exactly how much progress has been
made—C# source appears for those node types whose visitor methods remain to be edited.

Visitors are also used for diagnostic purposes, e.g. to help debug other visitors. The display visitor
renders its input AST as HTML and launches the Web browser to display the result. Using reflection,

Copyright © 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 34:1211-1224
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class_declaration#22:
attrs=attribute sectionList#33 (empty)
bases=typeList#35 (empty)
body=declarationList#37
id=InputElement{coord=hello.cs(3,7),str=Hello,tag=identifier}
sym=ClassType#43
mods=InputElementList#45 (empty)
parent=compilation unit#12

Figure 1. Sample display output.

display lists the fields in each class instance with hyperlinks to those fields that hold references to other
classes. Figure 1 shows the class_declaration AST node for the following prototypical ‘hello
world’ C# program.

class Hello {
public static void Main() {
System.Console.WriteLine ("Hello, world") ;
}

}

The hyperlinks, shown underlined, make it easy to traverse the data structure by clicking on the links.
Display handles lists as well as AST types, and it omits empty lists, which occur frequently.

Because display uses reflection, it can display any class type; for example, the sym field in Figure 1
refers to a ClassType, which is a class type used to represent C# types. This capability helps debug
visitors that annotate the AST. For instance, the command
lcsc -visitor:bind -visitor:display

-visitor:typecheck -visitor:display foo.cs

builds the AST for foo. cs, runs bind, displays the AST with bind’s annotations (which includes the
sym field shown in Figure 1), runs typecheck, then displays the AST again with typecheck’s additions.

For even medium size C# programs, display generates a large amount of HTML. While navigating
the AST is straightforward, it is often difficult to correlate a specific AST node with its associated
source text. The browser visitor is a more ambitious variant of display that provides a more natural
‘navigation’ mechanism. Browser displays the C# source text in one window and AST nodes in another
one. The AST nodes are rendered as done by display. Highlighting a fragment of source text causes
the root of the smallest enclosing AST subtree to appear in the AST window. Just that subtree can be
explored by clicking the field values. Another variant of browser provides a similar mechanism for
exploring the generated MSIL code: highlighting a source code fragment displays the corresponding
MSIL code in another window.

ADDING LANGUAGE FEATURES

Implementing new language features has much in common with writing code analysis tools, and Icsc’s
visitor-based design facilitates such additions. For example, the source visitor often does half the work

Copyright © 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 34:1211-1224
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typeswitch-statement
typeswitch ( expression ) typeswitch-block

typeswitch-block
{ nypeswitch-sectionsops '}

typeswitch-sections
typeswitch-section
typeswitch-sections typeswitch-section

typeswitch-section
case type ( identifier ) : statement-list
typeswitch-labels statement-list
default : statement-list

typeswitch-labels
typeswitch-label
typeswitch-labels typeswitch-label

typeswitch-label
case type :

new typeswitch_statement (a3, a5)

a2

typeswitch_sectionList.New(al)
List.Cons (al,a2)

new typeswitch_section(a2,a4,a7)
new typeswitch_section(al,a2)
new typeswitch_section(a3)

switch_labelList .New(al)
List.Cons(al,a2)

new typeswitch_label (a2)

Figure 2. Typeswitch syntax.

for new features that can be modeled in vanilla C#. More ambitious features can be implemented by
building on the existing visitors, either by calling them explicitly or by subclassing them.

Adding a typeswitch statement provides an example of both approaches. The typeswitch statement
is a case statement that branches on the type of an expression instead of on its value. For example,

typeswitch (o) ({
case Int32 (x): Console.WriteLine (x); break;
case Symbol (s): Symbols.Add(s); break;
case Segment: popSegment (); break;
default: throw new ArgumentException() ;

}

switches on the type of o. The typeswitch cases can also introduce locals of the case label type, as
illustrated by the Int32 and Symbol cases, which introduce locals x and s. Figure 2 gives the
grammar for the typeswitch statement, which is based on the Modula-3 TYPECASE statement [9].

Typeswitch can be implemented in C# using if and goto statements, local variables, and typecasts to
convert the typeswitch expression to the types indicated. For example, the typeswitch fragment above
could be translated mechanically as follows:

{
object yy 1 = o;
if (yy 1 is Int32) {
Int32 x = (Int32)yy 1;
Console.WriteLine (x) ;

Copyright © 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 34:1211-1224
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goto yy 1 end;

if (yy 1 is Symbol) {
Symbol s = (Symbol)yy 1;
Symbols.Add (s) ;
goto yy 1 end;

if (yy 1 is Segment) {
popSegment () ;
goto yy 1 end;

}

throw new ArgumentException() ;
yy 1 end: ;

}

A source-to-source transformation is thus one way to implement typeswitch. There are several
alternatives. One approach is to write a visitor that transforms the typeswitch subtrees into the
corresponding block and if statement trees as suggested by the output above, and use the source visitor
to emit the transformed AST. A simpler approach, however, is to extend the source visitor to accept
typeswitch subtrees and emit the if statement implementation directly.

In either case, the first step is to define the typeswitch grammar, which appears in Figure 2.
This grammar resides in its own Excel spreadsheet and is passed to the parser generator along with
the original C# grammar. The second step is to define the AST types needed to represent typeswitch
statements and to add the appropriate types and actions to the grammar spreadsheet. There are three
new types, and the actions are shown to the right of the productions in Figure 2. The type column is
omitted.

The final step is to add methods to the source visitor to traverse the three typeswitch AST types,
emitting C# code as suggested above. It is not necessary to change the source visitor class itself; it can
simply be extended by a derived class, typeswitch_source, that implements three new methods. It also
overrides the methods in source for break statements and default labels, because these constructs can
now appear in both switch and typeswitch statements. These steps take a total of only 153 lines:

19 lines  typeswitch grammar

63 typeswitch AST nodes
71 extend source
153 Total

More exotic language features and those that cannot be modeled in C# require more implementation
effort. The effort can sometimes be reduced by transforming a part of the feature into existing C# AST
nodes to make use of existing visitor code. But many additions require all of the typical compilation
steps, including binding, typechecking, and code generation. Typeswitch again provides an example.

The first two steps are the same as in the source-to-source approach: specify the grammar and define
the typeswitch-specific AST node types.

Each of the four traditional compilation visitors must be extended to traverse the three typeswitch
nodes. Again, this extension can be done by subclassing, and defining new methods and overriding
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existing methods. The complete implementation takes 333 lines:

19 lines  typeswitch grammar

63 typeswitch AST nodes
100 extend bind

37 extend typecheck

39 extend rewrite

65 extend ilgen
333 Total

Bind requires the most code because it makes three passes over the AST and defines a class for each
pass. Code generation is performed by rewrite and ilgen, which could be combined into a single visitor.

Note that in both approaches the additional code required is approximately proportional to the
‘size’ of the typeswitch addition. For many additions, lcsc provides scalable extensibility [20]; that
is, the addition requires effort proportional to its syntactical and semantic size relative to the base C#
language.

Of course, Icsc’s unconstrained approach does not guarantee scalable extensibility, so other language
features could take much more effort. Substantial features typically add 1000s of lines instead of 100s.
For example, an implementation of futures for C# took about 1000 lines. But even a complete visitor is
much less effort than implementing a complete compiler or modifying a production compiler, and the
visitor-based design enforces a modularity that helps avoid errors.

Lcsc’s design is not a solution to the extension problem, viz., the code-modification conflicts that
can arise when adding both language features and tools. As the typeswitch example shows, inheritance
helps when an addition requires new AST classes, but more complicated additions may require more
complex subclasses. Most Icsc visitors annotate the AST nodes with analysis values, e.g. types, so new
visitors often require new fields in some AST classes. Luckily, additions do not invalidate previously
compiled visitors, but the additions can lead to confusion. Factory classes [18] would help, but not solve
the problem completely, because they would need to be modified when new AST classes were added.
Another approach, used in SableCC [21], is to store all visitor-specific analysis data in the visitor class.
Finally, there is no easy way to compose several visitors into a single visitor beyond writing a visitor
class whose sole purpose is to invoke other visitors. To date, this omission has caused no problems, but
as the visitor vocabulary grows, visitor combinators [22] may prove useful.

DISCUSSION

There are many tools for writing compilers. Parser generators, exemplified by Yacc, and code-
generator generators, such as iburg [23], are now used routinely to help build the ‘ends’ of compilers.
Lcsc includes a parser generator, but its design focuses mostly on a compiler’s ‘middle’ phases, because
these phases are often the most intricate, and on compiler-related tools. SableCC [21] and Polyglot [20]
are recent compiler infrastructure systems that are closest in spirit and intention to lcsc. Both use Java
and use visitors for semantic passes over ASTs. Given an annotated grammar, SableCC generates a
lexer, parser, AST definitions, and AST traversal classes. Semantic analysis and code-generation passes
are written by extending these traversal classes. Polyglot uses the JFlex [24] lexer generator and the
CUP [25] parser generator. Polyglot emits Java code and is thus intended for experiments on extensions
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Table I. Source line counts.

Line count Item

6779 lines  lexer, parser, data structures (required)

6942 traditional semantic passes (required for a ‘normal’ compiler)
1972 bind.cs

2628 typecheck.cs
2342 rewrite.cs, ilgen.cs
3908 utility passes (optional)
1023 browser
1644 codedom
1015 source
156 sortmembers
70 xml
1594 program generation tools
966 parser generator (written in Icon)
329 excel2gram.cs
198 mkvisitor.cs
101 list generator

to Java. It comes with an AST definition and semantic passes for Java, which the experimenter extends
to accommodate the language extension under investigation. Interestingly, Polyglot’s passes rewrite
ASTs applicatively: passes do not modify their input trees.

At just under 14 000 lines, Icsc is a relatively small compiler, but Icsc lacks some of the components
in production compilers, such as an optimization phase, and it has no interactive development
environment. The visitor-based design makes it easy to see the relative sizes of the various passes.
Table I gives the line counts for the core of Icsc, for the visitors, and for the program generators.
Everything is written in C# except the parser generator, which is written in Icon [10].

Writing visitors does require substantial understanding of the compiler’s innards. Simple visitors
require understanding of only the AST vocabulary, which is easily digested because it follows
the language closely. More complex visitors and visitors that subclass existing visitors require
understanding of the symbol-table and type data structures and some of the existing visitors, such
as bind. Fortunately, these data structures are straightforward, and most visitors can be understood in
isolation, because the design induces a natural decoupling. In any case, getting a grip on even several
visitors is much less onerous than digesting an entire monolithic compiler.

The visitor approach is incredibly flexible, and the design encourages writing several simple visitors
that each do one task well to accomplish an overall goal rather than a single, complex visitor.
And simple visitors are easier to debug. All visitors written to date pass along an AST, possibly
modified or annotated. While not immediately obvious, there is nothing in the design that dictates
this convention. A set of visitors could collaborate to pass along an instance of any object type. So,
for example, a visitor could accept an AST, build a completely different representation of the program,
such as a flow graph of basic blocks, and pass this representation along to its successors.
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This flexibility does come at a price, however. The value passed to visitors is an object, so visitors
must downcast this object to the expected type, e.g. AST. Thus, some type errors are caught only
at runtime. Within a visitor’s code, however, all types are known at compile-time and are checked
statically.

C# and the .NET platform provide excellent support for dynamic loading and for reflection, and
lcsc and its build tools make heavy use of them. The value of these features is easy to underestimate
a priori. Once they seep into an application’s design, however, they become invaluable. Reflection
simplified several visitors and made mkuvisitor, source, and browser possible. The visitor approach
would not have been nearly as useful, or even possible, without dynamic loading. In an environment
that supports only static linking, adding new visitors would require at least relinking and probably
some recompilation. For example, multiple code generators are linked into a single executable for the
retargetable C compiler, lcc [26], precisely because dynamic loading as supported in .NET and Java
was not then universally available. If Icc were rewritten today, it would use dynamic loading to access
its code generators.

REFERENCES

1. ECMA International. C# language specification. Standard ECMA-334, Geneva, December 2001.
http://www.ecma-international.org/publications/standards/Ecma-334.htm.

. Gunnerson E. A Programmer’s Introduction to C# (2nd edn). Apress: Berkeley, CA, 2001.

. Platt DS. Introducing Microsoft .NET (2nd edn). Microsoft Press: Redmond, WA, 2002.

. Lindholm T, Yellin F. The Java Virtual Machine Specification (2nd edn). Addison-Wesley: Palo Alto, CA, 1999.

. Bracha G, Odersky M, Stoutamire D, Wadler P. Making the future safe for the past: Adding genericity to the Java
programming language. Proceedings of the Conference on Object-Oriented Programming, Systems, Languages, and
Application, Vancouver, October 1998. Association for Computing Machinery: New York, 1998; 183-200.
http://doi.acm.org/10.1145/286936.286957.

6. Stutz D, Neward T, Shilling G. Shared Source CLI Essentials. O’Reilly & Associates: Sebastopol, CA, 2003.

. The Mono Project. http://www.go-mono.com [5 May 2004].

8. Kennedy A, Syme D. Design and implementation of generics for the .NET common language runtime. Proceedings of the
SIGPLAN’01 Conference on Programming Language Design and Implementation, Snowbird, UT, June 2001. Association
for Computing Machinery: New York, 2001; 1-12. http://doi.acm.org/10.1145/378795.378797.

9. Nelson G. Systems Programming with Modula-3. Prentice-Hall: Englewood Cliffs, NJ, 1991.
http://www.research.compaq.com/SRC/m3defn/html/m3.html.

10. Griswold RE, Griswold MT. The Icon Programming Language (3rd edn). Peer-to-Peer Communications: San Jose, CA,
1997. http://www.cs.arizona.edu/icon/.

11. Proebsting TA, Zorn BG. Tangible program histories. Technical Report MSR-TR-2000-54, Microsoft Research, Redmond,
WA, May 2000. ftp://ftp.research.microsoft.com/pub/tr/tr-2000-54.ps.

12. Hanson DR, Proebsting TA. Dynamic variables. Proceedings of the SIGPLAN’01 Conference on Programming Language
Design and Implementation, Snowbird, UT, June 2001. Association for Computing Machinery: New York, 2001; 264-273.
http://doi.acm.org/10.1145/378795.378857.

13. Appel AW. Modern Compiler Implementation in Java (2nd edn). Cambridge University Press: New York, 2002.

14. Object Technology International, Inc. Eclipse Platform Technical Overview, February 2003.
http://www.eclipse.org/whitepapers/eclipse-overview.pdf.

15. Visser E. Syntax definition for language prototyping. PhD Dissertation, University of Amsterdam, 1997.
http://www.cs.uu.nl/people/visser/ftp/Vis97.ps.gz.

16. Visser E. Scannerless generalized-LR parsing. Technical Report P9707, Programming Research Group, University of
Amsterdam, July 1997. http://www.cs.uu.nl/people/visser/ftp/P9707.ps.

17. van den Brand M, Scheerder J, Vinju J, Visser E. Disambiguation filters for scannerless generalized LR parsers. Compiler
Construction (CC’02), Grenoble, April 2002 (Lecture Notes in Computer Science, vol. 2304). Springer: Heidelberg, 2002;
143-158.

18. Gamma E, Helm R, Johnson R, Vlissides J. Design Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley: Reading, MA, 1995.

[T SRRV )

~

Copyright © 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 34:1211-1224



1224 D. R. HANSON AND T. A. PROEBSTING SP E
&

19.
20.

21.

22.

23.

24.
25.

26.

Hanson DR. Early Experience with ASDL in Icc. Software—Practice & Experience 1999; 29(5):417-435.

Nystrom N, Clarkson MR, Myers AC. Polyglot: An extensible compiler framework for Java. Proceedings of the 12th
International Conference on Compiler Construction, Warsaw, Poland, April 2003 (Lecture Notes in Computer Science,
vol. 2622). Springer: Heidelberg, 2003; 138—152. http://www.cs.cornell.edu/andru/papers/polyglot.pdf.

Gagnon EM, Hendren LJ. SableCC, an object-oriented compiler framework. Proceedings of TOOLS 26: Technology
of Object-Oriented Languages, Santa Barbara, CA, August 1998. Institute for Electrical and Electronics Engineers:
New York, 1998; 140-154. http://www.sable.mcgill.ca/publications/papers/1998-1/sable-paper-1998-1.ps.

Visser J. Visitor combination and traversal control. Proceedings of the Conference on Object-oriented Programming,
Systems, Languages, and Application, Tampa Bay, FL, October 2001. Association for Computing Machinery: New York,
2001; 270-282. http://doi.acm.org/10.1145/504282.504302.

Fraser CW, Hanson DR, Proebsting TA. Engineering a simple, efficient code-generator generator. ACM Letters on
Programming Languages and Systems 1992; 1(3):213-226. http://doi.acm.org/10.1145/151640.151642.

Klein G. JFlex—the fast scanner generator for Java. http://jflex.de/ [5S May 2004].

Hudson SE, Flannery F, Ananian CS, Wang D, Appel AW. CUP Parser Generator for Java.
http://www.cs.princeton.edu/~appel/modern/java/CUP/ [5 May 2004].

Fraser CW, Hanson DR. A Retargetable C Compiler: Design and Implementation. Addison-Wesley: Menlo Park, CA,
1995. www.cs.princeton.edu/software/lcc/.

Copyright © 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 34:1211-1224



	INTRODUCTION
	DESIGN
	Parsing
	Semantics

	APPLICATIONS
	ADDING LANGUAGE FEATURES
	DISCUSSION

