aws

Developer Guide

AWS Lambda

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Lambda Developer Guide

AWS Lambda: Developer Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS Lambda Developer Guide

Table of Contents

What is AWS Lambda? ...ccciiiiiiiiiieennniiiiiiiieiiinnsesssssessssissscesssans 1
WHhEN 10 USE LamMBDAa ...ttt ettt te e e a et et b e st e st e s e e saesa e e e anenes 1
KEY TRATUIES ...ttt ettt e st et e et e st e e e e e s e e e e st e st e b e s bessaesaeseeseensentesassassassassaensansans 2

Create your first fUNCHIONuiiiiiiiiiiiiiiiiienniiiiiieceineeeeeaasssessssssseeeetsssass 4
PrEIEGQUISITES ..ottt ettt et e s sae s s e e s e e e st e s sae s st e s ae s st e s besssaesssassssasssessssesssessstesssesssaessseessaens 4
Create the TUNCLION ...ttt ettt et e e e e e e e st e st e st e st e s s e s saese e e enn e aetesesansans 6
INVOKE the FUNCLION ..ottt e s ae s te st e s e e e e e et et e s besbessesseesn e e ennanean 12
CLEAN UP ettt ettt ettt e et e s te st e e te e e st e s et e st e be b e st e eseeseeseesse st ensassansassaesaeseessensestessasansassasssensensanean 15
INEXE SEEPS ettt ettt s rte e st e s ae s s e e st e e s e e s ae s ssaesae e st essse s saesssassstesssessssensseesstesssessseessassseanns 16

Key Lambda CONCEPLSceeeeeeiiiiiiiiiiiiiinnennnnsiiiiiiceiiesss 18
BASIC CONCEPTES ..ottt ettt st e te s st e s e e s re s st e s sae e s st e s aaessae s saessaessseesssesssaesssessssesseesssens 19

LAambBAa FUNCLIONS ..ottt te st e st e sse e e e e e e et e e e stesaessassnennennans 19
Lambda execution environment and rUNtimesccooeieeeceneneceeeeeete et 20
Triggers and event SOUIrCE MAPPINGS «.cceceeierierieiterereeeeeeeereestestestessessesseseessessessessessessessessessasnnens 20
THE EVENT ODJECT ...ttt sttt e e e et et e st e saesre e e snesnanes 21
Lambda PEIMUSSIONSc.veveiieieeieeeeectcctetecte et e et estestestestesse s e e e e s e s essessassassessasssesssssessansansans 22
Programming MOAEL ...ttt te e e e e e e sae st e st e s e e se e e e e e e et esbe st e tessassessesnnennanes 25
EXECULION @NVIFONMIENT ...ttt s e e ssae e st e s sae s sa e s b e e s st e s sbe s saesseessaasssasssaesssans 27
Runtime enviroNmMent LFECYCLE ...ttt sttt a et et 28
Cold StArts AN LAtENCY ...eeeeeeeeeeeeeeeees ettt te st s e et et e st e st e tessa e e saeneaenaanaan 34
Reducing cold starts with Provisioned CONCUITENCYcccoveieeieeiereceeeeeeee et eee e ne e 35
Optimizing static iNItialiZation ...t b et eas 35
EVENt-driven arChit@CIUIES ...ttt ettt ae et se e et et e saassanes 38
Benefits of event-driven arChit@CtUIES ..ot 38
Trade-offs of event-driven arChit@CLUIES ..ottt e 41
Anti-patterns in Lambda-based event-driven applicationsccoveeevececiecenecececeeeeeeeeee, 43
APPLICALION ESIGN ettt sa et e st et e st e s e e e e e e e et esaessassasaeesaenaaneans 49
Use services instead of cUSTOM COAE ...ttt e 50
Understand Lambda abstraction LEVELS ...ttt 51
Implement statelessness iN FUNCLIONS ..o 51
MiINIMIZE COUPLING ettt et et esae st st et e e e e e e et et et e sessessaesesnsenaanes 52
Build for on-demand data instead of batches ... 52
Consider AWS Step Functions for orchestrationccceceoeeecenececcecceecece e 53

IMPpLlemMent IdEMPOTENCY ...ttt e s e e s e sa e e et e st e ste s e sassesanennans 54

AWS Lambda Developer Guide

Use multiple AWS accounts for managing qUOTAscccecveciecieciecececececeeeereee et 54
Frequently asked QUESTIONS ...ttt te e e e et ae st e s s e s se e e e s saenaesaeaannan 56
EXQMPLE QPPS ciiiiieeeennnniiiiinniiiiiieeeeasssssssssssecsses 59
EXQIMIPLE QPPS couveieeieeieeieeteeeteitete e s e ete e e et e e et et e s se st e s seese e e et e s et et e tasseesaesaesae st essentansassassaesaeneenaententansanes 59
FilE-PrOCESSING QPP .veeeeeeiiieirieieiteseeeeeee et e testestestessessessee e e s eaessessessassassessaessessessansansensansassessasssensensansan 60
Create the SOUICE COAR FIlES ...ttt s ae et aesa e 61
DEPLOY ThE @PP ceeeeiieieeeee ettt ettt te st e st e st e s s e e e et et et et e bessessesseesnenaenaensantans 64
LTS A LI o o OO U RS RRSRRSRR 75
NEXE SEEPS eeeeiieicteetrctee ettt e st e st s e e e st e e st e s s ae s e sa e s aa e s e e e besssaessaesstesssasssaesssaesseasssesssaessseesseenns 82
Scheduled-MAiNtENANCE QPP «.icecieeeeeeeeeeeeetetete e e et et e et e st e sae e e e e e e e s et essessassessessassesnsansanes 84
PrErEQUISITES .eeeeiiteeieeteece ettt s et s e st e st e s sae e s b e s s st e sbesssaesssasssaesssasssaesssessssesaessseesssennses 85
Downloading the example QPP fileS ...t aens 85
Creating and populating the example DynamoDB tablecooriiecececeeceeeeeeeeeeeenne 95
Creating the scheduled-maintenNancCe APP ..ottt a e et e 98
TESEING ThE QPP ceeeeeiee ettt ettt e st e st e e e e e s et et e st e saesseeseeseennenaaneans 102
NEXE SEEPS ettt ettt te et e s te s sre s st e s sae e s e e s saeessaessse e st e s saesssesssaesssesssessssessseesssesssensseennses 103
INFrastructure @S COAE@ () ceuereurereuceenerencereecreeecreecsrescsassnssanee 104
[QC tOOLS FOr LAMBDAQ ..ottt ettt sttt ae st e s b e st s s be st e e ssa s asaesasnans 104
Getting started with [aC for Lambda ...ttt naens 105
PrErEQUISITES .ottt ettt sre s st e s s ae s s e e s st e e st e s sae s saessaeessaessaessaesssaesssesssessssessssennees 106
Create @ Lambda FUNCLION ..ottt a ettt et ne 106
View the AWS SAM template for your fUNCLIONc.couveveiiieeeeeeeee e 106
Use AWS Infrastructure Composer to design a serverless applicationcccceeeeeneeeeeennne 109
Deploy your serverless application using AWS SAM (optional)ccceeeeeeenecieeceeceeciecieeeene 114
Testing your deployed application (Optional) ..o 116
USING the AWS CDK ...ttt steste e re s e e e s e e e e s e stesaesbe s e s s e e e e s e s e s esaestasassassassesssessansensensanes 117
PrErEQUISITES .eeeeiieeecttceteccterte ettt ettt re s st e s ae s s e e s e e e st e s saesssaeeaa e s st essseessaesssaesssassseesssessssennaes 117
StEP T1: St UP YOUF PrOJECT ...ttt ettt e s sae e e e s saesssa e s saeessaessaesssaessesssnesssasanas 118
Step 2: DEfiNe the STACK c.eceeeeeeeeee ettt sa et et e st e st e s be e e s e e e e aennenan 119
Step 3: Create the fUNCLION ...ttt st e e aaan 123
Step 4: DEPLoy the SLACK ..ottt s a e e b aens 124
Step 5: TeSt the FUNCLION ..ottt st 126
SEEP 6: CLEAN UP ittt ettt te s te e e e e e e e e e st e st et e s s e s e s e e e e saesae s estensessassasseesseseensansan 127
NEXE SEEPS ettt te et s e s re e st e e ae e s e e s saeessaessse e st e s saessseessaesssesssessssessseesssassseassaennses 127
Lambda runtimes ...cccciiiiiiiiiiiininniinnnnnnnsssssssssssssnnss 128
SUPPOITEA FUNTIMIES ..ottt ste sttt e st e stesaeste s e e e e se e s et e s e ae st et e sassassassaessassensansansansan 128

AWS Lambda Developer Guide

NEW FUNTIME FELEASES ..ottt ettt st et e st et e e s et e e s e sb et s e sassesaesessensenas 131
Runtime deprecation POLICY ...ttt a et st et e s ae s s e e e e e e e nesaeneans 131
Shared responsibility MOAEL ...ttt ns 132
Runtime use after depPreCation ...ttt ste st s sa et naens 134
Receiving runtime deprecation NOtIfiICAtioNSc.cceeueeiiieceeee e 135
DEPreCated MUNTIMIES ...ttt et e st e st et e st e s e e e e e e e e s etessesaassassaesasssenaanes 136
RUNTIME VEIrSION UPAALES ...ooueieieeeeeeeeteetetee ettt et st estesae s e s e e s e s et e st e stesaessessessnesaensensansansans 139
Backward cOmMPatibility ..ot et 140
RUNTIME UPAALE MOAES ...ttt ettt e e et et e st et e s ba s e e seesneaenes 141
Two-phase runtime version rolloUt ...t 142
Configuring runtime ManNageMENT ...ttt e et sa et es 143
RUNtIME VErSion FOLL-DACKcoveiiiieieietetcee ettt ettt sae e se e e snas 144
RUNTIME VEIrSiON UPAALES ...ooviieiieeeeeecteteteste ettt te e s a s et et e s b e s e s seesa e a e e e naansanes 146
Shared responsibility MOAEL ...ttt s aenean 148
PEIIMISSIONS ...ttt sttt st a et s st st st et ssae st e s st s be st e st e sbeesbe st ssesasannis 150
Get data about fuNCtioNS BY FUNTIME ...ttt saeaens 151
Listing function versions that use a particular runtime ..., 151
Identifying most commonly and most recently invoked functionsccccoeeeeeeeeiiecieceecnenene 153
RUNEIME MOAITICAIONS ...ttt sttt ettt e st e e s e b e e s 158
Language-specific environment variables ...t 158
WEAPPEE SCHIPTS ceeeeeiieieeitirteest ettt este et este s st e s saessaeesbessseessesssaesssassaesssessssesssessseessseesseesssesssaesnses 158
RUNTIME AP .ttt sttt st s e st b e st s b e et e st s b e st e nt s b e et esnesanasanennes 162
NEXE INVOCATION ettt ettt et e s e s b st s st s b e st nessnessaenas 162
INVOCALION FESPONSE ...cvtiiiiciieeteeeteeterete et et e s ste s s e e s ste e st e s sae s s e esssessssasssesssaessseesseesssesssaesssesssaesssennns 164
INIEIALIZAION BITOK .ottt sttt b e st st et s b et et s e se e e e s sesesaenas 164
INVOCATION BITOF ettt sttt a e et st e st s be st e st e b e st e sesbe st e seenanns 166
OS-0NLY FUNLIMIES .ttt ettt et e testeste e e e et e s et e st e s sesbessasssesaessessansansensansessasnsesaansans 168
BUilding @ CUSTOM FUNTIMIE ..onieeeee ettt st ae s e e e e e e e s saesaenaaeens 169
CUSTOM FUNEIME TULOTIAL ettt st ettt st a s aesa e ne 172
Configuring FUNCLIONS .uueuiiiiiiiiiiiiiiieenniiiiieeientiteeeeessssssssssseseesssans 182
ZIP FILE @ICRIVES .ttt ettt e s e st st e e s e e e e e et e ae st et e seeseeseeraeneanaanes 184
Creating the FUNCLION ...ttt s e e e n e aeaens 184
Using the console COde ItOr ...ttt s a e sa e st et aas 186
Updating fUNCLION COAE .ttt ettt sae st e e e bt s aas 186
Changing the FUNTIME ...ttt e te s e e e e et et sbe st e s ae e e sasnnenean 187
Changing the arChit@CLUIE ...t st st e e e e e a e e e aantans 187

AWS Lambda Developer Guide

USING the Lambda AP ...ttt rte s te st e s te s e e e e et e st e st e s tesba s s e sessnenean 188
Downloading your fUNCLION COAE ...ttt a e st et ae e 188
AWS CLOUAFOIMALION ittt ettt sttt e s e st et s e sse st e e s e sae st e e ssassesaesessessenees 189
ENCIYPTION ettt et ree st e s b s st e st e s se e s b e s ssa e s b e s aaessaassaesssassseesssesseensaens 189
CONTAINET IMAGES ...eveiieieieecteeeeeteere st e st esteesaeesstessaeesstessseessesssaesssessstesssessssesssessstesssessseesssessseesssenses 196
REQUIFEIMENTS ...ttt sttt ettt s s e e sae e st e s s ae e st e s sae e st e s saessaessaeesssasssaesssassseesssesssennnes 197
USING aN AWS DASE IMAGE ...cueeieeeeeeeete ettt ettt teste s e e e e e e e e s et e stessassesse e e esaenneneneans 198
Using an AWS OS-0nly Dase iMAagecceoueeeiieieeeececetetesteste et ee st saestesaesse e e na e sae s 199
USiNg @ NON-AWS DASE IMAGE ...eoiiieieieeteeeeeetete e e ste e stesre s s e s s ae s e stesaessessesssssasssesaessansensansanes 200
RUNEIME INTEIrfACe CLIENTS ..ottt sa et e sa e 200
AMAzon ECR PEIMUSSIONS ...cociiiiiiiiiieitisteriteestes e estesssessseessaessseessessssesssesssessssessseesssesssessssessssssssens 201
FUNCLION LFECYCLE ettt ettt e st et e e a e st et et e e s aeennennens 203
MEBIMIOTY eeeiieieieictteetee st eete st e st e e stessseessaeessaessseesssessaesssassseasssesseesssassseasssesssesstessstesssessssesssessseesssessseessaens 205
WheEN £0 INCrEASE MEIMONY ..c.uecueieieieteietectectesteete e eestesaesaestestesse s e s e e e ssaessassessessessessassassasssensansans 205
USING the CONSOLE ...ttt ettt et e e s e s e e e e e e e st esaesbe st e basseeseeseensennan 206
USING the AWS CLI ettt ste e te e e e e e et e ae s aesae s s e se e e s e e s e s et et asbassessaesasnsensansanes 206
USING AWS SAM Lottt erte st e s ste st e s sae s te e s s e s s e e s s e s sa e s s e e s st e s aesssaessaeessaasssesssaessseessaesssesn 207
Accepting function memory recommendations (CONSOLE)ccceueeeeeeereecieceeciecececee e 207
EPNEMEIAl STOFAQE ..ttt ettt et e s e et e s e e e et et et et e ssassessaennensensanean 208
USE CASES ittt et e st e st s ste et e st s s be st e s st s b e st e e st s ae st e e st s se st e e st s st s b e e st e st et e e at e st e be e st e eaeenranes 208
USING the CONSOLE ...ttt ettt et e e s e s e e e e e e e st esaesbe st e basseeseeseensennan 209
USING the AWS CLI ettt ste e te e e e e e et e ae s aesae s s e se e e s e e s e s et et asbassessaesasnsensansanes 209
USING AWS SAM Lottt erte st e s ste st e s sae s te e s s e s s e e s s e s sa e s s e e s st e s aesssaessaeessaasssesssaessseessaesssesn 209
INSEFUCTION SEES (ARMY/XEB) .ottt eeeteeeesteeesaeesssatesesstesessessssseessssesesssesssssessseessssessnnees 211
Advantages of using arm64 archit@CtUreooeoeeieeeceeeeeee e 211
Requirements for migration to arm64 architecture ... 212
Function code compatibility with arm64 architectureceoeeeeececeeeeeeeeeee e 212
How to migrate to arm64 arChit@CtUre ...ttt 212
Configuring the instruction set archit@CtUre ... 213
TIMEOUT <.ttt ettt et e a e st st s st st e et e s st s b e st e e st e b e e st e entsabessbe st ensasateseensess 215
When t0 iNCrease tiMEOULcccoeveriiirenietreretetrest ettt sttt esse st e e s e ste st e e sse st e e ssasseseesasens 215
USING the CONSOLE ...ttt ettt et e e s e s e e e e e e e st esaesbe st e basseeseeseensennan 215
USING the AWS CLI ettt ste st e e e e e et et e aesae st e sa e e s e e s e s e ae st asbassessaesasnsensansanes 216
USING AWS SAM Lttt s st ste st e s sae s ve e st e s st e s b e s sa e s s e e s st assaesssaesaeessaasssesssaessssesseessseann 216
ENVIrONMENt VAFIADLES ..ottt sttt st ettt ettt s sb b e s ses 218
Create enviroNmMeENt VAriables ...ttt sae st s sa e sse e enas 218

Vi

AWS Lambda Developer Guide

Example scenario for environment variables ... 222
Retrieve environmMent Variables ...ttt saes 224
Defined runtime environmMeNnt vVariables ...ttt se e aes 225
Securing enViroNmMENt Variables ...ttt s e e e e e nenens 227
Attaching fUNCLIONS 0 @ VPC ...ttt st e te e e et et saesae st e sse s e e e e saesaannans 231
REQUITEd [AM PEITNISSIONSoccverecieeiieieeeeeetestestestesteeee e eeesesaessessessasseesaessessessensessassassessesssensassens 231
Attaching Lambda functions to an Amazon VPC in your AWS accountcccceeeeeeeeeennnne. 233
Internet access when attached 0 @ VPC ...ttt see e 237
[PVEB SUPPOIT ..ottt sttt et este st esae s s e e s aesssa e s s e ssst e s sasssaesbesssaasssesssaesssessssesssessssesseensaens 237
Best practices for using Lambda with Amazon VPCSs ... 238
Understanding Hyperplane Elastic Network Interfaces (ENIS)ccoovevveeiececenenieeeeeceeeenne 239
Using IAM condition keys for VPC SEtHINGS ...c.ccueeiiieieteeeeeee ettt snesnens 240
VP C LULOTIALS oottt et ste sttt st et ss e st et s et st e s et e e s et et e e saasbesaesasaensenassansansons 245
Attaching functions to resources in another acCoUNt ... 246
PrErEQUISITES .ottt ettt s e st e s ae s s e e st e s st e s b e s saessae e st essseesssesssaesssassseesssessseennnes 246
Create an Amazon VPC in your function's accountcoceeeeeeececeeicceeececesee e 247
Grant VPC permissions to your function's execution roleccoeeeeeeneneniecvecceeceeceeceecienn, 247
.. 248
Create a VPC peering conNection reQUESTueoviiriinniiniteertcstessrecste et esaessseesseesssessssesssassseens 248
Prepare your reSOUICE'S QCCOUNTcivviiiiieiiiieterrtesteesreesstessreesstessseesssesssaesssesssaesssessssesssesssnessessnes 249
Update VPC configuration in your function's accountcceoeeeeeeieeceeciecececececeeee e 250
TESE YOUN FUNCHION .ottt st sttt st e st e s be s e e e e e e e e s et e sanean 251
Internet access fOr VPC fUNCLIONS ..ottt ettt st se et e s s e ssasaesassens 253
INBOUNA NEEWOIKING ..ottt et e s e s e s e e et et e s b e st e be s b e seesesnnanes 278
Considerations for Lambda interface endpoints ..o 278
Creating an interface endpoint for Lambda ... 279
Creating an interface endpoint policy for Lambda ..o 280
FILE SYSTOIM ettt ettt et e st e e e e e e et et e st et e s aeesessaese e st e st ensantansassaseeseensansensanean 282
Execution role and USer PErMUSSIONSc.cceceeiecieiieiteriertesesreseeeseeseesesaessessessessesseeseesssssessessansens 282
Configuring a file system and acCess POINtcccccvecieciecerecececectere e saens 283
Connecting to a file system (CONSOLE)cueueueeieeeeeeeeeetee et a e 284
ALIGSES ...ttt sttt s e st et e st et e s b e st et s et et et e b e s et e e e et e R e R et et e s et et e st e b e e e se b et e s e benteneeaanes 285
USING QLIESES .ottt ettt rte st te st e st e s e e e e e e et et et e s e s b e seese e e esaesaeste st e sansassassasseensensanes 287
WEIGNTEA QLIASES ..ottt et e st e s ae s be s e s e e e e e e s et e aesbasbassassasseesnenaanes 288
VIBISIONS ...ttt ettt st ettt s st st et e b e et et s be st e e st e eb e et e e st s se s et e e st essaesbesstasesasasatesesasasseensens 293
Creating fUNCLION VEISIONSouiieeeceeeeee ettt ettt ste e e e et et e s tesaesaessessessnenaennens 294

vii

AWS Lambda Developer Guide

USING VEISIONS .coneiiiiiieieiiieeiesstesieeesstesssessseessseesseesssessssesssessssesssessssesssessssesssessssesssessssesssessssesssesssaasss 295
Granting PEIMISSIONScocuiiiiieiiiirierieertee st este st sseeesaeestesssesssaessseesstesssesssaesssessseesssesssaesssesssaessaasn 295
TGS ettt ettt et s e ettt e st e st e e b e e b e e b e e b e s b e e e b e e At e e b e e e b e et e e s e e aeeaa e e aee st e e teesraesreeseassraanne 297
Permissions required for working With tags ... 297
UsiNg tags With the CONSOLE ..ttt a et saeaan 297
USING tags With the AWS CLI ..ttt te e re e e e e aesae st e saesse s e ssnennan 299
RESPONSE SEIEAMING ...eeiiiieieieeteeeeetert ettt essee e st e s ae s st e s s ae e st e s ae e s e e s saa e saesssessssesssaesssesssesssaensses 301
Bandwidth limits for response Streamingcccceeeeeeiecieciececececec et a e 302
WIEING TUNCLIONS ...ttt ettt et e st s s e et et esbe st e st e s se e e e e et e s ansantesanes 302
INVOKING TUNCLIONS ..ttt re e s e sa et e te st e s aesae e e e e e e e e e nesaansantans 304
Tutorial: Creating a response streaming function with a function URLcccceeeennnnneee. 305
INVOKING FUNCEIONS c.ouiiiiiiiiiiiiiiieeiiiiiiciiiiiiieessseeesssssseeessess 310
Invoke a fuNCtion SYNCRIONOUSLYccuveuieieieeeeeeee ettt sttt a e e a e e e aa s 312
ASYNCAIrONOUS INVOCALION ..ottt ettt tesaesteste e e e e e s et et e saesaassassessesseennensansans 316
ErrOr NANALING oottt et e s te e et e e e e e e st e st e b e s b e e se e e e e e na e sabantans 317
CONFIGUIATION <.ttt et et e s b e st e s be s e s e e e e e et et e aeesassessseseansensansanes 318
RETAINING FECOIAS ...ttt e e e et et e st e st e s b e s e sessaesaenaesaebessessassassassneseanaans 320
EVENT SOUICE MAPPINGS .ooeeiiiieieieierieeeteesttestee st estesssessstesssessstessseessaessssssssasssessssessssssssessseesssessssesssens 329
Event source mappings and trgQErs ... rieeeeeeeeeciestesesese e e eesaestestesae s e sses e s e e saesaessenean 329
BAtChing DENAVION ...ttt st st s e e n e e e a et et nes 330
ProViSiON@d MOAEeeviieieietrerectrertete ettt ettt ettt s et e e s e s et e e sse b et esassassenassnnes 333
Event source mMappPing APl ...ttt ssre s ste e st e s aessae e s sae s sae s st e s aaesnessaeessaesssaesnnas 334
Event SoUrce MAapPinNg TGS ..coceeiirieieerieeeerteereestes e esreessse s st esssessseessaessssesssessseesssessssesssesssnanns 334
EVENT FILLEIING ettt et ettt e st e e e e e e e et et e tesbasaasseesaesnenaensansan 339
Understanding event filtering DasiCs ... 340
Handling records that don't meet filter criteria ... 342
FILLEE FULE SYNLAX ettt ettt et e st e s te e e e e e e st e st e ae st e ssesse e e esaesaenaesaansansanss 343
Attaching filter criteria to an event source mapping (CoNSoLe)cceceeeeeeeeceeceereeceecreceeeeene. 344
Attaching filter criteria to an event source mapping (AWS CLI) c...ceoveiecreieeceneceeeeeeeeeenne 345
Attaching filter criteria to an event source mapping (AWS SAM)ccoveeerenenvececeeceeeenen 347
ENCryption Of filt@r Criteria .ottt sttt 347
Using filters with different AWS SEIrVICES ...ttt 353
TESEING 1N CONSOLE .ttt e s te st e st e et e e e e e s e s et e stesbesaassassessnesaensensansansans 355
Invoking functions With tESt @VENTS ...ttt 355
Creating Private teST @VENTS ...ttt re e s sae s re s e s aa e ne s 356
Creating shareable teSt @VENTS ...ttt sa e 356

viii

AWS Lambda Developer Guide

Deleting shareable test event SChEMAS ... 358
FUNCEION STAT@S ...ttt et sttt st a e st s e s b e et s s s sae st s sneebanne 359
Function states While Updating ...t 360
RETIIES ..ttt ettt sttt b e et s e s be st e et e b e et e e st s b e st e st e sb e et e e st s be et e ntenens 362
RECUISIVE LOOP ELECHION ...ttt ettt st e e sa e st e st e b e se e e e e e nnanes 364
Understanding recursive Lloop detection ...t 364
Supported AWS Services and SDKSc.ooiiieiiiieiecieceeeceeeeeeee et stesaeste s e s e e e s s e saesaesaesaessessaes 366
Recursive Loop NOLITICAtIONS ...ccueveeeeeeeeeeeee ettt et sae e s a e an s 368
Responding to recursive loop detection Notifications ..., 369
Allowing a Lambda function to run in @ recursive LlOOPcccceeeeeeereeeeecceeee e 370
Supported regions for Lambda recursive loop detectioncceeceeeeeeecvecceececceeececen, 372
FUNCEION URLS ..ttt ettt et sttt st st s s s sa e st e st s b et e s se s be st e snessnasntenens 374
Creating @ function URL (CONSOLE) ...oveeueeueeieieeetetectetesee ettt ettt sve e e aea e a et e s 375
Creating @ funNCtion URL (AWS CLI) oottt stestesve e e e et esaessesaessesses s enenneneens 377
Adding a function URL to a CloudFormation template ... 378
Cross-origin resource Sharing (CORS) ...ttt st s te e e e s s ss et s ae s 379
Throttling FUNCLION URLS ...ttt steste s e e s et e aesaesbasse s e e sesaennannanaans 381
Deactivating fUNCLION URLS ..ottt e et et tesaesae s e s e s e e e s saesaesaaaans 381
Deleting fUNCLION URLS ...ttt a et saesae st e sa s e s e s e e s e senaenaaneans 381
ACCESS CONTIOL ettt ettt ettt et e st et s et et e s et e e s e s b et e e ssessesaesasaessesasensansans 382
INVOKING TUNCHION URLS ...ttt ettt te e a e b aeste b e s s ssa e a et e e e banns 390
MONItOriNG FUNCLION URLS ...ttt teese e e e s sa e s et e ssessesae s e e e esnenneaaneans 402
Function URLS vS AMAzon APl GAt@WAYcociirieiiiiriieinticieeseeeseesssesseessaeeseesssessssesssessssesssssnne 403
Tutorial: Creating a webhook endpoint ... 409
(SITTaT el o7 3 HE ot 1 1T Vo OO PPPPU 423
Understanding and visualizing CONCUITENCYoouiveeiieieieeetecteete e ee e reste e stesse e a e e nennan 423
Calculating concurrency for @ fUNCLION ...ttt 428
Understanding reserved concurrency and provisioned CONCUITENCYcccceeveveeeerereereereesneseennens 429
RESEIVEA CONCUITENCY ...uveurireeieeieereeeeeetetestestestessessesseessessesessessessassassessssssessessessessessessessassessssssassans 430
ProViSioN@d CONCUITENCY ...c.cecveeierieeieeeeeeeetetestestessessessesseesessessessessassassesssessessensessessassassassasssessssens 432
How Lambda allocates provisioned CONCUITENCYcooveiecieciecienececeeeeee ettt 436
Comparing reserved concurrency and provisioned CONCUITENCYccceveeeeveereeceecresresresesreseenens 437
Understanding concurrency and requests pPer SECONdc.cccoeeeeereeeeieereesieseseeeeeee e eeeesnenns 438
CONCUITENCY QUOTAS .eeviiiiiteecttertesct e tee st estessaesssaessseesstesssesssaessaeessaesssessssesssaesssesssassssessseesssesssesssaessens 439
Configuring reServed CONCUITEMNCYcciieiecierieiieeteetesteeeeeeeessesestessessessasseessessessessessassassessessessssnsensanes 442
Configuring reServed CONCUITEMNCYccceeeeeeieeeeetecrestestessessesseeseesessessessessessassessesssessessessansessesses 443

AWS Lambda Developer Guide

Accurately estimating required reserved concurrency for a functionccccevveveiiecieciecnennen, 444
Configuring proviSioN@d CONCUITENCYccceevieierierierieeeeeereeeeitetestestessessesessesessessessessessassessessesssensn 446
Configuring proviSioN@d CONCUITENCYccoeceeeeereeeeriereriestestestessessesseeeessessessessessessessassessessssnsenes 447
Accurately estimating required provisioned concurrency for a functionccccceeeeeeenenen. 449
Optimizing function code when using provisioned CONCUITENCYccccceeeeeeeeeeeeceeseecresrennens 450
Using environment variables to view and control provisioned concurrency behavior 450
Understanding logging and billing behavior with provisioned concurrencyc.cc.......... 451
Using Application Auto Scaling to automate provisioned concurrency management 452
SCALING DERNAVION ...ttt e et a e st e st e be e e e e e e e s et e s anaanes 456
CoNCUITENCY SCALING FALE .ttt e st e e te et e e e e e s et e sbesaesaesseeseesaennenaeneans 456
MORNILOFING CONCUITENCY ..eiouierreieierireeeteeseeeseessseesteesseessaesssessssesssesssaesssessssesssessssesssessssesssessssesssesssaesses 458
General CONCUITENCY MELIICS ..c.eiciicieereereeeeeeeetete e te e tesaeste s e e e e s e e e s e stestessessasseesaeseessessensensansanes 458
Provisioned CONCUITENCY MELIICS .uivuieuieieieecieciecteetee ettt ste e re s e e e e e e e s e saestesae e s sessneaenes 458
Working with the ClaimedAccountConcUIIEeNCY MELriC oiviviceceneeereeeeeceecee e sveeens 461
BUilding With NOE.|S ..ccuueeeeiiiiiiiiiiiiiiiinnnnniiiiiiiiieniinseeessssessssssssess 464
NOE.JS INILIALIZATION .ottt e e e s bt e be s s e s e s e aea e s e tenes 466
Designating a function handler as an ES MOdULE ...t 466
Runtime-included SDK VEISIONScccociviriiirenieirerentetsestest e sest et ssessesteessestesessessesassassessesessassessssens 467
USING KEEP-QLIVE ...ttt ste e s ettt a e st et e s b e s e e e et et e besae st assaesassaensansanes 467
CA Certificate LoAING ...ttt ettt steste s e e e e e e e sa e st e st e s aesbe s b e e e e e e e eaanaantans 467
HANALEE .ttt sttt sttt sa e sttt s e st e s se b et e sa s b et et esessesaesassassensssassensasans 469
NOAE.jS NANALEN DASICS ..ottt et e s et e ae st e s e s se e e e e et enesaessansansans 469
NQIMHNG oottt et e s te s st e st e s saeesaessseesssas st esssasssaesssassstasssessssesssessstesssessseesssessseesssennns 470
USING QSYNC/AWAIL ettt ettt e e ettt s b et e st e s e s e s sa e e et et esbansastassassasnnannan 471
USING CALDACKS .ttt te ettt s b e b e s ae s ba e s sa e e e aenaenaanes 473
Code best practices for Node.js Lambda functions ..o, 476
DEPLOY .ZIP filE QICRIVES ...ttt e e s ettt b e s ae s e se e ns 478
Runtime dependencies iN NOUE.JScoeveeeeirieieceeietetesteseeee ettt sae e sae e e e e s s e e saesaessanaas 478
Creating a .zip deployment package with no dependenciescccooeeeeeeeceecreceneneceeeeene, 479
Creating a .zip deployment package with dependenciesccooeveveceeeneneeceeceeceececeenn, 479
Creating a Node.js layer for your dependenciescceeeceeerececeneneneeeeeeceecresre e 480
Dependency search path and runtime-included libraries ..., 481
Creating and updating Node.js Lambda functions using .zip filescccceeenennvenvnvenceececnns 482
DePLloy CONLAINET IMAGEScovieeeeeeeeeieeetetectecte e re st e e e et e s e ste st e stessesse s e e sesssessesaeaessansassassessessseraensans 489
AWS base imMages fOr NOAEL|S ...ttt e e et et sae st s ae s s s sa e nens 490
USIiNg aN AWS DASE IMAGE ...cvieiieietcteteeesesee ettt teste s e ese s e e e e s et e saessessessee e s e esneaaneans 491

AWS Lambda Developer Guide

USiNg @ NON-AWS DASE IMAGEociiieieiecieceeeeeete e te e stestesre e e s s s et e stessessessesss s e s s e aessensessansanes 497
LQYEIS ettt ettt e st e st e st e et e s ae e st e s ae e s e e s b e et e e b e e st e e st e e e e bt e st e et e e et e e ae e st e e s e et e e aeeesaeesaeaees 507
PrErQQUISITES .ottt ettt st s st e s sae s s e e s sa e s st e s s b e s saessae e s st essseesssesssaesssessseesssesssesnnnes 507
Node.js layer compatibility with the Lambda runtime environmentc.ccccovereverrrennnee. 508
Layer paths for NOde.jS FUNTIMESc..ouiieoieecececeeteeeeece ettt sa et 508
Packaging the layer CONTENT ...ttt ae e nnens 509
CrEALING the LAYEI ettt st sa e st et e s ae s e e e e e e e a et e b nes 511
Adding the layer to your fUNCHION ..ottt 511
CONEEXTE ..ttt ettt s e bt st e st et e b e et s s st e e st s bt et e e ae e be st e st e sbe et e ne e beentennas 515
LOGGING ettt ettt et e s ste st e et e et e st e s s aa e st e s s s e e e b e e b e e s b e e b e e e b e e b e e et e e s e e s e e e e e e e e e sa et eereesstannraas 517
Creating a function that returNs LOGS ...t 517
Using Lambda advanced logging controls with NOde.jsccceveereciecieceneeececeeeeeceere e 519
Viewing logs in the Lambda CONSOLE ...ttt 525
Viewing logs in the CloudWatch CONSOLEoueiieieieeeeeee et 525
Viewing logs using the AWS Command Line Interface (AWS CLI) ...ccooeeveeeeeneeeeceeeeceeeenene 526
DELELING LOGS ettt e e sttt e st e s ae s b e e e e e e e et et et e bassesseeseennennanes 529
TEACING ceeieieieecteete ettt st e e see e st e s ae s s e e s b e s s st e s aesssaessbaesseesssesssaesssassseasssesssaesssaesstesssessseessseesseesssenses 530
Using ADOT to instrument your Node.js fUNCLIONScceeeeirieieieecteeeseeeeee et 531
Using the X-Ray SDK to instrument your Node.js functionsccccceeveevirecececenececeeecenen, 531
Activating tracing with the Lambda conSOoLe ... 532
Activating tracing with the Lambda APl ...ttt 533
Activating tracing with AWS CloudFormation ... 533
INterpreting an X-RAY TraCe ...ttt st st sste st e sae s sae e s e e s saeessaesssaessnassnnanns 534
Storing runtime dependencies in a layer (X-Ray SDK)ccccooeierereneeieeeeeecrecteceese e eeeeenens 536
BUilding With TYPeSCript ...eiiiiiiiiiiiiiientiiiiiieiiiiiiienaesssssssssseesesss 538
Development ENVIFONMENT ...ttt st este s e s e e e s e e s e te b e stessesaaesessessnensansensensanes 539
HANALEE ettt sttt st sttt e s e st et s b et e sa s b et e st ssasaestesassassensesansessasans 541
Typescript NanNdLEr DASICS ..ottt e ae st s e e e e et aesra s 541
USING QSYNC/AWAIL ettt te e e e et sa e st e st e s tessa s e s seesa e s et esaassassassassanneenean 542
USING CALDACKS .ttt sttt e e e ettt e st e s ae e baese e e e e e aesa e aenes 543
Using types for the event ObJECT ... 544
Code best practices for Typescript Lambda functionscceoeeeeeeeeceececececeeeeeceeeee 546
DEPLOY .ZIP filE QIrCRIVES ...ttt st a e bt st sa e s sasrn e ns 548
USING AWS SAM Lttt s st ste st e s sae s ve e st e s st e s b e s sa e s s e e s st assaesssaesaeessaasssesssaessssesseessseann 548
USING the AWS CDK ...ttt testesteste e e e e e e e et e s sesse st e se e e s s e s e s essetassassassaesasnsensensanes 550
Using the AWS CLI and @ShUIld ..ottt 553

Xi

AWS Lambda Developer Guide

DePLloy CONLAINET IMAGESccveeeeeieeeceeeetetecteete e e st e e e e e te s e stestestessesse s e esasssessessessessansassassessesssesaensans 556
Using a Node.js base image to build and package TypeScript function code........................ 556
LQYEIS ettt ettt e st e st e st e et e s ae e st e s ae e s e e s b e et e e b e e st e e st e e e e bt e st e et e e et e e ae e st e e s e et e e aeeesaeesaeaees 564
PrErQQUISITES .ottt ettt st s st e s sae s s e e s sa e s st e s s b e s saessae e s st essseesssesssaesssessseesssesssesnnnes 564
Node.js layer compatibility with the Lambda runtime environmentc.ccccovereverrrennnee. 565
Layer paths for NOde.jS FUNTIMESc..ouiieoieecececeeteeeeece ettt sa et 565
Packaging the layer CONTENT ...ttt ae e nnens 566
CrEALING the LAYEI ettt st sa e st et e s ae s e e e e e e e a et e b nes 568
Adding the layer to your fUNCHION ..ottt 568
CONEEXTE ..ttt ettt s e bt st e st et e b e et s s st e e st s bt et e e ae e be st e st e sbe et e ne e beentennas 572
LOGGING ettt ettt et e s ste st e et e et e st e s s aa e st e s s s e e e b e e b e e s b e e b e e e b e e b e e et e e s e e s e e e e e e e e e sa et eereesstannraas 574
TOOLS ANA LIDFAFIES .ottt sttt et sa et s b et s et e s ssasaesaeneen 574
Using Powertools for AWS Lambda (TypeScript) and AWS SAM for structured logging 575
Using Powertools for AWS Lambda (TypeScript) and the AWS CDK for structured
LOGGING ettt ettt et e st e e e a et et et e st e et e e e reeas e s et e testanteeseesaenaestenaantantans 577
Viewing logs in the Lambda CONSOLE ...ttt 581
Viewing logs in the CloudWatch CONSOLEoueiieieieeeeeee et 581
TEACING ceeieieieecteete ettt st e e see e st e s ae s s e e s b e s s st e s aesssaessbaesseesssesssaesssassseasssesssaesssaesstesssessseessseesseesssenses 583
Using Powertools for AWS Lambda (TypeScript) and AWS SAM for tracingcccceeuveuenenee. 584
Using Powertools for AWS Lambda (TypeScript) and the AWS CDK for tracing 586
INterpreting an X-RAY TraCe ...ttt sttt e sste st e s ae s saeesaessaeessaesssaessaassnaanns 590
Building With PYthoNeeeeeiiiiiiiiiiiiiiiennnniiiiiieiiiiittnessssssssssssssecss 591
Runtime-included SDK VEFSIONScccociviriiiriniinerentetsestest et et ssessestssessestesessessessssessessessssassessesens 592
Experimental features in PYython 3.13 ...ttt nens 593
RESPONSE FOIMIAL ...ttt et e st e st e s e e e e e s e e e b e s et e ssassesseesaensensensansansans 593
Graceful shutdown fOr @XEENSIONS ..ottt ettt ae e ene 593
HANALEE ettt sttt st sttt e s e st et s b et e sa s b et e st ssasaestesassassensesansessasans 595
INQIMHNG oottt ste st e st e e sa e e s b e s sseesaessseesssessaesssassstasssessssenssessseesssessseesssessseesssennn 595
HOW Tt WOTKS ettt ettt ettt sttt a e st s b e st et s s e s e e e ssasesassannan 596
RETUIMING @ VALUE ..ttt e et e st et et e st e s ae st ebe e e e e e s et e ba st e s s asseesasseenaansansanean 596
EXQIMIPLES ..ttt ettt ve e e e e et et e st et e st e s b e e seeseese e e et estentesbassesseereeseentensententensanes 597
Code best practices for Python Lambda functions ... 599
DEPLOY .ZIP filE QIrCRIVES ...ttt st a e bt st sa e s sasrn e ns 602
Runtime dependencies in PYTRON ...ttt 602
Creating a .zip deployment package with no dependenciescoeeeeereceecriceceneeeceeneane 603
Creating a .zip deployment package with dependenciesccoeevececenececceeceeceeceecen, 603

xii

AWS Lambda Developer Guide

Dependency search path and runtime-included libraries ..., 606
USING _ PYCACHE__ FOLAEIS .ttt ettt sa e et st aeenas 608
Creating .zip deployment packages with native libraries ..., 608
Creating and updating Python Lambda functions using .zip filescccoceveoeeenenieneceeeee 609
DePLloy CONLAINET IMAGESocveeeeeieeeeeeetetetecteete e te e e e e e e tesae st e st e stessesse s e esasssesaessessasansassassessessnesaensans 617
AWS base images for PYthON ...ttt sa et ae e eeaenenens 618
USING aN AWS DASE IMAGE ...cueeieeeeeeeete ettt ettt teste s e e e e e e e e s et e stessassesse e e esaenneneneans 619
USiNg @ NON-AWS DASE IMAGE ...eoiiieieieeteeeeeetete e e ste e stesre s s e s s ae s e stesaessessesssssasssesaessansensansanes 626
LQYEIS ittt te st e st e s st e et e s s ae e st e s ae e s e e s b e et e e b e e e st e e st e e e e bt e st e e b e et e e ae e st e e s e e s ae e st eesaeesaeaees 636
PrErEQUISITES .ottt ettt sre et e s s ae s st e s e e e s e e s b e s saessae e s st esssesssaesssaesstassseesssessssennaes 636
Python layer compatibility with AmMazon LiNUXcccceeeieiieeceeeeceeeeeeeeeereee e 637
Layer paths for Python rUNTIMES ...ttt sae s ae e e nnens 638
Packaging the layer CONTENT ...ttt st s nnens 638
CrEALING thE LAYEI ettt st sa e st e st e s ae s e e e e e e a et e aenes 640
Adding the layer to your fUNCLION ..ottt 640
Working with manylinux wheel distributions ..o, 643
CONTEXTE ..ttt et a e st s st e b e et s b s b e et s bt et e e st e be st e e a e s ae et e st s snesatenas 647
LOGGING ettt e te e s sre e e te e st e s ste s sse e st e e s se e s b e e s e e b e e s e et e e s e et e e s e et e e st et e e s e et eesaesrtanaraas 649
PriNtiNg £0 the LOG ettt sa e st e st et e s e s se s e e e e s e aasbanaans 649
USING @ L0GQING LIDIArY ..ottt ettt ste s e s s s e e e sa et esae st e s s e s e s snennan 650
Using Lambda advanced logging controls with Python ... 652
Viewing logs in Lambda CONSOLE ...ttt sttt a e sa e sa e e saa e 656
Viewing logs in CloudWatch CONSOLE ...ttt eanens 657
VieWing Logs WIth AWS CLI ...ttt steste s e e e s e s e saesaestesaesaasaassassnennsnnens 657
DELEEING LOGS ettt st e e s e s et et et e s b e s b e e e e e e e e e et et et et e seeseeanenaanes 660
TOOLS ANA LIDFATIES ettt ettt sa et e st e e s e st et s e saesneneen 660
Using Powertools for AWS Lambda (Python) and AWS SAM for structured logging 661
Using Powertools for AWS Lambda (Python) and AWS CDK for structured logging 665
TOSTING ettt ettt st e et e s s e e st e s sae e s s e s s sa e s b e s s e e b e e ae e st e e s e e s e e e s e e Rt e e s e e st e e ssee st esaaeeraennrans 672
Testing your serverless apPLliCAtiONScociciiiieneceeeeeeeeese ettt saesaeaan 673
TEACING ittt ettt e s st e e ste e st e s ae s st e s be s st essaessseesssaesseesssassssasssassseasssessssessseesstesssessssessseesseesssennes 675
Using Powertools for AWS Lambda (Python) and AWS SAM for tracingcccceeeeveeveevvecnenene 676
Using Powertools for AWS Lambda (Python) and the AWS CDK for tracingcccceceeveeueeune 678
Using ADOT to instrument your Python functions ... 683
Using the X-Ray SDK to instrument your Python functionscccooeieviveceneceneeeeeeeeee 684
Activating tracing with the Lambda conSOLe ... 685

xiii

AWS Lambda Developer Guide

Activating tracing with the Lambda APl ...ttt 685
Activating tracing with AWS CloudFormation ... 685
INterpreting an X-RAY TraCe ...ttt ettt e ssee st e s ae s saeesaessaeessaesssaessnassnnanns 686
Storing runtime dependencies in a layer (X-Ray SDK)ccccooeienereneeeeeeeeceeceeceeseceeeeeeenens 689
BUilding With RUDYaeeeeeiiiiiiiiiiiiiiiiittiiiiiieiiiiiieeeessssessisiscstesstssases 691
Runtime-included SDK VEISIONScccociveriiiirinieirerenieesestestee et et ssessestesessessesessessessssassessessssassessesens 692
Enabling Yet Another RUDY JIT (YJIT) ettt e et et saesae st s nnan 693
HANALEE ettt sttt sttt a e sttt s et e e st e st e sa s b et e st e sasaestesassansensesarsensasans 694
RUDY RANALEE DASICS ..ttt ettt a e b ae b s e e a et e e e aanes 694
Code best practices for Ruby Lambda functions ... 695
DEPLOY .ZIP filE QIrCRIVES ...ttt st sa et et s b e s ae e rn e ns 698
Dependenci@s iN RUDY ...ttt ettt stesre s e e s e s e st et e sae s s e s e e e e naennennan 698
Creating a .zip deployment package with no dependenciesccccoeeeeereceecrececeneceeeeneane 699
Creating a .zip deployment package with dependenciesccoeieeeceeeneeecceeceeceeececen, 699
Creating a Ruby layer for your dependenciesccuueeeeneeeeieeeceeceectestecee e saens 701
Creating .zip deployment packages with native libraries ..., 701
Creating and updating Ruby Lambda functions using .zip filescccoeeeeeeerervnviceeieeenee. 703
DePLloy CONLAINET IMAGESoocveeeeeieereeeeeetetecteete e te e e e e e tesae st e st e stessesse s e esesssessessessessansassassessesssensensans 710
AWS base images fOr RUDY ...ttt s et sae st s e se s e s e aenannens 711
USING aN AWS DASE IMAGE ...cuieieeeeeceteees ettt et stestesteese e e e e e e s et e stesaesse s e e e esaennenneneans 711
USiNg @ NON-AWS DASE IMAGE ...ecviieiecieeieeieeeeete e te e stesresre e e e e sae s e stesaessessesse s e s s e saensasansansanes 718
LQYEIS ettt et te st et e e st e et e s ae e st e s s ae e s e e s b e et e e b e e e st e e s e et e e bt e st e e e e e e e e e ae e st e e s e e st e e aeeesteeaaaaees 728
PrErEQUISITES .eeeeiieeecttceteccterte ettt ettt re s st e s ae s s e e s e e e st e s saesssaeeaa e s st essseessaesssaesssassseesssessssennaes 728
Ruby layer compatibility with the Lambda runtime environmentccccooeeeeenenenvecceennne 729
Layer paths for RUDY FUNTIMIES ...ttt ettt sae e eennens 729
Packaging the layer CONTENT ...t ettt nnens 730
CrEALING the LAYEI ettt ettt e st st e s s e e e e e e e a et e b nes 732
Adding the layer to your fUNCLION ..ottt 732
CONEEXTE ettt sttt st a e st e s et e b st s s s b e s st s bt et e e n e e be st e st e b e et e nesbesntens 735
LOGGING ettt ettt sttt e et e s st e st e s s ta e st e s s a e e s b e e e e e s b e e b e e e b e e b e e e e e e st e aeesa e e e e e ta e teereesstanaraas 736
Creating a function that returns LOGS ...ttt 736
Viewing logs in the Lambda CONSOLE ...ttt 737
Viewing logs in the CloudWatch CONSOLEoueoieieieeeee ettt 738
Viewing logs using the AWS Command Line Interface (AWS CLI) ...ccoovevveeeeeneeeeceeeeceeeenene 738
DELELING LOGS ettt ae e e e sttt e st e st e s b e e e e e e e et et et e tasseeseeseennennanes 741
Working with the Ruby logger LIDrary ...ttt n s 741

Xiv

AWS Lambda Developer Guide

TEACING ettt ettt st e s st e e st e s sae s s e e s b e s se e s aesssaessae e seesssasssaesssassseasssesssaessseesstesssessseessseesseesssenses 743
Enabling active tracing with the Lambda APl ... 748
Enabling active tracing with AWS CloudFormationccoceeeeineeeecececectececesece s 749
Storing runtime dependencies iN @ LAYEN ...ttt aas 749

BUilding With JAVa ...iieeeeereiiiiiiiiiiiiiienenenciiiiiieeiiiesss 751

HANALEE ettt sttt sttt a e sttt s et e e st e st e sa s b et e st e sasaestesassansensesarsensasans 755
Setting up your Java handler Project ...ttt a e aan 755
Example Java Lambda function COAE ...ttt nens 756
Valid class definitions for Java handlers ...t 761
Handler Naming CONVENTIONSc.ooiiieieeecececeeee ettt e e e e s s saestessesaesse s e e s eneaanes 762
Defining and accessing the input event ObjJecCt ..o 763
Accessing and using the Lambda context object ... 764
Using the AWS SDK for Java v2 in your handler ... 765
Accessing enviroNmMeNt Variables ...t 766
USING GLODAL SEALE ..ottt sttt e st e b e s ae s e e e e e e e e e b e aansanan 767
Code best practices for Java Lambda functions ... 767

DEPLOY .ZIP filE QIrCRIVES ...ttt ettt e et et r e s ae e snesnans 770
PrErEQUISITES .ottt ettt sre s st e s s ae s s e e s st e e st e s sae s saessaeessaessaessaesssaesssesssessssessssennees 770
TOOLS ANA LIDFAFIES .ottt b e st sa et st e st e s b et et ssasaesaeseen 770
Building a deployment package With Gradle ... 772
Creating a Java layer for your dependencies ... iieieciececececececeete et 773
Building a deployment package With Maven ... 774
Uploading a deployment package with the Lambda consolecooeeecvecveciececeneneeeeeee 776
Uploading a deployment package with the AWS CLI ... 778
Uploading a deployment package wWith AWS SAM ...t sve s 779

DePLloy CONLAINET IMAGESccveeeeeieeieeeeeetetecteete e tes e e e e e et e sae st e stestessessessessasssesaessessessansassassessssnnesaensans 782
AWS Dbase iMAGES TOI JAVA .c..coueieiceeieteeecteseree ettt te e e et sa e st st esbassessa e e e e e nenaanes 783
USING @N AWS DASE IMAGE ...cvieeeeeeeeeee ettt ettt te e teste e e e e e e s et e stessassesse e e esaeaeaeneans 784
USiNg @ NON-AWS DASE IMAGE ...ecriieieiececeeeetete e te e ste e sse e e e e s se s e stesaestessesse s e e e e saessassansansanes 793

LQYEIS ettt ettt te st e st e st e et e s ae e st e s ae e s e e st e et e e bt e e st e e st et e e bt e Rt e e b e e et e e ae e st e e s e e s ae e aeeeseeeaaeaees 804
PrErEQUISITES .ottt ettt sre s st e s sae s s st e st e e st e s sae s ssaeesae e s st assseesssesasaesstasssessssessseennees 804
Java layer compatibility with AmMazon LiNUX ...t cve e e e nennens 805
Layer paths for Java MUNTIMES ...ttt s ae s ns 805
Packaging the layer CONTENT ...ttt ae e nnens 806
CrEAtING the LAYEI ettt ettt st et e s ae e se e e e e e e e n et e aanes 808
Adding the layer to your fUNCLION ..ottt 808

XV

AWS Lambda Developer Guide

CUSTOM SEIALIZATION ..ottt ettt st et b et et st et e e be st e e ssessessennene 813
When to use custom SEraliZationcoccvireniinininerieerencc ettt sse st e saens 813
Implementing custom SErialiZation ... 814
Testing custom SErialiZation ...ttt et e e e e sa e e aan 815

CUStOM STArtUP DERAVION ..ottt s ae e e e e a e e s b e e aens 816
Understanding the JAVA_TOOL_OPTIONS environment variablecccccooevenenenieevenceevennee. 816

CONEEXTE ..ttt et s e bt st st s e b et s b s b e e st s st et e e st e be st e entesbe et e st s nesntennas 819
Context in SAMPLe aPPLICATIONSociiieeeeceeee ettt st s e e a e a s 821

LOGGING ettt tesrte s st e e ste s s at e st e s sse e st e s s sa e s b e e s e e s b e e s e et e e s s e e et e e s e et e e st et e e sa et eeraesreanaraes 823
Creating a function that returns LOgS ...t 823
Using Lambda advanced logging controls with Java ..., 825
Implementing advanced logging with Log4j2 and SLF4J ...t 828
TOOLS ANA LIDFATIES .ttt ettt ettt et s et e s s e aesaeneen 831
Using Powertools for AWS Lambda (Java) and AWS SAM for structured logging 832
Viewing logs in the Lambda CONSOLE ...ttt 836
Viewing logs in the CloudWatch CONSOLEoueoiiieieeeeeeceeee et 836
Viewing logs using the AWS Command Line Interface (AWS CLI) ...ccooeevevenenveeeeceeeererenene 837
DELEEING LOGS ettt e e e s e sa et et e st e st e s b e s b e et e s e e e e e et et et e senaeeseeaeenaanes 840
SAMPLE LOGGING COUR ..ttt ettt s e st e s s e a s e e e et e s aestesbassassaesesnsanean 840

TEACING ittt ettt ete st e e ste e st e s ae s s e e s be e st essaessseasssa e st esssasaseasssassseasssesassesssessstesssessssessseesseesssennes 842
Using Powertools for AWS Lambda (Java) and AWS SAM for tracingccecceeveeevenecennnnen. 843
Using Powertools for AWS Lambda (Java) and the AWS CDK for tracingcccceeveveevvecnennens 845
Using ADOT to instrument your Java fUNCLIONS ..ottt 857
Using the X-Ray SDK to instrument your Java functionscccceeeevieecececececeeeceeeeene 857
Activating tracing with the Lambda conSOLe ...t 858
Activating tracing with the Lambda APl ...t sae s 858
Activating tracing with AWS CloudFormation ... 859
INterpreting an X-RAY TraCe ...ttt sttt essressae s s aessae e s e e s saesssaesssaessnassnasnne 859
Storing runtime dependencies in a layer (X-Ray SDK)ccccooeerererenenrereeeecreceeceesesreseeeenens 862
X-Ray tracing in sample applications (X-Ray SDK)c.ccceeriririierierieirenteneseseseeeeeeseessesseneens 863

SAMIPLE QPPS weveereereeiiieitertertesee et et e e te st e te st essessessessae s et essastassansassessesseessastassantasasansessessaestensensansantans 865

BUIldiNg With GO ...cciiiiiiiririiiiiiiiiiiiiiiiineeennnsiiiiiiieeiniss 867

GO FUNTIME SUPPOIT ettt e e estessre e st e s sae s st e s ssessseesssessssesssasssaasssessssesssesssaesssessseesssasssaenns 867

TOOLS ANA LIDFATIES ..ottt sttt ettt s et et s e b et e e s s ebesasnas 868

HANALEE .ttt sttt sttt b ettt s e st et s se st et e e s b et et esessestesassassensssassensasans 869
Setting up your GO handler Project ...ttt aan 869

XVi

AWS Lambda Developer Guide

Example Go Lambda fuNCtion COAE ..ttt 870
Handler Naming CONVENTIONSc.eoiiieieieecececee ettt e e ae e sae st e s besaesse s e e s enenaanes 873
Defining and accessing the input event ObjJecCt ..o 873
Accessing and using the Lambda context object ... 874
Valid handler signatures for GO handlers ...t saeeens 875
Using the AWS SDK for Go v2 in your handler ...t 876
Accessing enviroNmMeNt Variables ...t 877
USING GLODAL SEALE ..ottt a e st e st e s be s s e e e e e e e e e e b e aanaanas 877
Code best practices for Go Lambda funCtions ... 878
CONEEXTE ..ttt ettt s e bt st e st et e b e et s s st e e st s bt et e e ae e be st e st e sbe et e ne e beentennas 880
Supported variables, methods, and properties in the context objectcccoeveveieiennnnen. 880
Accessing invoke context iNfOrmMation ... 881
Using the context in AWS SDK client initializations and callscccooeeeeeneneeeccneeeee. 883
DEPLOY .ZIP filE QIrCRIVES ...ttt ettt a ettt sae s re e ns 884
Creating a .zip file 0N MACcOS aNd LiNUX c.coouiiiieeeeeeeeeteteesee et sve e ae e eseennens 884
Creating a .zip file 0N WINAOWS ...ttt sa et aestesae s e s e e e nennens 886
Creating and updating Go Lambda functions using .zip files ..., 889
DePLloy CONLAINET IMAGESoocveeeeeieereeeeeetetecteete e te e e e e e tesae st e st e stessesse s e esesssessessessessansassassessesssensensans 896
AWS base images for deploying GO fUNCLIONSccooveieeieeececee e 896
GO ruUNtiME INEEITACE CLENT .ottt sa et sb e e e aa s 897
Using an AWS OS-0nly Dase iMagecccceeeieeieeeececetetectesese et stesaesae e e e e e saesae s 897
USiNg @ NON-AWS DASE IMAGE ...eoiiieieiecieeeeeetetete e stestestessee e e e s s e s e stesaestessesss s e e s e saessensassansanes 904
LQYEIS ettt et te st et e e st e et e s ae e st e s s ae e s e e s b e et e e b e e e st e e s e et e e bt e st e e e e e e e e e ae e st e e s e e st e e aeeesteeaaaaees 913
LOGGING ettt ettt et s st e et e e st e s sae s s aa e st e s s aa e et e e b e e e b e e b e e e b e e b e e et e e s e et e et e e e e e e aa et eeseesstanaraas 914
Creating a function that returNs LOgS ...t 914
Viewing logs in the Lambda CONSOLE ...ttt 916
Viewing logs in the CloudWatch CONSOLEoueiieieieeeeeee et 916
Viewing logs using the AWS Command Line Interface (AWS CLI) ...ccocveereeeeenveeeeceeeeceereene 916
DELELING LOGS ettt e ettt e st st e s b e e e e e e e et e s et e tanseeseeseennennanes 920
TEACING ittt ettt st e e see e st e s ae s s re e s b e s st essaesssaessse e st asssasssaesssassseasssesssaessseesstesssessseessseesseesssenses 921
Using ADOT to instrument your GO fUNCLIONScoveieieeeeeeceeeeeeeere et 922
Using the X-Ray SDK to instrument your GO fUNCLIONSccveiiieieiecieececececee e 922
Activating tracing with the Lambda conSOLe ... 922
Activating tracing with the Lambda APl ...ttt 923
Activating tracing with AWS CloudFormation ... 923
INterpreting an X-RAY TraCe ...ttt see st s s ae s sae e s e e s saeessaessnaessnassananns 924

XVii

AWS Lambda Developer Guide

BUilding With CHccciiiiiiiiiiiiiiiiinnnininininnisnnss 927
Development ENVIFONMENT ..ottt et stesteste s e e e s e e s e te st e stestesseesassessnensansensansanes 927
Installing the .NET project t€mMPLAtES ...ttt 927
Installing and updating the CLI tOOLS ...t 927
HANALEE ettt sttt sttt a e sttt s et e e st e st e sa s b et e st e sasaestesassansensesarsensasans 929
.NET execution models fOor Lambda ..ottt sse e ne 930
CLass LIBrary NANALENS ...ttt e sa e st e st aesbesae s e e e e e e s enaeneans 930
Executable assembly RANALErS ...ttt a e saeaens 931
Serialization in Lambda fUNCLIONSc.ocooeeiiiiiereccteecret ettt saesa e 932
Simplify function code with the Lambda Annotations frameworkccoevevvevieveecrecrennennee. 934
Lambda function handler reStrictions ...ttt saenes 937
Code best practices for C# Lambda fuNCLionsS ...t 937
DEPLOYMENT PACKAGE ..ottt te e st te ettt et e s tesse st e s saese e e e aesbestesaasassesssenaaneans 940
NET Lambda GLODAL CLI ..cuiiiiiirieteererteteesestee ettt ee et e ssesae st e e ssessesassassesassasaassesassans 941
AWS SAM Lttt ettt et e st e s st e s st s st e s b s s at e s b e e a e e e b e e a e e e b e e a e e et e e e e e et e e ba et e e seesraeesraensrans 947
AWS CDK ..eeieeeectesieeeteste et e s ste st e s ste s st e s sae s s e e s saesssaessseesstessaasssasssaesssessssesssessssesssessseesssessssessaesssaanns 950
ASPINET ettt sttt s st e st e s e e s st e e st e s b e s s e e s b e e st e s b e s s e e s b e et e e b e e s e e e b e et e e saa e s e e e sreesateesaeenses 954
DePLloy CONLAINET IMAGESoocveeeeeieereeeeeetetecteete e te e e e e e tesae st e st e stessesse s e esesssessessessessansassassessesssensensans 959
AWS base iMages fOr INET ...ttt ste e e s e sae st e saestessa s e e e e e e s e s e s e ssansanaanns 960
USING aN AWS DASE IMAGE ...cuieieeeeeceteees ettt et stestesteese e e e e e e s et e stesaesse s e e e esaennenneneans 960
USiNg @ NON-AWS DASE IMAGE ...ecviieiecieeieeieeeeete e te e stesresre e e e e sae s e stesaessessesse s e s s e saensasansansanes 963
Native AOT COMPILAtION ..oceieeeeeeeeee ettt e st e st esae s se e e e e e e e e e e aaaanaans 967
LambBbda FUNTIMIE ..ottt ettt ettt ettt s s b e st e e s sa s et e e aaneesanan 967
PrErEQUISITES .eeeeiieeecttceteccterte ettt ettt re s st e s ae s s e e s e e e st e s saesssaeeaa e s st essseessaesssaesssassseesssessssennaes 968
GELEING STAMTEA .ot te e e e e e et et e st et e st e st e e se e e e st e e et e stesaassessessaenaennans 968
SEMHALIZATION ettt ettt ettt et s et et e s s et et e se s e et e e sseteneens 971
TEIMIMING ettt st st e e ste e st e s se e s e e s saeessae s sa e s st e s saasssessaassaessstasssessseesssessseesssensssessees 972
TrOUBLESNOOTING .ottt sttt et et e st esae s be e e e sa e e e e e s e b entanean 973
CONEEXTE ettt sttt st a e st e s et e b st s s s b e s st s bt et e e n e e be st e st e b e et e nesbesntens 974
LOGGING ettt ettt sttt e et e s st e st e s s ta e st e s s a e e s b e e e e e s b e e b e e e b e e b e e e e e e st e aeesa e e e e e ta e teereesstanaraas 976
Creating a function that returns LOGS ...ttt 976
Using Lambda advanced logging controls with .NETccoeririeeeieeeeeeceeecee e 977
TOOLS ANA LIDFAFIES ettt sttt et sa et st e st e s et e s ssasaesaeneen 984
Using Powertools for AWS Lambda (.NET) and AWS SAM for structured logging 985
Viewing logs in the Lambda CONSOLE ...ttt 988
Viewing logs in the CloudWatch CONSOLEoueiieieieeeeceete e 988

xviii

AWS Lambda Developer Guide

Viewing logs using the AWS Command Line Interface (AWS CLI) ...ccocveereoeneneeeeceeeeeevenene 988
DELELING LOGS ettt e ettt e st e st e s b e e e e e e e et et et et e sesseeseennennanes 992
TEACING ettt ettt st e s st e e st e s sae s s e e s b e s se e s aesssaessae e seesssasssaesssassseasssesssaessseesstesssessseessseesseesssenses 993
Using Powertools for AWS Lambda (.NET) and AWS SAM for tracingcceceeveevecvecveceenenene. 994
Using the X-Ray SDK to instrument your .NET functionscccocvevevieveceneneeececeeeeeeeee 997
Activating tracing with the Lambda conSOoLe ... 998
Activating tracing with the Lambda APl ...ttt 999
Activating tracing with AWS CloudFormation ... 999
Interpreting an X-RAY TraCe ...ttt ettt s sae et e s st e s ae s seesnessre e s aesssa e snas 1000
TOSTING ettt sttt e e st e st e s s re e s e e s st e st e s s aa e s be e st e e b e e s e e e b e e at e et e e s e e et e e st e e saeesaeesaesreans 1003
Testing your serverless apPLliCAtioNs ..ot saeaens 1004
Building wWith POWErShellcciiiiiiiiieeeniiiiiiiiiiiininnnenneesiisieeciininsss 1007
Development ENVIFONMENT ...ttt ettt te e s te s e e e e e e e s st e s e saa s e ssassa e ssnennenes 1008
DEPLOYMENT PACKAGE ..ottt ettt e e e et e st et e s s e st e s s e e e e e e e e e e aa b esassassessnenaanes 1009
Creating @ Lambda fUNCLIONoeeeee ettt sa e sae e 1009
HANALEE ettt ettt ettt st et s s e st et s e b et e sa s b et e st ssessestesassassenasansan 1011
RETUIMMING AAT@ oottt s s s e e s e sa e b et e b e b e s e e seens e st eaensanes 1012
CONEEXTE ..ttt ettt et e st st a e st e st s bt et e e st s be s b e s st e se et e e st e s e s b e st e seeabesneenesn 1013
LOGGING ettt ettt e st e s ste s st e et e s sae e s b e s s e e s b e s sa e e aeesaa e e b e e s e e e b e e R e e et e e s e e et e e st e e saeasaeetaesaaanns 1014
Creating a function that returns LOgS ... 1014
Viewing logs in the Lambda CONSOLE ...ttt 1016
Viewing logs in the CloudWatch CONSOLEcueuieeieieieeeeee ettt 1016
Viewing logs using the AWS Command Line Interface (AWS CLI) ..cc.ooeeeeeeeeeeceeirecieciecrenene 1016
DELEEING LOGS ettt sttt e st et e et e e s e e e e s e s et et et e sessaeseeraenean 1020
BUilding With RUSEceeueeiiiiiiiiiiiiiieeenntiiiiicieiitetsssssssssssssssseeesss 1021
HANALEE ettt ettt ettt st et s s e st et s e b et e sa s b et e st ssessestesassassenasansan 1023
RUST Nandler DASICS ...ttt sttt sb et s e e nas 1023
USING SNAIEA SLALE ...ttt ettt e st et s e e s e e et et et e b e se s e sasnnenean 1024
Code best practices for Rust Lambda functions ..o 1025
CONEEXTE ..ttt ettt et s e st st e st s bt et e et e be s b e s st e se et e e st e s e s b e ent e seenbeeneeness 1028
Accessing invoke context iNfOrmMation ... 1028
HTTP @VENTS .ottt ettt et s e st tses e st b e s sa e st s s s b e st e sse s b e s st e st esnanns 1030
DePLoy .ZIP file QICRIVES ...ttt aesae s s s s e e e s e s e aaneans 1033
PrErEQUISITES .ottt ettt te st se e s ste e st e s sae e s e e s sae e s st e s saesssaesssaessaesssaesssessssesssessseessaennns 1033
BUILAING the FUNCLION ettt sttt a et st aan 1033
Deploying the FUNCLION ...ttt s a e s a e ae s 1034

Xix

AWS Lambda Developer Guide

INVOKING the FUNCHION ..ooueeeeee ettt te s e s e s e aatans 1036
LOGGING ettt eet et s st e s ste s st e s be s sae e st e s s e e s b e s sa e e ae e s s e e e b e e s e e e s e e s R e e e b e e st e et e e st e e saansaeeraessaanns 1037
Creating a function that WIiteS LOgS ...ttt s 1037
Implementing advanced logging with the Tracing crate ... 1037
BESt PracCtiCes ..uciieeiiiiiiieennnneiiiiiiieiinineeeessssssssssseeeesss 1040
FUNCEION COAE ettt ettt ettt ettt e e b et et s et et e e s b et e e b e b e e s sasaenns 1040
FUNCLION CONTIQUIALION ettt et sa ettt a e s et e s et e aannas 1041
FUNCLION SCALADILILY oottt ettt s e e et a et e b e 1043
MELriCS aNd QLAIMNS ..ceeiiiiieeereeree ettt ettt ettt st e s et et s s et e e s b e e e e ssanaesseneene 1043
WOTrKiNG With STFEAIMS ...ttt sa et e e s te et e e s e e e et et et e b e ssaesasseennennan 1044
SECUNITY DEST PraCliCOS «.uveneeeeeeeeeee ettt e e e e ettt et e e seese e e e sa e e e nanes 1045
Testing serverless fUNCLIONSiiiiiiiiiiiiiiiinenneiiiiiiieieiiieeesses 1046
Targeted DUSINESS OULCOMIES ..ottt te e e et et e st e sae s e e e e e e a e aesaensaneans 1047
WHRAL 10 TS ottt ettt st ettt et st et eae st et e e be st e e esassestenassansensesarsans 1047
HOW 10 tESt SEIVEILESS .uvoueeiieteteientete ettt sttt et ettt s e s s e st e s b esae e s e be st esassassessesansans 1048
TESEING TECANIGUES ..ttt ettt e st e st et e et e s s e e et et et e st e s sasseeseesaensansansanean 1049
TeStiNG iN The CLOUA .ottt e st e st st s e e e e e a et e aennas 1049
TESEING WIth MOCKS ..ttt a et et e s e s s s e s e e a e a et et e benes 1052
Testing With @mMULALION ...c.eoeeeeee ettt sa et et e s ae e s ae e e anenaan 1053
BEST PrACLICES ...ttt sttt e s st e st s a e s st e s s e e e s e e s be e s e e s aa et e s be e sa e e baesseeesaaennes 1054
Prioritize testing in the CloUd ...ttt nean 1054
Structure your code for testability ... 1054
Accelerate development feedback LOOPScccceeieieieieiceeecec e 1055
FOCUS 0N INTEGratioN TESTS ...ciieiiieieecectcter ettt sre st sae e e e s aeesr e s ae e s ae s sa e snas 1055
Create isolated test @NVIFONMENTS ...ttt et a et ne 1056
Use mocks for isolated buSiNeSS LOGICccuieueriecieeeieecteeeeeer ettt nenens 1057
Use emMuUlators SPAriNgLY ...ttt stesae s e et et esae st e s aesse e e e aeaenes 1057
Challenges testing LOCALLYcueveeeeeeeceee ettt sa e st et sae e e ae e e e a e ae s 1058
Example: Lambda function creates an S3 bucket ... 1058
Example: Lambda function processes messages from an Amazon SQS queue..................... 1059
FAQ ettt sttt ettt st s e e s a e st s r e e s b e e a e e e b e s e r e e e b e e Rt e e b e e e b e e et e e Rt e e be e s e e et e e aeaensaesraessraeseans 1059
NEXt SLEPS ANA FESOUICESueeeeeeeeieteteeteeeeee et e cte et e s e sse s e e s esessestessessassassassasssessassansassassassessaeseanes 1060
Lambda SNapSTartiiiiiiiiiiiiiiieeneniiiiiiiiiitttssssssssssssssssessas 1062
USE CASES ettt ettt sttt ettt s b st et s b et e bt st e st et e b e et e st s be st e st e b e et e e aeeenesabenns 1063
Supported features and LMItAtioNs ..o 1063
SUPPOITEA REGIONS ...ttt ettt te e teste e e e e e e s et e st e saesse s s e ssae e et eaessestasassassesssensensensansanes 1064

XX

AWS Lambda Developer Guide

Compatibility CONSIAEratioNSoviieieeecece ettt e s e s e e e e s e ae st esaesaasans 1064
PrICING oottt ettt st e s e e st s st e e s s e e st e st e s sa e e s ae e s sae s ba e sae e ae e sae e sae e st e e se et e e saesnaaenreans 1065
ACTIVatiNg SNAPSTArT ...ttt e sae s e e s e e s e e s b e s e e s ae e s e e e sae e s saesaaesanans 1067
Activating SNapStart (CONSOLE)cuiireeeeeeececrete ettt s ae e e re e e e e e a et et eas 1067
Activating SNapStart (AWS CLI) ..ottt e e e e e e stesaeste s sse e e ssnesaesae s 1068
Activating SNAPSTArt (API) ..ottt e st st e st e s te s s e s e e e e s e e et e aesteaannas 1070
FUNCEION STAT@S .ttt ettt et et ae st et sbe st e sne e 1071
Updating @ SNAPSROT ...ttt et a e st et ae s r e e 1071
Using SNapStart With AWS SDKS ...ttt se et saesteste s e se e s s e s esnesaessenes 1071
Using SnapStart with AWS CloudFormation, AWS SAM, and AWS CDKcccveeveeeeervennee 1072
Deleting SNAPSNOLS ...ttt e e st st st e e e a e et ae e e nas 1072
HaNALiNG UNIGQUENESS ..ottt e e e et et e stestesaesse e e s e e s s e et e ste st e ssassaeseensensensansansanes 1073
AVOId SAVING STATE ettt et e st et e st e st e s ae e e e e e e et e st e bessesbassaeseennenaanes 1073
USE CSPRINGS ...ttt ettt ettt st st s s et s b st e s st s b e st e e st e be st e e st sbe st e nessasasansens 1075
SCANNING TOOL (JAVA) ettt ettt ste s e e e e e et et e s te b e s seesesnneaenaanes 1078
RUNEIME NOOKS ..ttt ettt b ettt st et s st et e se b et s e ssa st enans 1079
JAVA ettt sttt b e st a st e st s b st e e st e sa e et e et e snesaeene s 1079
PYTRON <.ttt ettt e st e st et e e e et et et e st et e aeereereene et et e aeaenranan 1083
N E T ettt et s et s s et e s b e s s s at e s s s a e s s s a e s s s e e e s aa e s s a e e e s a e e e e e e e s b e e e saaeesnneesnnnas 1085
MORNIEOTING .eeeiiieeieiceeeteecteete st rte e st e s rte s st e s ste e s st e s be s seessbes st esssesssaesssassseesssessssesssessseesssessssesssessstesssenns 1088
CLOUAWAALCN LOGS ..ttt ettt et e s ae s tesae e e e e e e sa et e sae st e st e aessassaesaenaennanaan 1088
AWS X-RAY wervvereeeerereeesseseseeseeesseesesesesesssesssssessssasesasesssssssssasesasesasessssssssssasesesesasesasesssssasesasesasesasesens 1089
TELEMIEELIY AP ...ttt ettt et s ae s e st e st e e e e e et et e st e st e bassasseesaessansensensansansansas 1089
API Gateway and function URL MELFICS .c.coueeueeieeeeeecteeteeteseeee ettt a e e ae s 1090
SECUNTY MOAEL ettt ettt e e s ae st e e e e e s et e ae st e s b asseesaesaesaensensansansanes 1091
BEST PrACLICES ..ottt ettt e st e st e st e s e e s s e e e s e e s ae s s e e s saa et e s ae e sa e e baessaeesaeennes 1092
PerformanCe tUNING ..ottt stesteste s e s e e e e e e et e st et e stessassa s e eneenaansansansans 1092
NetWOrking Dest PractiCes ... iiicieieeieeecececece ettt et e saesae s e e e e e e e e s e saesaenean 1096
TrOUDLESNOOTING ..ottt ettt e st e st s e e e e e e et e st e b e ba s e eseene e e enaanaenes 1098
SNapStartNOtREAAYEXCEPLIONocviieieieeeeceetete ettt aestesae s e se e e s e e s e sannans 1098
SNapStartTIMEOULTEXCEPTION ..ottt s e s e e s sae e s b e ssseesnassaeanns 1098
500 INtErNAL SEIVICE EFTOF ..cuviiviirieiiirietetsestenteestesteseeeste st eessestestssessestesassessessssessessesessessensesesses 1099
40T UNQUENOMIZEA ...ttt sttt ettt ettt e s et e e s e saasassassans 1099
UNKNOWNHOSTEXCEPLION (JAVA) ceviviiiiieeceeteeteceeee ettt te ettt aete st e sae s e s snennan 1099
SNAPShot Creation FAILUIES ...ttt st a e nan 1100
SNaPsShot Creation LAtENCY ...ttt st 1100

XXi

AWS Lambda Developer Guide

INtegrating Other SErVICESccciiiiiiiiiieeeiiiiiieciiiiiiineeesnniiiiiseeeessasss 1101
CreatiNg @ TFIGGEN ..ttt ettt sae s st e s sae e st e s b e e s st e s saesssaesssaessaesssaesssasssaesssasssaanns 1101
SEIVICES LIS ettt ettt st ettt ettt e e s et et s e s b et e e s s e te st esessestenassessensensssansensesans 1102
APACNE KAFKQ .ottt ettt e st et e b st e e s e et et et e st et e sesseeseeree e et entenean 1104

EXQIMIPLE EVENT ...ttt ettt e st et esae st e s e e e e s e e e st e st e ae b e seesseesessaesaansansansan 1105
CONFIGUIE EVENT SOUICE ..ottt tete et ste e e et aesaete st e st e stesse e e s e e s et e aestesassessesseesaensanes 1106
PrOCESS MESSAGES ..ccooeveieiiiiiieiiterertesesrtesesreesesatesssseessssesssssesssssesssssesssssesssseesssssessssesssssessssesssssasns 1115
EVENT FILEEIING oottt st ettt et e s b e e se s e e e e e e b e testensanes 1125
ON-fAIlUre deStiNAtIONS ...c.couiriiieeietete ettt sa ettt e b et ene 1130
TroOUBLESNOOTING ...ttt te e e et et e st e ste st e s e saesae s e saenaensansans 1137
AP GALEWAY ...eeeiriiiieeiiecierrtesee st este s st sstessatestessaessssessaeesstessessssassseesssesssessssesssessssesssessssesssesssaessenns 1140
ChOOSING AN API LYPE ettt et e s st ste st e st e s se s e e e e s et e st e st e tassessaesneneensansanes 1141
Adding an endpoint to your Lambda function ... 1142
ProXY INTEGIATION ...eoiiiieeeceeect ettt ste st e sae s ae e s ee s sae s st e s seessaessaessnesssessnasssennns 1142
EVENT FOIMALt ottt ettt s bt s s a et e s st esaenas 1143
RESPONSE FOIMIAL ...ttt e st e st e st e e e e e e et et et e aesbassassaesnennanes 1143
PEIIMISSIONS ...ttt ettt sttt sb st e st s b st e st esae et e st s sesanesatessessasseenness 1144
SAMPLE QAPPLICALION .ttt te e e e s st e st e st e b e st e s ae s e e e e e ennennan 1146
TULOTAL 1ttt ettt ettt s s e st et e e b et e e s b et et s se st et esassasseneesarsansenesns 1146
EFTOTS ettt ettt ettt st s e et e b et e e st s b e st e st e b e et e e st s be et e atesseeaeeneaas 1168
APl Gateway Vs fUNCLION URLScouioiiieeeeecteteeteestee et stessesse s e re e s s s e sassanaans 1170
INFrastrUCTUre COMPOSEN ...ttt ettt et e st e st esae e e e e e e e s et et e testessassessaeseessesaensansansansan 1174
Exporting a Lambda function to Infrastructure COmMpPOSErccecvecveciecececeeeeeeeeee e 1175
OtNEE FESOUICES ...ttt sttt ettt s b e s et s s e st et e sesbeste e ssassestenessassensesesansenersen 1177
CLOUAFOIMALION ..ttt st et st a s s ae st s e st e st e e sbe st e e sbasbe st esassansenessassenasens 1178
AmaAzon DOCUMENTIDB ...ttt et ettt s e s be st e s s b et esne e e 1181
Example Amazon DocumeENntDB @VENT ...ttt ettt aesaan 1182
Prerequisites and PEIrMISSIONSccccieiiiciererereeeeee e ee e stestessesses e e s e s e saessessessessassassesssesesssenen 1183
ConfigUre NEtWOIK SECUIILY ...ecuieeieieteteteeeee ettt et e s aesaesbe s s s e e a e neaannan 1184
Creating an Amazon DocumentDB event source mapping (CoNsole)ccccceeveeverveeceeceeeennene. 1187
Creating an Amazon DocumentDB event source mapping (SDK or CLI)cceeeeeeeeeeennnnnen. 1189
Polling and stream starting POSItioNScccoeeieieiiceceeceeeee e 1192
Monitoring your Amazon DocumentDB event SOUICEcovieeieiveinienieeeneeneecseeeseeeseesssenane 1192
TULOTTAL ettt sttt sttt ettt sttt e et et e s b et et s sesae st esassenbentesassansenesns 1193
DYNAMIODB ...ttt ettt et e st e a e s st e st e s saa s b e s s s e e st e s st e s e e s saa e s st assaeessaassaessaaeseassaennns 1232
Polling and batching StrEAMIS ..ottt s re e s nennan 1232

xxii

AWS Lambda Developer Guide

Polling and stream starting POSIIONSc.coeeieieieiceecceecec ettt sre e aennens 1233
SIMULLANEOUS FEAUETS ...ttt ettt ettt esbe st e s e ste st s e b et e e ssesse st esassassesessensensans 1234
EXQMIPLE @VENT ..ttt ettt e st e st e et e st e be e e e e e e et e st e basbasseesaesaenaenaansanes 1234
Create MAPPING ..ottt ettt sre et e s sae s s e e s sae e st e s ae s saes s e esatasssesssaesssessseesssessssessseessaanns 1236
BAtCh it@M FAILUIES ettt ettt e sae st s et a s s b e e e ssa s e e esans 1238
ErrOr RANALING oottt st e sa e st sae st e st e e se e se e e e e e s et e aebanes 1251
SEALEFUL PrOCESSING ..ottt ste e s et e e e e e e e s e st e ae st e sbasseeseesaennensannans 1257
PAramMELEIS ...ttt sttt et et sb e st b et s e st e st s ne e b e et e eneeas 1262
EVENT FILLEIING ettt ettt e s te st ettt e st e st e s s e e e s e e e eaeeabansansans 1264
TULOTTAL oottt ettt st ettt sttt et e e s b et et s sesae st esassenbeneesansensenesns 1272
B ettt ettt e e b et e A et e e e e et et e R et et e Rt et et e e e se b et e sestaae st eaenes 1289
Granting permissions to EventBridge (CloudWatch Events)cccoceeeeeeececeeveeceeceeceeceeceenne 1289
Elastic Load Balancing (Application Load BalanCer)ceeeeeeeeceeecceeeeceteceeeeeeee e 1291
Invoke using an EventBridge SCHEAULET ...ttt 1293
Set UP the XECULION FOLE ettt ettt a e s e s e e a e e et et ans 1293
Create @ SCREAULE ...ttt et st ettt et e e s b e sae e ssesaansenans 1293
RELALEA FESOUICESouiveieirieietreretc ettt ettt st sttt s b et e s s e st et s e saa st esassasseeesassansensons 1298
L0 T ettt ettt ettt ettt a e b et e ek et e e e e b et et e R et et e s e b et et e s et et e seebente st eaententenaes 1299
KiNesSis DAta STrEAMIScuiiuiiiieieeeteeee ettt sttt et a e st st s s st e st s b sbe s st s aeesaesseeness 1301
Polling and batching SErEAMS ...ttt a et et nnan 1301
EXQMIPLE @VENT ..ttt ettt et st e st e s e e e e e e e e e s e st et e s basbeesaenaenaentansansansans 1303
Create MAPPING ..ottt sttt e s sae s s e e st e e st e s ae s saes s e esatesssesssaesssesssaasssesssaessseessaans 1304
BAtCh it@M FAILUIES ettt st ettt se s s b e e e ssa s e e sens 1310
ErrOr RANALING oottt e sa e st sae b e st e e e e e e e e e et e aentanes 1324
SEALEFUL PrOCESSING ..ottt te et s e e e e e e e s e st e ae st e sbesseeseeseensennanaans 1330
PAramMELEIS ...ttt sttt sttt a s a e s ne s e e s neene 1334
EVENT FILLEIING ettt ettt e st e st e et e it et e s te st e s s e s s e e e e e enaeaesansansans 1337
TULOTTAL 1ttt ettt sttt ettt et e e s b et e e s sesae st esassenteneesansansenesns 1341
KUDBIMELES ..ottt ettt ettt s b e st et s e s et e e saa b e st e e saestesassessensons 1358
AWS Controllers for KUDErNetes (ACK)eooceeeeeeeieieeiieeeeeeeeeseeeeesseesessesessseessssesssseessssessssssesns 1358
CrOSSPLANE ...ttt te e e ea et e st et e st e s b e s teese e e e e et et et assassassaeseeseessensentesasanseeseenaanes 1358
IMQ ettt ettt ettt sttt sttt st e e et e R b et e Rt b et et R b et e ket e Rt e R e s et et e s et e st esesaenteneesen 1360
Understanding the Lambda consumer group for Amazon MQccccoeeeeeveeeeveeceeceeceeseennenn 1362
CONFIGUIE EVENT SOUICEocueeveieeieeeeeetetetecte e ste e e e s et e ste st e st e stesse s e e e e s et eaestesessessesseesaensanes 1366
PAramMELEIS ...ttt sttt st et sa e s sa st b e st e b st et s neene et e neeas 1372
EVENT FILLEIING ettt ettt e s te sttt e st e s b e s se s e e se e s enaeneesansansans 1373

xxiii

AWS Lambda Developer Guide

TrOUDLESNOOT ...ttt ettt sbe st et s b et e s sasae e ssasans 1379
IMISK ettt ettt s sttt e s st e s st e s ae e st e s s e e s e e s s e e st e e b e e saesssae st assseassaessa e st aesse e steese e st eeteessteesaesstasssaans 1381
EXQIMIPLE EVENT ...ttt ettt st et e s te s e e e e e et et e s besae s b e sseeseesaensensansansensanes 1382
CONFIGUIE EVENT SOUICE ..ottt tete et ste e e et aesaete st e st e stesse e e s e e s et e aestesassessesseesaensanes 1383
PrOCESS MESSAGES ..coouvieriieieiciieeiteestesteseeessteesstesssessseessseesstesssessseesssessstesssesssaesssessseesssesssaesssessseasns 1395
EVENT FILEEIING oottt st ettt et e s b e e se s e e e e e e b e testensanes 1407
ON-fAIlUre deStiNAtIONS ...c.couiriiieeietete ettt sa ettt e b et ene 1412
TULOTTAL oottt ettt st ettt sttt et e e s b et et s sesae st esassenbeneesansensenesns 1419
RS ettt ettt et s et s b st s st e st e e s b e e a e e st e s b e e b e e s et e e ae e e e et e e ae e b e e are e e bae st e et eesraeeaaeraans 1440
Configuring your function to work with RDS r@SOUICEScccceeveeeieeeecieceeeceeeeeeeeeeve e 1440
Connecting to an Amazon RDS database in a Lambda function ..., 1443
Processing event notifications from Amazon RDS ...t 1462
Complete Lambda and Amazon RDS tULOrIalc.ecveieeieeeeeeeeceteeeeeee e 1463
Amazon RDS VS DYNAMODB ...ttt ssrecsee st s seesseeessnesssessaesssassssesssessssesssaesseens 1463
S ettt ettt e bt a e A et et e R et et e R et et e e R et et e R e A et e Rt oA et et e seete e e s e e s e te s e s e esatentesans 1468
TULOrIAl: USE @N S3 trIQQEN ..ottt et steste s e e s e e e e s e ae st e saesaesse s e ssn e s e e esaansanes 1469
Tutorial: Use an Amazon S3 trigger to create thumbnails ..o, 1496
SIS ettt e a ettt e e R et et b et et e R et et e R e A et et e R et et e e s te st e st e s e tentens 1526
Understanding polling and batching behavior for Amazon SQS event source mappings .. 1526
Example standard qUeUe MESSAgE EVENTcceceeeeeeeeieeetecte e seesaestesrestesse e e esaennan 1527
Example FIFO qUEUE MESSAGE EVENTcoueeeeieieeeeetetecteete e e e e e e e s e stessessessessas s essennensansans 1529
Create MAPPING ..ottt sttt e s sae s s e e st e e st e s ae s saes s e esatesssesssaesssesssaasssesssaessseessaans 1530
SCALING DERAVION ..ttt st e e ettt e st e s aessesseeaenaanes 1533
ErrOr NANALING oottt te st s s e s e s e st st e b e s ae s e e e e s e e e naenaenes 1535
PAFAMIELELS ...ttt ettt st et a e s b et a s b e st e st et e et e st s b e st e neesneeas 1548
EVENT FILEEIING oottt st re e et e et st et e s b e s b e s sasae e e e e e aetesbansanes 1549
TULOTTAL 1ttt ettt sttt ettt et e e s b et e e s sesae st esassenteneesansansenesns 1554
SQS Cross-aCCoUNT TULOMIAL ..c.ueiieiieieceecceceecece et ebe e e eseessseeaseesssessseeseens 1574
TG B = - | 1 o USROS U SRRSO 1581
Invoking Lambda functions from Amazon S3 batch operationscccceeveeeeeeieeieceeceecienene 1582
SN S ettt s st et s et e e e s bt e s e e e st e e e e s b e e et e e s Rt e e b e e e R e e b e e s a e e e b e e s e e e s e e s st assbeeesaensrans 1584
Adding an Amazon SNS topic trigger for a Lambda function using the console 1584
Manually adding an Amazon SNS topic trigger for a Lambda functioncccceeuvnennnnene 1585
SAMPLE SNS EVENL SNAPE ..ttt e st te s e e e e e e e e e bt et e aanes 1586
TULOTTAL ettt sttt sttt et e st et a st et e e s b et et s ae s s et esassensentesarsansenesns 1587
Lambda PermiSSIiONScciiiiiiiiiieeenenciiiiicceiiiiieseesssssssssssssess 1608

XXiv

AWS Lambda Developer Guide

Execution role (permissions for functions to access other resources)ccccoevveveecieceecrecvecnennee. 1610
Creating an execution role in the 1AM CONSOLE ... 1610
Creating and managing roles with the AWS CLI ... 1611
Grant least privilege access to your Lambda execution roleceeeeecvecececececeseeeenne 1613
UpPdate @XECULION FOLE ...cuviieieieeeeeeeetetetete et e et e stestestesse e e e e e e s e stesbesaessassasseesasnnannan 1613
AWS MANAGEA POLICIES .uvereeeeiieeeietectectestee ettt ste e st e e e s e et e e et e s tesaesbe st assasseesnessesaensansansans 1615
SOUrCE TUNCLION ARN L.ceiiiieeeetcte ettt ettt et et et s b e st et s b et e e s seste e saessesnesaes 1618

Access permissions (permissions for other entities to access your functions)cccccceeeeunnene 1622
Identity-based POLICIESccueveeeeeeeeeeeeee ettt e e sttt esbe s e ssaennan 1622
RESOUICE-DASEA POLICIES ...oceveeieteteeeeeee ettt st s te st e e sa e et e sae st e s sessesseeaennenes 1628
Attribute-based acCess CONLIOL ..ottt sa e 1637
ReSOUICes and CONITIONSccoeveviiireniiireneteerest et ste st e st et este st e e s este e s e ssesaesassesaessesassans 1644

Security, governance, and COMPLIANCE ...ccciiiveeeeeeeiiiiiiiiiiiiiiieneensesisiiseeetssessssssssssssssssssssssssssssse 1650

DAta PrOTECLION ettt et s sae e st e s ae s st e s s e e st e s sae s saessaaessaesssaassaesssasneans 1651
ENCryplion N traNSIT ..ottt s e e s e e s sae s s e e s sesssnessaaessnesssaessnessnnanns 1652
ENCIYPLION @t FOST ettt ettt st e s e s re e st e s sa e s b e s saaessaessaaessnassnaanns 1652

Identity and Access ManNAgEMENTcccoueeieiiiieeietetecte et e e e e e e e e e testessessessessae e ssaesaesaensanean 1657
AUAIENCE ..ttt ettt st ettt sb et st s et et s s e b et e e s s e be st e sassestenassassensesansensasersen 1658
Authenticating With identities ..ot sae s 1658
Managing access USING POLICIESccueeeeieieieieciecteceeee et te et e e ste s e e e e s e aesaesaesaessessessnesneneens 1662
How AWS Lambda works With TAM ...ttt es 1664
Identity-based pPoliCy @XAMPLES ..ottt e 1671
AWS MANAGEA POLICIES w.uveeeieeieeeietecteeres ettt te e s e e e s e e s et et esaeste st e sas e esnesesaensansansans 1674
TrOUBLESNOOTING ...ttt e e e st et este st e st e se e e saenesaensesantans 1679

GOVEIMANCE ...ueeneiiieiteeitetteteet et s ste et et et e st e st sbe st e se et e et e ese s b e s st e st e b e e st e st sabesstesesabesstessessasatesseensanns 1681
Proactive controls With GUAId ...ttt sae e 1683
Proactive controls With AWS CoNfig ..ottt 1687
Detective controls With AWS CONFIG ...ttt 1694
(@oTa [IEY[e] 1 [« [OOSR O OO SRRR 1698
COAE SCANMING «.euveiieieeieteteieeteee ettt e te st e st e s tesse e e e e e s e s esaesaassassassasseesaessessansansansasassaesaessensensanes 1701
ODBSEIVADILILY ..veveieeiieeeeeeeree ettt e e e e et e b e s b e s b e s se e e e s e e e e s et e setassasseesaesesnaenean 1706

ComMPLiANCe ValidAtion ...ttt a ettt e et nee 1713

RESILIEINCE .ottt ettt ettt st e st s s st e st st et e e s b e s b et e sa b e st esassassenssnasassesans 1713

INFrasStrUCTUIE SECUNILY .uviieieieecee ettt ettt e st e st e s e e e e e et e s e testesaessessaesnennannans 1714

Securing workloads with public @NdPOINtScceoieieieeeeeeeec e 1715
Authentication and QUthOFIZAtioN ...t 1715

XXV

AWS Lambda Developer Guide

Protecting APl @NAPOINTS ...c..ooueiieieeeecteeeeer ettt rte e sae e s e e e e e e saesaesaesaesae s e s se e e esaenennan 1715
OB SIGNING oottt te e s e e e e e e et e sae st e te st e s b e sse s e e e e s essastansassassassaesaesesssessansansansansans 1717
SIgNAtUre ValidAtion ..ottt st e e e s e e sa et et e st e s e e e e e nnennan 1717
Configuring code signing with the Lambda APl ... 1718
Create CONFIGUIALION ...ttt et e st te s e e s e e et e s e baeans 1719
Update CONFIGUIALION ...ttt st esse e e e e sae st e st e s aasaessa e e e snennans 1720
PEIIMISSIONS ...ttt ettt st ettt s st st s b e st e st esae et e s st s sesanesatessessassesnnens 1721
Code signing configuration tagsccccceeieciicieciececeeee ettt aesaestesaesbe s e sss e s eneens 1722
MONItoring FUNCHIONS ...ciiiiiiieeeeiciiiiiiiiiiiiineennniniiieeeettttssess 1726
PrICING ettt ettt e s e e e st e s st e e s s e e st e s be s sa e e s et e s sae s ba e sae e ae e sae e se e st e e seeesteesaesanaensaans 1726
FUNCEION MEEEICS ettt ettt s st sb e st s b s e se s sne s e esne s 1727
VIEeW FUNCHION MELIICS .ottt ettt et s b st sa e st s saa s e e ssanen 1727
MELIIC TYPES ettt et e st s e s s e e s b e s s ae e s ae s saa e s ae e st essaesssaesssaesstasssasssaesssessseesssennns 1728
FUNCLION LOGS ottt ettt et e st este s e s e e et et e s ae st e s aessassaesae s ensessensasassasassasssessansans 1736
ReqQUIred [AM PEIMISSIONSccceeierierieeeeieeetestestestestestesseeaesaesaessessessessasseesasssessessessessassessessssssanes 1736
PrICING ettt ettt e s st e st e s s ae e st s s s e e b e s s b e e s b e e b e e s b e e sae e e b e e s e e et e esaae e sa e saeeseeeraans 1737
ConfigUIre FUNCLION LOGS ..ottt st e et a e st et e se e s e e aennanes 1737
VIEW FUNCEION LOGS ettt ettt e st esae s e s s s e s et e st et e s bassasan e ennannan 1751
CLOUATIAIL LOGS wnveieieeieeectetetetertee ettt sttt e s te st et e s e e e e s e s et e st et e s sesse s e esaensesaensansansansassassaensansans 1765
Lambda data events in CloUdTrail ..ottt ettt et e esessens 1766
Lambda management events in CloUdTrailcccoeeeeieieceeeeeeecee ettt 1768
Using CloudTrail to troubleshoot disabled Lambda event sourcescocveeeeeeeeeevecnennnne 1770
Lambda eVent @XaAMPLES ...ttt e ettt te s e e e e aeraaans 1771
AWS XoRAY ittt cstes st seesseeestesstesssaessaeesaaesssesssaesssesssaasssaasssessssesssesssessssessssesstessseesssensseessees 1773
Understanding X-RAY TraCESc.coiiiiiiicieceeeceseeeete et steste e e e e e e e saestestessessessae e e e esaennaneans 1774
EXECULiON rOle PEIMISSIONSocueeiiietetetete ettt ettt s te e e e sa et et esaesseese s e e sa e s e nesebanes 1778
Enabling active tracing with the Lambda APl ...t 1779
Enabling active tracing with AWS CloudFormation ... 1779
FUNCLION INSIGALS ...ttt ettt et e st e st e et e e e e s e e et et e s e s aesaeeseennesaanes 1781
HOW Tt WOTKS <.ttt ettt sttt ettt et s b e st s st a s e s s et s e saasaesassansans 1781
PrICING ettt ettt e s st e s e e e s st e s e e s s e e s b e s s s e e s b e s s e e s b e e saa e e be e s e e et e e saaesse e sae e raenaans 1782
SUPPOIEEA FUNLIMIES ...ttt te st e e e e e e e s et e b e st et e s sassessaese e e esaessentansensanes 1782
Enabling Lambda Insights in the CONSOLE ... 1782
Enabling Lambda Insights programmaticallyccocueoueoeoenenecieeeceeeeeesece e 1782
Using the Lambda Insights dashboard ...t 1783
Detecting funNction aNOMALIES ..o ettt e ne 1784

XXVi

AWS Lambda Developer Guide

Troubleshooting @ FUNCLION ...ttt e sae s 1786
WNAL'S NEXEY .ttt ettt sttt st sttt e e b e st et s e b et e sesse s esaesessassesassensesesnn 1788
View applicCation MELIICSocviieeeeeeeeece ettt s te e e e e e sa e st e st e besseesessessnenaenns 1789
APPLICALION SIGNALS ettt ettt et e e s e e te s e e e e e e e et e st e st e saesaesseesa e e e e eaensantans 1791
How Application Signals integrates with Lambda ..., 1791
PrICING ittt ettt rte s st e s rae e s ae e s b e s s sa s b e e s b e e s b e s b e e s b e e sae e e be e s e e et e esaae e s e e saesraeneans 1792
SUPPOIEEA FUNLIMIES ...ttt teste st e e e s e s et e s e st e st e s s e s sasseese e e ennesaansensansanes 1792
Enabling Application Signals in the Lambda console ..., 1792
Using the Application Signals dashboard ... 1793
Lambda LQY@rs ...ueeeeiiiiiiiiiiiiiiineennniiiiieeeiitinssessens 1795
HOW 0 USE LQYENIS ...ttt te e e e s e et e st e st e te s b e s b s sa e e e e e e e s e st abasaassessaesnenaensensanes 1797
Layers anNd LQYEr VEISIONSc.ccueeueeieeeecteieectectestestesesee e e seesaestestestessessesseessssaesaessessesansassassassasssensenes 1797
PACKAGING LQYEIS ..ttt sttt ettt e ae e ve st e s e e e e et e st et e stessessasseessenaensansansassassassesssanean 1798
Layer paths for each Lambda runtime ...t 1798
Creating and deleting LAYEIS ... ettt st st s re e e e e e aatans 1802
CrEATING @ LAYEK ettt e st et e st e st e st e s e ese e e et et e sbasbasseeseeneennensansansans 1802
Deleting @ LAYEI VEISIONceieeeeeceeeteeeeeetee ettt saesaeste s e e se s sae st et e aesbe s e s se e e eneeaennenes 1804
AAING LAYEIS ..ttt ettt et e st e st e e e e e e e et et et e st e s s e s sesseesaessensesaassassassassassaensensansans 1805
Accessing layer content from your fUNCLIONcooeiiiieieeeeee e 1807
Finding layer infOrmation ...ttt te s e s a s s s aaaans 1807
Layers with AWS CLOUAFOIrMAtionc.ooeieoieeececeeecteteetete e sresaesaesaesae e nenennens 1810
LAYErs WIth AWS SAM ...ttt este st et ste st esse st et s e s s e st s ssa st et s e ssestesassassenssnessansanees 1811
Lambda eXtENSIONS ...cceeeeeiiiiiiiiiiiiiiiiiiiiiiiiiiiiieesissses 1812
EXECULION @NVIFONMENT ..ottt ettt st st e st st se s se st s nesae st esneens 1813
Impact on performance anNd FESOUICESc.cceceeieieiecieeeeee ettt ste e s e e e e e et e s e aesaassenns 1814
POITNISSIONS ..ttt ettt ettt sttt e b st st s s e et e et s se s b e st s se s b e e st essessesstensesnnanns 1814
CONFIGUIING EXEENSIONSveiiieiieeeeetetete et et e e e stestestestesse e e e se e e e s et eaessessasassaesesssensensansensanes 1815
Configuring extensions (.zip file archive) ... 1815
Using extensions in CONtAINEr IMAGEScociirvieriirrieineeneeectesre st essreeseessesssaesssessseesssesssaassees 1815
NEXE SEEPS evtieticteeteecteere ettt et e e st e st e s s st e st e s se et e s saeesste s saesstassseesssessaesssessssesssesssaesssensseans 1816
EXTENSIONS PAITNELS ...ttt sttt e s sae s s e e ssae s st e s sae s s e e ssae e saessaesssaasssaesssesssannns 1817
AWS MaANAgEd EXEENSIONSccueiieieieieiecteceeeeeeee et rtestestestessesseeeese s s esasessessessassassessasssensansans 1818
EXEENSIONS AP .ttt ettt ettt s sttt s e st st e st e st s b e s st e st s b et essaeasasatans 1819
Lambda execution environmMent LfECYCLE ...ttt 1820
EXEENSIONS AP FEFEIENCE ..ttt sttt et sa et st ss e e s 1829
TELEMIELIY AP ..ttt et te s e e s e e et et et et e st e s b e s s e e s e e se e s et estansassassesseesaessantensansansans 1835

XXVii

AWS Lambda Developer Guide

Creating extensions using the Telemetry APl ... e 1836
RegiStering YOUr @XEENSION ..c...ciiiiiiieeieieteeieecteere st csrteesre e s stessseesseessaeessaesssaesssassseasssessssesssassseens 1838
Creating @ telemMEtry LISTENEN ... ettt ae e 1838
Specifying a destination ProtoCol ... 1840
Configuring memory usage and buffering ... 1841
Sending a subscription request to the Telemetry APloo et 1842
Inbound Telemetry APl MESSAGESccceeeeeeeieeirertertesteseseeeeeeseesesaestessessessessesssessessessessensensan 1843
APL TEFEIENCE ettt ettt sttt et e s b et e s et e e e e b et e e ssesaensesasensenens 1847
EVENT SChEMA FEFEIENCE ..ottt a ettt s a e e nes 1851
Converting events t0 OTEL SPANS ...ttt rae st et ae st e s s e s e e aennan 1872
LOGS AP ettt ettt st e s st e st s ae e st ssae e s e e s s e e et e e s et e a e e s e et e e s e et e e aaessaesseesnnesnranan 1878
TroubLleShOOTING ..cciiiiiiieeiiiiiiiiiiiiiiinitennniiiiiiieetitttasssssssssssssssssesssass 1891
CONFIGUIATION .ttt e e b e st e st e st e et s e e e e e e e e b e st e bessassessaeseanaensansanes 1891
MemMOry CONTIGUIATIONSoouiiiiieteteeeesee ettt s st sa e st esae st e s b e s e e se e s e sa e s ensesaensanes 1892
CPU-bound cONfIQUIAtIONScuiiieceeecceecee ettt st e et sa e st et saesa e s se e nens 1892
TIMEOULS .ttt sttt e sa e et a e st a e st e et s b e st e s st e saeebeesbessesanasnnan 1892
Memory leakage between iNVOCAtIONS ..ot 1893
Asynchronous results returned to a later iNVOCationcoeeeciciecececececee e, 1896
DEPLOYMENT ...ttt ettt te e s e st e e e s e et et et et et e st e ssassesseesa e st assassansansassansessaesaassensensansans 1900
General: Permission is denied / Cannot load SUCH filecueevveiivieiiiiveiiieeeeeeceeeeeeeeeneene 1901
General: Error occurs when calling the UpdateFunctionCodeccoceeeeeveneneneeceeeeeenee. 1902
Amazon S3: Error Code PermanentRedirect.cocovviverenieinenieireneteenenectsesese e se e 1902
General: Cannot find, cannot load, unable to import, class not found, no such file or
(o [T =Tl o] oY O OO TSRO 1903
General: Undefined method handler ...ttt 1903
General: Lambda code storage limit exceededooeeeeeenieciecececeeeee e 1904
Lambda: Layer conversion failed ...ttt 1904
Lambda: InvalidParameterValueException or RequestEntityTooLargeException 1905
Lambda: InvalidParameterValuEEXCEPLIONcccveeieiieeecteteeeee ettt sre e aeanens 1905
Lambda: Concurrency and mMemory QUOTASccccceceerererenieneeeertetestestestessessesseeseesaesaessessessenss 1906
INVOCATION ettt ettt ettt s e st s st st et s ae s b e s st s sesabesntessasnsasstns 1906
Lambda: Function times out during Init phase (Sandbox.Timedout)ccccceveevievriciecrennennen. 1907
IAM: lambda:InvokeFunction not authorized ... 1908
Lambda: Couldn't find valid bootstrap (Runtime.lnvalidEntrypoint)ccccceveeveeveeceecrecnennene 1908
Lambda: Operation cannot be performed ResourceConflictExceptioncccceceeveeveecvenennene 1908
Lambda: Function is stuck in PENAINGcoueeeeieiiieceeeeeeee ettt sresae e 1909

XXViii

AWS Lambda Developer Guide

Lambda: One function is using all CONCUITENCYooveveieieeeereee e 1909
General: Cannot invoke function with other accounts or Servicescoeevvveeevercenenircennens 1909
General: Function invocation iS LOOPINGccecieieiececececeeee ettt ee e aesresresaens 1909
Lambda: Alias routing with provisioned CONCUITENCYceoeeeereeeeeceereretececeee e 1910
Lambda: Cold starts with provisioned CONCUITENCYcc.cceeeeeieeereeeceeeeceeece e 1910
Lambda: Cold starts With NEW VEISIONSccoeeviiiiniririneetrenet ettt sae e 1911
EFS: Function could not mount the EFS file system ..., 1911
EFS: Function could not connect to the EFS file systemcoeveeieiececenecereceeeeeceee 1911
EFS: Function could not mount the EFS file system due to timeoutcccooeevrverrrnnnnnene. 1912
Lambda: Lambda detected an 10 process that was taking too longcccceeeeeeviivecvenennene 1912
EXECULION <ttt ettt sttt st et e s st s b et e s e et e st e sesabe s st esseenasseasness 1912
Lambda: Execution takes t00 LONG ...ttt re s 1913
Lambda: Unexpected event Payload ...ttt n s ae s s eens 1913
Lambda: Unexpectedly large payload SIZESccoceeeerereeeeeceerececesecec e 1914
Lambda: JSON encoding and decoding €rrorscceceeeeeeecieneeeeeeceete e ste e sae e s esennens 1915
Lambda: Logs or traces dON't QPPEAN ...c.ccueeeeeeieeetetectectestee et stesvesse e e e e e e e e e e saeaens 1915
Lambda: Not all of my function's l0gs @PPeArc.cceeeeieceeceeeececeeee e 1916
Lambda: The function returns before execution finishesc.oocvevivnvnenivnienenricreine 1917
Lambda: Running an unintended function version or aliascccecevvevieeenenenenveeeeeeceeeenee. 1917
Lambda: Detecting infinit@ LOOPS ..c..ooveeueeeeeeeeeeeeeeeeee ettt sae s aeaan 1918
General: Downstream service unavailability ... 1919
AWS SDK: Versions and UPAAESc.cceceeeeeeieeceeietestectestesteseeeeeeeeesaesaesaessessessessesssensessensensas 1919
Python: Libraries load iNCOMTECLLY ..ottt ae e e e nnens 1920
Java: Your function takes longer to process events after updating to Java 17 from Java
T ettt et s e s e s a e s a e e s bt e s e bt e e e b e e s e b e e e e R s e e e b e e s e s b e e e s s e e e st eeenaesennnanes 1921
EVENT SOUICE MAPPING ceiioiiiiiieierterieccteete et essteeseessae s st essaessssesssesssaesssessssasssesssaesssessssesssessssesssesssaes 1921
Identifying and managing throttling ... 1921
Errors in the processing fUNCLION ...t 1923
Identifying and handling backpreSSUIe ...t sa et saeeaens 1925
NEEWOTKING «eeveteeieeeceeetete ettt et e s e st e s e s e e e s e et et et et assessesseeseessessansansansassassassaesaassensansansans 1926
VPC: Function loses internet access Or timMes OULcoccvevirireniininenenteenenteeeesse st eesesaeeenens 1926
VPC: Function needs access to AWS services without using the internetccocveuenee. 1927
VPC: Elastic network interface limit reached ... 1927
EC2: Elastic network interface with type of "lambda" ... 1927
DNS: Fail to connect to hosts with UNKNOWNHOSTEXCEPTIONccccevevirvirenenereneneeennes 1927
Sample apPPLiCAtIONSccciiiiiiiieeeeeiiiiiiieiiiiiiiieeenneiiiiiieeeetteseessns 1929

XXiX

AWS Lambda Developer Guide

WOrking With AWS SDKSccciiiiiiiiieennnnniiisceeceiinnesssssssssssssssscssass 1932
COdE EXAMPLES ...ceeeeeereeniiiiiieiiiiiineeeesnessssssssseesssasns 1934
BaSICS ittt s b e st b et a e b e st e st et e et e e se s be e st e aeesbeeatesneens 1946
HELLO LaAMIBAQ ..ttt ettt ettt s sttt et s ba e e e na s 1947
LEAIN the DASICS ..ottt ettt st et e b e st s e sae e ssasaate e 1956
ACTIONS .ttt sttt a e st s s bt st e et s st e st e et s st s b e et e st et e st e enesbasnte st ebanns 2092
SCONANIOS ..ttt ettt et e et e st st e st s st et e et e sse st e s st s se et e est e se st e st esseeatessessasstesseensasssasens 2212
Automatically confirm known users with a Lambda function ..o, 2213
Automatically migrate known users with a Lambda function ..o 2254
Create a REST API t0 track COVID-=T9 dataccocevvevievirenenirinenieieenieneeeseesteesessesssessessesassens 2277
Create a lending LIbrary REST AP ...ttt e e e seestestesaesse s e s e s s e s e e e sne s 2278
Create @ messenger APPLICALION ...ttt e e e aenan 2279
Create a serverless application to manage photosccoeieciecececececee e 2280
Create a websocket chat application ... 2284
Create an application to analyze customer feedbackoooveeeieiececeneneeeeeere e 2285
Invoke a Lambda function from @ BrOWSENcoccveivenienieinentcereecteeseeee et 2291
Transform data with S3 Object Lambda ..ot 2292
Use APl Gateway to invoke a Lambda function ... 2292
Use Step Functions to invoke Lambda functions ... 2294
Use scheduled events to invoke a Lambda functioncocevvveninninennrenencnceeneneeseenes 2295
Write custom activity data with a Lambda function after Amazon Cognito user
QAUERENTICATION ettt ettt sttt s s e st et s s be st e e saesaenaons 2297
SEIVEILESS EXAMPLESeoeeeeieeeieteeeee ettt te e s e s e e e e e et et et e s tesaessessaese e e esaessentesansassesseessaneensansan 2320
Connecting to an Amazon RDS database in a Lambda functioncccceeeeeneneneennnennen. 2320
Invoke a Lambda function from a Kinesis trigger ...t 2339
Invoke a Lambda function from a DynamoDB triggereieieceeceeceeseeeeeeee e 2350
Invoke a Lambda function from a Amazon DocumentDB triggercoveeeeeeeeveeceeceecnenene 2359
Invoke a Lambda function from an Amazon MSK triggerceeeveceeceeceeseceeeeeeeeeenns 2372
Invoke a Lambda function from an Amazon S3 triggerveecececeeeeeeeeeeeeeeee e 2380
Invoke a Lambda function from an Amazon SNS trigger ... evcveceececeeceseeeeee e 2392
Invoke a Lambda function from an Amazon SQS trigger ... eeveeceeceececeeeseseeeeeenens 2401
Reporting batch item failures for Lambda functions with a Kinesis triggerc............ 2410
Reporting batch item failures for Lambda functions with a DynamoDB trigger 2424
Reporting batch item failures for Lambda functions with an Amazon SQS trigger 2435
AWS community CONTHDULIONS ...cvevieieieeeeeeeeeee ettt ettt st st a e a e ae s 2445
Build and test a serverless appliCation ...ttt 2445

XXX

AWS Lambda Developer Guide

Lambda qUOTAS ..ccciiiiiiiieeeeniiiiiiiiiiiiiienanssssessssssssesssces 2448
COMPULE ANA SEOFAGE ..ottt te s e e e e e e et e st e st e s te s e s se e e e s e s e sbasta s assassaesaensensanes 2450
Function configuration, deployment, and eXecutioncccceeeeeeeieceececececececeeee e 2451
LAmMDBAa API FEQUESLS ...ouveeieieeeeeeteteteteste e etee e etesaestestestestesse s e e e e s essessesessassassessassasssessansansansansens 2453
OLNEE SEIVICES ..ttt ettt sttt st s e b et et s st et e e s b et et saesse st esassessentesasansessssanes 2454

DOCUMENE RISTOIY uuueiiiiiiiiiiiiiineennnniiiiiiieceiiiinnassssssssssssessee 2455
EQrlIEr UPAALES ..ottt st e e s et et e st e st e s essesseesa e e e s et astetansassassneseesnanean 2478

XXXi

AWS Lambda Developer Guide

What is AWS Lambda?

You can use AWS Lambda to run code without provisioning or managing servers.

Lambda runs your code on a high-availability compute infrastructure and performs all of the
administration of the compute resources, including server and operating system maintenance,
capacity provisioning and automatic scaling, and logging. With Lambda, all you need to do is
supply your code in one of the language runtimes that Lambda supports.

You organize your code into Lambda functions. The Lambda service runs your function only when
needed and scales automatically. You only pay for the compute time that you consume—there is
no charge when your code is not running. For more information, see AWS Lambda Pricing.

® Tip

To learn how to build serverless solutions, check out the Serverless Developer Guide.

When to use Lambda

Lambda is an ideal compute service for application scenarios that need to scale up rapidly, and
scale down to zero when not in demand. For example, you can use Lambda for:

« File processing: Use Amazon Simple Storage Service (Amazon S3) to trigger Lambda data
processing in real time after an upload.

» Stream processing: Use Lambda and Amazon Kinesis to process real-time streaming data for
application activity tracking, transaction order processing, clickstream analysis, data cleansing,
log filtering, indexing, social media analysis, Internet of Things (loT) device data telemetry, and
metering.

» Web applications: Combine Lambda with other AWS services to build powerful web applications
that automatically scale up and down and run in a highly available configuration across multiple
data centers.

» loT backends: Build serverless backends using Lambda to handle web, mobile, IoT, and third-
party API requests.

» Mobile backends: Build backends using Lambda and Amazon API Gateway to authenticate and
process APl requests. Use AWS Amplify to easily integrate with your iOS, Android, Web, and
React Native frontends.

When to use Lambda 1

https://aws.amazon.com/lambda/pricing/
https://docs.aws.amazon.com/serverless/latest/devguide/

AWS Lambda Developer Guide

When using Lambda, you are responsible only for your code. Lambda manages the compute fleet
that offers a balance of memory, CPU, network, and other resources to run your code. Because
Lambda manages these resources, you cannot log in to compute instances or customize the
operating system on provided runtimes. Lambda performs operational and administrative activities
on your behalf, including managing capacity, monitoring, and logging your Lambda functions.

Key features

The following key features help you develop Lambda applications that are scalable, secure, and
easily extensible:

Environment variables

Use environment variables to adjust your function's behavior without updating code.

Versions

Manage the deployment of your functions with versions, so that, for example, a new function
can be used for beta testing without affecting users of the stable production version.

Container images

Create a container image for a Lambda function by using an AWS provided base image or an
alternative base image so that you can reuse your existing container tooling or deploy larger
workloads that rely on sizable dependencies, such as machine learning.

Lambda layers

Package libraries and other dependencies to reduce the size of deployment archives and makes
it faster to deploy your code.

Lambda extensions

Augment your Lambda functions with tools for monitoring, observability, security, and
governance.

Function URLs

Add a dedicated HTTP(S) endpoint to your Lambda function.

Response streaming

Configure your Lambda function URLs to stream response payloads back to clients from Node.js
functions, to improve time to first byte (TTFB) performance or to return larger payloads.

Key features 2

AWS Lambda Developer Guide

Concurrency and scaling controls

Apply fine-grained control over the scaling and responsiveness of your production applications.

Code signing

Verify that only approved developers publish unaltered, trusted code in your Lambda functions

Private networking

Create a private network for resources such as databases, cache instances, or internal services.

File system

Configure a function to mount an Amazon Elastic File System (Amazon EFS) to a local
directory, so that your function code can access and modify shared resources safely and at high
concurrency.

Lambda SnapStart

Lambda SnapStart can provide as low as sub-second startup performance, typically with no
changes to your function code.

Key features 3

AWS Lambda Developer Guide

Create your first Lambda function

To get started with Lambda, use the Lambda console to create a function. In a few minutes, you
can create and deploy a function and test it in the console.

As you carry out the tutorial, you'll learn some fundamental Lambda concepts, like how to
pass arguments to your function using the Lambda event object. You'll also learn how to return
log outputs from your function, and how to view your function's invocation logs in Amazon
CloudWatch Logs.

To keep things simple, you create your function using either the Python or Node.js runtime. With
these interpreted languages, you can edit function code directly in the console's built-in code
editor. With compiled languages like Java and C#, you must create a deployment package on your
local build machine and upload it to Lambda. To learn about deploying functions to Lambda using
other runtimes, see the links in the the section called “Next steps” section.

® Tip

To learn how to build serverless solutions, check out the Serverless Developer Guide.

Prerequisites

Sign up for an AWS account
If you do not have an AWS account, complete the following steps to create one.
To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to a user, and use only the root user to perform tasks that require root

user access.

Prerequisites 4

https://docs.aws.amazon.com/serverless/latest/devguide/
https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks

AWS Lambda Developer Guide

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create a user with administrative access

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Signin to the AWS Management Console as the account owner by choosing Root user and

entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create a user with administrative access

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. InIAM lIdentity Center, grant administrative access to a user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the user with administrative access

o Tosign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

Prerequisites 5

https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html

AWS Lambda Developer Guide

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Assign access to additional users

1. In 1AM Identity Center, create a permission set that follows the best practice of applying least-
privilege permissions.

For instructions, see Create a permission set in the AWS IAM Identity Center User Guide.

2. Assign users to a group, and then assign single sign-on access to the group.

For instructions, see Add groups in the AWS IAM Identity Center User Guide.

Create a Lambda function with the console

In this example, your function takes a JSON object containing two integer values labeled
"length" and "width". The function multiplies these values to calculate an area and returns this
as a JSON string.

Your function also prints the calculated area, along with the name of its CloudWatch log group.
Later in the tutorial, you'll learn to use CloudWatch Logs to view records of your functions'

invocation.
To create a Hello world Lambda function with the console

1. Open the Functions page of the Lambda console.

Choose Create function.
Select Author from scratch.
In the Basic information pane, for Function name, enter myLambdaFunction.

For Runtime, choose either Node.js 22.x or Python 3.13.

o uv M W N

Leave architecture set to x86_64, and then choose Create function.

In addition to a simple function that returns the message Hello from Lambda!, Lambda also
creates an execution role for your function. An execution role is an AWS Identity and Access

Management (IAM) role that grants a Lambda function permission to access AWS services and

Create the function 6

https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-started-create-a-permission-set.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/addgroups.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

resources. For your function, the role that Lambda creates grants basic permissions to write to
CloudWatch Logs.

Use the console's built-in code editor to replace the Hello world code that Lambda created with
your own function code.

Node.js
To modify the code in the console
1. Choose the Code tab.

In the console's built-in code editor, you should see the function code that Lambda created.
If you don't see the index.mjs tab in the code editor, select index.mjs in the file explorer as
shown on the following diagram.

= EXPLORER index.mjs >

~ MYLAMBDAFUNCTION index.mjs > ...
index.mjs export const handler = async (event) =»> {

[)
2 Jf TODO implement

/O 3 const response =
4 statusCode: 288,
5

fg> 6

body: 1SON.stringify('Hellc from Lambda!')
return response;

B:I? ~ DEPLOY i

& Deploy (Ctrl+Shift+U)
Test (Ctrl+Shift+1)

2. Paste the following code into the index.mijs tab, replacing the code that Lambda created.

[+]

export const handler = async (event, context) => {

const length = event.length;

const width = event.width;

let area = calculateArea(length, width);
console.log('The area is ${areal’);

console.log('CloudWatch log group: ', context.logGroupName);

let data = {
"area": area,

};

Create the function 7

AWS Lambda Developer Guide

return JSON.stringify(data);

function calculateArea(length, width) {
return length * width;
}
I

3. Inthe DEPLOY section, choose Deploy to update your function's code:
“+ DEPLOY [UNDEPLOYED CHANGES]

A You have undeployed changes.

Deploy {Ctrl+Shift+U)

Test {Ctrl+Shift+)

Understanding your function code

Before you move to the next step, let's take a moment to look at the function code and
understand some key Lambda concepts.

+ The Lambda handler:

Your Lambda function contains a Node.js function named handler. A Lambda function in
Node.js can contain more than one Node.js function, but the handler function is always the
entry point to your code. When your function is invoked, Lambda runs this method.

When you created your Hello world function using the console, Lambda automatically set the
name of the handler method for your function to handlezr. Be sure not to edit the name of
this Node.js function. If you do, Lambda won't be able to run your code when you invoke your
function.

To learn more about the Lambda handler in Node.js, see the section called “"Handler".

« The Lambda event object:

The function handler takes two arguments, event and context. An event in Lambda is a
JSON formatted document that contains data for your function to process.

If your function is invoked by another AWS service, the event object contains information
about the event that caused the invocation. For example, if your function is invoked when

Create the function 8

AWS Lambda Developer Guide

an object is uploaded to an Amazon Simple Storage Service (Amazon S3) bucket, the event
contains the name of the bucket and the object key.

In this example, you'll create an event in the console by entering a JSON formatted document
with two key-value pairs.

« The Lambda context object:
The second argument that your function takes is context. Lambda passes the context object

to your function automatically. The context object contains information about the function
invocation and execution environment.

You can use the context object to output information about your function's invocation for
monitoring purposes. In this example, your function uses the 1ogGroupName parameter to
output the name of its CloudWatch log group.

To learn more about the Lambda context object in Node.js, see the section called “Context”.

« Logging in Lambda:

With Node.js, you can use console methods like console.log and console.error to send
information to your function's log. The example code uses console.log statements to
output the calculated area and the name of the function's CloudWatch Logs group. You can
also use any logging library that writes to stdout or stderr.

To learn more, see the section called “Logging”. To learn about logging in other runtimes, see

the 'Building with' pages for the runtimes you're interested in.

Python
To modify the code in the console

1. Choose the Code tab.

In the console's built-in code editor, you should see the function code that Lambda created.
If you don't see the lambda_function.py tab in the code editor, select lambda_function.py
in the file explorer as shown on the following diagram.

Create the function 9

AWS Lambda Developer Guide

= EXPLORER index.mjs % lambda_functionpy X
~ MYLAMBDAFUNCTION @ lambda_function.py
lg index.mjs 1 import json

p @ lambda_function.py
o> /
B:llj ~ DEPLOY [UNDEPLOYED CHAMNGES]

i\

def lambda_handler(event, context):
TODO implement
return {
"statusCode’: 268,
‘body”: json.dumps('Hello from Lambda!")

[T s B I s Wy R < W

A You have undeployed changes.

2. Paste the following code into the lambda_function.py tab, replacing the code that Lambda
created.

import json
import logging

logger = logging.getlLogger()
logger.setLevel(logging.INFO)

def lambda_handler(event, context):

Get the length and width parameters from the event object. The
runtime converts the event object to a Python dictionary
length = event['length']

width = event['width']

area = calculate_area(length, width)
print(f"The area is {areal}")

logger.info(f"CloudWatch logs group: {context.log_group_name}")

return the calculated area as a JSON string
data = {"area": area}
return json.dumps(data)

def calculate_area(length, width):
return length*width

3. Inthe DEPLOY section, choose Deploy to update your function's code:

Create the function 10

AWS Lambda Developer Guide

~ DEPLOY [UNDEPLOYED CHAMNGES]
& You have undeployed changes.

Deploy (Ctr+Shift+U)

Test (Ctri+Shift+1)

||

Understanding your function code

Before you move to the next step, let's take a moment to look at the function code and
understand some key Lambda concepts.

+ The Lambda handler:

Your Lambda function contains a Python function named lambda_handler. A Lambda

function in Python can contain more than one Python function, but the handler function
is always the entry point to your code. When your function is invoked, Lambda runs this

method.

When you created your Hello world function using the console, Lambda automatically set the
name of the handler method for your function to 1ambda_handlexr. Be sure not to edit the
name of this Python function. If you do, Lambda won't be able to run your code when you
invoke your function.

To learn more about the Lambda handler in Python, see the section called “Handler".

« The Lambda event object:

The function 1lambda_handler takes two arguments, event and context. An event in
Lambda is a JSON formatted document that contains data for your function to process.

If your function is invoked by another AWS service, the event object contains information
about the event that caused the invocation. For example, if your function is invoked when
an object is uploaded to an Amazon Simple Storage Service (Amazon S3) bucket, the event
contains the name of the bucket and the object key.

In this example, you'll create an event in the console by entering a JSON formatted document
with two key-value pairs.

« The Lambda context object:

Create the function 11

AWS Lambda Developer Guide

The second argument that your function takes is context. Lambda passes the context object
to your function automatically. The context object contains information about the function
invocation and execution environment.

You can use the context object to output information about your function's invocation for
monitoring purposes. In this example, your function uses the 1og_group_name parameter to
output the name of its CloudWatch log group.

To learn more about the Lambda context object in Python, see the section called “Context".

« Logging in Lambda:

With Python, you can use either a print statement or a Python logging library to send
information to your function's log. To illustrate the difference in what's captured, the example
code uses both methods. In a production application, we recommend that you use a logging
library.

To learn more, see the section called “Logging”. To learn about logging in other runtimes, see
the 'Building with' pages for the runtimes you're interested in.

Invoke the Lambda function using the console code editor

To invoke your function using the Lambda console code editor, create a test event to send to your
function. The event is a JSON formatted document containing two key-value pairs with the keys
"length" and "width".

To create the test event

1. Inthe TEST EVENTS section of the console code editor, choose Create test event.

~ TEST ENENTS

You haven't created any test events.

Create test event {Ctrl+Shift+C)

2. For Event Name, enter myTestEvent.

3. Inthe Event JSON section, replace the default JSON with the following:

Invoke the function 12

AWS Lambda Developer Guide

"length": 6,
"width": 7
}

4. Choose Save.

To test your function and view invocation records

In the TEST EVENTS section of the console code editor, choose the run icon next to your test event:

~ TEST EVENTS -+
v & Private saved events

myTestEvent V4

Invoke Function wrth Saved Test Event

When your function finishes running, the response and function logs are displayed in the OUTPUT
tab. You should see results similar to the following:

Node.js

Status: Succeeded
Test Event Name: myTestEvent

Response
n{\narea\n:42}n

Function Logs

START RequestId: 5c012b@a-18f7-4805-b2f6-40912935034a Version: $LATEST
2024-08-31T23:39:45.313Z 5c012b0a-18f7-4805-b2f6-40912935034a INFO The area is 42
2024-08-31T23:39:45.331Z 5c012b0a-18f7-4805-b2f6-40912935034a INFO CloudWatch log
group: /aws/lambda/myLambdaFunction

END RequestId: 5c@12b0a-18f7-4805-b2f6-40912935034a

REPORT RequestId: 5c@12b@a-18f7-4805-b2f6-40912935034a Duration: 20.67 ms Billed
Duration: 21 ms Memory Size: 128 MB Max Memory Used: 66 MB Init Duration: 163.87 ms

Request ID
5c012b0a-18f7-4805-b2f6-40912935034a

Python

Status: Succeeded
Test Event Name: myTestEvent

Invoke the function 13

AWS Lambda Developer Guide

Response
Il{\llarea\ll: 42}"

Function Logs

START RequestId: 2d@b1579-46fb-4bf7-abel-8e08840eae5b Version: $LATEST

The area is 42

[INFO] 2024-08-31T23:43:26.428Z 2d0b1579-46fb-4bf7-a6el1-8e08840eae5b CloudWatch logs
group: /aws/lambda/myLambdaFunction

END RequestId: 2d@bl579-46fb-4bf7-a6el-8e08840eae5h

REPORT RequestId: 2d@b1579-46fb-4bf7-a6el-8e08840eae5b Duration: 1.42 ms Billed
Duration: 2 ms Memory Size: 128 MB Max Memory Used: 39 MB Init Duration: 123.74 ms

Request ID
2d0b1579-46fb-4bf7-a6el-8e@8840eae5b

When you invoke your function outside of the Lambda console, you must use CloudWatch Logs to
view your function's execution results.

To view your function's invocation records in CloudWatch Logs

1. Open the Log groups page of the CloudWatch console.

2. Choose the log group for your function (/aws/lambda/myLambdaFunction). This is the log
group name that your function printed to the console.

3. Scroll down and choose the Log stream for the function invocations you want to look at.

Log streams (14) ‘ G ‘ ‘ Create log stream ‘ ‘ Search all log streams ‘
Q, Filter log streams or try prefix search ‘ (] Exact match [J Show expired (&) Info 1 &
O Log stream v | Last event time v
O 2024/04/30/[$LATEST]e0fa 2024-04-30 17:24:16 (UTC)
O 2024/04/19/[$LATEST]e9a 2024-04-19 20:59:06 (UTC)
O 2024/02/22/[$LATEST]cfO 2024-02-22 18:38:41 (UTC)
O 2024/02/21/[1]1d132c4d 2024-02-21 21:37:01 (UTC)
O 2024/02/21/[1]5ad 2024-02-21 21:37:01 (UTC)

You should see output similar to the following:

Invoke the function

14

https://console.aws.amazon.com/cloudwatch/home#logs:

AWS Lambda Developer Guide

Node.js

INIT_START Runtime Version: nodejs:22.v13 Runtime Version ARN:
arn:aws:lambda:us-

west-2::runtime:e3aaabf6b92ef8755eaae2f4bfdcb7eb8c4536a5e044900570a42bdba7b869d9
START RequestId: ababc@fc-cf99-49d7-a77d-26d805dacd2@ Version: $LATEST
2024-08-23T22:04:15.809Z 5c012b0a-18f7-4805-b2f6-40912935034a INFO The area
is 42

2024-08-23T22:04:15.810Z ababcOfc-cf99-49d7-a77d-26d805dacd2@ INFO
CloudWatch log group: /aws/lambda/myLambdaFunction

END RequestId: ababc@fc-cf99-49d7-a77d-26d805dacd20

REPORT RequestId: aba6c@fc-cf99-49d7-a77d-26d805dacd20 Duration: 17.77 ms
Billed Duration: 18 ms Memory Size: 128 MB Max Memory Used: 67 MB Init
Duration: 178.85 ms

Python

INIT_START Runtime Version: python:3.13.v16 Runtime Version ARN:
arn:aws:lambda:us-

west-2::runtime:ca202755c87b9%ec2b58856efb7374b4f7b655a0ea3debld5acc9aee9e297b072
START RequestId: 9d4096ee-acb3-4c25-bel0-8a210f0a9d8e Version: $LATEST

The area is 42

[INFO] 2024-09-01T00:05:22.464Z 9315ab6b-354a-486e-884a-2fb2972b7d84 CloudWatch
logs group: /aws/lambda/myLambdaFunction

END RequestId: 9d4@96ee-acb3-4c25-bel@-8a210f0@a9d8e

REPORT RequestId: 9d4096ee-acb3-4c25-bel®-8a210f0a9d8e Duration: 1.15 ms
Billed Duration: 2 ms Memory Size: 128 MB Max Memory Used: 40 MB

Clean up

When you're finished working with the example function, delete it. You can also delete the log
group that stores the function's logs, and the execution role that the console created.

To delete the Lambda function

1
2
3.
4

Open the Functions page of the Lambda console.

Select the function that you created.
Choose Actions, Delete.

Type confixrm in the text input field and choose Delete.

Clean up 15

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

To delete the log group

1. Open the Log groups page of the CloudWatch console.

2. Select the function's log group (/aws/lambda/myLambdaFunction).
3. Choose Actions, Delete log group(s).

4. In the Delete log group(s) dialog box, choose Delete.

To delete the execution role

1. Open the Roles page of the AWS Identity and Access Management (IAM) console.

2. Select the function's execution role (for example, myLambdaFunction-role-3lexxmpl).
3. Choose Delete.
4

In the Delete role dialog box, enter the role name, and then choose Delete.

Additional resources and next steps

Now that you've created and tested a simple Lambda function using the console, take these next
steps:

» Learn to add dependencies to your function and deploy it using a .zip deployment package.
Choose your preferred language from the following links.

Node.js

the section called “"Deploy .zip file archives”

Typescript

the section called “"Deploy .zip file archives”

Python

the section called “"Deploy .zip file archives”

Ruby

the section called “"Deploy .zip file archives”

Java

the section called “"Deploy .zip file archives”

Next steps

16

https://console.aws.amazon.com/cloudwatch/home#logs:
https://console.aws.amazon.com/iam/home?#/roles

AWS Lambda Developer Guide

Go

the section called “Deploy .zip file archives”
C#

the section called “Deployment package”

« To learn how to invoke a Lambda function using another AWS service, see Tutorial: Using an
Amazon S3 trigger to invoke a Lambda function.

» Choose one of the following tutorials for more complex examples of using Lambda with other
AWS services.

o Tutorial: Using Lambda with APl Gateway: Create an Amazon API Gateway REST API that
invokes a Lambda function.

» Using a Lambda function to access an Amazon RDS database: Use a Lambda function to write
data to an Amazon Relational Database Service (Amazon RDS) database through RDS Proxy.

« Using an Amazon S3 trigger to create thumbnail images: Use a Lambda function to create a
thumbnail every time an image file is uploaded to an Amazon S3 bucket.

Next steps 17

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-lambda-tutorial.html

AWS Lambda Developer Guide

Key Lambda concepts

This chapter describes key concepts in Lambda:

» Basic Lambda concepts explains basics such as functions, triggers, events, runtimes, and

deployment packages.

« Programming model explains how Lambda interacts with your code.

« Execution environment explains the environment Lambda uses to run your code.

» Event-driven architectures describes the most commonly used design paradigm for serverless

applications built using Lambda functions.

» Application design explains various design best practices for Lambda-based applications.

« Frequently asked questions is a curated list of common FAQs about Lambda.

18

AWS Lambda Developer Guide

Understanding basic Lambda concepts

Because Lambda is a serverless, event-driven compute service, it uses a different programming
paradigm to traditional web applications. If you're new to Lambda or serverless development, the
following sections describe some key foundational concepts that will help you get started on your
learning path. As well as an explanation of each concept, the sections also contain links to tutorials,
detailed documentation, and other resources you can use to broaden your understanding on each
topic.

On this page, you'll learn about the following:

« Lambda functions - the basic building blocks of Lambda you use to build applications
« Lambda runtimes - the language-specific environments that your functions run in

» Triggers and event source mappings - ways for other AWS services to invoke your functions in
response to specific events

« The event object - a JSON object containing event data for your function to process

« Lambda permissions - the way you control which other AWS services your functions can interact
with and who can access your functions

® Tip
If you want to start by understanding serverless development more generally, see
Understanding the difference between traditional and serverless development in the AWS

Serverless Developer Guide.

Lambda functions

In Lambda, functions are the fundamental building blocks you use to create applications. A Lambda
function is a piece of code that runs in response to events, such as a user clicking a button on a
website or a file being uploaded to an Amazon Simple Storage Service (Amazon S3) bucket. You
can think of a function as a kind of self-contained program with the following properties.

« A function has one specific job or purpose
« They run only when needed in response to specific events

« They automatically stop running when finished

Basic concepts 19

https://docs.aws.amazon.com/serverless/latest/devguide/serverless-shift-mindset.html

AWS Lambda Developer Guide

When a function runs in response to an event, Lambda runs the function's handler function. Data
about the event that caused the function to run is passed directly to the handler. While the code

in a Lambda function can contain more than one method or function, Lambda functions can only
have one handler.

To create a Lambda function, you bundle your function code and its dependencies in a deployment
package. Lambda supports two types of deployment package, .zip file archives and container

Images.

To get a better understanding of Lambda functions, we recommend you start by completing the
Create your first function tutorial, if you haven't done so already. This tutorial provides more detail

about the handler function and how to pass data in and out of your function. It also provides an
introduction to creating function logs.

Lambda execution environment and runtimes

Lambda functions run inside a secure, isolated execution environment which Lambda manages for

you. This execution environment manages the processes and resources that are needed to run your
function. When a function is first invoked, Lambda creates a new execution environment for the
function to run in. After the function has finished running, Lambda doesn't stop the execution
environment right away; if the function is invoked again, Lambda can re-use the existing execution
environment.

The Lambda execution environment also contains a runtime, a language-specific environment that
relays event information and responses between Lambda and your function. Lambda provides a
number of managed runtimes for the most popular programming languages, or you can create

your own.

For managed runtimes, Lambda automatically applies security updates and patches to functions
using the runtime.

Triggers and event source mappings

Although you can invoke a Lambda function manually using the AWS Command Line Interface
(AWS CLI) or by using the Lambda API, it's more usual in a production application for your function
to be invoked by another AWS service in response to a particular event. For example, you might
want a function to run whenever an item is added to an Amazon DynamoDB table.

To configure a function to run in response to a specific event, you add a trigger. When you create a
trigger, other AWS services can invoke your function directly by pushing an event object to Lambda

Lambda execution environment and runtimes 20

AWS Lambda Developer Guide

whenever a particular event occurs. A function can have multiple triggers, each of which invokes
your function independently.

Some types of stream and queue service, such as Amazon Kinesis or Amazon Simple Queue Service
(Amazon SQS), can't directly invoke Lambda using a trigger. For these services, you need to create
an event source mapping instead. Event source mappings are a special type of Lambda resource

that continuously polls a stream or queue to check for new events. For example, an event source
mapping might poll an Amazon SQS queue to check whether new messages have been added.
Lambda batches new messages into a single payload until a limit that you configure is reached, and
then invokes your function with a single event object containing all the records in the batch.

The easiest way to create a trigger or event source mapping is by using the Lambda console.
Although the underlying resources that Lambda creates and the way that your function is invoked
are different, the process for creating a trigger or event source mapping in the console uses the
same method.

To see an example of a trigger in action, start by carrying out the Using an Amazon S3 trigger to

invoke a Lambda function tutorial, or for a general overview of using triggers and instructions on

creating a trigger using the Lambda console, see Integrating other services.

The event object

Lambda is an event-driven compute service. This means that your code runs in response to events
generated by external producers. Event data is passed to your function as a JSON-formatted
document, which the runtime converts to an object for your code to process. For example, in
Python, the runtime converts the JSON document to a Python dictionary or list and passes this to
the function as the event input argument.

When the event is generated by another AWS service, the format of the event depends on the
service that generates it. For example, an event Amazon S3 includes the name of the bucket
that triggered your function and information about objects in that bucket. To learn more about
the format of the events generated by different AWS services, refer to the relevant chapters in
Integrating other services.

You can also invoke a Lambda function directly by using the Lambda console, AWS CLI, or one of
the AWS Software Development Kits (SDKs). When you invoke a function directly, you determine
the format and contents of the JSON event. For example, suppose you have a Lambda function
that writes weather data to a database. You might define the following JSON format for your

The event object 21

https://aws.amazon.com/cli/
https://aws.amazon.com/developer/tools/

AWS Lambda Developer Guide

event. As with events generated by other AWS services, the Lambda runtime converts this JSON to
an object before passing it to your function's handler.

Example custom Lambda event

"Location": "SEA",
"WeatherData":{
"TemperaturesF":{
"MinTempF": 22,
"MaxTempF": 78
},

"PressuresHPa":{
"MinPressureHPa": 1015,
"MaxPressureHPa": 1027

Because the Lambda runtime converts the event to an object, you can easily assign values in the
event to variables without having to deserialize the JSON. The following example code snippets
show how to assign the minimum temperature value from the previous example event to a variable
MinTemp using the Python and Node.js runtimes. In both cases, the event object is passed to your
function's handler function as an argument named event.

Example Python code snippet

MinTemp = event['WeatherData']['TemperaturesF']['MinTempF']
Example Node.js code snippet
let MinTemp = event.WeatherData.TemperaturesF.MinTempF;

For an example of invoking a Lambda function with a custom event, see Create your first function.

Lambda permissions
For Lambda, there are two main types of permissions that you need to configure:

» Permissions that your function needs to access other AWS services

« Permissions that other users and AWS services need to access your function

Lambda permissions 22

AWS Lambda Developer Guide

The following sections describe both of these permission types and discuss best practices for
applying least-privilege permissions.

Permissions for functions to access other AWS resources

Lambda functions often need to access other AWS resources and perform actions on them. For
example, a function might read items from a DynamoDB table, store an object in an S3 bucket,
or write to an Amazon SQS queue. To give functions the permissions they need to perform these
actions, you use an execution role.

A Lambda execution role is a special kind of AWS Identity and Access Management (IAM) role, an
identity you create in your account that has specific permissions associated with it defined in a

policy.

Every Lambda function must have an execution role, and a single role can be used by more than
one function. When a function is invoked, Lambda assumes the function's execution role and is
granted permission to take the actions defined in the role's policy.

When you create a function in the Lambda console, Lambda automatically creates an execution
role for your function. The role's policy gives your function basic permissions to write log outputs
to Amazon CloudWatch Logs. To give your function permission to perform actions on other

AWS resources, you need to edit the role to add the extra permissions. The easiest way to add
permissions is to use an AWS managed policy. Managed policies are created and administered by

AWS and provide permissions for many common use cases. For example, if your function performs
CRUD operations on a DynamoDB table, you can add the AmazonDynamoDBFullAccess policy to

your role.
Permissions for other users and resources to access your function

To grant other AWS service permission to access your Lambda function, you use a resource-
based policy. In 1AM, resource-based policies are attached to a resource (in this case, your Lambda
function) and define who can access the resource and what actions they are allowed to take.

For another AWS service to invoke your function through a trigger, your function's resource-based
policy must grant that service permission to use the 1lambda: InvokeFunction action. If you
create the trigger using the console, Lambda automatically adds this permission for you.

To grant permission to other AWS users to access your function, you can define this in your
function's resource-based policy in exactly the same way as for another AWS service or resource.
You can also use an identity-based policy that's associated with the user.

Lambda permissions 23

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonDynamoDBFullAccess.html

AWS Lambda Developer Guide

Best practices for Lambda permissions

When you set permissions using IAM policies, security best practice is to grant only the permissions
required to perform a task. This is known as the principle of least privilege. To get started granting
permissions for your function, you might choose to use an AWS managed policy. Managed policies
can be the quickest and easiest way to grant permissions to perform a task, but they might also
include other permissions you don't need. As you move from early development through test and
production, we recommend you reduce permissions to only those needed by defining your own
customer-managed policies.

The same principle applies when granting permissions to access your function using a resource-
based policy. For example, if you want to give permission to Amazon S3 to invoke your function,
best practice is to limit access to individual buckets, or buckets in particular AWS accounts, rather
than giving blanket permissions to the S3 service.

Lambda permissions 24

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#customer-managed-policies

AWS Lambda Developer Guide

Understanding the Lambda programming model

Lambda provides a programming model that is common to all of the runtimes. The programming
model defines the interface between your code and the Lambda system. You tell Lambda the entry
point to your function by defining a handler in the function configuration. The runtime passes in
objects to the handler that contain the invocation event and the context, such as the function name
and request ID.

When the handler finishes processing the first event, the runtime sends it another. The function's
class stays in memory, so clients and variables that are declared outside of the handler method in
initialization code can be reused. To save processing time on subsequent events, create reusable
resources like AWS SDK clients during initialization. Once initialized, each instance of your function
can process thousands of requests.

Your function also has access to local storage in the /tmp directory, a transient cache that can be
used for multiple invocations. For more information, see Understanding the Lambda execution

environment lifecycle.

When AWS X-Ray tracing is enabled, the runtime records separate subsegments for initialization

and execution.

The runtime captures logging output from your function and sends it to Amazon CloudWatch
Logs. In addition to logging your function's output, the runtime also logs entries when function
invocation starts and ends. This includes a report log with the request ID, billed duration,
initialization duration, and other details. If your function throws an error, the runtime returns that
error to the invoker.

® Note
Logging is subject to CloudWatch Logs quotas. Log data can be lost due to throttling or, in

some cases, when an instance of your function is stopped.

Lambda scales your function by running additional instances of it as demand increases, and by
stopping instances as demand decreases. This model leads to variations in application architecture,
such as:

» Unless noted otherwise, incoming requests might be processed out of order or concurrently.

Programming model 25

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/cloudwatch_limits_cwl.html

AWS Lambda Developer Guide

« Do not rely on instances of your function being long lived, instead store your application's state
elsewhere.

» Use local storage and class-level objects to increase performance, but keep to a minimum the
size of your deployment package and the amount of data that you transfer onto the execution
environment.

For a hands-on introduction to the programming model in your preferred programming language,
see the following chapters.

» Building Lambda functions with Node.js

» Building Lambda functions with Python

» Building Lambda functions with Ruby

» Building Lambda functions with Java

» Building Lambda functions with Go

» Building Lambda functions with C#

» Building Lambda functions with PowerShell

Programming model 26

AWS Lambda Developer Guide

Understanding the Lambda execution environment lifecycle

Lambda invokes your function in an execution environment, which provides a secure and isolated
runtime environment. The execution environment manages the resources required to run your
function. The execution environment also provides lifecycle support for the function's runtime and
any external extensions associated with your function.

The function's runtime communicates with Lambda using the Runtime API. Extensions
communicate with Lambda using the Extensions API. Extensions can also receive log messages and

other telemetry from the function by using the Telemetry API.

O| Runtime API @, |[(_,‘- Runtime + Function HI"

‘O] Extensions API

(0}
©
©

Lambda Service Execution Environment

fO] Telemetry API :

‘ API Endpoints Processes ‘

When you create your Lambda function, you specify configuration information, such as the amount
of memory available and the maximum execution time allowed for your function. Lambda uses this
information to set up the execution environment.

The function's runtime and each external extension are processes that run within the execution
environment. Permissions, resources, credentials, and environment variables are shared between
the function and the extensions.

Topics

Lambda execution environment lifecycle

Cold starts and latency

Reducing cold starts with Provisioned Concurrency

Optimizing static initialization

Execution environment 27

AWS Lambda Developer Guide

Lambda execution environment lifecycle

EXTENSION | RUNTIME = FUNCTION RUNTIME | EXTENSION
INIT INIT INIT INVOKE INVOKE SHUTDOWN | SHUTDOWN
- J J - S
Y Y~ Y Y
INIT INVOKE INVOKE SHUTDOWN

Each phase starts with an event that Lambda sends to the runtime and to all registered extensions.
The runtime and each extension indicate completion by sending a Next API request. Lambda
freezes the execution environment when the runtime and each extension have completed and
there are no pending events.

Topics

« Init phase

 Failures during the Init phase

« Restore phase (Lambda SnapStart only)

« Invoke phase

o Failures during the invoke phase

o Shutdown phase

Init phase

In the Init phase, Lambda performs three tasks:

Start all extensions (Extension init)

Bootstrap the runtime (Runtime init)

Run the function's static code (Function init)

Run any before-checkpoint runtime hooks (Lambda SnapStart only)

The Init phase ends when the runtime and all extensions signal that they are ready by sending

a Next API request. The Init phase is limited to 10 seconds. If all three tasks do not complete
within 10 seconds, Lambda retries the Init phase at the time of the first function invocation with
the configured function timeout.

Runtime environment lifecycle 28

AWS Lambda Developer Guide

When Lambda SnapStart is activated, the Init phase happens when you publish a function
version. Lambda saves a snapshot of the memory and disk state of the initialized execution
environment, persists the encrypted snapshot, and caches it for low-latency access. If you have a
before-checkpoint runtime hook, then the code runs at the end of Init phase.

(® Note

The 10-second timeout doesn't apply to functions that are using provisioned concurrency
or SnapStart. For provisioned concurrency and SnapStart functions, your initialization code
can run for up to 15 minutes. The time limit is 130 seconds or the configured function
timeout (maximum 900 seconds), whichever is higher.

When you use provisioned concurrency, Lambda initializes the execution environment when
you configure the PC settings for a function. Lambda also ensures that initialized execution
environments are always available in advance of invocations. You may see gaps between your

function's invocation and initialization phases. Depending on your function's runtime and memory
configuration, you may also see variable latency on the first invocation on an initialized execution
environment.

For functions using on-demand concurrency, Lambda may occasionally initialize execution
environments ahead of invocation requests. When this happens, you may also observe a time gap
between your function's initialization and invocation phases. We recommend you to not take a
dependency on this behavior.

Failures during the Init phase

If a function crashes or times out during the Init phase, Lambda emits error information in the
INIT_REPORT log.

Example — INIT_REPORT log for timeout
INIT_REPORT Init Duration: 1236.04 ms Phase: init Status: timeout
Example — INIT_REPORT log for extension failure

INIT_REPORT Init Duration: 1236.04 ms Phase: init Status: error Error Type:
Extension.Crash

Runtime environment lifecycle 29

https://docs.aws.amazon.com/lambda/latest/dg/provisioned-concurrency.html

AWS Lambda Developer Guide

If the Init phase is successful, Lambda doesn't emit the INIT_REPORT log unless SnapStart or
provisioned concurrency is enabled. SnapStart and provisioned concurrency functions always emit

INIT_REPORT. For more information, see Monitoring for Lambda SnapStart.

Restore phase (Lambda SnapStart only)

When you first invoke a SnapStart function and as the function scales up, Lambda resumes new
execution environments from the persisted snapshot instead of initializing the function from
scratch. If you have an after-restore runtime hook, the code runs at the end of the Restore phase.

You are charged for the duration of after-restore runtime hooks. The runtime must load and after-
restore runtime hooks must complete within the timeout limit (10 seconds). Otherwise, you'll get
a SnapStartTimeoutException. When the Restore phase completes, Lambda invokes the function
handler (the Invoke phase).

Failures during the Restore phase
If the Restore phase fails, Lambda emits error information in the RESTORE_REPORT log.

Example — RESTORE_REPORT log for timeout

RESTORE_REPORT Restore Duration: 1236.04 ms Status: timeout

Example — RESTORE_REPORT log for runtime hook failure

RESTORE_REPORT Restore Duration: 1236.04 ms Status: error Error Type: Runtime.ExitError

For more information about the RESTORE_REPORT log, see Monitoring for Lambda SnapStart.

Invoke phase

When a Lambda function is invoked in response to a Next API request, Lambda sends an Invoke
event to the runtime and to each extension.

The function's timeout setting limits the duration of the entire Invoke phase. For example, if you
set the function timeout as 360 seconds, the function and all extensions need to complete within
360 seconds. Note that there is no independent post-invoke phase. The duration is the sum of all
invocation time (runtime + extensions) and is not calculated until the function and all extensions

have finished executing.

The invoke phase ends after the runtime and all extensions signal that they are done by sending a
Next API request.

Runtime environment lifecycle 30

AWS Lambda Developer Guide

Failures during the invoke phase

If the Lambda function crashes or times out during the Invoke phase, Lambda resets the
execution environment. The following diagram illustrates Lambda execution environment behavior
when there's an invoke failure:

EXTENSION | RUNTIME = FUNCTION RUNTIME | EXTENSION EXTENSION | RUNTIME = FUNCTION RUNTIME | EXTENSION
INIT INIT INIT ECKE (LUOKE RESET | SHUTDOWN INIT INIT INIT Lo SHUTDOWN | SHUTDOWN

INIT INVOKE INVOKE WITH ERROR INVOKE SHUTDOWN

In the previous diagram:

» The first phase is the INIT phase, which runs without errors.
» The second phase is the INVOKE phase, which runs without errors.

« At some point, suppose your function runs into an invoke failure (such as a function timeout or
runtime error). The third phase, labeled INVOKE WITH ERROR, illustrates this scenario. When
this happens, the Lambda service performs a reset. The reset behaves like a Shutdown event.
First, Lambda shuts down the runtime, then sends a Shutdown event to each registered external
extension. The event includes the reason for the shutdown. If this environment is used for a new
invocation, Lambda re-initializes the extension and runtime together with the next invocation.

Note that the Lambda reset does not clear the /tmp directory content prior to the next init
phase. This behavior is consistent with the regular shutdown phase.

(® Note

AWS is currently implementing changes to the Lambda service. Due to these changes,
you may see minor differences between the structure and content of system log
messages and trace segments emitted by different Lambda functions in your AWS
account.

If your function's system log configuration is set to plain text, this change affects the
log messages captured in CloudWatch Logs when your function experiences an invoke
failure. The following examples show log outputs in both old and new formats.

These changes will be implemented during the coming weeks, and all functions in all
AWS Regions except the China and GovCloud regions will transition to use the new-
format log messages and trace segments.

Runtime environment lifecycle 31

AWS Lambda Developer Guide

Example CloudWatch Logs log output (runtime or extension crash) - old style

START RequestId: c3252230-c73d-49f6-8844-968c01dle2el Version: $LATEST

RequestId: c3252230-c73d-49f6-8844-968c01dle2el Error: Runtime exited without
providing a reason

Runtime.ExitErxor

END RequestId: c3252230-c73d-49f6-8844-968c0ldle2el

REPORT RequestId: c3252230-c73d-49f6-8844-968c01ldle2el Duration: 933.59 ms Billed
Duration: 934 ms Memory Size: 128 MB Max Memory Used: 9 MB

Example CloudWatch Logs log output (function timeout) - old style

START RequestId: b70435cc-261c-4438-b9b6-efesc8f0@4b21 Version: $LATEST
2024-03-04T17:22:38.033Z b70435cc-261c-4438-b9b6-efestc8Ff04b21 Task timed out after
3.00 seconds

END RequestId: b70435cc-261c-4438-b9b6-efestc8f04b21

REPORT RequestId: b70435cc-261c-4438-b9b6-efestc8f04b21 Duration: 3004.92 ms Billed
Duration: 3000 ms Memory Size: 128 MB Max Memory Used: 33 MB Init Duration: 111.23
ms

The new format for CloudWatch logs includes an additional statusfield in the REPORT line. In
the case of a runtime or extension crash, the REPORT line also includes a field ExrrorType.

Example CloudWatch Logs log output (runtime or extension crash) - new style

START RequestId: 5b866fb1-7154-4af6-8078-6ef6casc2ddd Version: $LATEST

END RequestId: 5b866fbl-7154-4af6-8078-6ef6casc2ddd

REPORT RequestId: 5b866fbl-7154-4af6-8078-6ef6casc2ddd Duration: 133.61 ms Billed
Duration: 133 ms Memory Size: 128 MB Max Memory Used: 31 MB Init Duration: 80.00
ms Status: error Error Type: Runtime.ExitError

Example CloudWatch Logs log output (function timeout) - new style

START RequestId: 527cb862-4f5e-49a9-9ae4-a7edc90f@fda Version: $LATEST

END RequestId: 527cb862-4f5e-49a9-9aes4-a7edc90f0fda

REPORT RequestId: 527cb862-4f5e-49a9-9ae4-a7edc90f@fda Duration: 3016.78 ms Billed
Duration: 3016 ms Memory Size: 128 MB Max Memory Used: 31 MB Init Duration: 84.00
ms Status: timeout

Runtime environment lifecycle 32

AWS Lambda Developer Guide

o The fourth phase represents the INVOKE phase immediately following an invoke failure.
Here, Lambda initializes the environment again by re-running the INIT phase. This is called a
suppressed init. When suppressed inits occur, Lambda doesn't explicitly report an additional INIT
phase in CloudWatch Logs. Instead, you may notice that the duration in the REPORT line includes
an additional INIT duration + the INVOKE duration. For example, suppose you see the following
logs in CloudWatch:

2022-12-20T01:00:00.000-08:00 START RequestId: XXX Version: $LATEST
2022-12-20T01:00:02.500-08:00 END RequestId: XXX
2022-12-20T01:00:02.500-08:00 REPORT RequestId: XXX Duration: 3022.91 ms
Billed Duration: 3000 ms Memory Size: 512 MB Max Memory Used: 157 MB

In this example, the difference between the REPORT and START timestamps is 2.5 seconds.
This doesn't match the reported duration of 3022.91 millseconds, because it doesn't take into
account the extra INIT (suppressed init) that Lambda performed. In this example, you can infer
that the actual INVOKE phase took 2.5 seconds.

For more insight into this behavior, you can use the Accessing real-time telemetry

data for extensions using the Telemetry API. The Telemetry APl emits INIT_START,
INIT_RUNTIME_DONE, and INIT_REPORT events with phase=invoke whenever suppressed
inits occur in between invoke phases.

» The fifth phase represents the SHUTDOWN phase, which runs without errors.

Shutdown phase

When Lambda is about to shut down the runtime, it sends a Shutdown event to each registered
external extension. Extensions can use this time for final cleanup tasks. The Shutdown event is a
response to a Next API request.

Duration: The entire Shutdown phase is capped at 2 seconds. If the runtime or any extension does
not respond, Lambda terminates it via a signal (SIGKILL).

After the function and all extensions have completed, Lambda maintains the execution
environment for some time in anticipation of another function invocation. However, Lambda
terminates execution environments every few hours to allow for runtime updates and maintenance
—even for functions that are invoked continuously. You should not assume that the execution
environment will persist indefinitely. For more information, see Implement statelessness in

functions.

Runtime environment lifecycle 33

AWS Lambda Developer Guide

When the function is invoked again, Lambda thaws the environment for reuse. Reusing the
execution environment has the following implications:

» Obijects declared outside of the function's handler method remain initialized, providing
additional optimization when the function is invoked again. For example, if your Lambda
function establishes a database connection, instead of reestablishing the connection, the original
connection is used in subsequent invocations. We recommend adding logic in your code to check
if a connection exists before creating a new one.

« Each execution environment provides between 512 MB and 10,240 MB, in 1-MB increments, of
disk space in the /tmp directory. The directory content remains when the execution environment
is frozen, providing a transient cache that can be used for multiple invocations. You can add extra
code to check if the cache has the data that you stored. For more information on deployment
size limits, see Lambda quotas.

« Background processes or callbacks that were initiated by your Lambda function and did not
complete when the function ended resume if Lambda reuses the execution environment. Make
sure that any background processes or callbacks in your code are complete before the code exits.

Cold starts and latency

When Lambda receives a request to run a function via the Lambda API, the service first prepares an
execution environment. During this initialization phase, the service downloads your code, starts the
environment, and runs any initialization code outside of the main handler. Finally, Lambda runs the
handler code.

Time

¥

Download your Start new execution Execute initialization Execute handler
code environment code code

Cold start duration

Invocation duration

In this diagram, the first two steps of downloading the code and setting up the environment are
frequently referred to as a “cold start”. You are not charged for this time, but it does add latency to
your overall invocation duration.

After the invocation completes, the execution environment is frozen. To improve resource
management and performance, Lambda retains the execution environment for a period of

Cold starts and latency 34

AWS Lambda Developer Guide

time. During this time, if another request arrives for the same function, Lambda can reuse the
environment. This second request typically finishes more quickly, since the execution environment
is already fully set up. This is called a “warm start”.

Cold starts typically occur in under 1% of invocations. The duration of a cold start varies from
under 100 ms to over 1 second. In general, cold starts are typically more common in development
and test functions than production workloads. This is because development and test functions are
usually invoked less frequently.

Reducing cold starts with Provisioned Concurrency

If you need predictable function start times for your workload, provisioned concurrency is the

recommended solution to ensure the lowest possible latency. This feature pre-initializes execution
environments, reducing cold starts.

For example, a function with a provisioned concurrency of 6 has 6 execution environments pre-
warmed.

Time .
1 1
2 2
3 3
4 4
5 5 Cold start duration
Function ready
6 6

Invocation duration

Optimizing static initialization

Static initialization happens before the handler code starts running in a function. This is the
initialization code that you provide, that is outside of the main handler. This code is often used
to import libraries and dependencies, set up configurations, and initialize connections to other
services.

Reducing cold starts with Provisioned Concurrency 35

AWS Lambda Developer Guide

The following Python example shows importing, and configuring modules, and creating the
Amazon S3 client during the initialization phase, before the 1ambda_handler function runs
during invoke.

import os
import json
import cv2
import logging
import boto3

s3 = boto3.client('s3"')
logger = logging.getlLogger()
logger.setlLevel(logging.INFO)

def lambda_handler(event, context):

Handler logic...

The largest contributor of latency before function execution comes from initialization code. This
code runs when a new execution environment is created for the first time. The initialization code is
not run again if an invocation uses a warm execution environment. Factors that affect initialization
code latency include:

» The size of the function package, in terms of imported libraries and dependencies, and Lambda
layers.

« The amount of code and initialization work.

» The performance of libraries and other services in setting up connections and other resources.

There are a number of steps that developers can take to optimize static initialization latency. If a
function has many objects and connections, you may be able to rearchitect a single function into
multiple, specialized functions. These are individually smaller and each have less initialization code.

It's important that functions only import the libraries and dependencies that they need. For
example, if you only use Amazon DynamoDB in the AWS SDK, you can require an individual service
instead of the entire SDK. Compare the following three examples:

// Instead of const AWS = require('aws-sdk'), use:
const DynamoDB = require('aws-sdk/clients/dynamodb')

Optimizing static initialization 36

AWS Lambda Developer Guide

// Instead of const AWSXRay = require('aws-xray-sdk'), use:
const AWSXRay = require('aws-xray-sdk-core')

// Instead of const AWS = AWSXRay.captureAWS(require('aws-sdk')), use:
const dynamodb = new DynamoDB.DocumentClient()
AWSXRay.captureAWSClient(dynamodb.service)

Static initialization is also often the best place to open database connections to allow a function to
reuse connections over multiple invocations to the same execution environment. However, you may
have large numbers of objects that are only used in certain execution paths in your function. In this
case, you can lazily load variables in the global scope to reduce the static initialization duration.

Avoid global variables for context-specific information. If your function has a global variable
that is used only for the lifetime of a single invocation and is reset for the next invocation, use a
variable scope that is local to the handler. Not only does this prevent global variable leaks across
invocations, it also improves the static initialization performance.

Optimizing static initialization 37

AWS Lambda Developer Guide

Understanding events and event-driven architectures

Some AWS services can directly invoke your Lambda functions. These services push events to
your Lambda function. These events that trigger a Lambda function can be almost anything, from
an HTTP request through API Gateway, a schedule managed by an EventBridge rule, an AWS loT
event, or an Amazon S3 event. When passed to your function, events are data structured in JSON
format. The JSON structure varies depending on the service that generates it and the event type.

When a function is triggered by an event, this is called an invocation. While Lambda function
invocations can last up to 15 minutes, Lambda is best-suited for short invocations that last one
second or less. This is particularly true of event-driven architectures. In an event-driven architecture,
each Lambda function is treated as a microservice, responsible for performing a narrow set of
specific instructions.

Topics

+ Benefits of event-driven architectures

+ Trade-offs of event-driven architectures

« Anti-patterns in Lambda-based event-driven applications

Benefits of event-driven architectures

Replacing polling and webhooks with events

Many traditional architectures use polling and webhook mechanisms to communicate state
between different components. Polling can be highly inefficient for fetching updates since there

is a lag between new data becoming available and synchronization with downstream services.
Webhooks are not always supported by other microservices that you want to integrate with. They
may also require custom authorization and authentication configurations. In both cases, these
integration methods are challenging to scale on-demand without additional work by development
teams.

Event-driven architectures 38

Developer Guide

AWS Lambda
Folling based @ @
communication l:]
D
Time-based
rle
Thirt_j-party APl 5 Downstream
application resource
Lambda
function
Webhook-based @
communication
Custom
authorizer
Third-party ,,, —1 > - s Downstream
application resource
HTTP

endpoint

Both of these mechanisms can be replaced by events, which can be filtered, routed, and pushed
downstream to consuming microservices. This approach can result in less bandwidth consumption,
CPU utilization, and potentially lower cost. These architectures can also reduce complexity, since
each functional unit is smaller and there is often less code.

Third-party
application

Evy

bifs
= = Downstream

resource

Lambda
function

Benefits of event-driven architectures

39

AWS Lambda Developer Guide

Event-driven architectures can also make it easier to design near-real-time systems, helping
organizations move away from batch-based processing. Events are generated at the time when
state in the application changes, so the custom code of a microservice should be designed to
handle the processing of a single event. Since scaling is handled by the Lambda service, this
architecture can handle significant increases in traffic without changing custom code. As events
scale up, so does the compute layer that processes events.

Reducing complexity

Microservices enable developers and architects to decompose complex workflows. For example,
an ecommerce monolith may be broken down into order acceptance and payment processes
with separate inventory, fulfillment and accounting services. What may be complex to manage
and orchestrate in a monolith becomes a series of decoupled services that communicate
asynchronously with events.

aWS_|

el AWS Cloud

: Order acceptance D Payment processing i
New o} L . |
em!ﬂer @ o||[< - AWS Step Functions ; LS — mvenltory
| P workflows ; —_<> - service
: AP| Gateway SQS queue i i Start payment - i EventBridge
Pl function Q o ! event bus
' P N £ ;
--- b o~ i ; Fulfilment
! T | service
| / \ | :
OO |
! Accounting
service

This approach also makes it possible to assemble services that process data at different rates. In
this case, an order acceptance microservice can store high volumes of incoming orders by buffering
the messages in an SQS queue.

A payment processing service, which is typically slower due to the complexity of handling
payments, can take a steady stream of messages from the SQS queue. It can orchestrate complex
retry and error handling logic using AWS Step Functions, and coordinate active payment workflows
for hundreds of thousands of orders.

Improving scalability and extensibility

Microservices generate events that are typically published to messaging services like Amazon
SNS and Amazon SQS. These behave like an elastic buffer between microservices and help handle

Benefits of event-driven architectures 40

AWS Lambda Developer Guide

scaling when traffic increases. Services like Amazon EventBridge can then filter and route messages
depending upon the content of the event, as defined in rules. As a result, event-based applications
can be more scalable and offer greater redundancy than monolithic applications.

This system is also highly extensible, allowing other teams to extend features and add functionality
without impacting the order processing and payment processing microservices. By publishing
events using EventBridge, this application integrates with existing systems, such as the inventory
microservice, but also enables any future application to integrate as an event consumer. Producers
of events have no knowledge of event consumers, which can help simplify the microservice logic.

Trade-offs of event-driven architectures

Variable latency

Unlike monolithic applications, which may process everything within the same memory space on
a single device, event-driven applications communicate across networks. This design introduces
variable latency. While it's possible to engineer applications to minimize latency, monolithic
applications can almost always be optimized for lower latency at the expense of scalability and
availability.

Workloads that require consistent low-latency performance, such as high-frequency trading
applications in banks or sub-millisecond robotics automation in warehouses, are not good
candidates for event-driven architecture.

Eventual consistency

An event represents a change in state, and with many events flowing through different services
in an architecture at any given point of time, such workloads are often eventually consistent. This

makes it more complex to process transactions, handle duplicates, or determine the exact overall
state of a system.

Some workloads contain a combination of requirements that are eventually consistent (for
example, total orders in the current hour) or strongly consistent (for example, current inventory).
For workloads needing strong data consistency, there are architecture patterns to support this. For
example:

« DynamoDB can provide strongly consistent reads, sometimes at a higher latency, consuming a

greater throughput than the default mode. DynamoDB can also support transactions to help

maintain data consistency.

Trade-offs of event-driven architectures 41

https://en.wikipedia.org/wiki/Eventual_consistency
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ReadConsistency.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/transactions.html

AWS Lambda Developer Guide

» You can use Amazon RDS for features needing ACID properties, though relational databases
are generally less scalable than NoSQL databases like DynamoDB. Amazon RDS Proxy can help
manage connection pooling and scaling from ephemeral consumers like Lambda functions.

Event-based architectures are usually designed around individual events instead of large batches
of data. Generally, workflows are designed to manage the steps of an individual event or execution
flow instead of operating on multiple events simultaneously. In serverless, real-time event
processing is preferred over batch processing: batches should be replaced with many smaller
incremental updates. While this can make workloads more available and scalable, it also makes it
more challenging for events to have awareness of other events.

Returning values to callers

In many cases, event-based applications are asynchronous. This means that caller services do not
wait for requests from other services before continuing with other work. This is a fundamental
characteristic of event-driven architectures that enables scalability and flexibility. This means that
passing return values or the result of a workflow is more complex than in synchronous execution
flows.

Most Lambda invocations in production systems are asynchronous, responding to events from

services like Amazon S3 or Amazon SQS. In these cases, the success or failure of processing an
event is often more important than returning a value. Features such as dead letter queues (DLQs)

in Lambda are provided to ensure you can identify and retry failed events, without needing to
notify the caller.

Debugging across services and functions

Debugging event-driven systems is also different compared to a monolithic application. With
different systems and services passing events, it's not possible to record and reproduce the exact
state of multiple services when errors occur. Since each service and function invocation has
separate log files, it can be more complicated to determine what happened to a specific event that
caused an error.

There are three important requirements for building a successful debugging approach in event-
driven systems. First, a robust logging system is critical, and this is provided across AWS services
and embedded in Lambda functions by Amazon CloudWatch. Second, in these systems, it's
important to ensure that every event has a transaction identifier that is logged at each step
throughout a transaction, to help when searching for logs.

Trade-offs of event-driven architectures 42

https://en.wikipedia.org/wiki/ACID
https://aws.amazon.com/rds/proxy/
https://docs.aws.amazon.com/lambda/latest/dg/invocation-async.html

AWS Lambda Developer Guide

Finally, it's highly recommended to automate the parsing and analysis of logs by using a debugging
and monitoring service like AWS X-Ray. This can consume logs across multiple Lambda invocations
and services, making it much easier to pinpoint the root cause of issues. See Troubleshooting
walkthrough for in-depth coverage of using X-Ray for troubleshooting.

Anti-patterns in Lambda-based event-driven applications

When building event-driven architectures with Lambda, be careful of anti-patterns that are
technically functional, but may be suboptimal from an architecture and cost perspective. This
section provides general guidance about these anti-patterns, but is not prescriptive.

The Lambda monolith

In many applications migrated from traditional servers, such as Amazon EC2 instances or Elastic
Beanstalk applications, developers “lift and shift” existing code. Frequently, this results in a single
Lambda function that contains all of the application logic that is triggered for all events. For a basic
web application, a monolithic Lambda function would handle all APl Gateway routes and integrate
with all necessary downstream resources.

AWS Cloud
S
oc—
oc—
E— oc—
Monolithic o—
application DynamoDE table
ANY route
) . —
j —
AP| Gateway Lambda
function
e
53 bucket

This approach has several drawbacks:

» Package size - The Lambda function may be much larger because it contains all possible code
for all paths, which makes it slower for the Lambda service to run.

» Hard to enforce least privilege — The function’s execution role must allow permissions to all

resources needed for all paths, making the permissions very broad. This is a security concern.
Many paths in the functional monolith do not need all the permissions that have been granted.

Anti-patterns in Lambda-based event-driven applications 43

AWS Lambda Developer Guide

« Harder to upgrade - In a production system, any upgrades to the single function are more risky
and could break the entire application. Upgrading a single path in the Lambda function is an
upgrade to the entire function.

« Harder to maintain - It's more difficult to have multiple developers working on the service since
it's a monolithic code repository. It also increases the cognitive burden on developers and makes
it harder to create appropriate test coverage for code.

« Harder to reuse code - It's harder to separate reusable libraries from monoliths, making code
reuse more difficult. As you develop and support more projects, this can make it harder to
support the code and scale your team'’s velocity.

« Harder to test — As the lines of code increase, it becomes harder to unit test all the possible
combinations of inputs and entry points in the code base. It's generally easier to implement unit
testing for smaller services with less code.

The preferred alternative is to decompose the monolithic Lambda function into individual
microservices, mapping a single Lambda function to a single, well-defined task. In this simple web
application with a few APl endpoints, the resulting microservice-based architecture can be based
upon the API Gateway routes.

AWS Cloud
Microservice
application
- | —
GET route User data I | —
I | —
oc—
Lambda DynameoDB table
function _
PUT route Binary data _-
Lambda 53 bucket
APl Gateway function
DELETE
route Einary data
>
Lambda S3 bucket
function

Anti-patterns in Lambda-based event-driven applications 44

AWS Lambda Developer Guide

Recursive patterns that cause run-away Lambda functions

AWS services generate events that invoke Lambda functions, and Lambda functions can send
messages to AWS services. Generally, the service or resource that invokes a Lambda function
should be different to the service or resource that the function outputs to. Failure to manage this
can result in infinite loops.

For example, a Lambda function writes an object to an Amazon S3 object, which in turn invokes the
same Lambda function via a put event. The invocation causes a second object to be written to the
bucket, which invokes the same Lambda function:

Lambda function 53 bucket
. Event .
! Put object !
) Put event
[Put object
Put event i
| Fut object |
i Put event |

While the potential for infinite loops exists in most programming languages, this anti-pattern has
the potential to consume more resources in serverless applications. Both Lambda and Amazon

S3 automatically scale based upon traffic, so the loop may cause Lambda to scale to consume all
available concurrency and Amazon S3 will continue to write objects and generate more events for
Lambda.

This example uses S3, but the risk of recursive loops also exists in Amazon SNS, Amazon SQS,
DynamoDB, and other services. You can use recursive loop detection to find and avoid this anti-
pattern.

Anti-patterns in Lambda-based event-driven applications 45

AWS Lambda Developer Guide

Lambda functions calling Lambda functions

Functions enable encapsulation and code re-use. Most programming languages support the
concept of code synchronously calling functions within a code base. In this case, the caller waits
until the function returns a response.

When this happens on a traditional server or virtual instance, the operating system scheduler
switches to other available work. Whether the CPU runs at 0% or 100% does not affect the overall
cost of the application, since you are paying for the fixed cost of owning and operating a server.

This model often does not adapt well to serverless development. For example, consider a simple
ecommerce application consisting of three Lambda functions that process an order:

Create order Process payment Create invoice

Place order

|
i

|

!

Ll

Process credit card

! Greate PDF

-
|

i
Response

Response

o
o

1
1
Response !
1

In this case, the Create order function calls the Process payment function, which in turn calls the
Create invoice function. While this synchronous flow may work within a single application on a
server, it introduces several avoidable problems in a distributed serverless architecture:

» Cost — With Lambda, you pay for the duration of an invocation. In this example, while the Create
invoice functions runs, two other functions are also running in a wait state, shown in red on the
diagram.

« Error handling - In nested invocations, error handling can become much more complex. For
example, an error in Create invoice might require the Process payment function to reverse the
charge, or it may instead retry the Create invoice process.

» Tight coupling - Processing a payment typically takes longer than creating an invoice. In this
model, the availability of the entire workflow is limited by the slowest function.

Anti-patterns in Lambda-based event-driven applications 46

AWS Lambda Developer Guide

« Scaling — The concurrency of all three functions must be equal. In a busy system, this uses more
concurrency than would otherwise be needed.

In serverless applications, there are two common approaches to avoid this pattern. First, use

an Amazon SQS queue between Lambda functions. If a downstream process is slower than an
upstream process, the queue durably persists messages and decouples the two functions. In this
example, the Create order function would publish a message to an SQS queue, and the Process
payment function consumes messages from the queue.

The second approach is to use AWS Step Functions. For complex processes with multiple types
of failure and retry logic, Step Functions can help reduce the amount of custom code needed to
orchestrate the workflow. As a result, Step Functions orchestrates the work and robustly handles
errors and retries, and the Lambda functions contain only business logic.

Synchronous waiting within a single Lambda function

Within a single Lambda, ensure that any potentially concurrent activities are not scheduled
synchronously. For example, a Lambda function might write to an S3 bucket and then write to a

DynamoDB table:
oc—1
[| —
| —
oc—
Lambda function 53 bucket DynamoDB table
® Event ..
! Put object
" Response .
Write item |
4
Response
) Response

In this design, wait times are compounded because the activities are sequential. In cases where the
second task depends on the completion of the first task, you can reduce the total waiting time and
the cost of execution by have two separate Lambda functions:

Anti-patterns in Lambda-based event-driven applications 47

AWS Lambda Developer Guide

'l [| —
\ [| —
oc—
U [—
Lambda function 53 bucket Lambda function DynamoDB table
. Event
i Put object |
- > Fut event !
< : . > Write item
Response | =

In this design, the first Lambda function responds immediately after putting the object to the
Amazon S3 bucket. The S3 service invokes the second Lambda function, which then writes data
to the DynamoDB table. This approach minimizes the total wait time in the Lambda function

executions.

Anti-patterns in Lambda-based event-driven applications

48

AWS Lambda Developer Guide

Lambda-based application design principles

A well-architected event-driven application uses a combination of AWS services and custom
code to process and manage requests and data. This chapter focuses on Lambda-specific topics
in application design. There are many important considerations for serverless architects when
designing applications for busy production systems.

Many of the best practices that apply to software development and distributed systems also apply
to serverless application development. The overall goal is to develop workloads that are:

« Reliable - offering your end users a high level of availability. AWS serverless services are reliable
because they are also designed for failure.
« Durable - providing storage options that meet the durability needs of your workload.

» Secure - following best practices and using the tools provided to secure access to workloads and
limit the blast radius.

» Performant - using computing resources efficiently and meeting the performance needs of your
end users.

» Cost-efficient- designing architectures that avoid unnecessary cost that can scale without
overspending, and also be decommissioned without significant overhead.

The following design principles can help you build workloads that meet these goals. Not every
principle may apply to every architecture, but they should guide you in general architecture
decisions.

Topics

« Use services instead of custom code

+ Understand Lambda abstraction levels

« Implement statelessness in functions

« Minimize coupling

« Build for on-demand data instead of batches

« Consider AWS Step Functions for orchestration

o Implement idempotency

» Use multiple AWS accounts for managing quotas

Application design 49

AWS Lambda Developer Guide

Use services instead of custom code

Serverless applications usually comprise several AWS services, integrated with custom code run
in Lambda functions. While Lambda can be integrated with most AWS services, the services most
commonly used in serverless applications are:

Category AWS service
Compute AWS Lambda
Data storage Amazon S3

Amazon DynamoDB

Amazon RDS
API Amazon AP| Gateway
Application integration Amazon EventBridge

Amazon SNS

Amazon SQS
Orchestration AWS Step Functions
Streaming data and analytics Amazon Data Firehose

There are many well-established, common patterns in distributed architectures that you can build
yourself or implement using AWS services. For most customers, there is little commercial value in
investing time to develop these patterns from scratch. When your application needs one of these
patterns, use the corresponding AWS service:

Pattern AWS service
Queue Amazon SQS
Event bus Amazon EventBridge

Use services instead of custom code 50

AWS Lambda Developer Guide

Pattern AWS service
Publish/subscribe (fan-out) Amazon SNS
Orchestration AWS Step Functions
API Amazon AP| Gateway
Event streams Amazon Kinesis

These services are designed to integrate with Lambda and you can use infrastructure as code
(1aC) to create and discard resources in the services. You can use any of these services via the AWS
SDK without needing to install applications or configure servers. Becoming proficient with using
these services via code in your Lambda functions is an important step to producing well-designed
serverless applications.

Understand Lambda abstraction levels

The Lambda service limits your access to the underlying operating systems, hypervisors, and
hardware running your Lambda functions. The service continuously improves and changes
infrastructure to add features, reduce cost and make the service more performant. Your code
should assume no knowledge of how Lambda is architected and assume no hardware affinity.

Similarly, Lambda's integrations with other services are managed by AWS, with only a small
number of configuration options exposed to you. For example, when API Gateway and Lambda
interact, there is no concept of load balancing since it is entirely managed by the services. You also
have no direct control over which Availability Zones the services use when invoking functions at

any point in time, or how Lambda determines when to scale up or down the number of execution
environments.

This abstraction allows you to focus on the integration aspects of your application, the flow of
data, and the business logic where your workload provides value to your end users. Allowing the
services to manage the underlying mechanics helps you develop applications more quickly with
less custom code to maintain.

Implement statelessness in functions

When building Lambda functions, you should assume that the environment exists only for a single
invocation. The function should initialize any required state when it is first started. For example,

Understand Lambda abstraction levels 51

https://aws.amazon.com/tools/
https://aws.amazon.com/tools/
https://aws.amazon.com/about-aws/global-infrastructure/regions_az/

AWS Lambda Developer Guide

your function may require fetching data from a DynamoDB table. It should commit any permanent
data changes to a durable store such as Amazon S3, DynamoDB, or Amazon SQS before exiting. It
should not rely on any existing data structures or temporary files, or any internal state that would
be managed by multiple invocations.

To initialize database connections and libraries, or load state, you can take advantage of static
initialization. Since execution environments are reused where possible to improve performance,
you can amortize the time taken to initialize these resources over multiple invocations. However,
you should not store any variables or data used in the function within this global scope.

Minimize coupling

Most architectures should prefer many, shorter functions over fewer, larger ones. The purpose

of each function should be to handle the event passed into the function, with no knowledge or
expectations of the overall workflow or volume of transactions. This makes the function agnostic
to the source of the event with minimal coupling to other services.

Any global-scope constants that change infrequently should be implemented as environment
variables to allow updates without deployments. Any secrets or sensitive information should be
stored in AWS Systems Manager Parameter Store or AWS Secrets Manager and loaded by the

function. Since these resources are account-specific, this allows you to create build pipelines across
multiple accounts. The pipelines load the appropriate secrets per environment, without exposing
these to developers or requiring any code changes.

Build for on-demand data instead of batches

Many traditional systems are designed to run periodically and process batches of transactions that
have built up over time. For example, a banking application may run every hour to process ATM
transactions into central ledgers. In Lambda-based applications, the custom processing should be
triggered by every event, allowing the service to scale up concurrency as needed, to provide near-
real time processing of transactions.

While you can run cron tasks in serverless applications by using scheduled expressions for rules in

Amazon EventBridge, these should be used sparingly or as a last-resort. In any scheduled task that
processes a batch, there is the potential for the volume of transactions to grow beyond what can
be processed within the 15-minute Lambda duration limit. If the limitations of external systems
force you to use a scheduler, you should generally schedule for the shortest reasonable recurring
time period.

Minimize coupling 52

https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-parameter-store.html
https://aws.amazon.com/secrets-manager/
https://en.wikipedia.org/wiki/Cron
https://docs.aws.amazon.com/eventbridge/latest/userguide/scheduled-events.html

AWS Lambda

Developer Guide

For example, it's not best practice to use a batch process that triggers a Lambda function to fetch
a list of new Amazon S3 objects. This is because the service may receive more new objects in
between batches than can be processed within a 15-minute Lambda function.

®
Ool]

EveniBridge rule

Scheduled event

Lambda function

53 bucket

Fetch list of new objects

g ""l

i S

F 3

List
: Fetch object 1 !
| Object . 5
: Fetch object 2 |
' Object Fetch object 3 !
' Object
: Fetch object._n |
| Object E

e, =

|‘ J

Instead, Amazon S3 should invoke the Lambda function each time a new object is put into the

bucket. This approach is significantly more scalable and works in near-real time.

[! |

—1 Events

| A = -
\ 0 "._._." |

53 bucket Lambda function

Consider AWS Step Functions for orchestration

Workflows that involve branching logic, different types of failure models, and retry logic typically

use an orchestrator to keep track of the state of the overall execution. Avoid using Lambda

functions for this purpose, since it results in tight coupling and complex code handling routing.

Consider AWS Step Functions for orchestration

53

AWS Lambda Developer Guide

With AWS Step Functions, you use state machines to manage orchestration. This extracts the error
handling, routing, and branching logic from your code, replacing it with state machines declared
using JSON. Apart from making workflows more robust and observable, it allows you to add

versioning to workflows and make the state machine a codified resource that you can add to a code
repository.

It's common for simpler workflows in Lambda functions to become more complex over time. When
operating a production serverless application, it's important to identify when this is happening, so
you can migrate this logic to a state machine.

Implement idempotency

AWS serverless services, including Lambda, are fault-tolerant and designed to handle failures. For
example, if a service invokes a Lambda function and there is a service disruption, Lambda invokes
your function in a different Availability Zone. If your function throws an error, Lambda retries the

invocation.

Since the same event may be received more than once, functions should be designed to be
idempotent. This means that receiving the same event multiple times does not change the result
beyond the first time the event was received.

You can implement idempotency in Lambda functions by using a DynamoDB table to track recently
processed identifiers to determine if the transaction has already been handled previously. The
DynamoDB table usually implements a Time To Live (TTL) value to expire items to limit the storage

space used.

Use multiple AWS accounts for managing quotas

Many service quotas in AWS are set at the account level. This means that as you add more

workloads, you can quickly exhaust your limits.

An effective way to solve this issue is to use multiple AWS accounts, dedicating each workload to
its own account. This prevents quotas from being shared with other workloads or non-production
resources.

In addition, by using AWS Organizations, you can centrally manage the billing, compliance, and

security of these accounts. You can attach policies to groups of accounts to avoid custom scripts
and manual processes.

Implement idempotency 54

https://aws.amazon.com/step-functions/
https://en.wikipedia.org/wiki/Idempotence
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/TTL.html
https://aws.amazon.com/organizations/

AWS Lambda Developer Guide

One common approach is to provide each developer with an AWS account, and then use separate
accounts for a beta deployment stage and production:

AWS Cloud
T

__ |
:- : Code :- : Code | 1

1 h 1 il 1
: 8@ .’9@ (_Q@ ./_Cl@ E‘@ 1 —)|‘DU'S : 8@ 1 pus : El@ 1
: Developer : : Beta : : Production :
: accounts : : account : : account :
1 | 1 1 1 1

In this model, each developer has their own set of limits for the account, so their usage does
not impact your production environment. This approach also allows developers to test Lambda
functions locally on their development machines against live cloud resources in their individual
accounts.

Use multiple AWS accounts for managing quotas 55

AWS Lambda Developer Guide

Frequently asked questions about Lambda

In many cases, separating functionality into different functions can provide better performance
and also make an application more maintainable and scalable. However, Lambda “monoliths” may
be a useful stepping stone in migrating an existing application.

How much functionality should a single Lambda function contain?

The function should perform a single task in the flow of data across AWS services in your
microservice. However, if the functional task is too small, this may incur additional latency in the
application and overhead in managing large numbers of functions. The exact scope of a function is
determined by the use case.

Can Lambda-based applications work in multiple Regions?

Yes, many serverless services provide replication and support for multiple Regions, including
DynamoDB and Amazon S3. Lambda functions can be deployed in multiple Regions as part of a
deployment pipeline, and APl Gateway can be configured to support this configuration. See this
example architecture that shows how this can be achieved.

Can Lambda functions run on a timed schedule?

Yes, you can use scheduled expressions for rules in EventBridge to trigger a Lambda function.
This format uses cron syntax and can be set with a one-minute granularity. See this tutorial for an
example.

How can a Lambda function retain state between invocations?

In many cases, a DynamoDB table is an ideal way to retain since it provides low-latency data access
and can scale with the Lambda service. You can also store data in Amazon EFS for Lambda if you

are using this service, and this provides low-latency access to file system storage.
What types of workloads are suited to event-driven architectures?

Event-driven architectures communicate across different systems using networks, which introduce
variable latency. For workloads that require very low latency, such as real-time trading systems, this
design may not be the best choice. However, for highly scalable and available workloads, or those
with unpredictable traffic patterns, event-driven architectures can provide an effective way to meet
these demands.

Why does the Lambda service have a 15-minute limit for functions?

Frequently asked questions 56

https://d1.awsstatic.com/architecture-diagrams/ArchitectureDiagrams/serverless-architecture-for-global-applications-ra.pdf?did=wp_card&trk=wp_card
https://d1.awsstatic.com/architecture-diagrams/ArchitectureDiagrams/serverless-architecture-for-global-applications-ra.pdf?did=wp_card&trk=wp_card
https://docs.aws.amazon.com/eventbridge/latest/userguide/run-lambda-schedule.html
https://aws.amazon.com/blogs/compute/using-amazon-efs-for-aws-lambda-in-your-serverless-applications/

AWS Lambda Developer Guide

Lambda functions exist to process events and most events are processed very quickly — typically,
under 1 second for the majority of production invocations. The duration of a function is
determined by the time taken to process one event. While there are some compute-intensive
workloads that can take several minutes, very few require 15 minutes to complete.

If you find that you need a longer duration, ensure that your function code is processing single
events, performing single tasks, and using the best practices outlined in this document. In many
cases, functions can be redesigned to process single events and reduce the amount of time needed
to process.

Why is a function with reserved concurrency not scaling to meet incoming traffic?

Reserved concurrency for a Lambda function also acts as a maximum capacity value. Raising
the soft limit on total concurrency does not affect this behavior. If you need a function with
reserved concurrency to process more traffic, you can update the reserved concurrency value,
which increases the maximum throughput of your function.

Why is a function with provisioned concurrency still experiencing cold starts?

You can measure cold starts as Lambda scales up by adding X-Ray monitoring to your function. A
function using provisioned concurrency does not exhibit cold start behavior since the execution
environment is prepared ahead of invocation. However, provisioned concurrency must be applied
to a specific version or alias of a function, not the $LATEST version. In cases where you continue

to see cold start behavior, ensure that you are invoking the version of alias with provisioned
concurrency configured.

What is the best runtime to use for my Lambda function?

Lambda is agnostic to your choice of runtime. For simple functions, interpreted languages like
Python and Node.js offer the fastest performance. For functions with more complex computation,
compiled languages like Java are often slower to initialize but run quickly in the Lambda handler.
Choice of runtime is also influenced by developer preference and language familiarity.

How do | make sure that the SDK version doesn’t change?

The embedded SDKs may change without notice as AWS releases new services and features. You
can lock a version of the SDK by creating a Lambda layer with the specific version needed. The

function then always uses the version in the layer, even if the version embedded in the service
changes.

How can | test that a Lambda-based application can scale to meet the expected traffic?

Frequently asked questions 57

https://docs.aws.amazon.com/lambda/latest/dg/configuration-versions.html

AWS Lambda Developer Guide

To ensure that your application scales as expected, use load testing in your development process to
simulate the expected level of traffic.

Which workloads are suitable for provisioned concurrency?

Provisioned concurrency is designed to make functions available with double-digit millisecond
response times. Generally, interactive workloads benefit the most from the feature. Those are
applications with users initiating requests, such as web and mobile applications, and are the most
sensitive to latency. Asynchronous workloads, such as data processing pipelines, are often less
latency sensitive and so do not usually need provisioned concurrency.

Why is my Lambda function not logging any output?

If a Lambda function is not logging to CloudWatch, first ensure that the function is being invoked
by the caller. Check the logs of the calling service and any CloudWatch metrics that indicate an
event has triggered the function. Next, check the CloudWatch Logs for the function. All Lambda
functions log three lines, even if there is no other explicit logging in the custom code of the
function:

> Timestamp Message

Mo older events at this moment. Retry

> 2829-11-18T13:57:42.459-85: 89 START Reguestld: fedeb796-Beee-43a31-92c2-41aa%4e71cll Version: $LATEST
> 2820-11-18T13:57:42.471-85: 892 EMD Reguestld: fodeb796-Bece-433l1-92c2-41laa%4e71cll
> 20820-11-18T13:57:42.471-85: 849 REPORT Requestld: fedeb7%6-Beese-43al1-92c2-4135%4e71cll Duration: 1.93 ms

If there is no logging appearing in CloudWatch despite the function being invoked, check the
permissions of the function. The IAM role must include logging permissions, or the function
cannot write logs to the service. You can attach the AWSLambdaBasicExecutionRole policy to your
function's execution role to grant these permissions.

Frequently asked questions 58

AWS Lambda Developer Gui

de

Example serverless apps

The following examples provide function code and infrastructure as code (laC) templates to
quickly create and deploy serverless apps that implement some common Lambda uses cases. The
examples also include code examples and instructions to test the apps after you deploy them.

For each of the example apps, we provide instructions to either create and configure resources
manually using the AWS Management Console, or to use the AWS Serverless Application Model
to deploy the resources using laC. Follow the console intructions to learn more about configuring
the individual AWS resources for each app, or use to AWS SAM to quickly deploy resources as you
would in a production environment.

You can use the provided examples as a basis for your own serverless applications by modifying the

provided function code and templates for your own use case.

We're continuing to create new examples, so check back again to find more severless apps for
common Lambda use cases.

Example apps

» Example serverless file-processing app

Create a serverless app to automatically perform a file-processing task when an object is
uploaded to an Amazon S3 bucket. In this example, when a PDF file is uploaded, the app
encrypts the file and saves it to another S3 bucket.

» Example scheduled cron task app

Create an app to perform a scheduled task using a cron schedule. In this example, the app
performs maintenance on a Amazon DynamoDB table by deleting entries more than 12 months
old.

Example apps

59

AWS Lambda Developer Guide

Create a serverless file-processing app

One of the most common use cases for Lambda is to perform file processing tasks. For example,
you might use a Lambda function to automatically create PDF files from HTML files or images, or
to create thumbnails when a user uploads an image.

In this example, you create an app which automatically encrypts PDF files when they are uploaded
to an Amazon Simple Storage Service (Amazon S3) bucket. To implement this app, you create the
following resources:

« An S3 bucket for users to upload PDF files to

« A Lambda function in Python which reads the uploaded file and creates an encrypted, password-
protected version of it

« A second S3 bucket for Lambda to save the encrypted file in

You also create an AWS Identity and Access Management (IAM) policy to give your Lambda function
permission to perform read and write operations on your S3 buckets.

/)

Amazon Simple Storage AWS Lambda Amazon Simple Storage
Service (S3) Service (S3)
X I
X
xS
Permissions
policy

Y

Y

File upload Source bucket File encrypt Destination bucket
function

File-processing app 60

AWS Lambda Developer Guide

® Tip
If you're brand new to Lambda, we recommend that you start with the tutorial Create your
first function before creating this example app.

You can deploy your app manually by creating and configuring resources with the AWS
Management Console or the AWS Command Line Interface (AWS CLI). You can also deploy the app
by using the AWS Serverless Application Model (AWS SAM). AWS SAM is an infrastructure as code
(1aC) tool. With IaC, you don't create resources manually, but define them in code and then deploy
them automatically.

If you want to learn more about using Lambda with IaC before deploying this example app, see
Infrastructure as code (laC).

Create the Lambda function source code files
Create the following files in your project directory:

« lambda_function.py - the Python function code for the Lambda function that performs the
file encryption

« requirements.txt - a manifest file defining the dependencies that your Python function code
requires

Expand the following sections to view the code and to learn more about the role of each file. To
create the files on your local machine, either copy and paste the code below, or download the files
from the aws-lambda-developer-guide GitHub repo.

Python function code

Copy and paste the following code into a file named lambda_function. py.

from pypdf import PdfReader, PdfWriter
import uuid

import os

from urllib.parse import unquote_plus
import boto3

Create the S3 client to download and upload objects from S3
s3_client = boto3.client('s3"')

Create the source code files 61

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/file-processing-python

AWS Lambda Developer Guide

def lambda_handler(event, context):
Iterate over the S3 event object and get the key for all uploaded files
for record in event['Records']:
bucket = record['s3']['bucket']['name’]
key = unquote_plus(record['s3']J['object']['key']) # Decode the S3 object key to
remove any URL-encoded characters
download_path = f'/tmp/{uuid.uuid4()}.pdf"' # Create a path in the Lambda tmp
directory to save the file to
upload_path = f'/tmp/converted-{uuid.uuid4()}.pdf' # Create another path to
save the encrypted file to

If the file is a PDF, encrypt it and upload it to the destination S3 bucket
if key.lower().endswith('.pdf'):
s3_client.download_file(bucket, key, download_path)
encrypt_pdf(download_path, upload_path)
encrypted_key = add_encrypted_suffix(key)
s3_client.upload_file(upload_path, f'{bucket}-encrypted', encrypted_key)

Define the function to encrypt the PDF file with a password
def encrypt_pdf(file_path, encrypted_file_path):
PdfReader(file_path)

PdfWriter()

reader

writer

for page in reader.pages:
writer.add_page(page)

Add a password to the new PDF
writer.encrypt("my-secret-password")

Save the new PDF to a file
with open(encrypted_file_path, "wb") as file:
writer.write(file)

Define a function to add a suffix to the original filename after encryption
def add_encrypted_suffix(original_key):

filename, extension = original_key.rsplit('."', 1)

return f'{filename}_encrypted.{extension}"

(® Note

In this example code, a password for the encrypted file (my-secret-passwozrd) is
hardcoded into the function code. In a production application, don't include sensitive

Create the source code files 62

AWS Lambda Developer Guide

information like passwords in your function code. Use AWS Secrets Manager to securely
store sensitive parameters.

The python function code contains three functions - the handler function that Lambda runs

when your function is invoked, and two separate function named add_encrypted_suffix and
encrypt_pdf that the handler calls to perform the PDF encryption.

When your function is invoked by Amazon S3, Lambda passes a JSON formatted event argument
to the function that contains details about the event that caused the invocation. In this case, the
information includes name of the S3 bucket and the object keys for the uploaded files. To learn
more about the format of event object for Amazon S3, see the section called “S3".

Your function then uses the AWS SDK for Python (Boto3) to download the PDF files specified in
the event object to its local temporary storage directory, before encrypting them using the pypdf
library.

Finally, the function uses the Boto3 SDK to store the encrypted file in your S3 destination bucket.
requirements. txt manifest file

Copy and paste the following code into a file named requirements. txt.

boto3
pypdf

For this example, your function code has only two dependencies that aren't part of the standard
Python library - the SDK for Python (Boto3) and the pypdf package the function uses to perform
the PDF encryption.

(® Note

A version of the SDK for Python (Boto3) is included as part of the Lambda runtime, so your
code would run without adding Boto3 to your function's deployment package. However, to
maintain full control of your function's dependencies and avoid possible issues with version
misalignment, best practice for Python is to include all function dependencies in your
function's deployment package. See the section called “Runtime dependencies in Python"
to learn more.

Create the source code files 63

https://pypi.org/project/pypdf/

AWS Lambda Developer Guide

Deploy the app

You can create and deploy the resources for this example app either manually or by using AWS
SAM. In a production environment, we recommend that you use an laC tool like AWS SAM to
quickly and repeatably deploy whole serverless applications without using manual processes.

Deploy the resources manually
To deploy your app manually:

« Create source and destination Amazon S3 buckets

» Create a Lambda function that encrypts a PDF file and saves the encrypted version to an S3
bucket

« Configure a Lambda trigger that invokes your function when objects are uploaded to your source
bucket

Before you begin, make sure that Python is installed on your build machine.

Create two S3 buckets

First create two S3 buckets. The first bucket is the source bucket you will upload your PDF files to.
The second bucket is used by Lambda to save the encrypted file when you invoke your function.

Console
To create the S3 buckets (console)

1. Open the Buckets page of the Amazon S3 console.

2. Select the AWS Region closest to your geographical location. You can change your region
using the drop-down list at the top of the screen.

2 0 @

United States
M. Virginia us-east-1
Ohio us-east-2

M. California us-west-1

Oregon us-west-2

Deploy the app 64

https://www.python.org/downloads/
https://console.aws.amazon.com/s3/buckets

AWS Lambda Developer Guide

Choose Create bucket.

Under General configuration, do the following:

a. For Bucket type, select General purpose.

b. For Bucket name, enter a globally unique name that meets the Amazon S3 bucket
naming rules. Bucket names can contain only lower case letters, numbers, dots (.), and
hyphens (-).

Leave all other options set to their default values and choose Create bucket.

Repeat steps 1 to 4 to create your destination bucket. For Bucket name, enter amzn-s3-
demo-bucket-encrypted, where amzn-s3-demo-bucket is the name of the source
bucket you just created.

AWS CLI

Before you begin, make sure that the AWS CLlI is installed on your build machine.

To create the Amazon S3 buckets (AWS CLI)

1.

Run the following CLI command to create your source bucket. The name you choose for
your bucket must be globally unique and follow the Amazon S3 bucket naming rules.

Names can only contain lower case letters, numbers, dots (.), and hyphens (-). For region
and LocationConstraint, choose the AWS Region closest to your geographical location.

aws s3api create-bucket --bucket amzn-s3-demo-bucket --region us-east-2 \
--create-bucket-configuration LocationConstraint=us-east-2

Later in the tutorial, you must create your Lambda function in the same AWS Region as
your source bucket, so make a note of the region you chose.

Run the following command to create your destination bucket. For the bucket name, you
must use amzn-s3-demo-bucket-encrypted, where amzn-s3-demo-bucket is the
name of the source bucket you created in step 1. For region and LocationConstraint,
choose the same AWS Region you used to create your source bucket.

aws s3api create-bucket --bucket amzn-s3-demo-bucket-encrypted --region us-
east-2 \
--create-bucket-configuration LocationConstraint=us-east-2

Deploy the app 65

https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucketnamingrules.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucketnamingrules.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucketnamingrules.html
https://docs.aws.amazon.com/general/latest/gr/lambda-service.html

AWS Lambda Developer Guide

Create an execution role

An execution role is an IAM role that grants a Lambda function permission to access AWS services
and resources. To give your function read and write access to Amazon S3, you attach the AWS
managed policy AmazonS3FullAccess.

Console

To create an execution role and attach the AmazonS3FullAccess managed policy (console)

1.

o W

Open the Roles page in the IAM console.

Choose Create role.

For Trusted entity type, select AWS service, and for Use case, select Lambda.
Choose Next.

Add the AmazonS3FullAccess managed policy by doing the following:

a. In Permissions policies, enter AmazonS3FullAccess into the search bar.
b. Select the checkbox next to the policy.

c. Choose Next.

In Role details, for Role name enter LambdaS3Role.

Choose Create Role.

AWS CLI

To create an execution role and attach the AmazonS3FullAccess managed policy (AWS CLI)

1.

Save the following JSON in a file named trust-policy. json. This trust policy

allows Lambda to use the role's permissions by giving the service principal
lambda.amazonaws.com permission to call the AWS Security Token Service (AWS STS)
AssumeRole action.

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {
"Service": "lambda.amazonaws.com"

Deploy the app 66

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://console.aws.amazon.com/iam/home/roles

AWS Lambda Developer Guide

}I

"Action": "sts:AssumeRole"

From the directory you saved the JSON trust policy document in, run the following CLI
command to create the execution role.

aws iam create-role --role-name LambdaS3Role --assume-role-policy-document
file://trust-policy.json

To attach the AmazonS3FullAccess managed policy, run the following CLI command.

aws iam attach-role-policy --role-name LambdaS3Role --policy-arn
arn:aws:iam: :aws:policy/AmazonS3FullAccess

Create the function deployment package

To create your function, you create a deployment package containing your function code and
its dependencies. For this application, your function code uses a separate library for the PDF
encryption.

To create the deployment package

1.

Navigate to the project directory containing the 1ambda_function.py and
requirements. txt files you created or downloaded from GitHub earlier and create a new
directory named package.

Install the dependencies specified in the requirements. txt file in your package directory
by running the following command.

pip install -r requirements.txt --target ./package/

Create a .zip file containing your application code and its dependencies. In Linux or MacOS, run
the following commands from your command line interface.

cd package
zip -r ../lambda_function.zip .
cd ..

Deploy the app 67

AWS Lambda Developer Guide

zip lambda_function.zip lambda_function.py

In Windows, use your preferred zip tool to create the lambda_function. zip file. Make sure
that your lambda_function. py file and the folders containing your dependencies are all at
the root of the .zip file.

You can also create your deployment package using a Python virtual environment. See Working
with .zip file archives for Python Lambda functions

Create the Lambda function

You now use the deployment package you created in the previous step to deploy your Lambda
function.

Console
To create the function (console)

To create your Lambda function using the console, you first create a basic function containing
some ‘Hello world’ code. You then replace this code with your own function code by uploading
the.zip file you created in the previous step.

To ensure that your function doesn't time out when encrypting large PDF files, you configure
the function's memory and timeout settings. You also set the function's log format to JSON.
Configuring JSON formatted logs is necessary when using the provided test script so it can read
the function's invocation status from CloudWatch Logs to confirm successful invocation.

1. Open the Functions page of the Lambda console.

2. Make sure you're working in the same AWS Region you created your S3 bucket in. You can
change your region using the drop-down list at the top of the screen.

4 0 @

United States
M. Virginia us-east-1
Ohio us-east-2
N. California us-west-1

Oregon us-west-2

Deploy the app 68

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

3. Choose Create function.
4. Choose Author from scratch.

5. Under Basic information, do the following:

a. For Function name, enter EncxyptPDF.
b. For Runtime choose Python 3.12.
c. For Architecture, choose x86_64.

6. Attach the execution role you created in the previous step by doing the following:

a. Expand the Change default execution role section.
b. Select Use an existing role.
¢. Under Existing role, select your role (LambdaS3Role).

7. Choose Create function.

To upload the function code (console)

In the Code source pane, choose Upload from.
Choose .zip file.
Choose Upload.

In the file selector, select your .zip file and choose Open.

v A W=

Choose Save.

To configure the function memory and timeout (console)

1. Select the Configuration tab for your function.

2. Inthe General configuration pane, choose Edit.

3. Set Memory to 256 MB and Timeout to 15 seconds.
4,

Choose Save.

To configure the log format (console)

1. Select the Configuration tab for your function.
2. Select Monitoring and operations tools.

3. Inthe Logging configuration pane, choose Edit.

Deploy the app 69

AWS Lambda Developer Guide

4. For Logging configuration, select JSON.

5. Choose Save.

AWS CLI
To create the function (AWS CLI)

* Run the following command from the directory containing your lambda_function.zip
file.For the region parameter, replace us-east-2 with the region you created your S3
buckets in.

aws lambda create-function --function-name EncxryptPDF \

--zip-file fileb://lambda_function.zip --handler lambda_function.lambda_handlex
\

--runtime python3.12 --timeout 15 --memory-size 256 \

--role arn:aws:iam::123456789012:role/LambdaS3Role --region us-east-2 \
--logging-config LogFormat=JSON

Configure an Amazon S3 trigger to invoke the function

For your Lambda function to run when you upload a file to your source bucket, you need to
configure a trigger for your function. You can configure the Amazon S3 trigger using either the
console or the AWS CLI.

/A Important

This procedure configures the S3 bucket to invoke your function every time that an object
is created in the bucket. Be sure to configure this only on the source bucket. If your Lambda
function creates objects in the same bucket that invokes it, your function can be invoked
continuously in a loop. This can result in un expected charges being billed to your AWS
account.

Console
To configure the Amazon S3 trigger (console)

1. Open the Functions page of the Lambda console and choose your function (EncryptPDF).

Deploy the app 70

https://serverlessland.com/content/service/lambda/guides/aws-lambda-operator-guide/recursive-runaway
https://serverlessland.com/content/service/lambda/guides/aws-lambda-operator-guide/recursive-runaway
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

2. Choose Add trigger.
Select S3.
Under Bucket, select your source bucket.

Under Event types, select All object create events.

A

Under Recursive invocation, select the check box to acknowledge that using the same

S3 bucket for input and output is not recommended. You can learn more about recursive
invocation patterns in Lambda by reading Recursive patterns that cause run-away Lambda
functions in Serverless Land.

7. Choose Add.

When you create a trigger using the Lambda console, Lambda automatically creates a
resource based policy to give the service you select permission to invoke your function.

AWS CLI
To configure the Amazon S3 trigger (AWS CLI)

1. Add a resource based policy to your function that allows your Amazon S3 source bucket to

invoke your function when you add a file. A resource-based policy statement gives other
AWS services permission to invoke your function. To give Amazon S3 permission to invoke
your function, run the following CLI command. Be sure to replace the source-account
parameter with your own AWS account ID and to use your own source bucket name.

aws lambda add-permission --function-name EncryptPDF \
--principal s3.amazonaws.com --statement-id s3invoke --action
"lambda:InvokeFunction" \

--source-arn arn:aws:s3:::amzn-s3-demo-bucket \
--source-account 123456789012

The policy you define with this command allows Amazon S3 to invoke your function only
when an action takes place on your source bucket.

® Note

Although S3 bucket names are globally unique, when using resource-based policies
it is best practice to specify that the bucket must belong to your account. This is

Deploy the app 71

https://serverlessland.com/content/service/lambda/guides/aws-lambda-operator-guide/recursive-runaway
https://serverlessland.com/content/service/lambda/guides/aws-lambda-operator-guide/recursive-runaway
https://docs.aws.amazon.com/lambda/latest/dg/access-control-resource-based.html
https://docs.aws.amazon.com/lambda/latest/dg/access-control-resource-based.html

AWS Lambda Developer Guide

because if you delete a bucket, it is possible for another AWS account to create a
bucket with the same Amazon Resource Name (ARN).

2. Save the following JSON in a file named notification. json. When applied to your
source bucket, this JSON configures the bucket to send a notification to your Lambda
function every time a new object is added. Replace the AWS account number and AWS
Region in the Lambda function ARN with your own account number and region.

{
"LambdaFunctionConfigurations": [
{
"Id": "EncryptPDFEventConfiguration",
"LambdaFunctionArn": "arn:aws:lambda:us-

east-2:123456789012:function:EncryptPDF",
"Events": ["s3:0bjectCreated:Put"]

}

3. Run the following CLI command to apply the notification settings in the JSON file you
created to your source bucket. Replace amzn-s3-demo-bucket with the name of your
own source bucket.

aws s3api put-bucket-notification-configuration --bucket amzn-s3-demo-bucket \
--notification-configuration file://notification.json

To learn more about the put-bucket-notification-configuration command and
the notification-configuration option, see put-bucket-notification-configuration in
the AWS CLI Command Reference.

Deploy the resources using AWS SAM

Before you begin, make sure that Docker and the latest version of the AWS SAM CLI are installed on

your build machine.

1. Inyour project directory, copy and paste the following code into a file named
template.yaml. Replace the placeholder bucket names:

Deploy the app 72

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3api/put-bucket-notification-configuration.html
https://docs.docker.com/get-docker/
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/install-sam-cli.html

AWS Lambda Developer Guide

» For the source bucket, replace amzn-s3-demo-bucket with any name that complies with
the S3 bucket naming rules.

» For the destination bucket, replace amzn-s3-demo-bucket-encrypted with <source-
bucket-name>-encrypted, where <source-bucket> is the name you chose for your
source bucket.

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31

Resources:
EncryptPDFFunction:
Type: AWS::Serverless::Function
Properties:
FunctionName: EncryptPDF
Architectures: [x86_64]
CodeUri: ./
Handler: lambda_function.lambda_handler
Runtime: python3.12
Timeout: 15
MemorySize: 256
LoggingConfig:
LogFormat: JSON
Policies:
- AmazonS3FullAccess
Events:
S3Event:
Type: S3
Properties:
Bucket: !Ref PDFSourceBucket
Events: s3:0bjectCreated:*

PDFSourceBucket:
Type: AWS::S3::Bucket
Properties:
BucketName: amzn-s3-demo-bucket

EncryptedPDFBucket:
Type: AWS::S3::Bucket
Properties:

BucketName: amzn-s3-demo-bucket-encrypted

Deploy the app 73

https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucketnamingrules.html

AWS Lambda Developer Guide

The AWS SAM template defines the resources you create for your app. In this example, the
template defines a Lambda function using the AWS: : Serverless: :Function type and two
S3 buckets using the AWS : : S3: :Bucket type. The bucket names specified in the template
are placeholders. Before you deploy the app using AWS SAM, you need to edit the template to
rename the buckets with globally unique names that meet the S3 bucket naming rules. This
step is explained further in the section called “Deploy the resources using AWS SAM".

The definition of the Lambda function resource configures a trigger for the function using the
S3Event event property. This trigger causes your function to be invoked whenever an object is
created in your source bucket.

The function definition also specifies an AWS Identity and Access Management (IAM) policy to
be attached to the function's execution role. The AWS managed policy AmazonS3FullAccess
gives your function the permissions it needs to read and write objects to Amazon S3.

2. Run the following command from the directory in which you saved your template.yaml,
lambda_function.py, and requirements. txtfiles.

sam build --use-container

This command gathers the build artifacts for your application and places them in the proper
format and location to deploy them. Specifying the --use-container option builds your
function inside a Lambda-like Docker container. We use it here so you don't need to have
Python 3.12 installed on your local machine for the build to work.

During the build process, AWS SAM looks for the Lambda function code in the location you
specified with the CodeUri property in the template. In this case, we specified the current
directory as the location (. /).

If a requirements. txt file is present, AWS SAM uses it to gather the specified dependencies.
By default, AWS SAM creates a .zip deployment package with your function code and
dependencies. You can also choose to deploy your function as a container image using the

PackageType property.

3. To deploy your application and create the Lambda and Amazon S3 resources specified in your
AWS SAM template, run the following command.

sam deploy --guided

Deploy the app 74

https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucketnamingrules.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-function.html#sam-function-packagetype

AWS Lambda Developer Guide

Using the - -guided flag means that AWS SAM will show you prompts to guide you through
the deployment process. For this deployment, accept the default options by pressing Enter.

During the deployment process, AWS SAM creates the following resources in your AWS account:

« An AWS CloudFormation stack named sam-app
« A Lambda function with the name EncryptPDF

« Two S3 buckets with the names you chose when you edited the template.yaml AWS SAM
template file

« An IAM execution role for your function with the name format sam-app-
EncryptPDFFunctionRole-2gGaapHFW0Q8

When AWS SAM finishes creating your resources, you should see the following message:

Successfully created/updated stack - sam-app in us-east-2

Test the app

To test your app, upload a PDF file to your source bucket, and confirm that Lambda creates an
encrypted version of the file in your destination bucket. In this example, you can either test this
manually using the console or the AWS CLI, or by using the provided test script.

For production applications, you can use traditional test methods and techniques, such as unit
testing, to confirm the correct functioning of your Lambda function code. Best practice is also to
conduct tests like those in the provided test script which perform integration testing with real,
cloud-based resources. Integration testing in the cloud confirms that your infrastructure has been
correctly deployed and that events flow between different services as expected. To learn more, see
Testing serverless functions.

Testing the app manually

You can test your function manually by adding a PDF file to your Amazon S3 source bucket. When
you add your file to the source bucket, your Lambda function should be automatically invoked and
should store an encrypted version of the file in your target bucket.

Test the app 75

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-whatis-concepts.html#cfn-concepts-stacks

AWS Lambda

Developer Guide

Console

To test your app by uploading a file (console)

1.

2.

To upload a PDF file to your S3 bucket, do the following:

a.
b.
C.

d.

Open the Buckets page of the Amazon S3 console and choose your source bucket.
Choose Upload.
Choose Add files and use the file selector to choose the PDF file you want to upload.

Choose Open, then choose Upload.

Verify that Lambda has saved an encrypted version of your PDF file in your target bucket by
doing the following:

a.

AWS CLI

Navigate back to the Buckets page of the Amazon S3 console and choose your
destination bucket.

In the Objects pane, you should now see a file with name format
filename_encrypted. pdf (where filename. pdf was the name of the file you
uploaded to your source bucket). To download your encrypted PDF, select the file, then
choose Download.

Confirm that you can open the downloaded file with the password your Lambda
function protected it with (my-secret-passwozrd).

To test your app by uploading a file (AWS CLI)

1.

From the directory containing the PDF file you want to upload, run the following CLI
command. Replace the --bucket parameter with the name of your source bucket. For the
--key and --body parameters, use the filename of your test file.

aws s3api put-object --bucket amzn-s3-demo-bucket --key test.pdf --body ./
test.pdf

Verify that your function has created an encrypted version of your file and saved it to your
target S3 bucket. Run the following CLI command, replacing amzn-s3-demo-bucket-

encrypted with the name of your own destination bucket.

Test the app

76

https://console.aws.amazon.com/s3/buckets
https://console.aws.amazon.com/s3/buckets

AWS Lambda Developer Guide

aws s3api list-objects-v2 --bucket amzn-s3-demo-bucket-encrypted

If your function runs successfully, you'll see output similar to the following. Your target
bucket should contain a file with the name format <your_test_file>_encrypted. pdf,
where <your_test_file> is the name of the file you uploaded.

{
"Contents": [
{
"Key": "test_encrypted.pdf",
"LastModified": "2023-06-07T00:15:50+00:00",
"ETag": "\"7781a43e765a8301713f533d70968ale\"",
"Size": 2763,
"StorageClass": "STANDARD"
}
]
}

3. To download the file that Lambda saved in your destination bucket, run the following CLI
command. Replace the --bucket parameter with the name of your destination bucket.
For the - -key parameter, use the filename <your_test_file>_encrypted.pdf, where
<your_test_file> is the name of the the test file you uploaded.

aws s3api get-object --bucket amzn-s3-demo-bucket-encrypted --
key test_encrypted.pdf my_encrypted_file.pdf

This command downloads the file to your current directory and saves it as
my_encrypted_file.pdf.

4. Confirm the you can open the downloaded file with the password your Lambda function
protected it with (my-secret-password).

Testing the app with the automated script

Create the following files in your project directory:

« test_pdf_encrypt.py - a test script you can use to automatically test your application

« pytest.ini - a configuration file for the the test script

Test the app 77

AWS Lambda Developer Guide

Expand the following sections to view the code and to learn more about the role of each file.
Automated test script

Copy and paste the following code into a file named test_pdf_encrypt.py. Be sure to replace
the placeholder bucket names:

e Inthe test_source_bucket_available function, replace amzn-s3-demo-bucket with the
name of your source bucket.

e Inthe test_encrypted_file_in_bucket function, replace amzn-s3-demo-bucket-
encrypted with source-bucket-encrypted, where source-bucket> is the name of your
source bucket.

 In the cleanup function, replace amzn-s3-demo-bucket with the name of your source bucket,
and replace amzn-s3-demo-bucket-encrypted with the name of your destination bucket.

import boto3
import json
import pytest
import time
import os

@pytest.fixture
def lambda_client():
return boto3.client('lambda')

@pytest.fixture
def s3_client():
return boto3.client('s3"')

@pytest.fixture
def logs_client():
return boto3.client('logs')

@pytest.fixture(scope="'session')

def cleanup():
Create a new S3 client for cleanup
s3_client = boto3.client('s3')

yield
Cleanup code will be executed after all tests have finished

Test the app 78

AWS Lambda Developer Guide

Delete test.pdf from the source bucket

source_bucket = 'amzn-s3-demo-bucket'

source_file_key = 'test.pdf'
s3_client.delete_object(Bucket=source_bucket, Key=source_file_key)
print(f"\nDeleted {source_file_key} from {source_bucket}")

Delete test_encrypted.pdf from the destination bucket

destination_bucket = 'amzn-s3-demo-bucket-encrypted'

destination_file_key = 'test_encrypted.pdf'
s3_client.delete_object(Bucket=destination_bucket, Key=destination_file_key)
print(f"Deleted {destination_file_key} from {destination_bucket}")

@pytest.mark.order(1)
def test_source_bucket_available(s3_client):
s3_bucket_name = 'amzn-s3-demo-bucket'
file_name = 'test.pdf'
file_path = os.path.join(os.path.dirname(__file__), file_name)

file_uploaded = False

try:
s3_client.upload_file(file_path, s3_bucket_name, file_name)
file_uploaded = True

except:
print("Error: couldn't upload file")

assert file_uploaded, "Could not upload file to S3 bucket"

@pytest.mark.order(2)
def test_lambda_invoked(logs_client):

Wait for a few seconds to make sure the logs are available
time.sleep(5)

Get the latest log stream for the specified log group
log_streams = logs_client.describe_log_streams(
logGroupName="'/aws/lambda/EncryptPDF',
orderBy='LastEventTime',
descending=True,
limit=1

Test the app 79

AWS Lambda Developer Guide

latest_log_stream_name = log_streams['logStreams'][@]['logStreamName']

Retrieve the log events from the latest log stream

log_events = logs_client.get_log_events(
logGroupName="'/aws/lambda/EncryptPDF',
logStreamName=latest_log_stream_name

success_found = False
for event in log_events['events']:
message = json.loads(event['message'])
status = message.get('record', {}).get('status')
if status == 'success':
success_found = True
break

assert success_found, "Lambda function execution did not report 'success' status in
logs."

@pytest.mark.order(3)

def test_encrypted_file_in_bucket(s3_client):
Specify the destination S3 bucket and the expected converted file key
destination_bucket = 'amzn-s3-demo-bucket-encrypted'
converted_file_key = 'test_encrypted.pdf'

try:
Attempt to retrieve the metadata of the converted file from the destination
S3 bucket
s3_client.head_object(Bucket=destination_bucket, Key=converted_file_key)
except s3_client.exceptions.ClientError as e:
If the file is not found, the test will fail
pytest.fail(f"Converted file '{converted_file_key}' not found in the
destination bucket: {str(e)}")

def test_cleanup(cleanup):

This test uses the cleanup fixture and will be executed last
pass

The automated test script executes three test functions to confirm correct operation of your app:

o The test test_source_bucket_available confirms that your source bucket has been
successfully created by uploading a test PDF file to the bucket.

Test the app 80

AWS Lambda Developer Guide

» The test test_lambda_invoked interrogates the latest CloudWatch Logs log stream for
your function to confirm that when you uploaded the test file, your Lambda function ran and
reported success.

« Thetest test_encrypted_file_in_bucket confirms that your destination bucket contains
the encrypted test_encrypted. pdf file.

After all these tests have run, the script runs an additional cleanup step to delete the test. pdf
and test_encrypted. pdf files from both your source and destination buckets.

As with the AWS SAM template, the bucket names specified in this file are placeholders. Before
running the test, you need to edit this file with your app's real bucket names. This step is explained
further in the section called “Testing the app with the automated script”

Test script configuration file

Copy and paste the following code into a file named pytest. ini.

[pytest]
markers =

order: specify test execution order

This is needed to specify the order in which the tests in the test_pdf_encrypt.py script run.
To run the tests do the following:

1. Ensure that the pytest module is installed in your local environment. You can install pytest
by running the following command:

pip install pytest

2. Save a PDF file named test. pdf in the directory containing the test_pdf_encrypt.py and
pytest.ini files.

3. Open aterminal or shell program and run the following command from the directory
containing the test files.

pytest -s -v

When the test completes, you should see output like the following:

Test the app 81

AWS Lambda Developer Guide

platform linux -- Python 3.12.2, pytest-7.2.2, pluggy-1.0.0 -- /usr/bin/python3
cachedir: .pytest_cache

hypothesis profile 'default' -> database=DirectoryBasedExampleDatabase('/home/
pdf_encrypt_app/.hypothesis/examples')

Test order randomisation NOT enabled. Enable with --random-order or --random-order-
bucket=<bucket_type>

rootdir: /home/pdf_encrypt_app, configfile: pytest.ini

plugins: anyio-3.7.1, hypothesis-6.70.0, localserver-0.7.1, random-order-1.1.0
collected 4 items

test_pdf_encrypt.py::test_source_bucket_available PASSED
test_pdf_encrypt.py::test_lambda_invoked PASSED
test_pdf_encrypt.py::test_encrypted_file_in_bucket PASSED
test_pdf_encrypt.py::test_cleanup PASSED

Deleted test.pdf from amzn-s3-demo-bucket

Deleted test_encrypted.pdf from amzn-s3-demo-bucket-encrypted

Next steps

Now you've created this example app, you can use the provided code as a basis to create other
types of file-processing application. Modify the code in the 1lambda_function.py file to
implement the file-processing logic for your use case.

Many typical file-processing use cases involve image processing. When using Python, the most
popular image-processing libraries like pillow typically contain C or C++ components. In order
to ensure that your function's deployment package is compatible with the Lambda execution
environment, it's important to use the correct source distribution binary.

When deploying your resources with AWS SAM, you need to take some extra steps to include

the right source distribution in your deployment package. Because AWS SAM won't install
dependencies for a different platform than your build machine, specifying the correct source
distribution (.wh1 file) in your requirements. txt file won't work if your build machine uses an

Next steps 82

https://pypi.org/project/pillow/

AWS Lambda Developer Guide

operating system or architecture that's different from the Lambda execution environment. Instead,
you should do one of the following:

« Use the --use-container option when running sam build. When you specify this option,
AWS SAM downloads a container base image that's compatible with the Lambda execution
environment and builds your function's deployment package in a Docker container using that
image. To learn more, see Building a Lambda function inside of a provided container.

« Build your function's .zip deployment package yourself using the correct source distribution
binary and save the .zip file in the directory you specify as the CodeUri in the AWS SAM
template. To learn more about building .zip deployment packages for Python using binary
distributions, see the section called “Creating a .zip deployment package with dependencies” and
the section called “Creating .zip deployment packages with native libraries".

Next steps 83

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/using-sam-cli-build.html#using-sam-cli-build-options-container

AWS Lambda Developer Guide

Create an app to perform scheduled database maintenance

You can use AWS Lambda to replace scheduled processes such as automated system backups,

file conversions, and maintenance tasks. In this example, you create a serverless application that
performs regular scheduled maintenance on a DynamoDB table by deleting old entries. The app
uses EventBridge Scheduler to invoke a Lambda function on a cron schedule. When invoked, the
function queries the table for items older than one year, and deletes them. The function logs each
deleted item in CloudWatch Logs.

To implement this example, first create a DynamoDB table and populate it with some test data
for your function to query. Then, create a Python Lambda function with an EventBridge Scheduler
trigger and an IAM execution role that gives the function permission to read, and delete, items
from your table.

m

EventBridge l Lambda DynamoDB
Scheduler
x
A
Permissions
Policy
A 5 : | —
O+ 5 O
= . o | —
— 5 (0 | m—
Schedule ; Maintenance DynamoDB

function table

® Tip
If you're new to Lambda, we recommend that you complete the tutorial Create your first
function before creating this example app.

You can deploy your app manually by creating and configuring resources with the AWS
Management Console. You can also deploy the app by using the AWS Serverless Application Model
(AWS SAM). AWS SAM is an infrastructure as code (IaC) tool. With 1aC, you don't create resources
manually, but define them in code and then deploy them automatically.

Scheduled-maintenance app 84

AWS Lambda Developer Guide

If you want to learn more about using Lambda with 1aC before deploying this example app, see
Infrastructure as code (laC).

Prerequisites

Before you can create the example app, make sure you have the required command line tools and
programs installed.

o Python

To populate the DynamoDB table you create to test your app, this example uses a Python script
and a CSV file to write data into the table. Make sure you have Python version 3.8 or later
installed on your machine.

« AWS SAM CLI

If you want to create the DynamoDB table and deploy the example app using AWS SAM, you
need to install the AWS SAM CLI. Follow the installation instructions in the AWS SAM User Guide.

« AWS CLI

To use the provided Python script to populate your test table, you need to have installed and
configured the AWS CLI. This is because the script uses the AWS SDK for Python (Boto3), which
needs access to your AWS Identity and Access Management (IAM) credentials. You also need
the AWS CLI installed to deploy resources using AWS SAM. Install the CLI by following the
installation instructions in the AWS Command Line Interface User Guide.

« Docker

To deploy the app using AWS SAM, Docker must also be installed on your build machine. Follow
the instructions in Install Docker Engine on the Docker documentation website.

Downloading the example app files

To create the example database and the scheduled-maintenance app, you need to create the
following files in your project directory:

Example database files

« template.yaml - an AWS SAM template you can use to create the DynamoDB table

« sample_data.csv - a CSV file containing sample data to load into your table

Prerequisites 85

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/install-sam-cli.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.docker.com/engine/install/

AWS Lambda Developer Guide

« load_sample_data.py - a Python script that writes the data in the CSV file into the table

Scheduled-maintenance app files

« lambda_function.py - the Python function code for the Lambda function that performs the
database maintenance

« requirements.txt - a manifest file defining the dependencies that your Python function code
requires

« template.yaml - an AWS SAM template you can use to deploy the app

Test file

« test_app.py - a Python script that scans the table and confirms successful operation of your
function by outputting all records older than one year

Expand the following sections to view the code and to learn more about the role of each file in
creating and testing your app. To create the files on your local machine, copy and paste the code
below.

AWS SAM template (example DynamoDB table)

Copy and paste the following code into a file named template.yaml.

AWSTemplateFormatVersion: '2010-09-09'

Transform: AWS::Serverless-2016-10-31

Description: SAM Template for DynamoDB Table with Order_number as Partition Key and
Date as Sort Key

Resources:
MyDynamoDBTable:
Type: AWS::DynamoDB::Table
DeletionPolicy: Retain
UpdateReplacePolicy: Retain
Properties:
TableName: MyOrderTable
BillingMode: PAY_PER_REQUEST
AttributeDefinitions:
- AttributeName: Order_number
AttributeType: S
- AttributeName: Date

Downloading the example app files 86

AWS Lambda

Developer Guide

AttributeType: S
KeySchema:
- AttributeName: Order_number
KeyType: HASH
- AttributeName: Date
KeyType: RANGE
SSESpecification:
SSEEnabled: true
GlobalSecondaryIndexes:
- IndexName: Date-index
KeySchema:
- AttributeName: Date
KeyType: HASH
Projection:
ProjectionType: ALL

PointInTimeRecoverySpecification:
PointInTimeRecoveryEnabled: true

Outputs:
TableName:
Description: DynamoDB Table Name
Value: !Ref MyDynamoDBTable
TableArn:
Description: DynamoDB Table ARN
Value: !GetAtt MyDynamoDBTable.Arn

(@ Note

AWS SAM templates use a standard naming convention of template.yaml. In this

example, you have two template files - one to create the example database and another to

create the app itself. Save them in separate sub-directories in your project folder.

This AWS SAM template defines the DynamoDB table resource you create to test your app. The
table uses a primary key of Order_number with a sort key of Date. In order for your Lambda
function to find items directly by date, we also define a Global Secondary Index named Date-

index.

To learn more about creating and configuring a DynamoDB table using the

AWS: :DynamoDB: : Table resource, see AWS::DynamoDB::Table in the AWS CloudFormation User

Guide.

Downloading the example app files

87

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-dynamodb-table.html

AWS Lambda

Developer Guide

Sample database data file

Copy and paste the following code into a file named sample_data.csv.

Date,Order_number, CustomerName, ProductID,Quantity, TotalAmount
2023-09-01,0RD0O0O1,Alejandro Rosalez,PROD123,2,199.98

2023-09-01,0RD002,Akua Mansa,PROD456,1,49.99

2023-09-02,0RD0O03,Ana Carolina Silva,PROD789,3,149.97

2023-09-03,0RD0O04, Arnav Desai,PROD123,1,99.99
2023-10-01,0RD0O0O5,Carlos Salazar,PROD456,2,99.98
2023-10-02,0RD0O06,Diego Ramirez,PROD789,1,49.99
2023-10-03,0RD0O0O7,Efua Owusu,PROD123,4,399.96
2023-10-04,0RD00O8, John Stiles,PROD456,2,99.98
2023-10-05,0RD0O0O9, Jorge Souza,PROD789,3,149.97
2023-10-06,0RD0O10, Kwaku Mensah,PROD123,1,99.99
2023-11-01,0RDO11,Li Juan,PROD456,5,249.95
2023-11-02,0RD0O12,Marcia Oliveria,PROD789,2,99.98
2023-11-03,0RD0Q13,Maria Garcia,PROD123,3,299.97
2023-11-04,0RD0O14,Martha Rivera, PROD456,1,49.99
2023-11-05,0RDQ15,Mary Major,PROD789,4,199.96
2023-12-01,0RDO16,Mateo Jackson,PR0OD123,2,199.99
2023-12-02,0RD0O17,Nikki Wolf, PROD456,3,149.97
2023-12-03,0RDQ18,Pat Candella,PROD789,1,49.99
2023-12-04,0RDO19,Paulo Santos,PR0OD123,5,499.95
2023-12-05,0RD020,Richard Roe,PROD456,2,99.98
2024-01-01,0RD021,Saanvi Sarkar,PROD789,3,149.97

2024-01-02,0RD022,Shirley Rodriguez,PR0OD123,1,99.99

2024-01-03,0RD023,Sofia Martinez,PROD456,4,199.96
2024-01-04,0RD024,Terry Whitlock,PROD789,2,99.98
2024-01-05,0RD025,Wang Xiulan,PROD123,3,299.97

This file contains some example test data to populate your DynamoDB table with in a standard

comma-separated values (CSV) format.

Python script to load sample data

Copy and paste the following code into a file named load_sample_data.py.

import boto3
import csv
from decimal import Decimal

Initialize the DynamoDB client

Downloading the example app files

88

AWS Lambda

Developer Guide

dynamodb = boto3.resource('dynamodb')
table = dynamodb.Table('MyOrderTable')
print("DDB client initialized.")

def load_data_from_csv(filename):
with open(filename, 'r') as file:
csv_reader = csv.DictReader(file)
for row in csv_reader:
item = {
'Order_number': row['Order_number'],
'Date': row['Date'],
'CustomerName': row['CustomerName'],
'"ProductID': row['ProductID'],
'Quantity': int(row['Quantity']),
'TotalAmount': Decimal(str(row['TotalAmount']))
}
table.put_item(Item=item)

print(f"Added item: {item['Order_number']} - {item['Date']}")

if __name__ == "__main__":
load_data_from_csv('sample_data.csv')
print("Data loading completed.")

This Python script first uses the AWS SDK for Python (Boto3) to create a connection to your
DynamoDB table. It then iterates over each row in the example-data CSV file, creates an item from

that row, and writes the item to the DynamoDB table using the boto3 SDK.
Python function code

Copy and paste the following code into a file named lambda_function. py.

import boto3

from datetime import datetime, timedelta

from boto3.dynamodb.conditions import Key, Attr
import logging

logger = logging.getlLogger()
logger.setLevel ("INFO")

def lambda_handler(event, context):
Initialize the DynamoDB client
dynamodb = boto3.resource('dynamodb')

Downloading the example app files

89

AWS Lambda Developer Guide

Specify the table name
table_name = 'MyOrderTable'
table = dynamodb.Table(table_name)

Get today's date
today = datetime.now()

Calculate the date one year ago
one_year_ago = (today - timedelta(days=365)).strftime('%Y-%m-%d')

Scan the table using a global secondary index
response = table.scan(
IndexName="'Date-index",
FilterExpression='#date < :one_year_ago',
ExpressionAttributeNames={
'#date': 'Date’
},
ExpressionAttributeValues={
':one_year_ago': one_year_ago

Delete old items
with table.batch_writer() as batch:
for item in response['Items']:
Order_number = item['Order_number']
batch.delete_item(
Key={
'Order_number': Order_number,
'Date': item['Date']

)

logger.info(f'deleted order number {Order_number}')

Check if there are more items to scan
while 'LastEvaluatedKey' in response:
response = table.scan(
IndexName="'DateIndex’,
FilterExpression='#date < :one_year_ago',
ExpressionAttributeNames={
'#date': 'Date’
I
ExpressionAttributeValues={
':one_year_ago': one_year_ago

Downloading the example app files 90

AWS Lambda Developer Guide

}I

ExclusiveStartKey=response['LastEvaluatedKey']

Delete old items
with table.batch_writer() as batch:
for item in response['Items']:
batch.delete_item(
Key={
'Order_number': item['Order_number'],
'Date': item['Date']

return {
'statusCode': 200,
'body': 'Cleanup completed successfully'

The Python function code contains the handler function (Lambda_handler) that Lambda runs
when your function is invoked.

When the function is invoked by EventBridge Scheduler, it uses the AWS SDK for Python (Boto3)

to create a connection to the DynamoDB table on which the scheduled maintenance task is to be
performed. It then uses the Python datetime library to calculate the date one year ago, before

scanning the table for items older than this and deleting them.

Note that responses from DynamoDB query and scan operations are limited to a maximum of

1 MB in size. If the response is larger than 1 MB, DynamoDB paginates the data and returns a
LastEvaluatedKey element in the response. To ensure that our function processes all the records
in the table, we check for the presence of this key and continue performing table scans from the
last evaluated position until the whole table has been scanned.

requirements. txt manifest file

Copy and paste the following code into a file named requirements. txt.

boto3

For this example, your function code has only one dependency that isn't part of the standard
Python library - the SDK for Python (Boto3) that the function uses to scan and delete items from
the DynamoDB table.

Downloading the example app files 91

AWS Lambda Developer Guide

® Note

A version of the SDK for Python (Boto3) is included as part of the Lambda runtime, so your
code would run without adding Boto3 to your function's deployment package. However, to
maintain full control of your function's dependencies and avoid possible issues with version
misalignment, best practice for Python is to include all function dependencies in your
function's deployment package. See the section called “Runtime dependencies in Python”
to learn more.

AWS SAM template (scheduled-maintenance app)

Copy and paste the following code into a file named template.yaml.

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Description: SAM Template for Lambda function and EventBridge Scheduler rule

Resources:
MyLambdaFunction:
Type: AWS::Serverless::Function
Properties:
FunctionName: ScheduledDBMaintenance
CodeUri: ./
Handler: lambda_function.lambda_handler
Runtime: python3.11
Architectures:
- x86_64
Events:
ScheduleEvent:
Type: ScheduleV2
Properties:
ScheduleExpression: cron(@ 3 1 * ? *)
Description: Run on the first day of every month at 03:00 AM

Policies:
- CloudWatchLogsFullAccess
- Statement:
- Effect: Allow
Action:

- dynamodb:Scan
- dynamodb:BatchWriteItem

Downloading the example app files 92

AWS Lambda Developer Guide

Resource: !Sub 'arn:aws:dynamodb:${AWS::Region}:${AWS: :AccountId}:table/
MyOrderTable'

LambdalogGroup:
Type: AWS::Logs::LogGroup
Properties:
LogGroupName: !Sub /aws/lambda/${MyLambdaFunction}
RetentionInDays: 30

Outputs:
LambdaFunctionName:
Description: Lambda Function Name
Value: !Ref MyLambdaFunction
LambdaFunctionArn:
Description: Lambda Function ARN
Value: !GetAtt MyLambdaFunction.Azrn

(@ Note

AWS SAM templates use a standard naming convention of template.yaml. In this
example, you have two template files - one to create the example database and another to
create the app itself. Save them in separate sub-directories in your project folder.

This AWS SAM template defines the resources for your app. We define the Lambda function using
the AWS: :Serverless: :Function resource. The EventBridge Scheduler schedule and the trigger
to invoke the Lambda function are created by using the Events property of this resource using a
type of ScheduleV2. To learn more about defining EventBridge Scheduler schedules in AWS SAM
templates, see ScheduleV2 in the AWS Serverless Application Model Developer Guide.

In addition to the Lambda function and the EventBridge Scheduler schedule, we also define a
CloudWatch log group for your function to send records of deleted items to.

Test script

Copy and paste the following code into a file named test_app.py.

import boto3
from datetime import datetime, timedelta
import json

Initialize the DynamoDB client

Downloading the example app files 93

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-property-function-schedulev2.html

AWS Lambda Developer Guide

dynamodb = boto3.resource('dynamodb')

Specify your table name
table_name = 'YourTableName'
table = dynamodb.Table(table_name)

Get the current date
current_date = datetime.now()

Calculate the date one year ago
one_year_ago = current_date - timedelta(days=365)

Convert the date to string format (assuming the date in DynamoDB is stored as a
string)
one_year_ago_str = one_year_ago.strftime('%Y-%m-%d')

Scan the table
response = table.scan(
FilterExpression='#date < :one_year_ago',
ExpressionAttributeNames={
'#date': 'Date’
I
ExpressionAttributeValues={
':one_year_ago': one_year_ago_str

Process the results
old_records = response['Items']

Continue scanning if we have more items (pagination)
while 'LastEvaluatedKey' in response:
response = table.scan(
FilterExpression='#date < :one_year_ago',
ExpressionAttributeNames={
'#date': 'Date’
},
ExpressionAttributeValues={
':one_year_ago': one_year_ago_str
I
ExclusiveStartKey=response['LastEvaluatedKey']

)

old_records.extend(response['Items'])

Downloading the example app files 94

AWS Lambda

Developer Guide

for record in old_records:
print(json.dumps(record))

The total number of old records should be zero.
print(f"Total number of old records: {len(old_records)}")

This test script uses the AWS SDK for Python (Boto3) to create a connection to your DynamoDB

table and scan for items older than one year. To confirm if the Lambda function has run

successfully, at the end of the test, the function prints the number of records older than one year

still in the table. If the Lambda function was successful, the number of old records in the table

should be zero.

Creating and populating the example DynamoDB table

To test your scheduled-maintenance app, you first create a DynamoDB table and populate it with

some sample data. You can create the table either manually using the AWS Management Console

or by using AWS SAM. We recommend that you use AWS SAM to quickly create and configure the

table using a few AWS CLI commands.

Console

To create the DynamoDB table

1. Open the Tables page of the DynamoDB console.

2. Choose Create table.

3. Create the table by doing the following:

a.
b.
C.
d.

Under Table details, for Table name, enter MyOxrderTable.
For Partition key, enter Oxdex_numbexr and leave the type as String.
For Sort key, enter Date and leave the type as String.

Leave Table settings set to Default settings and choose Create table.

4. When your table has finished creating and its Status shows as Active, create a global
secondary index (GSI) by doing the following. Your app will use this GSI to search for items
directly by date to determine what to delete.

a.
b.

C.

Choose MyOrderTable from the list of tables.
Choose the Indexes tab.

Under Global secondary indexes, choose Create index.

Creating and populating the example DynamoDB table 95

https://console.aws.amazon.com/dynamodbv2/home#tables

AWS Lambda Developer Guide

d. Under Index details, enter Date for the Partition key and leave the Data type set to
String.

e. ForIndex name, enter Date-index.

f. Leave all other parameters set to their default values, scroll to the bottom of the page,
and choose Create index.

AWS SAM

To create the DynamoDB table

1.

Navigate to the folder you saved the template.yaml file for the DynamoDB table in. Note
that this example uses two template.yaml files. Make sure they are saved in separate
sub-folders and that you are in the correct folder containing the template to create your
DynamoDB table.

Run the following command.

sam build

This command gathers the build artifacts for the resources you want to deploy and places
them in the proper format and location to deploy them.

To create the DynamoDB resource specified in the template.yaml file, run the following
command.

sam deploy --guided

Using the --guided flag means that AWS SAM will show you prompts to guide you
through the deployment process. For this deployment, enter a Stack name of cxron-app-
test-db, and accept the defaults for all other options by using Enter.

When AWS SAM has finished creating the DynamoDB resource, you should see the
following message.

Successfully created/updated stack - cron-app-test-db in us-west-2

You can additionally confirm that the DynamoDB table has been created by opening the
Tables page of the DynamoDB console. You should see a table named MyOrderTable.

Creating and populating the example DynamoDB table 96

https://console.aws.amazon.com/dynamodbv2/home#tables

AWS Lambda Developer Guide

After you've created your table, you next add some sample data to test your app. The CSV file
sample_data.csv you downloaded earlier contains a number of example entries comprised
of order numbers, dates, and customer and order information. Use the provided python script
load_sample_data. py to add this data to your table.

To add the sample data to the table

1. Navigate to the directory containing the sample_data.csv and load_sample_data.py
files. If these files are in separate directories, move them so they're saved in the same location.

2. Create a Python virtual environment to run the script in by running the following command.
We recommend that you use a virtual environment because in a following step you'll need to
install the AWS SDK for Python (Boto3).

python -m venv venv

3. Activate the virtual environment by running the following command.

source venv/bin/activate

4. Install the SDK for Python (Boto3) in your virtual environment by running the following
command. The script uses this library to connect to your DynamoDB table and add the items.

pip install boto3

5. Run the script to populate the table by running the following command.

python load_sample_data.py

If the script runs successfully, it should print each item to the console as it loads it and report
Data loading completed.

6. Deactivate the virtual environment by running the following command.
deactivate

7. You can verify that the data has been loaded to your DynamoDB table by doing the following:

a. Open the Explore items page of the DynamoDB console and select your table
(MyOrderTable).

Creating and populating the example DynamoDB table 97

https://console.aws.amazon.com/dynamodbv2/home#item-explorer

AWS Lambda

Developer Guide

b.

In the Items returned pane, you should see the 25 items from the CSV file that the script

added to the table.

Creating the scheduled-maintenance app

You can create and deploy the resources for this example app step by step using the AWS

Management Console or by using AWS SAM. In a production environment, we recommend that you

use an Infrustracture-as-Code (laC) tool like AWS SAM to repeatably deploy serverless applications

without using manual processes.

For this example, follow the console instructions to learn how to configure each AWS resource

separately, or follow the AWS SAM instructions to quickly deploy the app using AWS CLI

commands.

Console

To create the function using the AWS Management Console

First, create a function containing basic starter code. You then replace this code with your own

function code by either copying and pasting the code directly in the Lambda code editor, or

by uploading your code as a . zip package. For this task, we recommend simply copying and

pasting the code.

1.
2
3.
4

Open the Functions page of the Lambda console.

Choose Create function.
Choose Author from scratch.

Under Basic information, do the following:

a. For Function name, enter ScheduledDBMaintenance.
b. For Runtime choose the latest Python version.

c. For Architecture, choose x86_64.

Choose Create function.

After your function is created, you can configure your function with the provided function
code.

a. Inthe Code source pane, replace the Hello world code that Lambda created with the
Python function code from the 1ambda_function. py file that you saved earlier.

Creating the scheduled-maintenance app

98

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

b. Inthe DEPLOY section, choose Deploy to update your function's code:

~ DEPLOY [UNDEPLOYED CHAMNGES]
& You have undeployed changes.

Deploy (Ctr+Shift+U)

Test (Ctri+Shift+1)

||

To configure the function memory and timeout (console)

1. Select the Configuration tab for your function.
2. Inthe General configuration pane, choose Edit.

3. Set Memory to 256 MB and Timeout to 15 seconds. If you are processing a large table with
many records, for example in the case of a production environment, you might consider
setting Timeout to a larger number. This gives your function more time to scan, and clean
the database.

4. Choose Save.

To configure the log format (console)

You can configure Lambda functions to output logs in either unstructured text or JSON format.
We recommend that you use JSON format for logs to make it easier to search and filter log
data. To learn more about Lambda log configuration options, see the section called “Configure
function logs".

Select the Configuration tab for your function.
Select Monitoring and operations tools.
In the Logging configuration pane, choose Edit.

For Logging configuration, select JSON.

ik W=

Choose Save.

To set Up IAM permissions

To give your function the permissions it needs to read and delete DynamoDB items, you need to
add a policy to your function's execution role defining the necessary permissions.

Creating the scheduled-maintenance app 99

AWS Lambda Developer Guide

Open the Configuration tab, then choose Permissions from the left navigation bar.
Choose the role name under Execution role.

In the IAM console, choose Add permissions, then Create inline policy.

P N =

Use the JSON editor and enter the following policy:

"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",

"Action": [
"dynamodb:Scan",
"dynamodb:DeleteItem",
"dynamodb:BatchWriteItem"

]I

"Resource": "arn:aws:dynamodb:*:*:table/MyOrderTable"

}

5. Name the policy DynamoDBCleanupPolicy, then create it.

To set up EventBridge Scheduler as a trigger (console)

Open the EventBridge console.

In the left navigation pane, choose Schedulers under the Scheduler section.

Choose Create schedule.

P NN =

Configure the schedule by doing the following:

a. Under Schedule name, enter a name for your schedule (for example,
DynamoDBCleanupSchedule).

b. Under Schedule pattern, choose Recurring schedule.

c. For Schedule type leave the default as Cron-based schedule, then enter the following
schedule details:

« Minutes: 0
e Hours: 3

« Day of month: 1

Creating the scheduled-maintenance app 100

https://console.aws.amazon.com/events/home

AWS Lambda Developer Guide

« Month: *
« Day of the week: ?

e Year: *

When evaluated, this cron expression runs on the first day of every month at 03:00 AM.

d. For Flexible time window, select Off.

5. Choose Next.
6. Configure the trigger for your Lambda function by doing the following:

a. Inthe Target detail pane, leave Target API set to Templated targets, then select AWS
Lambda Invoke.

b. Under Invoke, select your Lambda function (ScheduledDBMaintenance) from the
dropdown list.

c. Leave the Payload empty and choose Next.

d. Scroll down to Permissions and select Create a new role for this schedule. When you
create a new EventBridge Scheduler schedule using the console, EventBridge Scheduler
creates a new policy with the required permissions the schedule needs to invoke your
function. For more information about managing your schedule permissions, see Cron-
based schedules. in the EventBridge Scheduler User Guide.

e. Choose Next.

7. Review your settings and choose Create schedule to complete creation of the schedule and

Lambda trigger.

AWS SAM

To deploy the app using AWS SAM

1.

Navigate to the folder you saved the template.yaml file for the app in. Note that this
example uses two template.yaml files. Make sure they are saved in separate sub-folders
and that you are in the correct folder containing the template to create the app.

Copy the 1ambda_function.py and requirements. txt files you downloaded earlier

to the same folder. The code location specified in the AWS SAM template is ./, meaning
the current location. AWS SAM will search in this folder for the Lambda function code when
you try to deploy the app.

Creating the scheduled-maintenance app 101

https://docs.aws.amazon.com/scheduler/latest/UserGuide/schedule-types.html#cron-based
https://docs.aws.amazon.com/scheduler/latest/UserGuide/schedule-types.html#cron-based

AWS Lambda Developer Guide

3. Run the following command.

sam build --use-container

This command gathers the build artifacts for the resources you want to deploy and places
them in the proper format and location to deploy them. Specifying the --use-container
option builds your function inside a Lambda-Llike Docker container. We use it here so you
don't need to have Python 3.12 installed on your local machine for the build to work.

4. To create the Lambda and EventBridge Scheduler resources specified in the
template.yaml file, run the following command.

sam deploy --guided

Using the --guided flag means that AWS SAM will show you prompts to guide you
through the deployment process. For this deployment, enter a Stack name of cron-
maintenance-app, and accept the defaults for all other options by using Enter.

When AWS SAM has finished creating the Lambda and EventBridge Scheduler resources,
you should see the following message.

Successfully created/updated stack - cron-maintenance-app in us-west-2

5. You can additionally confirm that the Lambda function has been created by opening
the Functions page of the Lambda console. You should see a function named
ScheduledDBMaintenance.

Testing the app

To test that your schedule correctly triggers your function, and that your function correctly cleans
records from the database, you can temporarily modify your schedule to run once at a specific
time. You can then run sam deploy again to reset your recurrence schedule to run once a month.

To run the application using the AWS Management Console

1. Navigate back to the EventBridge Scheduler console page.
2. Choose your schedule, then choose Edit.

3. In the Schedule pattern section, under Recurrence, choose One-time schedule.

Testing the app 102

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

4. Set your invocation time to a few minutes from now, review your settings, then choose Save.
After the schedule runs and invokes its target, you run the test_app. py script to verify that your
function successfully removed all old records from the DynamoDB table.

To verify that old records are deleted using a Python script

1. In your command line windown, navigate to the folder where you saved test_app.py.

2. Run the script.

python test_app.py

If successful, you will see the following output.

Total number of old records: 0

Next steps

You can now modify the EventBridge Scheduler schedule to meet your partifuclar application
requirements. EventBridge Scheduler supports the following schedule expressions: cron, rate, and
one-time schedules.

For more information about EventBridge Scheduler schedule expresssions, see Schedule types in
the EventBridge Scheduler User Guide.

Next steps 103

scheduler/latest/UserGuide/schedule-types.html

AWS Lambda Developer Guide

Using Lambda with infrastructure as code (1aC)

Lambda functions rarely run in isolation. Instead, they often form part of a serverless application
with other resources such as databases, queues, and storage. With infrastructure as code (l1aC),

you can automate your deployment processes to quickly and repeatably deploy and update whole
serverless applications involving many separate AWS resources. This approach speeds up your
development cycle, makes configuration management easier, and ensures that your resources are
deployed the same way every time.

IaC tools for Lambda
AWS CloudFormation

CloudFormation is the foundational IaC service from AWS. You can use YAML or JSON
templates to model and provision your entire AWS infrastructure, including Lambda functions.

CloudFormation handles the complexities of creating, updating, and deleting your AWS
resources.

AWS Serverless Application Model (AWS SAM)

AWS SAM is an open-source framework built on top of CloudFormation. It provides a simplified
syntax for defining serverless applications. Use AWS SAM templates to quickly provision
Lambda functions, APls, databases, and event sources with just a few lines of YAML.

AWS Cloud Development Kit (AWS CDK)

The CDK is a code-first approach to IaC. You can define your Lambda-based architecture using
TypeScript, JavaScript, Python, Java, C#/.Net, or Go. Choose your preferred language and use
programming elements like parameters, conditionals, loops, composition, and inheritance to
define the desired outcome of your infrastructure. The CDK then generates the underlying
CloudFormation templates for deployment. For an example of how to use Lambda with CDK,
see Deploying Lambda functions with the AWS CDK.

laC tools for Lambda 104

https://aws.amazon.com/what-is/iac/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-guide.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-guide.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-specification-template-anatomy.html

AWS Lambda Developer Guide

0O— v |
0o— [
AWS SAM ...

template (YAML) AWS CloudFormation AWS CloudFormation stack
(infrastructure + code)

Code AWS Cloud Development Kit
(CDK)

AWS also provides a service called AWS Infrastructure Composer to develop laC templates using a
simple graphical interface. With Infrastructure Composer, you design an application architecture by
dragging, grouping, and connecting AWS services in a visual canvas. Infrastructure Composer then
creates an AWS SAM template or an AWS CloudFormation template from your design that you can
use to deploy your application.

In the the section called "Getting started with laC for Lambda” section below, you use

Infrastructure Composer to develop a template for a serverless application based on an existing
Lambda function.

Getting started with lIaC for Lambda

In this tutorial, you can get started using laC with Lambda by creating an AWS SAM template
from an existing Lambda function and then building out a serverless application in Infrastructure
Composer by adding other AWS resources.

As you carry out this tutorial, you'll learn some fundamental concepts, like how AWS resources are
specified in AWS SAM. You'll also learn how to use Infrastructure Composer to build a serverless
application you can deploy using AWS SAM or AWS CloudFormation.

To complete this tutorial, you'll carry out the following steps:

« Create an example Lambda function

» Use the Lambda console to view the AWS SAM template for the function

Getting started with laC for Lambda 105

AWS Lambda Developer Guide

» Export your function’s configuration to AWS Infrastructure Composer and design a simple
serverless application based on your function’s configuration

« Save an updated AWS SAM template you can use as a basis to deploy your serverless application

Prerequisites

In this tutorial, you use Infrastructure Composer’s local sync feature to save your template and
code files to your local build machine. To use this feature, you need a browser that supports the
File System Access API, which allows web applications to read, write, and save files in your local
file system . We recommend using either Google Chrome or Microsoft Edge. For more information
about the File System Access API, see What is the File System Access API?

Create a Lambda function

In this first step, you create a Lambda function you can use to complete the rest of the tutorial. To
keep things simple, you use the Lambda console to create a basic 'Hello world' function using the
Python 3.11 runtime.

To create a 'Hello world' Lambda function using the console

1. Open the Lambda console.

2. Choose Create function.

3. Leave Author from scratch selected, and under Basic information, enter LambdaIaCDemo for
Function name.

4. For Runtime, select Python 3.11.

Choose Create function.

View the AWS SAM template for your function

Before you export your function configuration to Infrastructure Composer, use the Lambda console
to view your function's current configuration as an AWS SAM template. By following the steps in
this section, you'll learn about the anatomy of an AWS SAM template and how to define resources
like Lambda functions to start specifying a serverless application.

To view the AWS SAM template for your function

1. Open the Functions page of the Lambda console.

Prerequisites 106

https://docs.aws.amazon.com/application-composer/latest/dg/reference-features-local-sync.html
https://docs.aws.amazon.com/application-composer/latest/dg/reference-fsa.html#reference-fsa-api
https://console.aws.amazon.com/lambda
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

2. Choose the function you just created (LambdaIaCDemo).

3. In the Function overview pane, choose Template.

In place of the diagram representing your function’s configuration, you'll see an AWS SAM
template for your function. The template should look like the following.

This AWS SAM template has been generated from your function's
configuration. If your function has one or more triggers, note
that the AWS resources associated with these triggers aren't fully
specified in this template and include placeholder values.Open this template
in AWS Application Composer or your favorite IDE and modify
it to specify a serverless application with other AWS resources.
AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Description: An AWS Serverless Specification template describing your function.
Resources:
LambdaIaCDemo:
Type: AWS::Serverless::Function

HOoH H O B R

Properties:
CodeUri:
Description: ''

MemorySize: 128

Timeout: 3

Handler: lambda_function.lambda_handler

Runtime: python3.11

Architectures:

- x86_64

EventInvokeConfig:

MaximumEventAgeInSeconds: 21600
MaximumRetryAttempts: 2

EphemeralStorage:

Size: 512

RuntimeManagementConfig:
UpdateRuntimeOn: Auto

SnapStart:

ApplyOn: None
PackageType: Zip
Policies:
Statement:
- Effect: Allow
Action:
- logs:CreatelLogGroup
Resource: arn:aws:logs:us-east-1:123456789012:*

View the AWS SAM template for your function 107

AWS Lambda Developer Guide

- Effect: Allow
Action:
- logs:CreatelLogStream
- logs:PutLogEvents
Resource:

- >
arn:aws:logs:us-east-1:123456789012:1og-group:/aws/lambda/
LambdaIaCDemo: *

Let's take a moment to look at the YAML template for your function and understand some key
concepts.

The template starts with the declaration Transform: AWS::Serverless-2016-10-31. This
declaration is required because behind the scenes, AWS SAM templates are deployed through AWS
CloudFormation. Using the Transform statement identifies the template as an AWS SAM template
file.

Following the Transform declaration comes the Resources section. This is where the AWS
resources you want to deploy with your AWS SAM template are defined. AWS SAM templates can
contain a combination of AWS SAM resources and AWS CloudFormation resources. This is because
during deployment, AWS SAM templates expand to AWS CloudFormation templates, so any valid
AWS CloudFormation syntax can be added to an AWS SAM template.

At the moment, there is just one resource defined in the Resources section of the template,

your Lambda function LambdaIaCDemo. To add a Lambda function to an AWS SAM template, you
use the AWS: :Serverless: :Function resource type. The Properties of a Lambda function
resource define the function’s runtime, function handler, and other configuration options. The path
to your function’s source code that AWS SAM should use to deploy the function is also defined
here. To learn more about Lambda function resources in AWS SAM, see AWS::Serverless::Function
in the AWS SAM Developer Guide.

As well as the function properties and configurations, the template also specifies an AWS Identity
and Access Management (IAM) policy for your function. This policy gives your function permission
to write logs to Amazon CloudWatch Logs. When you create a function in the Lambda console,
Lambda automatically attaches this policy to your function. To learn more about specifying

an IAM policy for a function in an AWS SAM template, see the policies property on the
AWS::Serverless::Function page of the AWS SAM Developer Guide.

To learn more about the structure of AWS SAM templates, see AWS SAM template anatomy.

View the AWS SAM template for your function 108

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-function.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-function.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-specification-template-anatomy.html

AWS Lambda Developer Guide

Use AWS Infrastructure Composer to design a serverless application

To start building out a simple serverless application using your function's AWS SAM template as

a starting point, you export your function configuration to Infrastructure Composer and activate
Infrastructure Composer’s local sync mode. Local sync automatically saves your function’s code and
your AWS SAM template to your local build machine and keeps your saved template synced as you
add other AWS resources in Infrastructure Composer.

To export your function to Infrastructure Composer

1. In the Function Overview pane, choose Export to Application Composer.

To export your function's configuration and code to Infrastructure Composer, Lambda creates
an Amazon S3 bucket in your account to temporarily store this data.

2. Inthe dialog box, choose Confirm and create project to accept the default name for this
bucket and export your function's configuration and code to Infrastructure Composer.

3. (Optional) To choose another name for the Amazon S3 bucket that Lambda creates, enter a
new name and choose Confirm and create project. Amazon S3 bucket names must be globally
unique and follow the bucket naming rules.

Selecting Confirm and create project opens the Infrastructure Composer console. On the
canvas, you'll see your Lambda function.

4. From the Menu dropdown, choose Activate local sync.

5. In the dialog box that opens, choose Select folder and select a folder on your local build
machine.

6. Choose Activate to activate local sync.

To export your function to Infrastructure Composer, you need permission to use certain APl actions.
If you're unable to export your function, see the section called “Required permissions” and make

sure you have the permissions you need.

® Note

Standard Amazon S3 pricing applies for the bucket Lambda creates when you export a

function to Infrastructure Composer. The objects that Lambda puts into the bucket are
automatically deleted after 10 days, but Lambda doesn't delete the bucket itself.

Use AWS Infrastructure Composer to design a serverless application 109

https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucketnamingrules.html
https://aws.amazon.com/s3/pricing

AWS Lambda Developer Guide

To avoid additional charges being added to your AWS account, follow the instructions in
Deleting a bucket after you have exported your function to Infrastructure Composer. For
more information about the Amazon S3 bucket Lambda creates, see the section called

“Infrastructure Composer”.

To design your serverless application in Infrastructure Composer

After activating local sync, changes you make in Infrastructure Composer will be reflected in the
AWS SAM template saved on your local build machine. You can now drag and drop additional AWS
resources onto the Infrastructure Composer canvas to build out your application. In this example,
you add an Amazon SQS simple queue as a trigger for your Lambda function and a DynamoDB
table for the function to write data to.

1. Add an Amazon SQS trigger to your Lambda function by doing the following:

a. Inthe search field in the Resources palette, enter SQS.

b. Drag the SQS Queue resource onto your canvas and position it to the left of your Lambda
function.

c. Choose Details, and for Logical ID enter LambdaIaCQueue.
d. Choose Save.

e. Connect your Amazon SQS and Lambda resources by clicking on the Subscription port on
the SQS queue card and dragging it to the left hand port on the Lambda function card.
The appearance of a line between the two resources indicates a successful connection.
Infrastructure Composer also displays a message at the bottom of the canvas indicating
that the two resources are successfully connected.

2. Add an Amazon DynamoDB table for your Lambda function to write data to by doing the
following:
a. Inthe search field in the Resources palette, enter DynamoDB.

b. Drag the DynamoDB Table resource onto your canvas and position it to the right of your
Lambda function.

c. Choose Details, and for Logical ID enter LambdaIaCTable.
d. Choose Save.

e. Connect the DynamoDB table to your Lambda function by clicking on the right hand port
of the Lambda function card and dragging it to the left hand port on the DynamoDB card.

Use AWS Infrastructure Composer to design a serverless application 110

https://docs.aws.amazon.com/AmazonS3/latest/userguide/delete-bucket.html

AWS Lambda Developer Guide

Now that you've added these extra resources, let's take a look at the updated AWS SAM template
Infrastructure Composer has created.

To view your updated AWS SAM template

e On the Infrastructure Composer canvas, choose Template to switch from the canvas view to
the template view.

Your AWS SAM template should now contain the following additional resources and properties:

« An Amazon SQS queue with the identifier LambdaIaCQueue

LambdaIaCQueue:
Type: AWS::SQS: :Queue
Properties:
MessageRetentionPeriod: 345600

When you add an Amazon SQS queue using Infrastructure Composer, Infrastructure Composer
sets the MessageRetentionPeriod property. You can also set the FifoQueue property by
selecting Details on the SQS Queue card and checking or unchecking Fifo queue.

To set other properties for your queue, you can manually edit the template to add them. To learn
more about the AWS: : SQS: : Queue resource and its available properties, see AWS::SQS::Queue
in the AWS CloudFormation User Guide.

« An Events property in your Lambda function definition that specifies the Amazon SQS queue as
a trigger for the function

Events:
LambdaIaCQueue:
Type: SQS
Properties:
Queue: !GetAtt LambdaIaCQueue.Arn
BatchSize: 1

The Events property consists of an event type and a set of properties that depend on the type.
To learn about the different AWS services you can configure to trigger a Lambda function and
the properties you can set, see EventSource in the AWS SAM Developer Guide.

« A DynamoDB table with the identifier LambdaIaCTable

Use AWS Infrastructure Composer to design a serverless application 111

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sqs-queue.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-property-function-eventsource.html

AWS Lambda Developer Guide

LambdaIaCTable:
Type: AWS::DynamoDB::Table
Properties:
AttributeDefinitions:
- AttributeName: id
AttributeType: S
BillingMode: PAY_PER_REQUEST
KeySchema:
- AttributeName: id
KeyType: HASH
StreamSpecification:
StreamViewType: NEW_AND_OLD_IMAGES

When you add a DynamoDB table using Infrastructure Composer, you can set your table's keys
by choosing Details on the DynamoDB table card and editing the key values. Infrastructure
Composer also sets default values for a number of other properties including BillingMode and
StreamViewType.

To learn more about these properties and other properties you can add to your AWS SAM
template, see AWS::DynamoDB::Table in the AWS CloudFormation User Guide.

« A new IAM policy that gives your function permission to perform CRUD operations on the
DynamoDB table you added.

Policies:

- DynamoDBCrudPolicy:
TableName: !Ref LambdaIaCTable

The complete final AWS SAM template should look like the following.

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Description: An AWS Serverless Specification template describing your function.
Resources:
LambdaIaCDemo:
Type: AWS::Serverless::Function
Properties:
CodeUri:

Description:

Use AWS Infrastructure Composer to design a serverless application 112

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-dynamodb-table.html

AWS Lambda Developer Guide

MemorySize: 128
Timeout: 3
Handler: lambda_function.lambda_handler
Runtime: python3.11
Architectures:
- x86_64
EventInvokeConfig:
MaximumEventAgeInSeconds: 21600
MaximumRetryAttempts: 2
EphemeralStorage:
Size: 512
RuntimeManagementConfig:
UpdateRuntimeOn: Auto
SnapStart:
ApplyOn: None
PackageType: Zip
Policies:
- Statement:
- Effect: Allow
Action:
- logs:CreatelLogGroup
Resource: arn:aws:logs:us-east-1:594035263019:*
- Effect: Allow
Action:
- logs:CreatelLogStream
- logs:PutLogEvents
Resource:
- arn:aws:logs:us-east-1:594035263019:1og-group:/aws/lambda/
LambdaIaCDemo: *

- DynamoDBCrudPolicy:
TableName: !Ref LambdaIaCTable
Events:
LambdaIaCQueue:
Type: SQS
Properties:

Queue: !GetAtt LambdaIaCQueue.Arn
BatchSize: 1
Environment:
Variables:
LAMBDAIACTABLE_TABLE_NAME: !Ref LambdaIaCTable
LAMBDAIACTABLE_TABLE_ARN: !GetAtt LambdaIaCTable.Arn
LambdaIaCQueue:
Type: AWS::SQS: :Queue
Properties:

Use AWS Infrastructure Composer to design a serverless application 113

AWS Lambda Developer Guide

MessageRetentionPeriod: 345600
LambdaIaCTable:
Type: AWS::DynamoDB::Table
Properties:
AttributeDefinitions:
- AttributeName: id
AttributeType: S
BillingMode: PAY_PER_REQUEST
KeySchema:
- AttributeName: id
KeyType: HASH
StreamSpecification:
StreamViewType: NEW_AND_OLD_IMAGES

Deploy your serverless application using AWS SAM (optional)

If you want to use AWS SAM to deploy a serverless application using the template you just created
in Infrastructure Composer, you first need to install the AWS SAM CLI. To do this, follow the
instructions in Installing the AWS SAM CLI.

Before you deploy your application, you also need to update the function code that Infrastructure
Composer saved along with your template. At the moment, the 1ambda_function. py file that
Infrastructure Composer saved contains only the basic 'Hello world' code that Lambda provided
when you created the function.

To update your function code, copy the following code and paste it into the
lambda_function. py file Infrastructure Composer saved to your local build machine. You
specified the directory for Infrastructure Composer to save this file to when you activated Local
Sync mode.

This code accepts a key value pair in a message from the Amazon SQS queue you created in
Infrastructure Composer. If both the key and value are strings, the code then uses them to write an
item to the DynamoDB table defined in your template.

Updated Python function code

import boto3
import os
import json

define the DynamoDB table that Lambda will connect to

Deploy your serverless application using AWS SAM (optional) 114

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/install-sam-cli.html

AWS Lambda

Developer Guide

tablename = os.environ['LAMBDAIACTABLE_TABLE_NAME']

create the DynamoDB resource
dynamo = boto3.client('dynamodb')

def lambda_handler(event, context):
get the message out of the SQS event
message = event['Records'][@]['body']
data = json.loads(message)
write event data to DDB table
if check_message_format(data):
key = next(iter(data))
value = datal[key]
dynamo.put_item(
TableName=tablename,
Item={
'id': {'S': key},
'Value': {'S': value}

)

else:

raise ValueError("Input data not in the correct format")

check that the event object contains a single key value

pair that can be written to the database
def check_message_format(message):
if len(message) != 1:
return False

key, value = next(iter(message.items()))

if not (isinstance(key, str) and isinstance(value, str)):

return False

else:
return True

To deploy your serverless application

To deploy your application using the AWS SAM CLI, carry out the following steps. For your function
to build and deploy correctly, Python version 3.11 must be installed on your build machine and on

your PATH.

Deploy your serverless application using AWS SAM (optional)

AWS Lambda Developer Guide

1. Run the following command from the directory in which Infrastructure Composer saved your
template.yaml and 1lambda_function. py files.

sam build

This command gathers the build artifacts for your application and places them in the proper
format and location to deploy them.

2. To deploy your application and create the Lambda, Amazon SQS, and DynamoDB resources
specified in your AWS SAM template, run the following command.

sam deploy --guided

Using the - -guided flag means that AWS SAM will show you prompts to guide you through
the deployment process. For this deployment, accept the default options by pressing Enter.

During the deployment process, AWS SAM creates the following resources in your AWS account:

« An AWS CloudFormation stack named sam-app
« A Lambda function with the name format sam-app-LambdaIaCDemo-99VXPpYQVvIM
« An Amazon SQS queue with the name format sam-app-LambdaIaCQueue-xL87VeKsGilo

« A DynamoDB table with the name format sam-app-LambdaIaCTable-CNOS66COVLNV

AWS SAM also creates the necessary IAM roles and policies so that your Lambda function can read
messages from the Amazon SQS queue and perform CRUD operations on the DynamoDB table.

Testing your deployed application (optional)

To confirm that your serverless application deployed correctly, send a message to your Amazon
SQS queue containing a key value pair and check that Lambda writes an item into your DynamoDB
table using these values.

To test your serverless application

1. Open the Queues page of the Amazon SQS console and select the queue that
AWS SAM created from your template. The name has the format sam-app-
LambdaIaCQueue-xL87VeKsGiIo.

Testing your deployed application (optional) 116

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-whatis-concepts.html#cfn-concepts-stacks
https://console.aws.amazon.com/sqs/v2/home#/queues

AWS Lambda Developer Guide

2. Choose Send and receive messages and paste the following JSON into the Message body in
the Send message section.

{
"myKey": "myValue"
}

3. Choose Send message.

Sending your message to the queue causes Lambda to invoke your function through the event
source mapping defined in your AWS SAM template. To confirm that Lambda has invoked your
function as expected, confirm that an item has been added to your DynamoDB table.

4. Open the Tables page of the DynamoDB console and select your table. The name has the
format sam-app-LambdaIaCTable-CN@S66COVLNV.

5. Choose Explore table items. In the Items returned pane, you should see an item with the id
myKey and the Value myValue.

Deploying Lambda functions with the AWS CDK

The AWS Cloud Development Kit (AWS CDK) is an infrastructure as code (laC) framework that you
can use to define AWS cloud infrastructure by using a programming language of your choosing.

To define your own cloud infrastructure, you first write an app (in one of the CDK's supported
languages) that contains one or more stacks. Then, you synthesize it to an AWS CloudFormation
template and deploy your resources to your AWS account. Follow the steps in this topic to deploy a
Lambda function that returns an event from an Amazon APl Gateway endpoint.

The AWS Construct Library, included with the CDK, provides modules that you can use to model
the resources that AWS services provide. For popular services, the library provides curated
constructs with smart defaults and best practices. You can use the aws_lambda module to define
your function and supporting resources with just a few lines of code.

Prerequisites

Before starting this tutorial, install the AWS CDK by running the following command.

npm install -g aws-cdk

Using the AWS CDK 117

https://console.aws.amazon.com/dynamodbv2#tables
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_lambda-readme.html

AWS Lambda Developer Guide

Step 1: Set up your AWS CDK project

Create a directory for your new AWS CDK app and initialize the project.

JavaScript

mkdir hello-lambda
cd hello-lambda
cdk init --language javascript

TypeScript

mkdir hello-lambda
cd hello-lambda
cdk init --language typescript

Python

mkdir hello-lambda
cd hello-lambda
cdk init --language python

After the project starts, activate the project's virtual environment and install the baseline
dependencies for AWS CDK.

source .venv/bin/activate
python -m pip install -r requirements.txt

Java

mkdir hello-lambda
cd hello-lambda
cdk init --language java

Import this Maven project to your Java integrated development environment (IDE). For
example, in Eclipse, choose File, Import, Maven, Existing Maven Projects.

CH#

mkdir hello-lambda

Step 1: Set up your project 118

AWS Lambda Developer Guide

cd hello-lambda
cdk init --language csharp

(® Note

The AWS CDK application template uses the name of the project directory to generate
names for source files and classes. In this example, the directory is named hello-1lambda.
If you use a different project directory name, your app won't match these instructions.

AWS CDK v2 includes stable constructs for all AWS services in a single package that's called aws -
cdk-11ib. This package is installed as a dependency when you initialize the project. When working
with certain programming languages, the package is installed when you build the project for the
first time.

Step 2: Define the AWS CDK stack

A CDK stack is a collection of one or more constructs, which define AWS resources. Each CDK stack
represents an AWS CloudFormation stack in your CDK app.

To define your CDK, stack follow the instructions for your preferred programming language. This
stack defines the following:

The function's logical name: MyFunction

The location of the function code, specified in the code property. For more information, see
Handler code in the AWS Cloud Development Kit (AWS CDK) API Reference.

The REST API's logical name: HelloApi

The API Gateway endpoint's logical name: ApiGwEndpoint

Note that all of the CDK stacks in this tutorial use the Node.js runtime for the Lambda function.
You can use different programming languages for the CDK stack and the Lambda function to
leverage the strengths of each language. For example, you can use TypeScript for the CDK stack
to leverage the benefits of static typing for your infrastructure code. You can use JavaScript for
the Lambda function to take advantage of the flexibility and rapid development of a dynamically
typed language.

Step 2: Define the stack 119

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_lambda-readme.html#handler-code

AWS Lambda Developer Guide

JavaScript

Openthe 1lib/hello-lambda-stack. js file and replace the contents with the following.

const { Stack } = require('aws-cdk-1lib');
const lambda = require('aws-cdk-lib/aws-lambda’');
const apigw = require('aws-cdk-lib/aws-apigateway');

class HelloLambdaStack extends Stack {
/**
*
* @param {Construct} scope
* @param {string} id
* @param {StackProps=} props
*/
constructor(scope, id, props) {
super(scope, id, props);
const fn = new lambda.Function(this, 'MyFunction', {
code: lambda.Code.fromAsset('lib/lambda-handler'),
runtime: lambda.Runtime.NODEJS_LATEST,
handler: 'index.handler'

1)

const endpoint = new apigw.LambdaRestApi(this, 'MyEndpoint', {
handler: fn,
restApiName: "HelloApi"

1)

module.exports = { HelloLambdaStack }

TypeScript

Open the 1ib/hello-lambda-stack. ts file and replace the contents with the following.

*

import as cdk from 'aws-cdk-1lib';

import { Construct } from 'constructs';

import * as apigw from "aws-cdk-lib/aws-apigateway";
import * as lambda from "aws-cdk-lib/aws-lambda";
import * as path from 'node:path’;

Step 2: Define the stack 120

AWS Lambda Developer Guide

export class HelloLambdaStack extends cdk.Stack {
constructor(scope: Construct, id: string, props?: cdk.StackProps){
super(scope, id, props)
const fn = new lambda.Function(this, 'MyFunction', {
runtime: lambda.Runtime.NODEJS_LATEST,
handler: 'index.handler',
code: lambda.Code.fromAsset(path.join(__dirname, 'lambda-handler')),

1)

const endpoint = new apigw.LambdaRestApi(this, “ApiGwEndpoint’, {
handler: fn,
restApiName: ‘HelloApi®,

1)

Python

Open the /hello-lambda/hello_lambda/hello_lambda_stack.py file and replace the
contents with the following.

from aws_cdk import (
Stack,
aws_apigateway as apigw,
aws_lambda as _lambda

)

from constructs import Construct
class HelloLambdaStack(Stack):

def __init_ (self, scope: Construct, construct_id: str, **kwargs) -> None:
super().__init_ (scope, construct_id, **kwargs)

fn = _lambda.Function(
self,
"MyFunction",
runtime=_lambda.Runtime.NODEJS_LATEST,
handler="index.handler",
code=_lambda.Code.from_asset("lib/lambda-handler")

endpoint = apigw.LambdaRestApi(

Step 2: Define the stack 121

AWS Lambda Developer Guide

self,

"ApiGwEndpoint",
handler=fn,
rest_api_name="HelloApi"

Java

Open the /hello-lambda/src/main/java/com/myorg/HellolLambdaStack. java file
and replace the contents with the following.

package com.myorg;

import software.constructs.Construct;

import software.amazon.awscdk.Stack;

import software.amazon.awscdk.StackProps;

import software.amazon.awscdk.services.apigateway.LambdaRestApi;
import software.amazon.awscdk.services.lambda.Function;

public class HelloLambdaStack extends Stack {
public HelloLambdaStack(final Construct scope, final String id) {
this(scope, id, null);

public HelloLambdaStack(final Construct scope, final String id, final StackProps
props) {
super(scope, id, props);

Function hello = Function.Builder.create(this, "MyFunction")
.runtime(software.amazon.awscdk.services.lambda.Runtime.NODEJS_LATEST)

.code(software.amazon.awscdk.services.lambda.Code.fromAsset("lib/lambda-handler"))
.handler("index.handler")
.build();

LambdaRestApi api = LambdaRestApi.Builder.create(this, "ApiGwEndpoint")
.restApiName("HelloApi")
.handler(hello)
.build();

Step 2: Define the stack 122

AWS Lambda Developer Guide

CH#

Open the src/HelloLambda/HellolLambdaStack. cs file and replace the contents with the
following.

using Amazon.CDK;

using Amazon.CDK.AWS.APIGateway;
using Amazon.CDK.AWS.Lambda;
using Constructs;

namespace HellolLambda

{
public class HelloLambdaStack : Stack

{

internal HellolLambdaStack(Construct scope, string id, IStackProps props =
null) : base(scope, id, props)

{
var fn = new Function(this, "MyFunction", new FunctionProps
{
Runtime = Runtime.NODEJS_LATEST,
Code = Code.FromAsset("lib/lambda-handler"),
Handler = "index.handler"
});
var api = new LambdaRestApi(this, "ApiGwEndpoint", new
LambdaRestApiProps
{
Handler = fn
});
}

Step 3: Create the Lambda function code

1. From the root of your project (hello-1lambda), create the /1ib/lambda-handler directory
for the Lambda function code. This directory is specified in the code property of your AWS
CDK stack.

Step 3: Create the function 123

AWS Lambda Developer Guide

2. Create a new filed called index. js inthe /1lib/lambda-handler directory. Paste the
following code into the file. The function extracts specific properties from the API request and
returns them as a JSON response.

exports.handler = async (event) => {
// Extract specific properties from the event object
const { resource, path, httpMethod, headers, queryStringParameters, body } =
event;
const response = {
resource,
path,
httpMethod,
headers,
queryStringParameters,
body,
};
return {
body: JSON.stringify(response, null, 2),
statusCode: 200,
};
i

Step 4: Deploy the AWS CDK stack

1. From the root of your project, run the cdk synth command:

cdk synth

This command synthesizes an AWS CloudFormation template from your CDK stack. The
template is an approximately 400-line YAML file, similar to the following.

(® Note

If you get the following error, make sure that you are in the root of your project
directory.

--app is required either in command-line, in cdk.json or in ~/.cdk.json

Step 4: Deploy the stack 124

https://docs.aws.amazon.com/cdk/v2/guide/ref-cli-cmd-synth.html

AWS Lambda

Developer Guide

Example AWS CloudFormation template

Resources:
MyFunctionServiceRole3C357FF2:
Type: AWS::IAM::Role
Properties:
AssumeRolePolicyDocument:
Statement:
- Action: sts:AssumeRole
Effect: Allow
Principal:
Service: lambda.amazonaws.com
Version: "2012-10-17"

ManagedPolicyArns:
- Fn::Join:
- - "arn:"

- Ref: AWS::Partition
- :iam::aws:policy/service-role/AWSLambdaBasicExecutionRole
Metadata:
aws:cdk:path: HelloLambdaStack/MyFunction/ServiceRole/Resource
MyFunctionl1lBAAS52E7:
Type: AWS::Lambda: :Function
Properties:
Code:
S3Bucket:
Fn::Sub: cdk-hnb659fds-assets-${AWS: :AccountId}-${AWS: :Region}
S3Key:
ab1111111cd32708dc4b83e81a21c296d607ff2cdef00f1d7f48338782f9213901.zip
Handler: index.handler

Role:
Fn::GetAtt:
- MyFunctionServiceRole3C357FF2
- Arn

Runtime: nodejs20.x

2. Run the cdk deploy command:

cdk deploy

Step 4: Deploy the stack

125

https://docs.aws.amazon.com/cdk/v2/guide/ref-cli-cmd-deploy.html

AWS Lambda Developer Guide

Wait while your resources are created. The final output includes the URL for your APl Gateway
endpoint. Example:

Outputs:
HellolLambdaStack.ApiGwEndpoint77F417B1 = https://abcdl1234.execute-api.us-
east-1.amazonaws.com/prod/

Step 5: Test the function

To invoke the Lambda function, copy the APl Gateway endpoint and paste it into a web browser or
run a curl command:

curl -s https://abcdl234.execute-api.us-east-1.amazonaws.com/prod/

The response is a JSON representation of selected properties from the original event object, which
contains information about the request made to the APl Gateway endpoint. Example:

"resource": "/",

"path": "/",

"httpMethod": "GET",

"headers": {
"Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/avif, image/

webp, image/apng, */*;q=0.8, application/signed-exchange;v=b3;q=0.7",

"Accept-Encoding": "gzip, deflate, br, zstd",
"Accept-Language": "en-US,en;q=0.9",
"CloudFront-Forwarded-Proto": "https",
"CloudFront-Is-Desktop-Viewer": "true",
"CloudFront-Is-Mobile-Viewer": "false",
"CloudFront-Is-SmartTV-Viewer": "false",
"CloudFront-Is-Tablet-Viewer": "false",
"CloudFront-Viewer-ASN": "16509",
"CloudFront-Viewer-Country": "US",
"Host": "abcdl234.execute-api.us-east-1.amazonaws.com",

Step 5: Test the function 126

AWS Lambda Developer Guide

Step 6: Clean up your resources

The API Gateway endpoint is publicly accessible. To prevent unexpected charges, run the cdk
destroy command to delete the stack and all associated resources.

cdk destroy

Next steps
For information about writing AWS CDK apps in your language of choice, see the following:
TypeScript

Working with the AWS CDK in TypeScript

JavaScript

Working with the AWS CDK in JavaScript
Python

Working with the AWS CDK in Python

Java

Working with the AWS CDK in Java
C#

Working with the AWS CDK in C#
Go

Working with the AWS CDK in Go

Step 6: Clean up 127

https://docs.aws.amazon.com/cdk/v2/guide/ref-cli-cmd-destroy.html
https://docs.aws.amazon.com/cdk/v2/guide/ref-cli-cmd-destroy.html
https://docs.aws.amazon.com/cdk/v2/guide/work-with-cdk-typescript.html
https://docs.aws.amazon.com/cdk/v2/guide/work-with-cdk-javascript.html
https://docs.aws.amazon.com/cdk/v2/guide/work-with-cdk-python.html
https://docs.aws.amazon.com/cdk/v2/guide/work-with-cdk-java.html
https://docs.aws.amazon.com/cdk/v2/guide/work-with-cdk-csharp.html
https://docs.aws.amazon.com/cdk/v2/guide/work-with-cdk-go.html

AWS Lambda Developer Guide

Lambda runtimes

Lambda supports multiple languages through the use of runtimes. A runtime provides a language-
specific environment that relays invocation events, context information, and responses between
Lambda and the function. You can use runtimes that Lambda provides, or build your own.

Each major programming language release has a separate runtime, with a unique runtime identifier,
such as nodejs22.x or python3.13. To configure a function to use a new major language
version, you need to change the runtime identifier. Since AWS Lambda cannot guarantee backward
compatibility between major versions, this is a customer-driven operation.

For a function defined as a container image, you choose a runtime and the Linux distribution when

you create the container image. To change the runtime, you create a new container image.

When you use a .zip file archive for the deployment package, you choose a runtime when you
create the function. To change the runtime, you can update your function's configuration.

The runtime is paired with one of the Amazon Linux distributions. The underlying execution
environment provides additional libraries and environment variables that you can access from your

function code.

Lambda invokes your function in an execution environment. The execution environment provides

a secure and isolated runtime environment that manages the resources required to run your
function. Lambda re-uses the execution environment from a previous invocation if one is available,
or it can create a new execution environment.

To use other languages in Lambda, such as Go or Rust, use an OS-only runtime. The Lambda

execution environment provides a runtime interface for getting invocation events and sending

responses. You can deploy other languages by implementing a custom runtime alongside your

function code, orin a layer.

Supported runtimes

The following table lists the supported Lambda runtimes and projected deprecation dates. After
a runtime is deprecated, you're still able to create and update functions for a limited period. For
more information, see the section called “Runtime use after deprecation”. The table provides the

currently forecasted dates for runtime deprecation. These dates are provided for planning purposes
and are subject to change.

Supported runtimes 128

AWS Lambda Developer Guide
Name Identifier Operating Deprecation Block Block
system date function function
create update
Node.js 22 nodejs22. Amazon Not Not Not
X Linux 2023 scheduled scheduled scheduled
Node.js 20 nodejs20. Amazon Not Not Not
X Linux 2023 scheduled scheduled scheduled
Node.js 18 nodejs18. Amazon Jul 31, 2025 Sep 1, 2025 Oct 1, 2025
X Linux 2
Python 3.13 python3.1 Amazon Not Not Not
3 Linux 2023 scheduled scheduled scheduled
Python 3.12 python3.1 Amazon Not Not Not
2 Linux 2023 scheduled scheduled scheduled
Python 3.11 python3.1 Amazon Not Not Not
1 Linux 2 scheduled scheduled scheduled
Python 3.10 python3.1 Amazon Not Not Not
0 Linux 2 scheduled scheduled scheduled
Python 3.9 python3.9 Amazon Not Not Not
Linux 2 scheduled scheduled scheduled
Java 21 java2l Amazon Not Not Not
Linux 2023 scheduled scheduled scheduled
Java 17 javal7 Amazon Not Not Not
Linux 2 scheduled scheduled scheduled
Java 11 javall Amazon Not Not Not
Linux 2 scheduled scheduled scheduled
Java 8 java8.al2 Amazon Not Not Not
Linux 2 scheduled scheduled scheduled

Supported runtimes

129

AWS Lambda Developer Guide

Name Identifier Operating Deprecation Block Block

system date function function

create update

.NET 8 dotnet8 Amazon Not Not Not

Linux 2023 scheduled scheduled scheduled
Ruby 3.3 ruby3.3 Amazon Not Not Not

Linux 2023 scheduled scheduled scheduled
Ruby 3.2 Tuby3.2 Amazon Not Not Not

Linux 2 scheduled scheduled scheduled
OS-only provided. Amazon Not Not Not
Runtime al2023 Linux 2023 scheduled scheduled scheduled
OS-only provided. Amazon Not Not Not
Runtime al2 Linux 2 scheduled scheduled scheduled
® Note

For new regions, Lambda will not support runtimes that are set to be deprecated within the

next 6 months.

Lambda keeps managed runtimes and their corresponding container base images up to date

with patches and support for minor version releases. For more information see Lambda runtime

updates.

Importantly, Lambda also provides AWS SDKs for supported runtimes. SDKs enable you to

programmatically interact with AWS services using familiar code constructs. SDK versions

change frequently as AWS adds new features and services, and Lambda periodically updates the
bundled SDKs. In these cases, SDK version changes typically do not impact the functionality or
performance. To lock an SDK version and make it immutable, you can create a Lambda layer with a

specific version of an SDK and include this in your deployment package. Additionally, packaging a
function as a container image also locks the SDK version in the image.

Supported runtimes 130

https://docs.aws.amazon.com/lambda/latest/dg/runtimes-update.html
https://docs.aws.amazon.com/lambda/latest/dg/runtimes-update.html
https://aws.amazon.com/tools/

AWS Lambda Developer Guide

Lambda continues to support the Go programming language after deprecation of the Go 1.x
runtime. For more information, see Migrating AWS Lambda functions from the Go1.x runtime to

the custom runtime on Amazon Linux 2 on the AWS Compute Blog.

All supported Lambda runtimes support both x86_64 and arm64 architectures.

New runtime releases

Lambda provides managed runtimes for new language versions only when the release reaches the
long-term support (LTS) phase of the language's release cycle. For example, for the Node.js release

cycle, when the release reaches the Active LTS phase.

Before the release reaches the long-term support phase, it remains in development and can still
be subject to breaking changes. Lambda applies runtime updates automatically by default, so
breaking changes to a runtime version could stop your functions from working as expected.

Lambda doesn't provide managed runtimes for language versions which aren't scheduled for LTS
release.

The following list shows the target launch month for upcoming Lambda runtimes. These dates are
indicative only and subject to change.

Ruby 3.4 - March 2025
Java 25 - October 2025

Python 3.14 - November 2025

Node.js 24 - November 2025

.NET 10 - December 2025

Runtime deprecation policy

Lambda runtimes for .zip file archives are built around a combination of operating system,

programming language, and software libraries that are subject to maintenance and security
updates. Lambda's standard deprecation policy is to deprecate a runtime when any major
component of the runtime reaches the end of community long-term support (LTS) and security
updates are no longer available. Most usually, this is the language runtime, though in some cases, a
runtime can be deprecated because the operating system (OS) reaches end of LTS.

New runtime releases 131

https://aws.amazon.com/blogs/compute/migrating-aws-lambda-functions-from-the-go1-x-runtime-to-the-custom-runtime-on-amazon-linux-2/
https://aws.amazon.com/blogs/compute/migrating-aws-lambda-functions-from-the-go1-x-runtime-to-the-custom-runtime-on-amazon-linux-2/
https://nodejs.org/en/about/previous-releases
https://nodejs.org/en/about/previous-releases

AWS Lambda Developer Guide

After a runtime is deprecated, AWS may no longer apply security patches or updates to that
runtime, and functions using that runtime are no longer eligible for technical support. Such
deprecated runtimes are provided ‘as-is’, without any warranties, and may contain bugs, errors,
defects, or other vulnerabilities.

To learn more about managing runtime upgrades and deprecation, see the following sections and
Managing AWS Lambda runtime upgrades on the AWS Compute Blog.

/A Important

Lambda occasionally delays deprecation of a Lambda runtime for a limited period beyond
the end of support date of the language version that the runtime supports. During this
period, Lambda only applies security patches to the runtime OS. Lambda doesn't apply
security patches to programming language runtimes after they reach their end of support
date.

Shared responsibility model

Lambda is responsible for curating and publishing security updates for all supported managed
runtimes and container base images. By default, Lambda will apply these updates automatically
to functions using managed runtimes. Where the default automatic runtime update setting has
been changed, see the runtime management controls shared responsibility model. For functions

deployed using container images, you're responsible for rebuilding your function's container image
from the latest base image and redeploying the container image.

When a runtime is deprecated, Lambda’s responsibility for updating the managed runtime and
container base images ceases. You are responsible for upgrading your functions to use a supported
runtime or base image.

In all cases, you are responsible for applying updates to your function code, including its
dependencies. Your responsibilities under the shared responsibility model are summarized in the
following table.

Runtime lifecycle phase Lambda's responsibilities Your responsibilities

Supported managed runtime Provide regular runtime Update your function code,
updates with security patches including dependencies, to
and other updates.

Shared responsibility model 132

https://aws.amazon.com/blogs/compute/managing-aws-lambda-runtime-upgrades/

AWS Lambda

Developer Guide

Runtime lifecycle phase

Supported container image

Managed runtime approachi
ng deprecation

Container image approaching
deprecation

Lambda's responsibilities

Apply runtime updates
automatically by default (see
the section called “Runtime

update modes” for non-defau

[t behaviors).

Provide regular updates to
container base image with
security patches and other
updates.

Notify customers prior to
runtime deprecation via
documentation, AWS Health
Dashboard, email, and
Trusted Advisor.

Responsibility for runtime
updates ends at deprecation.

Deprecation notifications are
not available for functions
using container images.

Responsibility for container
base image updates ends at
deprecation.

Your responsibilities

address any security vulnerabi
lities.

Update your function code,
including dependencies, to
address any security vulnerabi
lities.

Regularly re-build and re-
deploy your container image
using the latest base image.

Monitor Lambda documenta
tion, AWS Health Dashboard
, email, or Trusted Advisor
for runtime deprecation
information.

Upgrade functions to a
supported runtime before the
previous runtime is deprecate
d.

Be aware of deprecation
schedules and upgrade
functions to a supported base
image before the previous
image is deprecated.

Shared responsibility model

133

AWS Lambda Developer Guide

Runtime use after deprecation

After a runtime is deprecated, AWS may no longer apply security patches or updates to that
runtime, and functions using that runtime are no longer eligible for technical support. Such
deprecated runtimes are provided ‘as-is’, without any warranties, and may contain bugs, errors,
defects, or other vulnerabilities. Functions that use a deprecated runtime may also experience
degraded performance or other issues, such as a certificate expiry, that can cause them to stop
working properly.

For at least 30 days after a runtime is deprecated, you're still able to create new Lambda functions
using that runtime. Starting from 30 days after deprecation, Lambda begins blocking the creation
of new functions.

For at least 60 days after a runtime is deprecated, you're still able to update function code and
configuration for existing functions. Starting from 60 days after deprecation, Lambda begins
blocking the update of function code and configuration for existing functions.

(® Note

For some runtimes, AWS is delaying the block-function-create and block-function-update
dates beyond the usual 30 and 60 days after deprecation. AWS has made this change in
response to customer feedback to give you more time to upgrade your functions. Refer to
the tables in the section called “Supported runtimes” and the section called “"Deprecated
runtimes” to see the dates for your runtime.

You can update a function to use a newer supported runtime indefinitely after a runtime is
deprecated. You should test that your function works with the new runtime before applying the
runtime change in production environments, since you will not be able to revert to the deprecated
runtime once the 60-day period has passed. We recommend using function versions and aliases to
enable safe deployment with rollback.

Note that the exact length of time for which you can continue to create and update functions isn't
fixed. This period can vary for each deprecation and for different AWS Regions. Nominal dates for
the blocking of function creates and updates are provided in the Supported Runtimes table in the
first section of this page. Lambda will not start blocking function creates or updates before the
dates given in this table.

Runtime use after deprecation 134

AWS Lambda Developer Guide

You can continue to invoke your functions indefinitely after the runtime is deprecated. However,
AWS strongly recommends that you migrate functions to a supported runtime so that your
functions continue to receive security patches and remain eligible for technical support.

Receiving runtime deprecation notifications

When a runtime approaches its deprecation date, Lambda sends you an email alert if any functions
in your AWS account use that runtime. Notifications are also displayed in the AWS Health
Dashboard and in AWS Trusted Advisor.

» Receiving email notifications:

Lambda sends you an email alert at least 180 days before a runtime is deprecated. This email
lists the $LATEST versions of all functions using the runtime. To see a full list of affected function
versions, use Trusted Advisor or see the section called "Get data about functions by runtime”.

Lambda sends email notification to your AWS account's primary account contact. For information
about viewing or updating the email addresses in your account, see Updating contact
information in the AWS General Reference.

 Receiving notifications through the AWS Health Dashboard:

The AWS Health Dashboard displays a notification at least 180 days before a runtime is
deprecated. Notifications appear on the Your account health page under Other notifications.
The Affected resources tab of the notification lists the $LATEST versions of all functions using
the runtime.

(® Note

To see a full and up-to-date list of affected function versions, use Trusted Advisor or see
the section called "Get data about functions by runtime”.

AWS Health Dashboard notifications expire 90 days after the affected runtime is deprecated.
» Using AWS Trusted Advisor

Trusted Advisor displays a notification 180 days before a runtime is deprecated. Notifications
appear on the Security page. A list of your affected functions is displayed under AWS Lambda

Receiving runtime deprecation notifications 135

https://docs.aws.amazon.com/accounts/latest/reference/manage-acct-update-contact.html
https://docs.aws.amazon.com/accounts/latest/reference/manage-acct-update-contact.html
https://health.aws.amazon.com/health/home#/account/dashboard/other-notifications
https://console.aws.amazon.com/trustedadvisor/home#/category/security

AWS Lambda

Developer Guide

Functions Using Deprecated Runtimes. This list of functions shows both $LATEST and published
versions and updates automatically to reflect your functions' current status.

You can turn on weekly email notifications from Trusted Advisor in the Preferences page of the

Trusted Advisor console.

Deprecated runtimes

The following runtimes have reached end of support:

Name

.NET 6

Python 3.8

Node.js 16

.NET 7
(container
only)

Java 8

Go 1.x

OS-only

Runtime

Ruby 2.7

Identifier

dotnet6

python3.8

nodejsl6.

X

dotnet?7

java8

gol.x

provided

ruby2.7

Operating

system

Amazon
Linux 2

Amazon
Linux 2

Amazon
Linux 2

Amazon
Linux 2

Amazon
Linux

Amazon
Linux

Amazon
Linux

Amazon
Linux 2

Deprecation
date

Dec 20, 2024

Oct 14, 2024

Jun 12, 2024

May 14, 2024

Jan 8, 2024

Jan 8, 2024

Jan 8, 2024

Dec 7, 2023

Block

function

Ccreate

Feb 28, 2025

Feb 28, 2025

Feb 28, 2025

N/A

Feb 8, 2024

Feb 8, 2024

Feb 8, 2024

Jan 9, 2024

Block
function
update

Mar 31, 2025
Mar 31, 2025

Mar 31, 2025

N/A

Feb 28, 2025

Feb 28, 2025

Feb 28, 2025

Feb 28, 2025

Deprecated runtimes

136

https://console.aws.amazon.com/trustedadvisor/home?#/preferences

AWS Lambda

Developer Guide

Name

Node.js 14

Python 3.7

.NET Core 3.1

Node.js 12

Python 3.6

.NET 5

(container

only)

.NET Core 2.1

Node.js 10

Ruby 2.5

Python 2.7

Node.js 8.10

Identifier

nodejsl4.
X

python3.7

dotnetcor
e3.1

nodejsl2.
X

python3.6

dotnet5.0

dotnetcor
e2.1

nodejsl0.
X

ruby2.5

python2.7

nodejs8.1
0

Operating
system

Amazon
Linux 2

Amazon
Linux

Amazon
Linux 2

Amazon
Linux 2

Amazon
Linux

Amazon
Linux 2

Amazon
Linux

Amazon
Linux 2

Amazon
Linux

Amazon
Linux

Amazon
Linux

Deprecation
date

Dec 4, 2023

Dec 4, 2023

Apr 3, 2023

Mar 31, 2023

Jul 18, 2022

May 10, 2022

Jan 5, 2022

Jul 30, 2021

Jul 30, 2021

Jul 15, 2021

Mar 6, 2020

Block

function

create

Jan 9, 2024

Jan 9, 2024

Apr 3, 2023

Mar 31, 2023

Jul 18, 2022

N/A

Jan 5, 2022

Jul 30, 2021

Jul 30, 2021

Jul 15, 2021

N/A

Block

function

update

Feb 28, 2025

Feb 28, 2025

May 3, 2023

Apr 30, 2023

Aug 29, 2022

N/A

Apr 13, 2022

Feb 14, 2022

Mar 31, 2022

May 30, 2022

Mar 6, 2020

Deprecated runtimes

137

AWS Lambda Developer Guide
Name Identifier Operating Deprecation Block Block
system date function function
create update
Node.js 4.3 nodejs4.3 Amazon Mar 5, 2020 N/A Mar 5, 2020
Linux
Node.js 4.3 nodejs4.3 Amazon Mar 5, 2020 N/A Apr 30, 2019
edge -edge Linux
Node.js 6.10 nodejs6.1 Amazon Aug 12,2019 Aug 12,2019 N/A
0 Linux
.NET Core 1.0 dotnetcor Amazon Jun 27,2019 N/A Jul 30, 2019
el.0 Linux
.NET Core 2.0 dotnetcor Amazon May 30,2019 N/A May 30, 2019
e2.0 Linux
Node.js 0.10 nodejs Amazon N/A N/A Oct 31, 2016
Linux

In almost all cases, the end-of-life date of a language version or operating system is known well in

advance. The following links give end-of-life schedules for each language that Lambda supports as

a managed runtime.

Language and framework support policies

Node.js — github.com

Python - devguide.python.org

Ruby - www.ruby-lang.org

Java - www.oracle.com and Corretto FAQs

Go - golang.org

.NET - dotnet.microsoft.com

Deprecated runtimes

138

https://github.com/nodejs/Release#release-schedule
https://devguide.python.org/versions/#versions
https://www.ruby-lang.org/en/downloads/branches/
https://www.oracle.com/java/technologies/java-se-support-roadmap.html
https://aws.amazon.com/corretto/faqs/
https://golang.org/doc/devel/release.html
https://dotnet.microsoft.com/platform/support/policy/dotnet-core

AWS Lambda Developer Guide

Understanding how Lambda manages runtime version updates

Lambda keeps each managed runtime up to date with security updates, bug fixes, new features,
performance enhancements, and support for minor version releases. These runtime updates are
published as runtime versions. Lambda applies runtime updates to functions by migrating the
function from an earlier runtime version to a new runtime version.

By default, for functions using managed runtimes, Lambda applies runtime updates automatically.
With automatic runtime updates, Lambda takes on the operational burden of patching the runtime
versions. For most customers, automatic updates are the right choice. You can change this default
behavior by configuring runtime management settings.

Lambda also publishes each new runtime version as a container image. To update runtime versions
for container-based functions, you must create a new container image from the updated base

image and redeploy your function.

Each runtime version is associated with a version number and an ARN (Amazon Resource Name).
Runtime version numbers use a numbering scheme that Lambda defines, independent of the
version numbers that the programming language uses. Runtime version numbers are not always
sequential. For example, version 42 might be followed by version 45. The runtime version ARN is a
unique identifier for each runtime version. You can view the ARN of your function's current runtime
version in the Lambda console, or the INIT_START line of your function logs.

Runtime versions should not be confused with runtime identifiers. Each runtime has a unique
runtime identifier, such as python3.13 or nodejs22. x. These correspond to each major
programming language release. Runtime versions describe the patch version of an individual
runtime.

® Note

The ARN for the same runtime version number can vary between AWS Regions and CPU
architectures.

Topics

» Backward compatibility

o Runtime update modes

« Two-phase runtime version rollout

Runtime version updates 139

AWS Lambda Developer Guide

» Configuring Lambda runtime management settings

Rolling back a Lambda runtime version

Identifying Lambda runtime version changes

Understanding the shared responsibility model for Lambda runtime management

Controlling Lambda runtime update permissions for high-compliance applications

Backward compatibility

Lambda strives to provide runtime updates that are backward compatible with existing functions.
However, as with software patching, there are rare cases in which a runtime update can negatively
impact an existing function. For example, security patches can expose an underlying issue with an
existing function that depends on the previous, insecure behavior.

When building and deploying your function, it is important to understand how to manage your
dependencies to avoid potential incompatibilities with a future runtime update. For example,
suppose your function has a dependency on package A, which in turn depends on package B. Both
packages are included in the Lambda runtime (for example, they could be parts of the SDK or its
dependencies, or parts of the runtime system libraries).

Consider the following scenarios:

Deployment Patching compatible Reason

» Package A: Use from Yes Future runtime updates
runtime to packages A and B are
runtime

» Package A: In deployment Yes Your deployment takes
package precedence, so future runtime

« Package B: In deployment updates to packages A and B
package have no effect.

« Package A: In deployment Yes* Future runtime updates to
package package B are backward

compatible.

Backward compatibility 140

AWS Lambda

Developer Guide

Deployment

« Package B: Use from
runtime

« Package A: Use from
runtime

» Package B: In deployment
package

Patching compatible

No

Reason

*If A and B are tightly
coupled, compatibility issues
can occur. For example,

the boto3 and botocore
packages in the AWS SDK for
Python should be deployed
together.

Future runtime updates to
package A might require an
updated version of package
B. However, the deployed
version of package B takes
precedence, and might not be
forward compatible with the
updated version of package
A.

To maintain compatibility with future runtime updates, follow these best practices:

« When possible, package all dependencies: Include all required libraries, including the AWS

SDK and its dependencies, in your deployment package. This ensures a stable, compatible set of

components.

« Use runtime-provided SDKs sparingly: Only rely on the runtime-provided SDK when you can't
include additional packages (for example, when using the Lambda console code editor or inline

code in an AWS CloudFormation template).

« Avoid overriding system libraries: Don't deploy custom operating system libraries that may
conflict with future runtime updates.

Runtime update modes

Lambda strives to provide runtime updates that are backward compatible with existing functions.

However, as with software patching, there are rare cases in which a runtime update can negatively

impact an existing function. For example, security patches can expose an underlying issue with an

Runtime update modes

141

AWS Lambda Developer Guide

existing function that depends on the previous, insecure behavior. Lambda runtime management
controls help reduce the risk of impact to your workloads in the rare event of a runtime version
incompatibility. For each function version ($LATEST or published version), you can choose one of
the following runtime update modes:

o Auto (default) - Automatically update to the most recent and secure runtime version using Two-
phase runtime version rollout. We recommend this mode for most customers so that you always
benefit from runtime updates.

« Function update — Update to the most recent and secure runtime version when you update
your function. When you update your function, Lambda updates the runtime of your function to
the most recent and secure runtime version. This approach synchronizes runtime updates with
function deployments, giving you control over when Lambda applies runtime updates. With this
mode, you can detect and mitigate rare runtime update incompatibilities early. When using this
mode, you must regularly update your functions to keep their runtime up to date.

« Manual - Manually update your runtime version. You specify a runtime version in your function
configuration. The function uses this runtime version indefinitely. In the rare case in which a new
runtime version is incompatible with an existing function, you can use this mode to roll back
your function to an earlier runtime version. We recommend against using Manual mode to try
to achieve runtime consistency across deployments. For more information, see Rolling back a
Lambda runtime version.

Responsibility for applying runtime updates to your functions varies according to which runtime
update mode you choose. For more information, see Understanding the shared responsibility
model for Lambda runtime management.

Two-phase runtime version rollout

Lambda introduces new runtime versions in the following order:

1. In the first phase, Lambda applies the new runtime version whenever you create or
update a function. A function gets updated when you call the UpdateFunctionCode or
UpdateFunctionConfiguration API operations.

2. In the second phase, Lambda updates any function that uses the Auto runtime update mode and
that hasn't already been updated to the new runtime version.

Two-phase runtime version rollout 142

https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionCode.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionConfiguration.html

AWS Lambda Developer Guide

The overall duration of the rollout process varies according to multiple factors, including the
severity of any security patches included in the runtime update.

If you're actively developing and deploying your functions, you will most likely pick up new runtime
versions during the first phase. This synchronizes runtime updates with function updates. In the
rare event that the latest runtime version negatively impacts your application, this approach lets
you take prompt corrective action. Functions that aren't in active development still receive the
operational benefit of automatic runtime updates during the second phase.

This approach doesn't affect functions set to Function update or Manual mode. Functions using
Function update mode receive the latest runtime updates only when you create or update them.
Functions using Manual mode don't receive runtime updates.

Lambda publishes new runtime versions in a gradual, rolling fashion across AWS Regions. If your
functions are set to Auto or Function update modes, it's possible that functions deployed at the
same time to different Regions, or at different times in the same Region, will pick up different
runtime versions. Customers who require guaranteed runtime version consistency across their
environments should use container images to deploy their Lambda functions. The Manual mode

is designed as a temporary mitigation to enable runtime version rollback in the rare event that a
runtime version is incompatible with your function.

Configuring Lambda runtime management settings

You can configure runtime management settings using the Lambda console or the AWS Command
Line Interface (AWS CLI).

(® Note

You can configure runtime management settings separately for each function version.

To configure how Lambda updates your runtime version (console)

Open the Functions page of the Lambda console.

1
2. Choose the name of a function.

3. Onthe Code tab, under Runtime settings, choose Edit runtime management configuration.
4

Under Runtime management configuration, choose one of the following:

» To have your function update to the latest runtime version automatically, choose Auto.

Configuring runtime management 143

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

« To have your function update to the latest runtime version when you change the function,
choose Function update.

« To have your function update to the latest runtime version only when you change the
runtime version ARN, choose Manual. You can find the runtime version ARN under Runtime
management configuration. You can also find the ARN in the INIT_START line of your
function logs.

For more information about these options, see Runtime update modes.

5. Choose Save.

To configure how Lambda updates your runtime version (AWS CLI)

To configure runtime management for a function, run the put-runtime-management-config AWS
CLI command. When using Manual mode, you must also provide the runtime version ARN.

aws lambda put-runtime-management-config \

--function-name my-function \

--update-runtime-on Manual \

--runtime-version-arn arn:aws:lambda:us-
east-2::runtime:8eeff65f6809a3ce81507fe733fe09b835899b99481ba22fd75b5a7338290ec1

You should see output similar to the following:

{
"UpdateRuntimeOn": "Manual",
"FunctionArn": "arn:aws:lambda:us-east-2:111122223333:function:my-function",
"RuntimeVersionArn": "arn:aws:lambda:us-

east-2::runtime:8eeff65f6809a3ce81507fe733fe@9b835899b99481ba22fd75b5a7338290ecl"
}

Rolling back a Lambda runtime version

In the rare event that a new runtime version is incompatible with your existing function, you can
roll back its runtime version to an earlier one. This keeps your application working and minimizes
disruption, providing time to remedy the incompatibility before returning to the latest runtime
version.

Runtime version roll-back 144

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/put-runtime-management-config.html

AWS Lambda Developer Guide

Lambda doesn't impose a time limit on how long you can use any particular runtime version.
However, we strongly recommend updating to the latest runtime version as soon as possible

to benefit from the latest security patches, performance improvements, and features. Lambda
provides the option to roll back to an earlier runtime version only as a temporary mitigation in
the rare event of a runtime update compatibility issue. Functions using an earlier runtime version
for an extended period may eventually experience degraded performance or issues, such as a
certificate expiry, which can cause them to stop working properly.

You can roll back a runtime version in the following ways:

« Using the Manual runtime update mode

» Using published function versions

For more information, see Introducing AWS Lambda runtime management controls on the AWS

Compute Blog.
Roll back a runtime version using Manual runtime update mode

If you're using the Auto runtime version update mode, or you're using the $LATEST runtime
version, you can roll back your runtime version using the Manual mode. For the function version
you want to roll back, change the runtime version update mode to Manual and specify the ARN of
the previous runtime version. For more information about finding the ARN of the previous runtime
version, see Identifying Lambda runtime version changes.

(@ Note

If the $LATEST version of your function is configured to use Manual mode, then you can't
change the CPU architecture or runtime version that your function uses. To make these
changes, you must change to Auto or Function update mode.

Roll back a runtime version using published function versions

Published function versions are an immutable snapshot of the $LATEST function code and
configuration at the time that you created them. In Auto mode, Lambda automatically updates the
runtime version of published function versions during phase two of the runtime version rollout.

In Function update mode, Lambda doesn't update the runtime version of published function

versions.

Runtime version roll-back 145

https://aws.amazon.com/blogs/compute/introducing-aws-lambda-runtime-management-controls/

AWS Lambda Developer Guide

Published function versions using Function update mode therefore create a static snapshot of the
function code, configuration, and runtime version. By using Function update mode with function
versions, you can synchronize runtime updates with your deployments. You can also coordinate
rollback of code, configuration, and runtime versions by redirecting traffic to an earlier published
function version. You can integrate this approach into your continuous integration and continuous
delivery (Cl/CD) for fully automatic rollback in the rare event of runtime update incompatibility.
When using this approach, you must update your function regularly and publish new function
versions to pick up the latest runtime updates. For more information, see Understanding the

shared responsibility model for Lambda runtime management.

Identifying Lambda runtime version changes

The runtime version number and ARN are logged in the INIT_START log line, which Lambda
emits to CloudWatch Logs each time that it creates a new execution environment. Because the

execution environment uses the same runtime version for all function invocations, Lambda emits
the INIT_START log line only when Lambda executes the init phase. Lambda doesn't emit this
log line for each function invocation. Lambda emits the log line to CloudWatch Logs, but it is not
visible in the console.

(@ Note

Runtime version numbers are not always sequential. For example, version 42 might be
followed by version 45.

Example Example INIT_START log line

INIT_START Runtime Version: python:3.13.v14 Runtime Version ARN: arn:aws:lambda:eu-
south-1::runtime:7b620fc2e66107a1046b140b9d320295811af3ad5d4c6a@llfadlfa65127e9e61

Rather than working directly with the logs, you can use Amazon CloudWatch Contributor Insights
to identify transitions between runtime versions. The following rule counts the distinct runtime
versions from each INIT_START log line. To use the rule, replace the example log group name /
aws/lambda/* with the appropriate prefix for your function or group of functions.

{
"Schema": {
"Name": "CloudWatchLogRule",

Runtime version updates 146

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ContributorInsights-CreateRule.html

AWS Lambda Developer Guide

"Version": 1
.
"AggregateOn": "Count",
"Contribution": {
"Filters": [
{
"Match": "eventType",
"In": [
"INIT_START"

}

1,

"Keys": [
"runtimeVersion",
"runtimeVersionArn"

]

},

"LogFormat": "CLF",
"LogGroupNames": [
"/aws/lambda/*"

1,
"Fields": {

"1": "eventType",

"4": "runtimeVersion",

"8": "runtimeVersionArn"

The following CloudWatch Contributor Insights report shows an example of a runtime version
transition as captured by the preceding rule. The orange line shows execution environment
initialization for the earlier runtime version (python:3.13.v12), and the blue line shows execution
environment initialization for the new runtime version (python:3.13.v14).

Runtime version updates 147

AWS Lambda Developer Guide

Top 2 of 2 unique contributors Q

2 unique contributors « No unit

4.0
30
20
1.0
17:33 17:34 17:35 17:36 17.37 17:38 17:39 17:40 1741 17:42 17:43 17:44 17:45 17:46 1747
14:50 15:50 16:50 17:51
® 1. python:3.9.v14 arn:aws-lambda. . 2. python:3.9.v12 arn:aws:lambda. ..

Understanding the shared responsibility model for Lambda runtime
management

Lambda is responsible for curating and publishing security updates for all supported managed
runtimes and container images. Responsibility for updating existing functions to use the latest
runtime version varies depending on which runtime update mode you use.

Lambda is responsible for applying runtime updates to all functions configured to use the Auto
runtime update mode.

For functions configured with the Function update runtime update mode, you're responsible for
regularly updating your function. Lambda is responsible for applying runtime updates when you
make those updates. If you don't update your function, then Lambda doesn't update the runtime. If
you don't regularly update your function, then we strongly recommend configuring it for automatic
runtime updates so that it continues to receive security updates.

For functions configured to use the Manual runtime update mode, you're responsible for updating
your function to use the latest runtime version. We strongly recommend that you use this mode
only to roll back the runtime version as a temporary mitigation in the rare event of runtime update
incompatibility. We also recommend that you change to Auto mode as quickly as possible to
minimize the time in which your functions aren't patched.

Shared responsibility model 148

AWS Lambda

Developer Guide

If you're using container images to deploy your functions, then Lambda is responsible for

publishing updated base images. In this case, you're responsible for rebuilding your function's
container image from the latest base image and redeploying the container image.

This is summarized in the following table:

Deployment
mode

Managed
runtime,
Auto mode

Managed
runtime,
Function
update mode

Managed
runtime,
Manual
mode

Container
image

Lambda's responsibility

Publish new runtime versions
containing the latest patches.

Apply runtime patches to
existing functions.

Publish new runtime versions
containing the latest patches.

Publish new runtime versions
containing the latest patches.

Publish new container images
containing the latest patches.

Customer's responsibility

Roll back to a previous runtime version in
the rare event of a runtime update compatibi
lity issue. Follow best practices for backward

compatibility.

Update functions regularly to pick up the
latest runtime version.

Switch a function to Auto mode when you're
not regularly updating the function.

Roll back to a previous runtime version in
the rare event of a runtime update compatibi
lity issue. Follow best practices for backward

compatibility.

Use this mode only for temporary runtime
rollback in the rare event of a runtime update
compatibility issue.

Switch functions to Auto or Function update
mode and the latest runtime version as soon
as possible.

Redeploy functions regularly using the latest
container base image to pick up the latest
patches.

For more information about shared responsibility with AWS, see Shared Responsibility Model.

Shared responsibility model

149

https://aws.amazon.com/compliance/shared-responsibility-model/

AWS Lambda Developer Guide

Controlling Lambda runtime update permissions for high-compliance
applications

To meet patching requirements, Lambda customers typically rely on automatic runtime updates.
If your application is subject to strict patching freshness requirements, you may want to limit use
of earlier runtime versions. You can restrict Lambda's runtime management controls by using
AWS Identity and Access Management (IAM) to deny users in your AWS account access to the
PutRuntimeManagementConfig APl operation. This operation is used to choose the runtime
update mode for a function. Denying access to this operation causes all functions to default to
the Auto mode. You can apply this restriction across your organization by using a service control
policies (SCP). If you must roll back a function to an earlier runtime version, you can grant a policy
exception on a case-by-case basis.

Permissions 150

https://docs.aws.amazon.com/lambda/latest/api/API_PutRuntimeManagementConfig.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html

AWS Lambda Developer Guide

Retrieve data about Lambda functions that use a deprecated
runtime

When a Lambda runtime is approaching deprecation, Lambda alerts you through email and
provides notifications in the AWS Health Dashboard and Trusted Advisor. These emails and
notifications list the $LATEST versions of functions using the runtime. To list all of your function
versions that use a particular runtime, you can use the AWS Command Line Interface (AWS CLI) or
one of the AWS SDKs.

If you have a large number of functions which use a runtime that is due to be deprecated, you can
also use the AWS CLI or AWS SDKs to help you prioritize updates to your most commonly invoked
functions.

Refer to the following sections to learn how to use the AWS CLI and AWS SDKs to gather data
about functions that use a particular runtime.

Listing function versions that use a particular runtime

To use the AWS CLI to list all of your function versions that use a particular runtime, run the
following command. Replace RUNTIME_IDENTIFIER with the name of the runtime that's being
deprecated and choose your own AWS Region. To list only $LATEST function versions, omit - -
function-version ALL from the command.

aws lambda list-functions --function-version ALL --region us-east-1 --output text --
quexry "Functions[?Runtime=='RUNTIME_IDENTIFIER'].FunctionArn"

® Tip
The example command lists functions in the us-east-1 region for a particular AWS

account You'll need to repeat this command for each region in which your account has
functions and for each of your AWS accounts.

You can also list functions that use a particular runtime using one of the AWS SDKs. The following
example code uses the V3 AWS SDK for JavaScript and the AWS SDK for Python (Boto3) to return
a list of the function ARNSs for functions using a particular runtime. The example code also returns
the CloudWatch log group for each of the listed functions. You can use this log group to find the

Get data about functions by runtime 151

AWS Lambda Developer Guide

last invocation date for the function. See the following section the section called “Identifying most
commonly and most recently invoked functions” for more information.

Node.js

Example JavaScript code to list functions using a particular runtime

import { LambdaClient, ListFunctionsCommand } from "@aws-sdk/client-lambda";
const lambdaClient = new LambdaClient();

const command = new ListFunctionsCommand({
FunctionVersion: "ALL",
MaxItems: 50

1);

const response = await lambdaClient.send(command);

for (const f of response.Functions){
if (f.Runtime == '<your_runtime>'){ // Use the runtime id, e.g. 'nodejsl8.x' or
'python3.9'
console.log(f.FunctionAzrn);
// get the CloudWatch log group of the function to
// use later for finding the last invocation date
console.log(f.LoggingConfig.LogGroup);

}

// If your account has more functions than the specified
// MaxItems, use the returned pagination token in the
// next request with the 'Marker' parameter
if ('NextMarker' in response){

let paginationToken = response.NextMarker;

}
Python

Example Python code to list functions using a particular runtime

import boto3
from botocore.exceptions import ClientError

def list_lambda_functions(target_runtime):

lambda_client = boto3.client('lambda"')

Listing function versions that use a particular runtime 152

AWS Lambda Developer Guide

response = lambda_client.list_functions(
FunctionVersion="ALL',
MaxItems=50
)
if not response['Functions']:
print("No Lambda functions found")
else:
for function in response['Functions']:
if function['PackageType']=='Zip' and function['Runtime'] ==
target_runtime:
print(function['FunctionAzn'])
Print the CloudWatch log group of the function
to use later for finding last invocation date
print(function['LoggingConfig']['LogGroup'])

if 'NextMarker' in response:
pagination_token = response['NextMarker']

if __name__ == "__main__":
Replace python3.12 with the appropriate runtime ID for your Lambda functions
list_lambda_functions('python3.12")

To learn more about using an AWS SDK to list your functions using the ListFunctions action, see the
SDK documentation for your preferred programming language.

You can also use the AWS Config Advanced queries feature to list all your functions that use an
affected runtime. This query only returns function $LATEST versions, but you can aggregate
queries to list function across all regions and multiple AWS accounts with a single command. To
learn more, see Querying the Current Configuration State of AWS Auto Scaling Resources in the
AWS Config Developer Guide.

Identifying most commonly and most recently invoked functions

If your AWS account contains functions that use a runtime that's due to be deprecated, you might
want to prioritize updating functions that are frequently invoked or functions that have been
invoked recently.

If you have only a few functions, you can use the CloudWatch Logs console to gather this
information by looking at your functions' log streams. See View log data sent to CloudWatch Logs

for more information.

Identifying most commonly and most recently invoked functions 153

https://docs.aws.amazon.com/lambda/latest/api/API_ListFunctions.html
https://aws.amazon.com/developer/tools/
https://docs.aws.amazon.com/config/latest/developerguide/querying-AWS-resources.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html#ViewingLogData

AWS Lambda Developer Guide

To see the number of recent function invocations, you can also use the CloudWatch metrics
information shown in the Lambda console. To view this information, do the following:

Open the Functions page of the Lambda console.

1
2. Select the function you want to see invocation statistics for.
3. Choose the Monitor tab.
4

Set the time period you wish to view statistics for using the date range picker. Recent
invocations are displayed in the Invocations pane.

For accounts with larger numbers of functions, it can be more efficient to gather this data
programmatically using the AWS CLI or one of the AWS SDKs using the DescribeLogStreams and
GetMetricStatistics APl actions.

The following examples provide code snippets using the V3 AWS SDK for JavaScript and the AWS
SDK for Python (Boto3) to identify the last invoke date for a particular function and to determine
the number of invocations for a particular function in the last 14 days.

Node.js

Example JavaScript code to find last invocation time for a function

import { CloudWatchLogsClient, DescribelogStreamsCommand } from "@aws-sdk/client-
cloudwatch-logs";
const cloudWatchLogsClient = new CloudWatchLogsClient();
const command = new DescribelogStreamsCommand({
logGroupName: '<your_log_group_name>",
orderBy: 'LastEventTime',
descending: true,
limit: 1
1)
try {
const response = await cloudWatchLogsClient.send(command);
const lastEventTimestamp = response.logStreams.length > 0 ?
response.logStreams[@].lastEventTimestamp : null;
// Convert the UNIX timestamp to a human-readable format for display
const date = new Date(lastEventTimestamp).tolLocaleDateString();
const time = new Date(lastEventTimestamp).tolLocaleTimeString();
console.log(" ${date} ${timel}’);

} catch (e){
console.error('Log group not found.')

Identifying most commonly and most recently invoked functions 154

https://console.aws.amazon.com/lambda/home#/functions
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_DescribeLogStreams.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_GetMetricStatistics.html

AWS Lambda Developer Guide

}

Python

Example Python code to find last invocation time for a function

import boto3
from datetime import datetime

cloudwatch_logs_client = boto3.client('logs')

response = cloudwatch_logs_client.describe_log_streams(
logGroupName="<your_log_group_name>",
orderBy='LastEventTime',
descending=True,
limit=1

try:
if len(response['logStreams']) > 0:
last_event_timestamp = response['logStreams']J[0@]['lastEventTimestamp']
print(datetime.fromtimestamp(last_event_timestamp/1000)) # Convert timestamp
from ms to seconds
else:
last_event_timestamp = None
except:
print('Log group not found')

® Tip
You can find your function's log group name using the ListFunctions API operation. See the

code in the section called "Listing function versions that use a particular runtime"” for an
example of how to do this.

Node.js

Example JavaScript code to find number of invocations in last 14 days

import { CloudWatchClient, GetMetricStatisticsCommand } from "eaws-sdk/client-
cloudwatch";

Identifying most commonly and most recently invoked functions 155

https://docs.aws.amazon.com/lambda/latest/api/API_ListFunctions.html

AWS Lambda

Developer Guide

const cloudWatchClient = new CloudWatchClient();
const command = new GetMetricStatisticsCommand({
Namespace: 'AWS/Lambda’,
MetricName: 'Invocations',

StartTime: new Date(Date.now()-86400*1000*14), // 14 days ago

EndTime: new Date(Date.now()),
Period: 86400 * 14, // 14 days.
Statistics: ['Sum'],
Dimensions: [{

Name: 'FunctionName',

Value: '<your_function_name>"
1]

1);

const response = await cloudWatchClient.send(command);
const invokesInLastl4Days = response.Datapoints.length > @ ?

response.Datapoints[0].Sum : 0;

console.log('Number of invocations: ' + invokesInLastl4Days);

Python

Example Python code to find number of invocations in last 14 days

import boto3
from datetime import datetime, timedelta

cloudwatch_client = boto3.client('cloudwatch')

response = cloudwatch_client.get_metric_statistics(

Namespace="'AWS/Lambda’,
MetricName='Invocations',
Dimensions=[
{
'Name': 'FunctionName',
'Value': '<your_function_name>'
.
1,
StartTime=datetime.now() - timedelta(days=14),
EndTime=datetime.now(),
Period=86400 * 14, # 14 days
Statistics=[
'Sum'’

Identifying most commonly and most recently invoked functions

156

AWS Lambda Developer Guide

)

if len(response['Datapoints']) > 0:
invokes_in_last_14_days = int(response['Datapoints']J[@]['Sum'])
else:
invokes_in_last_14_days

1
S

print(f'Number of invocations: {invokes_in_last_14_days}"')

Identifying most commonly and most recently invoked functions 157

AWS Lambda Developer Guide

Modifying the runtime environment

You can use internal extensions to modify the runtime process. Internal extensions are not separate

processes—they run as part of the runtime process.

Lambda provides language-specific environment variables that you can set to add options and
tools to the runtime. Lambda also provides wrapper scripts, which allow Lambda to delegate the

runtime startup to your script. You can create a wrapper script to customize the runtime startup
behavior.

Language-specific environment variables

Lambda supports configuration-only ways to enable code to be pre-loaded during function
initialization through the following language-specific environment variables:

e JAVA_TOOL_OPTIONS - On Java, Lambda supports this environment variable to set additional
command-line variables in Lambda. This environment variable allows you to specify the
initialization of tools, specifically the launching of native or Java programming language agents
using the agentlib or javaagent options. For more information, see JAVA_TOOL_OPTIONS

environment variable.

« NODE_OPTIONS - Available in Node.js runtimes.

o DOTNET_STARTUP_HOOKS — On .NET Core 3.1 and above, this environment variable specifies a
path to an assembly (dll) that Lambda can use.

Using language-specific environment variables is the preferred way to set startup properties.

Wrapper scripts

You can create a wrapper script to customize the runtime startup behavior of your Lambda
function. A wrapper script enables you to set configuration parameters that cannot be set through
language-specific environment variables.

® Note

Invocations may fail if the wrapper script does not successfully start the runtime process.

Runtime modifications 158

https://docs.aws.amazon.com/lambda/latest/dg/java-customization.html#java-tool-options
https://docs.aws.amazon.com/lambda/latest/dg/java-customization.html#java-tool-options

AWS Lambda Developer Guide

Wrapper scripts are supported on all native Lambda runtimes. Wrapper scripts are not supported
on OS-only runtimes (the provided runtime family).

When you use a wrapper script for your function, Lambda starts the runtime using your script.
Lambda sends to your script the path to the interpreter and all of the original arguments for the
standard runtime startup. Your script can extend or transform the startup behavior of the program.
For example, the script can inject and alter arguments, set environment variables, or capture
metrics, errors, and other diagnostic information.

You specify the script by setting the value of the AWS_LAMBDA_EXEC_WRAPPER environment
variable as the file system path of an executable binary or script.

Example: Create and use a wrapper script as a Lambda layer

In the following example, you create a wrapper script to start the Python interpreter with the -
X importtime option. When you run the function, Lambda generates a log entry to show the
duration of the import time for each import.

To create and use a wrapper script as a layer

1. Create a directory for the layer:

mkdir -p python-wrapper-layer/bin
cd python-wrapper-layer/bin

2. Inthe bin directory, paste the following code into a new file named importtime_wrapper.
This is the wrapper script.

#!/bin/bash

the path to the interpreter and all of the originally intended arguments
args=("%e")

the extra options to pass to the interpreter
extra_args=("-X" "importtime")

insert the extra options
args=("${args[@]:0:$#-13" "${extra_args[@]}" "${args[e@]l: -1}")

start the runtime with the extra options
exec "${args[e@l}"

Wrapper scripts 159

AWS Lambda

Developer Guide

3. Give

the script executable permissions:

chmod +x importtime_wrapper

4. Crea

te a .zip file for the layer:

cd ..
zip -r ../python-wrapper-layer.zip .

5. Confirm that your .zip file has the following directory structure:

python-wrapper-layer.zip
bin

6. Crea

importtime_wrapper

te a layer using the .zip package.

7. Crea

a.
b.
C.
d.
e.
8. Add

d.
e.
9. Add

a
b.
C.
d.

te a function using the Lambda console.

Open the Lambda console.

Choose Create function.
Enter a Function name.
For Runtime, choose the Latest supported Python runtime.
Choose Create function.

the layer to your function.

Choose your function, and then choose the Code tab if it's not already selected.
Scroll down to the Layers section, and then choose Add a layer.

For Layer source, select Custom layers, and then choose your layer from the Custom
layers dropdown list.

For Version, choose 1.
Choose Add.

the wrapper environment variable.

Choose the Configuration tab, then choose Environment variables.
Under Environment variables, choose Edit.
Choose Add environment variable.

For Key, enter AWS_LAMBDA_EXEC_WRAPPER.

Wrapper scripts

160

https://console.aws.amazon.com/lambda

AWS Lambda Developer Guide

e. For Value, enter /opt/bin/importtime_wrapper (/opt/ + your .zip layer's folder
structure).

f. Choose Save.

10. Test the wrapper script.

a. Choose the Test tab.

b. Under Test event, choose Test. You don't need to create a test event—the default event
will work.

c. Scroll down to Log output. Because your wrapper script started the Python interpreter
with the -X importtime option, the logs show the time required for each import. For

example:
532 | collections
import time: 63 | 63 | _functools
import time: 1053 | 3646 | functools
import time: 2163 | 7499 | enum
import time: 100 | 100 | _sre
import time: 446 | 446 | re._constants
import time: 691 | 1136 | Ire._parser
import time: 378 | 378 | re._casefix
import time: 670 | 2283 | re._compiler
import time: 416 | 416 | copyreg

Wrapper scripts 161

AWS Lambda Developer Guide

Using the Lambda runtime API for custom runtimes

AWS Lambda provides an HTTP API for custom runtimes to receive invocation events from Lambda

and send response data back within the Lambda execution environment. This section contains the
API reference for the Lambda runtime API.

|O} ! O| Runtime API '_fu‘._\ l[’J Runtime + Function EL)

© -++-{O)] Extensions API
@ @ Telemetry API

API Endpoints Processes

Lambda Service Execution Environment

The OpenAPI specification for the runtime API version 2018-06-01 is available in runtime-api.zip

To create an APl request URL, runtimes get the APl endpoint from the
AWS_LAMBDA_RUNTIME_API environment variable, add the API version, and add the desired
resource path.

Example Request

curl "http://${AWS_LAMBDA_RUNTIME_API}/2018-06-01/runtime/invocation/next"

API methods

« Next invocation

« Invocation response

« Initialization error

e Invocation error

Next invocation

Path - /runtime/invocation/next

Method - GET

Runtime API 162

samples/runtime-api.zip

AWS Lambda Developer Guide

The runtime sends this message to Lambda to request an invocation event. The response body
contains the payload from the invocation, which is a JSON document that contains event data from
the function trigger. The response headers contain additional data about the invocation.

Response headers

Lambda-Runtime-Aws-Request-Id - The request ID, which identifies the request that
triggered the function invocation.

For example, 8476a536-e9f4-11e8-9739-2dfe598c3fcd.

« Lambda-Runtime-Deadline-Ms - The date that the function times out in Unix time
milliseconds.

For example, 1542409706888.

e Lambda-Runtime-Invoked-Function-Arn - The ARN of the Lambda function, version, or
alias that's specified in the invocation.

For example, arn:aws:lambda:us-east-2:123456789012:function:custom-runtime.

e Lambda-Runtime-Trace-Id - The AWS X-Ray tracing header.

For example, Root=1-5bef4de7-
ad49b0e87f6ef6c87fc2e700; Parent=9a9197af755a6419; Sampled=1.

e« Lambda-Runtime-Client-Context — For invocations from the AWS Mobile SDK, data about
the client application and device.

e Lambda-Runtime-Cognito-Identity - For invocations from the AWS Mobile SDK, data
about the Amazon Cognito identity provider.

Do not set a timeout on the GET request as the response may be delayed. Between when Lambda
bootstraps the runtime and when the runtime has an event to return, the runtime process may be
frozen for several seconds.

The request ID tracks the invocation within Lambda. Use it to specify the invocation when you send
the response.

The tracing header contains the trace ID, parent ID, and sampling decision. If the request is
sampled, the request was sampled by Lambda or an upstream service. The runtime should set the
_X_AMZN_TRACE_ID with the value of the header. The X-Ray SDK reads this to get the IDs and
determine whether to trace the request.

Next invocation 163

https://docs.aws.amazon.com/xray/latest/devguide/xray-concepts.html#xray-concepts-tracingheader

AWS Lambda Developer Guide

Invocation response

Path - /runtime/invocation/AwsRequestId/response
Method - POST

After the function has run to completion, the runtime sends an invocation response to Lambda. For
synchronous invocations, Lambda sends the response to the client.

Example success request

REQUEST_ID=156cb537-e2d4-11e8-9b34-d36013741fb9
curl "http://${AWS_LAMBDA_RUNTIME_API}/2018-06-01/runtime/invocation/$REQUEST_ID/
response" -d "SUCCESS"

Initialization error

If the function returns an error or the runtime encounters an error during initialization, the runtime
uses this method to report the error to Lambda.

Path - /runtime/init/error
Method - POST
Headers

Lambda-Runtime-Function-Error-Type - Error type that the runtime encountered. Required:
no.

This header consists of a string value. Lambda accepts any string, but we recommend a format of
<category.reason>. For example:

Runtime.NoSuchHandler

Runtime.APIKeyNotFound

Runtime.Configlnvalid

Runtime.UnknownReason

Body parameters

Invocation response 164

AWS Lambda Developer Guide

ErrorRequest - Information about the error. Required: no.

This field is a JSON object with the following structure:

{
errorMessage: string (text description of the error),
errorType: string,
stackTrace: array of strings

}

Note that Lambda accepts any value for errorType.

The following example shows a Lambda function error message in which the function could not
parse the event data provided in the invocation.

Example Function error

{
"errorMessage" : "Error parsing event data.",
"errorType" : "InvalidEventDataException",
"stackTrace": []

}

Response body parameters

« StatusResponse - String. Status information, sent with 202 response codes.

« ErrorResponse — Additional error information, sent with the error response codes.
ErrorResponse contains an error type and an error message.

Response codes

o 202 - Accepted
e 403 - Forbidden

« 500 - Container error. Non-recoverable state. Runtime should exit promptly.

Example initialization error request

ERROR="{\"errorMessage\" : \"Failed to load function.\", \"errorType\" :
\"InvalidFunctionException\"}"

Initialization error 165

AWS Lambda Developer Guide

curl "http://${AWS_LAMBDA_RUNTIME_API}/2018-06-01/runtime/init/error" -d "$ERROR" --
header "Lambda-Runtime-Function-Error-Type: Unhandled"

Invocation error

If the function returns an error or the runtime encounters an error, the runtime uses this method to
report the error to Lambda.

Path - /runtime/invocation/AwsRequestId/errox
Method - POST
Headers

Lambda-Runtime-Function-Error-Type - Error type that the runtime encountered. Required:
no.

This header consists of a string value. Lambda accepts any string, but we recommend a format of
<category.reason>. For example:

Runtime.NoSuchHandler

Runtime.APIKeyNotFound

Runtime.Configlnvalid

Runtime.UnknownReason

Body parameters
ErrorRequest - Information about the error. Required: no.

This field is a JSON object with the following structure:

{
errorMessage: string (text description of the error),
errorType: string,
stackTrace: array of strings

}

Note that Lambda accepts any value for errorType.

The following example shows a Lambda function error message in which the function could not
parse the event data provided in the invocation.

Invocation error 166

AWS Lambda Developer Guide

Example Function error

{
"errorMessage" : "Error parsing event data.",
"errorType" : "InvalidEventDataException",
"stackTrace": []

}

Response body parameters

« StatusResponse - String. Status information, sent with 202 response codes.

« ErrorResponse — Additional error information, sent with the error response codes.
ErrorResponse contains an error type and an error message.

Response codes

202 - Accepted
400 - Bad Request
403 - Forbidden

500 - Container error. Non-recoverable state. Runtime should exit promptly.

Example error request

REQUEST_ID=156cb537-e2d4-11e8-9b34-d36013741fb9

ERROR="{\"errorMessage\" : \"Error parsing event data.\", \"errorType\"
\"InvalidEventDataException\"}"

curl "http://${AWS_LAMBDA_RUNTIME_API}/2018-06-01/runtime/invocation/$REQUEST_ID/error"
-d "$ERROR" --header "Lambda-Runtime-Function-Error-Type: Unhandled"

Invocation error 167

AWS Lambda Developer Guide

When to use Lambda's OS-only runtimes

Lambda provides managed runtimes for Java, Python, Node.js, .NET, and Ruby. To create Lambda
functions in a programming language that is not available as a managed runtime, use an OS-only

runtime (the provided runtime family). There are three primary use cases for OS-only runtimes:

« Native ahead-of-time (AOT) compilation: Languages such as Go, Rust, and C++ compile natively
to an executable binary, which doesn't require a dedicated language runtime. These languages
only need an OS environment in which the compiled binary can run. You can also use Lambda
OS-only runtimes to deploy binaries compiled with .NET Native AOT and Java GraalVM Native.

You must include a runtime interface client in your binary. The runtime interface client calls the
Using the Lambda runtime API for custom runtimes to retrieve function invocations and then
calls your function handler. Lambda provides runtime interface clients for Go, .NET Native AOT, C
++, and Rust (experimental).

You must compile your binary for a Linux environment and for the same instruction set
architecture that you plan to use for the function (x86_64 or armé64).

 Third-party runtimes: You can run Lambda functions using off-the-shelf runtimes such as Bref
for PHP or the Swift AWS Lambda Runtime for Swift.

« Custom runtimes: You can build your own runtime for a language or language version that
Lambda doesn't provide a managed runtime for, such as Node.js 19. For more information, see
Building a custom runtime for AWS Lambda. This is the least common use case for OS-only

runtimes.

Lambda supports the following OS-only runtimes:

Name Identifier Operating Deprecation Block Block
system date function function
create update
OS-only provided. Amazon Not Not Not
Runtime al2023 Linux 2023 scheduled scheduled scheduled
OS-only provided. Amazon Not Not Not
Runtime al2 Linux 2 scheduled scheduled scheduled

OS-only runtimes

168

https://github.com/awslabs/aws-lambda-cpp
https://github.com/awslabs/aws-lambda-cpp
https://bref.sh/docs/news/01-bref-1.0.html#amazon-linux-2
https://github.com/swift-server/swift-aws-lambda-runtime#swift-aws-lambda-runtime

AWS Lambda Developer Guide

The Amazon Linux 2023 (provided.al2@23) runtime provides several advantages over Amazon
Linux 2, including a smaller deployment footprint and updated versions of libraries such as glibc.

The provided.al2023 runtime uses dnf as the package manager instead of yum, which is the
default package manager in Amazon Linux 2. For more information about the differences between
provided.al2023 and provided.al2, see Introducing the Amazon Linux 2023 runtime for AWS
Lambda on the AWS Compute Blog.

Building a custom runtime for AWS Lambda

You can implement an AWS Lambda runtime in any programming language. A runtime is a
program that runs a Lambda function's handler method when the function is invoked. You can
include the runtime in your function's deployment package or distribute it in a layer. When you
create the Lambda function, choose an OS-only runtime (the provided runtime family).

(® Note

Creating a custom runtime is an advanced use case. If you're looking for information about
compiling to a native binary or using a third-party off-the-shelf runtime, see When to use
Lambda's OS-only runtimes.

For a walkthrough of the custom runtime deployment process, see Tutorial: Building a custom

runtime. You can also explore a custom runtime implemented in C++ at awslabs/aws-lambda-cpp
on GitHub.

Topics

» Requirements

« Implementing response streaming in a custom runtime

Requirements

Custom runtimes must complete certain initialization and processing tasks. A runtime runs the
function's setup code, reads the handler name from an environment variable, and reads invocation
events from the Lambda runtime API. The runtime passes the event data to the function handler,
and posts the response from the handler back to Lambda.

Building a custom runtime 169

https://aws.amazon.com/blogs/compute/introducing-the-amazon-linux-2023-runtime-for-aws-lambda/
https://aws.amazon.com/blogs/compute/introducing-the-amazon-linux-2023-runtime-for-aws-lambda/
https://github.com/awslabs/aws-lambda-cpp

AWS Lambda Developer Guide

Initialization tasks

The initialization tasks run once per instance of the function to prepare the environment to handle
invocations.

» Retrieve settings — Read environment variables to get details about the function and
environment.

o _HANDLER - The location to the handler, from the function's configuration. The standard
formatis file.method, where file is the name of the file without an extension, and method
is the name of a method or function that's defined in the file.

o LAMBDA_TASK_ROOT - The directory that contains the function code.
o AWS_LAMBDA_RUNTIME_API - The host and port of the runtime API.

For a full list of available variables, see Defined runtime environment variables.

« Initialize the function — Load the handler file and run any global or static code that it contains.
Functions should create static resources like SDK clients and database connections once, and
reuse them for multiple invocations.

« Handle errors - If an error occurs, call the initialization error APl and exit immediately.

Initialization counts towards billed execution time and timeout. When an execution triggers the
initialization of a new instance of your function, you can see the initialization time in the logs and
AWS X-Ray trace.

Example log

REPORT RequestId: f8acl2@8... Init Duration: 48.26 ms Duration: 237.17 ms Billed
Duration: 300 ms Memory Size: 128 MB Max Memory Used: 26 MB

Processing tasks

While it runs, a runtime uses the Lambda runtime interface to manage incoming events and report

errors. After completing initialization tasks, the runtime processes incoming events in a loop. In
your runtime code, perform the following steps in order.

« Get an event - Call the next invocation API to get the next event. The response body contains

the event data. Response headers contain the request ID and other information.

Building a custom runtime 170

AWS Lambda Developer Guide

» Propagate the tracing header - Get the X-Ray tracing header from the Lambda-Runtime-
Trace-1Id header in the API response. Set the _X_AMZN_TRACE_ID environment variable locally
with the same value. The X-Ray SDK uses this value to connect trace data between services.

« Create a context object — Create an object with context information from environment variables
and headers in the API response.

« Invoke the function handler - Pass the event and context object to the handler.

« Handle the response - Call the invocation response API to post the response from the handler.

« Handle errors - If an error occurs, call the invocation error API.

« Cleanup - Release unused resources, send data to other services, or perform additional tasks
before getting the next event.

Entrypoint

A custom runtime's entry point is an executable file named bootstrap. The bootstrap file

can be the runtime, or it can invoke another file that creates the runtime. If the root of your
deployment package doesn't contain a file named bootstrap, Lambda looks for the file in the
function's layers. If the bootstrap file doesn't exist or isn't executable, your function returns a
Runtime.InvalidEntrypoint error upon invocation.

Here's an example bootstrap file that uses a bundled version of Node.js to run a JavaScript
runtime in a separate file named runtime. js.

Example bootstrap

#!/bin/sh
cd $LAMBDA_TASK_ROOT
./node-v11.1.0-1inux-x64/bin/node runtime.js

Implementing response streaming in a custom runtime

For response streaming functions, the response and error endpoints have slightly modified

behavior that lets the runtime stream partial responses to the client and return payloads in chunks.
For more information about the specific behavior, see the following:

« /runtime/invocation/AwsRequestId/response — Propagates the Content-Type header
from the runtime to send to the client. Lambda returns the response payload in chunks via

Building a custom runtime 171

AWS Lambda Developer Guide

HTTP/1.1 chunked transfer encoding. The response stream can be a maximum size of 20 MiB. To
stream the response to Lambda, the runtime must:

Set the Lambda-Runtime-Function-Response-Mode HTTP header to streaming.

Set the Transfer-Encoding header to chunked.

Write the response conforming to the HTTP/1.1 chunked transfer encoding specification.

Close the underlying connection after it has successfully written the response.

e /runtime/invocation/AwsRequestId/error — The runtime can use this endpoint to report
function or runtime errors to Lambda, which also accepts the Transfer-Encoding header. This
endpoint can only be called before the runtime begins sending an invocation response.

« Report midstream errors using error trailers in /runtime/invocation/AwsRequestId/
response - To report errors that occur after the runtime starts writing the invocation response,
the runtime can optionally attach HTTP trailing headers named Lambda-Runtime-Function-
Error-Type and Lambda-Runtime-Function-Error-Body. Lambda treats this as a
successful response and forwards the error metadata that the runtime provides to the client.

® Note

To attach trailing headers, the runtime must set the Trailer header value at the
beginning of the HTTP request. This is a requirement of the HTTP/1.1 chunked transfer
encoding specification.

e Lambda-Runtime-Function-Exrror-Type — The error type that the runtime encountered.
This header consists of a string value. Lambda accepts any string, but we recommend a format
of <category.reason>. For example, Runtime.APIKeyNotFound.

e Lambda-Runtime-Function-Error-Body - Base64-encoded information about the error.

Tutorial: Building a custom runtime

In this tutorial, you create a Lambda function with a custom runtime. You start by including the
runtime in the function's deployment package. Then you migrate it to a layer that you manage
independently from the function. Finally, you share the runtime layer with the world by updating
its resource-based permissions policy.

Custom runtime tutorial 172

AWS Lambda Developer Guide

Prerequisites

This tutorial assumes that you have some knowledge of basic Lambda operations and the Lambda
console. If you haven't already, follow the instructions in Create a Lambda function with the
console to create your first Lambda function.

To complete the following steps, you need the AWS CLI version 2. Commands and the expected
output are listed in separate blocks:

aws --version

You should see the following output:

aws-cli/2.13.27 Python/3.11.6 Linux/4.14.328-248.54@.amzn2.x86_64 exe/x86_64.amzn.2

For long commands, an escape character (\) is used to split a command over multiple lines.

On Linux and macQS, use your preferred shell and package manager.

(® Note

In Windows, some Bash CLI commands that you commonly use with Lambda (such as
zip) are not supported by the operating system's built-in terminals. To get a Windows-
integrated version of Ubuntu and Bash, install the Windows Subsystem for Linux. Example

CLI commands in this guide use Linux formatting. Commands which include inline JSON
documents must be reformatted if you are using the Windows CLI.

You need an IAM role to create a Lambda function. The role needs permission to send logs to
CloudWatch Logs and access the AWS services that your function uses. If you don't have a role for
function development, create one now.

To create an execution role

1. Open the roles page in the IAM console.
2. Choose Create role.

3. Create a role with the following properties.

« Trusted entity - Lambda.

Custom runtime tutorial 173

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://console.aws.amazon.com/iam/home#/roles

AWS Lambda Developer Guide

+ Permissions - AWSLambdaBasicExecutionRole.

e Role name - 1lambda-role.

The AWSLambdaBasicExecutionRole policy has the permissions that the function needs to
write logs to CloudWatch Logs.

Create a function

Create a Lambda function with a custom runtime. This example includes two files: a runtime
bootstrap file and a function handler. Both are implemented in Bash.

1. Create a directory for the project, and then switch to that directory.

mkdir runtime-tutorial
cd runtime-tutorial

2. Create a new file called bootstrap. This is the custom runtime.

Example bootstrap

#!/bin/sh
set -euo pipefail

Initialization - load function handler
source $LAMBDA_TASK_ROOT/"$(echo $_HANDLER | cut -d. -f1).sh"

Processing
while true
do
HEADERS="$(mktemp)"
Get an event. The HTTP request will block until one is received
EVENT_DATA=$(curl -sS -LD "$HEADERS" "http://
${AWS_LAMBDA_RUNTIME_API}/2018-06-01/runtime/invocation/next")

Extract request ID by scraping response headers received above
REQUEST_ID=$(grep -Fi Lambda-Runtime-Aws-Request-Id "$HEADERS" | tr -d
'"[:space:]"' | cut -d: -f2)

Run the handler function from the script

Custom runtime tutorial 174

AWS Lambda Developer Guide

RESPONSE=$($(echo "$_HANDLER" | cut -d. -f2) "$EVENT_DATA")

Send the response

curl "http://${AWS_LAMBDA_RUNTIME_API}/2018-06-01/runtime/invocation/$REQUEST_ID/
response" -d "$RESPONSE"
done

The runtime loads a function script from the deployment package. It uses two variables
to locate the script. LAMBDA_TASK_ROOT tells it where the package was extracted, and
_HANDLER includes the name of the script.

After the runtime loads the function script, it uses the runtime API to retrieve an invocation
event from Lambda, passes the event to the handler, and posts the response back to Lambda.
To get the request ID, the runtime saves the headers from the API response to a temporary file,
and reads the Lambda-Runtime-Aws-Request-Id header from the file.

® Note

Runtimes have additional responsibilities, including error handling, and providing
context information to the handler. For details, see Requirements.

3. Create a script for the function. The following example script defines a handler function that
takes event data, logs it to stderr, and returns it.

Example function.sh

function handler () {
EVENT_DATA=$1
echo "$EVENT_DATA" 1>&2;
RESPONSE="Echoing request: '$EVENT_DATA'"

echo $RESPONSE

The runtime-tutorial directory should now look like this:

runtime-tutorial
bootstrap
function.sh

Custom runtime tutorial 175

AWS Lambda Developer Guide

4. Make the files executable and add them to a .zip file archive. This is the deployment package.

chmod 755 function.sh bootstrap
zip function.zip function.sh bootstrap

5. Create a function named bash-runtime. For --role, enter the ARN of your Lambda
execution role.

aws lambda create-function --function-name bash-runtime \

--zip-file fileb://function.zip --handler function.handler --runtime
provided.al2023 \

--role arn:aws:iam::123456789012:role/lambda-role

6. Invoke the function.

aws lambda invoke --function-name bash-runtime --payload '{"text":"Hello"}'
response.txt --cli-binary-format raw-in-base64-out

The cli-binary-format option is required if you're using AWS CLI version 2. To make this the
default setting, run aws configure set cli-binary-format raw-in-base64-out. For
more information, see AWS CLI supported global command line options in the AWS Command
Line Interface User Guide for Version 2.

You should see a response like this:

"StatusCode": 200,
"ExecutedVersion": "$LATEST"

7. Verify the response.

cat response.txt

You should see a response like this:

Echoing request: '{"text":"Hello"}'

Custom runtime tutorial 176

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list

AWS Lambda Developer Guide

Create a layer

To separate the runtime code from the function code, create a layer that only contains the runtime.
Layers let you develop your function's dependencies independently, and can reduce storage usage
when you use the same layer with multiple functions. For more information, see Managing Lambda
dependencies with layers.

1. Create a .zip file that contains the bootstrap file.

zip runtime.zip bootstrap

2. Create a layer with the publish-layer-version command.

aws lambda publish-layer-version --layer-name bash-runtime --zip-file fileb://
runtime.zip

This creates the first version of the layer.

Update the function

To use the runtime layer in the function, configure the function to use the layer, and remove the
runtime code from the function.

1. Update the function configuration to pull in the layer.

aws lambda update-function-configuration --function-name bash-xruntime \
--layers arn:aws:lambda:us-east-1:123456789012:1ayex:bash-runtime:1

This adds the runtime to the function in the /opt directory. To ensure that Lambda uses the
runtime in the layer, you must remove the boostrap from the function's deployment package,
as shown in the next two steps.

2. Create a .zip file that contains the function code.

zip function-only.zip function.sh

3. Update the function code to only include the handler script.

Custom runtime tutorial 177

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/publish-layer-version.html?highlight=nodejs16%20x

AWS Lambda Developer Guide

aws lambda update-function-code --function-name bash-runtime --zip-file fileb://
function-only.zip

4. Invoke the function to confirm that it works with the runtime layer.

aws lambda invoke --function-name bash-runtime --payload '{"text":"Hello"}'
response.txt --cli-binary-format raw-in-base64-out

The cli-binary-format option is required if you're using AWS CLI version 2. To make this the
default setting, run aws configure set cli-binary-format raw-in-base64-out. For
more information, see AWS CLI supported global command line options in the AWS Command

Line Interface User Guide for Version 2.

You should see a response like this:

"StatusCode": 200,
"ExecutedVersion": "$LATEST"

5. Verify the response.

cat response.txt

You should see a response like this:

Echoing request: '{"text":"Hello"}'

Update the runtime

1. To log information about the execution environment, update the runtime script to output
environment variables.

Example bootstrap

#!/bin/sh

set -euo pipefail

Custom runtime tutorial 178

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list

AWS Lambda Developer Guide

Configure runtime to output environment variables
echo "## Environment variables:"
env

Load function handler
source $LAMBDA_TASK_ROOT/"$(echo $_HANDLER | cut -d. -f1).sh"

Processing
while true
do
HEADERS="$(mktemp)"
Get an event. The HTTP request will block until one is received
EVENT_DATA=$(curl -sS -LD "$HEADERS" "http://
${AWS_LAMBDA_RUNTIME_API}/2018-06-01/runtime/invocation/next")

Extract request ID by scraping response headers received above
REQUEST_ID=$(grep -Fi Lambda-Runtime-Aws-Request-Id "$HEADERS" | tr -d
'"[:space:]"' | cut -d: -f2)

Run the handler function from the script
RESPONSE=$($(echo "$_HANDLER" | cut -d. -f2) "$EVENT_DATA")

Send the response
curl "http://${AWS_LAMBDA_RUNTIME_API}/2018-06-01/runtime/invocation/$REQUEST_ID/

response" -d "$RESPONSE"
done

2. Create a .zip file that contains the new version of the bootstrap file.

zip runtime.zip bootstrap

3. Create a new version of the bash-runtime layer.

aws lambda publish-layer-version --layer-name bash-runtime --zip-file fileb://
runtime.zip

4. Configure the function to use the new version of the layer.

aws lambda update-function-configuration --function-name bash-runtime \
--layers arn:aws:lambda:us-east-1:123456789012:1ayex:bash-runtime:2

Custom runtime tutorial 179

AWS Lambda Developer Guide

Share the layer

To share a layer with another AWS account, add a cross-account permissions statement to the
layer's resource-based policy. Run the add-layer-version-permission command and specify the

account ID as the principal. In each statement, you can grant permission to a single account, all
accounts, or an organization in AWS Organizations.

The following example grants account 111122223333 access to version 2 of the bash-runtime
layer.

aws lambda add-layer-version-permission \
--layer-name bash-runtime \
--version-number 2 \
--statement-id xaccount \
--action lambda:GetLayerVexsion \
--principal 111122223333 \
--output text

You should see output similar to the following:

{"Sid":"xaccount", "Effect":"Allow","Principal":
{"AWS":"arn:aws:iam::111122223333:ro00t"}, "Action":"lambda:GetLayerVersion", "Resource":"arn:aws:
east-1:123456789012:1ayer:bash-runtime:2"}

Permissions apply only to a single layer version. Repeat the process each time that you create a
new layer version.

Clean up

Delete each version of the layer.

aws lambda delete-layer-version --layer-name bash-runtime --version-number 1
aws lambda delete-layer-version --layer-name bash-runtime --version-number 2

Because the function holds a reference to version 2 of the layer, it still exists in Lambda. The
function continues to work, but functions can no longer be configured to use the deleted version.
If you modify the list of layers on the function, you must specify a new version or omit the deleted
layer.

Delete the function with the delete-function command.

Custom runtime tutorial 180

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/add-layer-version-permission.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_introduction.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/delete-function.html

AWS Lambda Developer Guide

aws lambda delete-function --function-name bash-runtime

Custom runtime tutorial 181

AWS Lambda Developer Guide

Configuring AWS Lambda functions

Learn how to configure the core capabilities and options for your Lambda function using the
Lambda API or console.

Memory

Learn how and when to increase function memory.

Ephemeral storage

Learn how and when to increase your function's temporary storage capacity.

Timeout

Learn how and when to increase your function's timeout value.

Environment variables

You can make your function code portable and keep secrets out of your code by storing them in
your function's configuration by using environment variables.

Outbound networking

You can use your Lambda function with AWS resources in an Amazon VPC. Connecting your
function to a VPC lets you access resources in a private subnet such as relational databases and
caches.

Inbound networking

You can use an interface VPC endpoint to invoke your Lambda functions without crossing the
public internet.

File system

You can use your Lambda function to mount a Amazon EFS to a local directory. A file system
allows your function code to access and modify shared resources safely and at high concurrency.

Aliases

You can configure your clients to invoke a specific Lambda function version by using an alias,
instead of updating the client.

Versions

By publishing a version of your function, you can store your code and configuration as a
separate resource that cannot be changed.

182

AWS Lambda Developer Guide

Tags

Use tags to enable attribute-based access control (ABAC), to organize your Lambda functions,

and to filter and generate reports on your functions using the AWS Cost Explorer or AWS Billing
and Cost Management services.

Response streaming

You can configure your Lambda function URLs to stream response payloads back to clients.
Response streaming can benefit latency sensitive applications by improving time to first byte
(TTFB) performance. This is because you can send partial responses back to the client as they

become available. Additionally, you can use response streaming to build functions that return
larger payloads.

183

AWS Lambda Developer Guide

Deploying Lambda functions as .zip file archives

When you create a Lambda function, you package your function code into a deployment package.
Lambda supports two types of deployment packages: container images and .zip file archives. The
workflow to create a function depends on the deployment package type. To configure a function

defined as a container image, see the section called "Container images”.

You can use the Lambda console and the Lambda API to create a function defined with a .zip file
archive. You can also upload an updated .zip file to change the function code.

(® Note

You cannot change the deployment package type (.zip or container image) for an existing

function. For example, you cannot convert a container image function to use a .zip file
archive. You must create a new function.

Topics

« Creating the function

« Using the console code editor

« Updating function code

« Changing the runtime

« Changing the architecture

» Using the Lambda API

» Downloading your function code

+ AWS CloudFormation

« Encrypting Lambda .zip deployment packages

Creating the function

When you create a function defined with a .zip file archive, you choose a code template, the
language version, and the execution role for the function. You add your function code after
Lambda creates the function.

.zip file archives 184

https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunction.html#lambda-CreateFunction-request-PackageType

AWS Lambda Developer Guide

To create the function

1. Open the Functions page of the Lambda console.

Choose Create function.

Choose Author from scratch or Use a blueprint to create your function.

P WD

Under Basic information, do the following:

a. For Function name, enter the function name. Function names are limited to 64 characters
in length.

b. For Runtime, choose the language version to use for your function.

c. (Optional) For Architecture, choose the instruction set architecture to use for your
function. The default architecture is x86_64. When you build the deployment package for
your function, make sure that it is compatible with this instruction set architecture.

5. (Optional) Under Permissions, expand Change default execution role. You can create a new
Execution role or use an existing role.

6. (Optional) Expand Advanced settings. You can choose a Code signing configuration for the
function. You can also configure an (Amazon VPC) for the function to access.

7. Choose Create function.

Lambda creates the new function. You can now use the console to add the function code and
configure other function parameters and features. For code deployment instructions, see the
handler page for the runtime your function uses.

Node.js

Deploy Node.js Lambda functions with .zip file archives

Python

Working with .zip file archives for Python Lambda functions

Ruby

Deploy Ruby Lambda functions with .zip file archives

Java

Deploy Java Lambda functions with .zip or JAR file archives

Creating the function 185

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

Go

Deploy Go Lambda functions with .zip file archives

C#

Build and deploy C# Lambda functions with .zip file archives

PowerShell

Deploy PowerShell Lambda functions with .zip file archives

Using the console code editor

The console creates a Lambda function with a single source file. For scripting languages, you can
edit this file and add more files using the built-in code editor. To save your changes, choose Save.
Then, to run your code, choose Test.

When you save your function code, the Lambda console creates a .zip file archive deployment
package. When you develop your function code outside of the console (using an IDE) you need to
create a deployment package to upload your code to the Lambda function.

Updating function code

For scripting languages (Node.js, Python, and Ruby), you can edit your function code in the
embedded code editor. If the code is larger than 3MB, or if you need to add libraries, or for
languages that the editor doesn't support (Java, Go, C#), you must upload your function code as

a .zip archive. If the .zip file archive is smaller than 50 MB, you can upload the .zip file archive from
your local machine. If the file is larger than 50 MB, upload the file to the function from an Amazon
S3 bucket.

To upload function code as a .zip archive

1. Open the Functions page of the Lambda console.

2. Choose the function to update and choose the Code tab.
3. Under Code source, choose Upload from.
4

Choose .zip file, and then choose Upload.

« Inthe file chooser, select the new image version, choose Open, and then choose Save.

Using the console code editor 186

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

5. (Alternative to step 4) Choose Amazon S3 location.

o Inthe text box, enter the S3 link URL of the .zip file archive, then choose Save.

Changing the runtime

If you update the function configuration to use a new runtime, you may need to update the
function code to be compatible with the new runtime. If you update the function configuration to
use a different runtime, you must provide new function code that is compatible with the runtime
and architecture. For instructions on how to create a deployment package for the function code,
see the handler page for the runtime that the function uses.

The Node.js 20, Python 3.12, Java 21, .NET 8, Ruby 3.3, and later base images are based on the
Amazon Linux 2023 minimal container image. Earlier base images use Amazon Linux 2. AL2023
provides several advantages over Amazon Linux 2, including a smaller deployment footprint and
updated versions of libraries such as glibc. For more information, see Introducing the Amazon
Linux 2023 runtime for AWS Lambda on the AWS Compute Blog.

To change the runtime

Open the Functions page of the Lambda console.

1
2. Choose the function to update and choose the Code tab.

3. Scroll down to the Runtime settings section, which is under the code editor.
4. Choose Edit.

a. For Runtime, select the runtime identifier.
b. For Handler, specify file name and handler for your function.
c. For Architecture, choose the instruction set architecture to use for your function.

5. Choose Save.

Changing the architecture

Before you can change the instruction set architecture, you need to ensure that your function's
code is compatible with the target architecture.

If you use Node.js, Python, or Ruby and you edit your function code in the embedded editor, the
existing code may run without modification.

Changing the runtime 187

https://aws.amazon.com/blogs/compute/introducing-the-amazon-linux-2023-runtime-for-aws-lambda/
https://aws.amazon.com/blogs/compute/introducing-the-amazon-linux-2023-runtime-for-aws-lambda/
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

However, if you provide your function code using a .zip file archive deployment package, you
must prepare a new .zip file archive that is compiled and built correctly for the target runtime and
instruction-set architecture. For instructions, see the handler page for your function runtime.

To change the instruction set architecture

1. Open the Functions page of the Lambda console.

Choose the function to update and choose the Code tab.
Under Runtime settings, choose Edit.

For Architecture, choose the instruction set architecture to use for your function.

Lok W

Choose Save.

Using the Lambda API

To create and configure a function that uses a .zip file archive, use the following API operations:

e CreateFunction

» UpdateFunctionCode

» UpdateFunctionConfiguration

Downloading your function code

You can download the current unpublished ($LATEST) version of your function code .zip via the
Lambda console. To do this, first ensure that you have the following IAM permissions:

iam:GetPolicy

o iam:GetPolicyVersion

o iam:GetRole

o iam:GetRolePolicy

o iam:ListAttachedRolePolicies
o iam:ListRolePolicies

e jam:ListRoles

Using the Lambda API 188

https://console.aws.amazon.com/lambda/home#/functions
https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunction.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionCode.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionConfiguration.html

AWS Lambda Developer Guide

To download the function code .zip

1. Open the Functions page of the Lambda console.

2. Choose the function you want to download the function code .zip for.

3. In the Function overview, choose the Download button, then choose Download function
code .zip.

« Alternatively, choose Download AWS SAM file to generate and download a SAM template
based on your function's configuration. You can also choose Download both to download
both the .zip and the SAM template.

AWS CloudFormation

You can use AWS CloudFormation to create a Lambda function that uses a .zip file archive. In your
AWS CloudFormation template, the AWS: : Lambda: : Function resource specifies the Lambda
function. For descriptions of the properties in the AWS: : Lambda: : Function resource, see
AWS::Lambda::Function in the AWS CloudFormation User Guide.

In the AWS: : Lambda: : Function resource, set the following properties to create a function
defined as a .zip file archive:

o AWS::Lambda::Function
» PackageType - Set to Zip.

» Code - Enter the Amazon S3 bucket name and .zip file name in the S3Bucket and
S3Keyfields. For Node.js or Python, you can provide inline source code of your Lambda
function.

+ Runtime - Set the runtime value.

« Architecture — Set the architecture value to arm64 to use the AWS Graviton2 processor. By
default, the architecture value is x86_64.

Encrypting Lambda .zip deployment packages

Lambda always provides server-side encryption at rest for .zip deployment packages and function
configuration details with an AWS KMS key. By default, Lambda uses an AWS owned key. If this
default behavior suits your workflow, you don't need to set up anything else. AWS doesn't charge
you to use this key.

AWS CloudFormation 189

https://console.aws.amazon.com/lambda/home#/functions
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-function.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-owned-cmk

AWS Lambda Developer Guide

If you prefer, you can provide an AWS KMS customer managed key instead. You might do this

to have control over rotation of the KMS key or to meet the requirements of your organization
for managing KMS keys. When you use a customer managed key, only users in your account with
access to the KMS key can view or manage the function's code or configuration.

Customer managed keys incur standard AWS KMS charges. For more information, see AWS Key
Management Service pricing.

Create a customer managed key

You can create a symmetric customer managed key by using the AWS Management Console, or the
AWS KMS APIs.

To create a symmetric customer managed key

Follow the steps for Creating symmetric encryption Creating symmetric KMS keys in the AWS Key
Management Service Developer Guide.

Permissions
Key policy

Key policies control access to your customer managed key. Every customer managed key must have
exactly one key policy, which contains statements that determine who can use the key and how
they can use it. For more information, see How to change a key policy in the AWS Key Management
Service Developer Guide.

When you use a customer managed key to encrypt a .zip deployment package, Lambda doesn't add
a grant to the key. Instead, your AWS KMS key policy must allow Lambda to call the following AWS
KMS API operations on your behalf:

o kms:GenerateDataKey

» kms:Decrypt

The following example key policy allows all Lambda functions in account 111122223333 to call
the required AWS KMS operations for the specified customer managed key:

Example AWS KMS key policy

Encryption 190

https://aws.amazon.com/kms/pricing/
https://aws.amazon.com/kms/pricing/
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html#create-symmetric-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
https://docs.aws.amazon.com/kms/latest/developerguide/key-policy-modifying.html#key-policy-modifying-how-to
https://docs.aws.amazon.com/kms/latest/developerguide/grants.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html

AWS Lambda Developer Guide

"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {
"Service": "lambda.amazonaws.com"
},
"Action": [
"kms : GenerateDataKey",
"kms :Decrypt"
1,
"Resource": "arn:aws:kms:us-east-1:111122223333:key/key-id",
"Condition": {
"StringLike": {
"kms:EncryptionContext:aws:lambda:FunctionArn": "arn:aws:lambda:us-
east-1:111122223333:function:*"

For more information about troubleshooting key access, see the AWS Key Management Service

Developer Guide.
Principal permissions

When you use a customer managed key to encrypt a .zip deployment package, only principals with
access to that key can access the .zip deployment package. For example, principals who don't have
access to the customer managed key can't download the .zip package using the presigned S3 URL
that's included in the GetFunction response. An AccessDeniedException is returned in the Code
section of the response.

Example AWS KMS AccessDeniedException

{
"Code": {
"RepositoryType": "S3",
"Error": {
"ErrorCode": "AccessDeniedException",
"Message": "KMS access is denied. Check your KMS permissions. KMS

Exception: AccessDeniedException KMS Message: User: arn:aws:sts::111122223333:assumed-
role/LambdaTestRole/session is not authorized to perform: kms:Decrypt on resource:

Encryption 191

https://docs.aws.amazon.com/kms/latest/developerguide/policy-evaluation.html#example-no-iam
https://docs.aws.amazon.com/IAM/latest/UserGuide/intro-structure.html
https://docs.aws.amazon.com/lambda/latest/api/API_GetFunction.html

AWS Lambda Developer Guide

arn:aws:kms:us-east-1:111122223333:key/key-id with an explicit deny in a resource-
based policy"

1,
"SourceKMSKeyArn": "arn:aws:kms:us-east-1:111122223333:key/key-id"

}I

For more information about permissions for AWS KMS keys, see Authentication and access control
for AWS KMS,

Using a customer managed key for your .zip deployment package

Use the following API parameters to configure customer managed keys for .zip deployment
packages:

» SourceKMSKeyArn: Encrypts the source .zip deployment package (the file that you upload).

« KMSKeyArn: Encrypts environment variables and Lambda SnapStart snapshots.

When SourceKMSKeyArn and KMSKeyArn are both specified, Lambda uses the KMSKeyArn key
to encrypt the unzipped version of the package that Lambda uses to invoke the function. When
SourceKMSKeyArn is specified but KMSKeyArn is not, Lambda uses an AWS managed key to
encrypt the unzipped version of the package.

Lambda console
To add customer managed key encryption when you create a function

Open the Functions page of the Lambda console.

1
2. Choose Create function.

3. Choose Author from scratch or Container image.
4

Under Basic information, do the following:

a. For Function name, enter the function name.
b. For Runtime, choose the language version to use for your function.

5. Expand Advanced settings, and then select Enable encryption with an AWS KMS
customer managed key.

6. Choose a customer managed key.

7. Choose Create function.

Encryption 192

https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html
https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html
https://docs.aws.amazon.com/lambda/latest/api/API_FunctionCode.html#lambda-Type-FunctionCode-SourceKMSKeyArn
https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunction.html#lambda-CreateFunction-request-KMSKeyArn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-managed-cmk
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda

Developer Guide

To remove customer managed key encryption, or to use a different key, you must upload

the.

zip deployment package again.

To add customer managed key encryption to an existing function

]
2
3.
4

© N o U

Open the Functions page of the Lambda console.

Choose the name of a function.
In the Code source pane, choose Upload from.

Choose .zip file or Amazon S3 location.

Code source info

File Edit Find View Go Tools Window

B index.mjs > Environment Vari »
1 fonst url = "https://aws.amazon.com/";
2

index.mjs 3 export const handler = async(event) => {

v console-test {} v

onment O

Upload the file or enter the Amazon S3 location.

Choose Enable encryption with an AWS KMS customer managed key.

Choose a customer managed key.

Choose Save.

AWS CLI

To add customer managed key encryption when you create a function

In the following create-function example:

« --zip-file: Specifies the local path to the .zip deployment package.

Upload from a
.zip file

Amazon 53 location

« --source-kms-key-arn: Specifies the customer managed key to encrypt the zipped

version of the deployment package.

« --kms-key-arn: Specifies the customer managed key to encrypt the environment variables

and the unzipped version of the deployment package.

aws lambda create-function \
--function-name myFunction \
--runtime nodejs22.x \
--handler index.handler \

--role arn:aws:iam::111122223333:ro0le/service-role/my-lambda-role \

Encryption

193

https://console.aws.amazon.com/lambda/home#/functions
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/create-function.html

AWS Lambda Developer Guide

--zip-file fileb://myFunction.zip \
--source-kms-key-arn arn:aws:kms:us-east-1:111122223333:key/key-id \
--kms-key-axrn arn:aws:kms:us-east-1:111122223333:key/key2-id

In the following create-function example:

» --code: Specifies the location of .zip file in an Amazon S3 bucket. You only need to use the
S30bjectVersion parameter for versioned objects.

« --source-kms-key-arn: Specifies the customer managed key to encrypt the zipped
version of the deployment package.

« --kms-key-arn: Specifies the customer managed key to encrypt the environment variables
and the unzipped version of the deployment package.

aws lambda create-function \
--function-name myFunction \
--runtime nodejs22.x --handler index.handler \
--role arn:aws:iam::111122223333:ro0le/service-role/my-lambda-role \
--code S3Bucket=amzn-s3-demo-
bucket,S3Key=myFileName.zip,S30bjectVersion=myObjectVersion \
--source-kms-key-arn arn:aws:kms:us-east-1:111122223333:key/key-id \
--kms-key-arn arn:aws:kms:us-east-1:111122223333:key/key2-id

To add customer managed key encryption to an existing function

In the following update-function-code example:

o --zip-file: Specifies the local path to the .zip deployment package.

« --source-kms-key-arn: Specifies the customer managed key to encrypt the zipped
version of the deployment package. Lambda uses an AWS owned key to encrypt the unzipped
package for function invocations. If you want to use a customer managed key to encrypt the
unzipped version of the package, run the update-function-configuration command with the

--kms-key-arn option.

aws lambda update-function-code \
--function-name myFunction \
--zip-file fileb://myFunction.zip \
--source-kms-key-arn arn:aws:kms:us-east-1:111122223333:key/key-id

Encryption 194

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/create-function.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-code.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-configuration.html

AWS Lambda Developer Guide

In the following update-function-code example:

» --s3-bucket: Specifies the location of the .zip file in an Amazon S3 bucket.
» --s3-key: Specifies the Amazon S3 key of the deployment package.

e« --s3-object-version: For versioned objects, the version of the deployment package
object to use.

« --source-kms-key-arn: Specifies the customer managed key to encrypt the zipped
version of the deployment package. Lambda uses an AWS owned key to encrypt the unzipped
package for function invocations. If you want to use a customer managed key to encrypt the
unzipped version of the package, run the update-function-configuration command with the

--kms-key-arn option.

aws lambda update-function-code \
--function-name myFunction \
--s3-bucket amzn-s3-demo-bucket \
--s3-key myFileName.zip \
--s3-object-version myObject Version
--source-kms-key-axrn arn:aws:kms:us-east-1:111122223333:key/key-id

To remove customer managed key encryption from an existing function

In the following update-function-code example, --zip-file specifies the local path to the .zip

deployment package. When you run this command without the --source-kms-key-arn
option, Lambda uses an AWS owned key to encrypt the zipped version of the deployment
package.

aws lambda update-function-code \
--function-name myFunction \
--zip-file fileb://myFunction.zip

Encryption 195

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-code.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-configuration.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-code.html

AWS Lambda Developer Guide

Create a Lambda function using a container image

Your AWS Lambda function's code consists of scripts or compiled programs and their dependencies.
You use a deployment package to deploy your function code to Lambda. Lambda supports two
types of deployment packages: container images and .zip file archives.

There are three ways to build a container image for a Lambda function:

» Using an AWS base image for Lambda

The AWS base images are preloaded with a language runtime, a runtime interface client to
manage the interaction between Lambda and your function code, and a runtime interface
emulator for local testing.

« Using an AWS OS-only base image

AWS OS-only base images contain an Amazon Linux distribution and the runtime interface
emulator. These images are commonly used to create container images for compiled languages,
such as Go and Rust, and for a language or language version that Lambda doesn't provide a base
image for, such as Node.js 19. You can also use OS-only base images to implement a custom
runtime. To make the image compatible with Lambda, you must include a runtime interface

client for your language in the image.

» Using a non-AWS base image

You can use an alternative base image from another container registry, such as Alpine Linux
or Debian. You can also use a custom image created by your organization. To make the image
compatible with Lambda, you must include a runtime interface client for your language in the

image.

® Tip
To reduce the time it takes for Lambda container functions to become active, see Use
multi-stage builds in the Docker documentation. To build efficient container images, follow
the Best practices for writing Dockerfiles.

To create a Lambda function from a container image, build your image locally and upload it to
an Amazon Elastic Container Registry (Amazon ECR) repository. Then, specify the repository URI
when you create the function. The Amazon ECR repository must be in the same AWS Region as the

Container images 196

https://gallery.ecr.aws/lambda/provided
https://github.com/aws/aws-lambda-runtime-interface-emulator/
https://github.com/aws/aws-lambda-runtime-interface-emulator/
https://docs.docker.com/build/building/multi-stage/
https://docs.docker.com/build/building/multi-stage/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

AWS Lambda Developer Guide

Lambda function. You can create a function using an image in a different AWS account, as long as
the image is in the same Region as the Lambda function. For more information, see Amazon ECR
cross-account permissions.

® Note

Lambda does not support Amazon ECR FIPS endpoints for container images. If
your repository URI includes ecr-fips, you are using a FIPS endpoint. Example:
111122223333 .dkr.ecr-fips.us-east-1.amazonaws.com.

This page explains the base image types and requirements for creating Lambda-compatible
container images.

(@ Note

You cannot change the deployment package type (.zip or container image) for an existing
function. For example, you cannot convert a container image function to use a .zip file

archive. You must create a new function.

Topics

» Requirements

« Using an AWS base image for Lambda

« Using an AWS OS-only base image

« Using a non-AWS base image

« Runtime interface clients

« Amazon ECR permissions

» Function lifecycle

Requirements

Install the AWS CLI version 2 and the Docker CLI. Additionally, note the following requirements:

Requirements 197

https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunction.html#lambda-CreateFunction-request-PackageType
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.docker.com/get-docker

AWS Lambda Developer Guide

» The container image must implement the Using the Lambda runtime API for custom runtimes.

The AWS open-source runtime interface clients implement the API. You can add a runtime

interface client to your preferred base image to make it compatible with Lambda.

« The container image must be able to run on a read-only file system. Your function code can
access a writable /tmp directory with between 512 MB and 10,240 MB, in 1-MB increments, of
storage.

« The default Lambda user must be able to read all the files required to run your function code.
Lambda follows security best practices by defining a default Linux user with least-privileged
permissions. This means that you don't need to specify a USER in your Dockerfile. Verify that
your application code does not rely on files that other Linux users are restricted from running.

« Lambda supports only Linux-based container images.

« Lambda provides multi-architecture base images. However, the image you build for your function
must target only one of the architectures. Lambda does not support functions that use multi-
architecture container images.

Using an AWS base image for Lambda

You can use one of the AWS base images for Lambda to build the container image for your

function code. The base images are preloaded with a language runtime and other components
required to run a container image on Lambda. You add your function code and dependencies to the
base image and then package it as a container image.

AWS periodically provides updates to the AWS base images for Lambda. If your Dockerfile includes
the image name in the FROM property, your Docker client pulls the latest version of the image
from the Amazon ECR repository. To use the updated base image, you must rebuild your container
image and update the function code.

The Node.js 20, Python 3.12, Java 21, .NET 8, Ruby 3.3, and later base images are based on the
Amazon Linux 2023 minimal container image. Earlier base images use Amazon Linux 2. AL2023

provides several advantages over Amazon Linux 2, including a smaller deployment footprint and
updated versions of libraries such as glibc.

AL2023-based images use microdnf (symlinked as dnf) as the package manager instead

of yum, which is the default package manager in Amazon Linux 2. microdnf is a standalone
implementation of dnf. For a list of packages that are included in AL2023-based images, refer to
the Minimal Container columns in Comparing packages installed on Amazon Linux 2023 Container

Using an AWS base image 198

https://docs.docker.com/reference/dockerfile/#user
https://gallery.ecr.aws/lambda/
https://gallery.ecr.aws/lambda/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-code.html
https://docs.aws.amazon.com/linux/al2023/ug/minimal-container.html
https://docs.aws.amazon.com/linux/al2023/ug/al2023-container-image-types.html

AWS Lambda Developer Guide

Images. For more information about the differences between AL2023 and Amazon Linux 2, see
Introducing the Amazon Linux 2023 runtime for AWS Lambda on the AWS Compute Blog.

® Note

To run AL2023-based images locally, including with AWS Serverless Application Model
(AWS SAM), you must use Docker version 20.10.10 or later.

To build a container image using an AWS base image, choose the instructions for your preferred
language:

« Node.js
» TypeScript (uses a Node.js base image)

« Python

e Java

+ Go
« NET

e Ruby

Using an AWS OS-only base image

AWS OS-only base images contain an Amazon Linux distribution and the runtime interface
emulator. These images are commonly used to create container images for compiled languages,
such as Go and Rust, and for a language or language version that Lambda doesn't provide a base
image for, such as Node.js 19. You can also use OS-only base images to implement a custom
runtime. To make the image compatible with Lambda, you must include a runtime interface client
for your language in the image.

Tags Runtime Operating Dockerfile Deprecation
system
al2023 0OS-only Amazon Dockerfile for OS-only Not scheduled
Runtime Linux 2023 Runtime on GitHub

Using an AWS OS-only base image 199

https://docs.aws.amazon.com/linux/al2023/ug/al2023-container-image-types.html
https://aws.amazon.com/blogs/compute/introducing-the-amazon-linux-2023-runtime-for-aws-lambda/
https://gallery.ecr.aws/lambda/provided
https://github.com/aws/aws-lambda-runtime-interface-emulator/
https://github.com/aws/aws-lambda-runtime-interface-emulator/
https://github.com/aws/aws-lambda-base-images/blob/provided.al2023/Dockerfile.provided.al2023
https://github.com/aws/aws-lambda-base-images/blob/provided.al2023/Dockerfile.provided.al2023

AWS Lambda Developer Guide

Tags Runtime Operating Dockerfile Deprecation
system
al2 OS-only Amazon Dockerfile for OS-only Not scheduled
Runtime Linux 2 Runtime on GitHub

Amazon Elastic Container Registry Public Gallery: gallery.ecr.aws/lambda/provided

Using a non-AWS base image

Lambda supports any image that conforms to one of the following image manifest formats:

» Docker image manifest V2, schema 2 (used with Docker version 1.10 and newer)

« Open Container Initiative (OCI) Specifications (v1.0.0 and up)

Lambda supports a maximum uncompressed image size of 10 GB, including all layers.

(® Note

To make the image compatible with Lambda, you must include a runtime interface client

for your language in the image.

Runtime interface clients

If you use an OS-only base image or an alternative base image, you must include a runtime
interface client in your image. The runtime interface client must extend the Using the Lambda
runtime API for custom runtimes, which manages the interaction between Lambda and your
function code. AWS provides open-source runtime interface clients for the following languages:

« Node.js

« Python
e Java

« NET
. Go

« Ruby

Using a non-AWS base image 200

https://github.com/aws/aws-lambda-base-images/blob/provided.al2/Dockerfile.provided.al2
https://github.com/aws/aws-lambda-base-images/blob/provided.al2/Dockerfile.provided.al2
https://gallery.ecr.aws/lambda/provided

AWS Lambda Developer Guide

o Rust —The Rust runtime client is an experimental package. It is subject to change and intended
only for evaluation purposes.

If you're using a language that doesn't have an AWS-provided runtime interface client, you must
create your own.

Amazon ECR permissions

Before you create a Lambda function from a container image, you must build the image locally and
upload it to an Amazon ECR repository. When you create the function, specify the Amazon ECR
repository URI.

Make sure that the permissions for the user or role that creates the function includes
GetRepositoryPolicy and SetRepositoryPolicy.

For example, use the IAM console to create a role with the following policy:

{
"Version": "2012-10-17",
"Statement": [
{

"Sid": "VisualEditorQ",

"Effect": "Allow",

"Action": [
"ecr:SetRepositoryPolicy",
"ecr:GetRepositoryPolicy"

1,

"Resource": "arn:aws:ecr:us-east-1:111122223333:repository/hello-world"

}
]
}

Amazon ECR repository policies

For a function in the same account as the container image in Amazon ECR, you can add
ecr:BatchGetImage and ecr:GetDownloadUrlForLayer permissions to your Amazon ECR
repository policy. The following example shows the minimum policy:

"Sid": "LambdaECRImageRetrievalPolicy",
"Effect": "Allow",

Amazon ECR permissions 201

https://github.com/awslabs/aws-lambda-rust-runtime

AWS Lambda Developer Guide

"Principal": {
"Service": "lambda.amazonaws.com"

},

"Action": [
"ecr:BatchGetImage",
"ecr:GetDownloadUrlForLayer"

]

For more information about Amazon ECR repository permissions, see Private repository policies in
the Amazon Elastic Container Registry User Guide.

If the Amazon ECR repository does not include these permissions, Lambda adds
ecr:BatchGetImage and ecr:GetDownloadUrlForLayer to the container image repository
permissions. Lambda can add these permissions only if the principal calling Lambda has
ecr:getRepositoryPolicy and ecr:setRepositoryPolicy permissions.

To view or edit your Amazon ECR repository permissions, follow the directions in Setting a private
repository policy statement in the Amazon Elastic Container Registry User Guide.

Amazon ECR cross-account permissions

A different account in the same region can create a function that uses a container image owned by
your account. In the following example, your Amazon ECR repository permissions policy needs the
following statements to grant access to account number 123456789012.

» CrossAccountPermission — Allows account 123456789012 to create and update Lambda
functions that use images from this ECR repository.

« LambdaECRImageCrossAccountRetrievalPolicy — Lambda will eventually set a function's state
to inactive if it is not invoked for an extended period. This statement is required so that Lambda
can retrieve the container image for optimization and caching on behalf of the function owned
by 123456789012.

Example — Add cross-account permission to your repository

"Version": "2012-10-17",
"Statement": [
{
"Sid": "CrossAccountPermission",
"Effect": "Allow",

Amazon ECR permissions 202

https://docs.aws.amazon.com/AmazonECR/latest/userguide/repository-policies.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/set-repository-policy.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/set-repository-policy.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/set-repository-policy.html

AWS Lambda Developer Guide

"Action": [
"ecr:BatchGetImage",
"ecr:GetDownloadUrlForLayer"

1,
"Principal": {
"AWS": "arn:aws:iam::123456789012:root"
}
.
{
"Sid": "LambdaECRImageCrossAccountRetrievalPolicy",
"Effect": "Allow",
"Action": [
"ecr:BatchGetImage",
"ecr:GetDownloadUrlForLayer"

1,
"Principal": {
"Service": "lambda.amazonaws.com"

1,
"Condition": {
"StringLike": {
"aws:sourceARN": "arn:aws:lambda:us-east-1:123456789012:function:*"

To give access to multiple accounts, you add the account IDs to the Principal list in
the CrossAccountPermission policy and to the Condition evaluation list in the
LambdaECRImageCrossAccountRetrievalPolicy.

If you are working with multiple accounts in an AWS Organization, we recommend that you
enumerate each account ID in the ECR permissions policy. This approach aligns with the AWS
security best practice of setting narrow permissions in IAM policies.

In addition to Lambda permissions, the user or role that creates the function must also have
BatchGetImage and GetDownloadUrlForLayer permissions.

Function lifecycle

After you upload a new or updated container image, Lambda optimizes the image before the
function can process invocations. The optimization process can take a few seconds. The function

Function lifecycle 203

AWS Lambda Developer Guide

remains in the Pending state until the process completes, when the state transitions to Active.
You can't invoke the function until it reaches the Active state.

If a function is not invoked for multiple weeks, Lambda reclaims its optimized version, and the
function transitions to the Inactive state. To reactivate the function, you must invoke it. Lambda
rejects the first invocation and the function enters the Pending state until Lambda re-optimizes
the image. The function then returns to the Active state.

Lambda periodically fetches the associated container image from the Amazon ECR repository. If
the corresponding container image no longer exists on Amazon ECR or permissions are revoked,
the function enters the Failed state, and Lambda returns a failure for any function invocations.

You can use the Lambda API to get information about a function's state. For more information, see
Lambda function states.

Function lifecycle 204

AWS Lambda Developer Guide

Configure Lambda function memory

Lambda allocates CPU power in proportion to the amount of memory configured. Memory is the
amount of memory available to your Lambda function at runtime. You can increase or decrease the
memory and CPU power allocated to your function using the Memory setting. You can configure
memory between 128 MB and 10,240 MB in 1-MB increments. At 1,769 MB, a function has the
equivalent of one vCPU (one vCPU-second of credits per second).

This page describes how and when to update the memory setting for a Lambda function.

Sections

« Determining the appropriate memory setting for a Lambda function

Configuring function memory (console)

Configuring function memory (AWS CLI)

Configuring function memory (AWS SAM)

Accepting function memory recommendations (console)

Determining the appropriate memory setting for a Lambda function

Memory is the principal lever for controlling the performance of a function. The default setting,
128 MB, is the lowest possible setting. We recommend that you only use 128 MB for simple
Lambda functions, such as those that transform and route events to other AWS services. A higher
memory allocation can improve performance for functions that use imported libraries, Lambda
layers, Amazon Simple Storage Service (Amazon S3) or Amazon Elastic File System (Amazon
EFS). Adding more memory proportionally increases the amount of CPU, increasing the overall
computational power available. If a function is CPU, network or memory-bound, then increasing
the memory setting can dramatically improve its performance.

To find the right memory configuration, monitor your functions with Amazon CloudWatch and set
alarms if memory consumption is approaching the configured maximums. This can help identify
memory-bound functions. For CPU-bound and 10-bound functions, monitoring the duration

can also provide insight. In these cases, increasing the memory can help resolve the compute or
network bottlenecks.

You can also consider using the open source AWS Lambda Power Tuning tool. This tool uses

AWS Step Functions to run multiple concurrent versions of a Lambda function at different

Memory 205

https://github.com/alexcasalboni/aws-lambda-power-tuning

AWS Lambda Developer Guide

memory allocations and measure the performance. The input function runs in your AWS account,
performing live HTTP calls and SDK interaction, to measure likely performance in a live production
scenario. You can also implement a Cl/CD process to use this tool to automatically measure the
performance of new functions that you deploy.

Configuring function memory (console)

You can configure the memory of your function in the Lambda console.
To update the memory of a function

1. Open the Functions page of the Lambda console.

2. Choose a function.
3. Choose the Configuration tab and then choose General configuration.

Code Test Monitor Configuration Aliases Versions

Description Memory Ephemeral storage
128 MB 512 MB

Timeout SnapStart Info

3
Function URL 0 min 3 sec None

4. Under General configuration, choose Edit.
5. For Memory, set a value from 128 MB to 10,240 MB.

6. Choose Save.

Configuring function memory (AWS CLI)

You can use the update-function-configuration command to configure the memory of your
function.

Example

aws lambda update-function-configuration \
--function-name my-function \
--memory-size 1024

Using the console 206

https://console.aws.amazon.com/lambda/home#/functions
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-configuration.html

AWS Lambda Developer Guide

Configuring function memory (AWS SAM)

You can use the AWS Serverless Application Model to configure memory for your function. Update
the MemorySize property in your template.yaml file and then run sam deploy.

Example template.yaml

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Description: An AWS Serverless Application Model template describing your function.
Resources:
my-function:
Type: AWS::Serverless::Function
Properties:
CodeUri:
Description: "'
MemorySize: 1024
Other function properties...

Accepting function memory recommendations (console)

If you have administrator permissions in AWS Identity and Access Management (IAM), you can opt
in to receive Lambda function memory setting recommendations from AWS Compute Optimizer.
For instructions on opting in to memory recommendations for your account or organization, see
Opting in your account in the AWS Compute Optimizer User Guide.

(@ Note

Compute Optimizer supports only functions that use x86_64 architecture.

When you've opted in and your Lambda function meets Compute Optimizer requirements, you
can view and accept function memory recommendations from Compute Optimizer in the Lambda
console in General configuration.

Using AWS SAM 207

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-getting-started.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-function.html#sam-function-memorysize
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-cli-command-reference-sam-deploy.html
https://docs.aws.amazon.com/compute-optimizer/latest/ug/getting-started.html#account-opt-in
https://docs.aws.amazon.com/compute-optimizer/latest/ug/requirements.html#requirements-lambda-functions

AWS Lambda Developer Guide

Configure ephemeral storage for Lambda functions

Lambda provides ephemeral storage for functions in the /tmp directory. This storage is temporary
and unique to each execution environment. You can control the amount of ephemeral storage
allocated to your function using the Ephemeral storage setting. You can configure ephemeral
storage between 512 MB and 10,240 MB, in 1-MB increments. All data stored in /tmp is encrypted
at rest with a key managed by AWS.

This page describes common use cases and how to update the ephemeral storage for a Lambda
function.

Sections

Common use cases for increased ephemeral storage

Configuring ephemeral storage (console)

Configuring ephemeral storage (AWS CLI)

Configuring ephemeral storage (AWS SAM)

Common use cases for increased ephemeral storage

Here are several common use cases that benefit from increased ephemeral storage:

« Extract-transform-load (ETL) jobs: Increase ephemeral storage when your code performs
intermediate computation or downloads other resources to complete processing. More
temporary space enables more complex ETL jobs to run in Lambda functions.

« Machine learning (ML) inference: Many inference tasks rely on large reference data files,
including libraries and models. With more ephemeral storage, you can download larger models
from Amazon Simple Storage Service (Amazon S3) to /tmp and use them in your processing.

- Data processing: For workloads that download objects from Amazon S3 in response to S3
events, more /tmp space makes it possible to handle larger objects without using in-memory
processing. Workloads that create PDFs or process media also benefit from more ephemeral
storage.

» Graphics processing: Image processing is a common use case for Lambda-based applications.
For workloads that process large TIFF files or satellite images, more ephemeral storage makes it
easier to use libraries and perform the computation in Lambda.

Ephemeral storage 208

AWS Lambda Developer Guide

Configuring ephemeral storage (console)

You can configure ephemeral storage in the Lambda console.
To modify ephemeral storage for a function

1. Open the Functions page of the Lambda console.

2. Choose a function.
3. Choose the Configuration tab and then choose General configuration.
Code Test Monitor Configuration Aliases Versions

General | configuration 3 c
| 9 General configuration info

Description Memory Ephemeral storage
128 MB 512 MB

Timeout SnapStart Info
0 min 3 sec None

4. Under General configuration, choose Edit.
5. For Ephemeral storage, set a value between 512 MB and 10,240 MB, in 1-MB increments.
6. Choose Save.

Configuring ephemeral storage (AWS CLI)

You can use the update-function-configuration command to configure ephemeral storage.

Example

aws lambda update-function-configuration \
--function-name my-function \
--ephemeral-storage '{"Size': 1024}’

Configuring ephemeral storage (AWS SAM)

You can use the AWS Serverless Application Model to configure ephemeral storage for your

function. Update the EphemeralStorage property in your template.yaml file and then run sam
deploy.

Using the console 209

https://console.aws.amazon.com/lambda/home#/functions
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-configuration.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-getting-started.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-function.html#sam-function-ephemeralstorage
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-cli-command-reference-sam-deploy.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-cli-command-reference-sam-deploy.html

AWS Lambda Developer Guide

Example template.yaml

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Description: An AWS Serverless Application Model template describing your function.
Resources:
my-function:
Type: AWS::Serverless::Function
Properties:
CodeUri:
Description: "'
MemorySize: 128
Timeout: 120
Handler: index.handler
Runtime: nodejs22.x
Architectures:
- x86_64
EphemeralStorage:
Size: 10240
Other function properties...

Using AWS SAM 210

AWS Lambda Developer Guide

Selecting and configuring an instruction set architecture for
your Lambda function

The instruction set architecture of a Lambda function determines the type of computer processor
that Lambda uses to run the function. Lambda provides a choice of instruction set architectures:

« arm64 - 64-bit ARM architecture, for the AWS Graviton2 processor.

« x86_64 — 64-bit x86 architecture, for x86-based processors.

(® Note

The arm64 architecture is available in most AWS Regions. For more information, see AWS
Lambda Pricing. In the memory prices table, choose the Arm Price tab, and then open the
Region dropdown list to see which AWS Regions support arm64 with Lambda.

For an example of how to create a function with arm64 architecture, see AWS Lambda
Functions Powered by AWS Graviton2 Processor.

Topics

Advantages of using arm64 architecture

Requirements for migration to arm64 architecture

Function code compatibility with arm64 architecture

How to migrate to arm64 architecture

Configuring the instruction set architecture

Advantages of using arm64 architecture

Lambda functions that use arm64 architecture (AWS Graviton2 processor) can achieve significantly
better price and performance than the equivalent function running on x86_64 architecture.
Consider using arm64 for compute-intensive applications such as high-performance computing,
video encoding, and simulation workloads.

The Graviton2 CPU uses the Neoverse N1 core and supports Armv8.2 (including CRC and crypto
extensions) plus several other architectural extensions.

Instruction sets (ARM/x86) 211

https://aws.amazon.com/lambda/pricing/#aws-element-9ccd9262-b656-4d9c-8a72-34ee6b662135
https://aws.amazon.com/lambda/pricing/#aws-element-9ccd9262-b656-4d9c-8a72-34ee6b662135
https://aws.amazon.com/blogs/aws/aws-lambda-functions-powered-by-aws-graviton2-processor-run-your-functions-on-arm-and-get-up-to-34-better-price-performance/
https://aws.amazon.com/blogs/aws/aws-lambda-functions-powered-by-aws-graviton2-processor-run-your-functions-on-arm-and-get-up-to-34-better-price-performance/

AWS Lambda Developer Guide

Graviton2 reduces memory read time by providing a larger L2 cache per vCPU, which improves the
latency performance of web and mobile backends, microservices, and data processing systems.
Graviton2 also provides improved encryption performance and supports instruction sets that
improve the latency of CPU-based machine learning inference.

For more information about AWS Graviton2, see AWS Graviton Processor.

Requirements for migration to arm64 architecture

When you select a Lambda function to migrate to arm64 architecture, to ensure a smooth
migration, make sure that your function meets the following requirements:

» The deployment package contains only open-source components and source code that you
control, so that you can make any necessary updates for the migration.

o If the function code includes third-party dependencies, each library or package provides an
armé64 version.

Function code compatibility with arm64 architecture

Your Lambda function code must be compatible with the instruction set architecture of the
function. Before you migrate a function to arm64 architecture, note the following points about the
current function code:

« If you added your function code using the embedded code editor, your code probably runs on
either architecture without modification.

o If you uploaded your function code, you must upload new code that is compatible with your
target architecture.

« If your function uses layers, you must check each layer to ensure that it is compatible with the
new architecture. If a layer is not compatible, edit the function to replace the current layer
version with a compatible layer version.

« If your function uses Lambda extensions, you must check each extension to ensure that it is
compatible with the new architecture.

« If your function uses a container image deployment package type, you must create a new
container image that is compatible with the architecture of the function.

How to migrate to arm64 architecture

Requirements for migration to arm64 architecture 212

https://aws.amazon.com/ec2/graviton

AWS Lambda Developer Guide

To migrate a Lambda function to the arm64 architecture, we recommend following these steps:

1. Build the list of dependencies for your application or workload. Common dependencies include:
« All the libraries and packages that the function uses.

« The tools that you use to build, deploy, and test the function, such as compilers, test suites,
continuous integration and continuous delivery (Cl/CD) pipelines, provisioning tools, and
scripts.

« The Lambda extensions and third-party tools that you use to monitor the function in
production.

2. For each of the dependencies, check the version, and then check whether arm64 versions are
available.

. Build an environment to migrate your application.
. Bootstrap the application.
. Test and debug the application.

o U b~ W

. Test the performance of the arm64 function. Compare the performance with the x86_64
version.

7. Update your infrastructure pipeline to support arm64 Lambda functions.

8. Stage your deployment to production.

For example, use alias routing configuration to split traffic between the x86 and arm64 versions

of the function, and compare the performance and latency.

For more information about how to create a code environment for arm64 architecture, including
language-specific information for Java, Go, .NET, and Python, see the Getting started with AWS

Graviton GitHub repository.

Configuring the instruction set architecture

You can configure the instruction set architecture for new and existing Lambda functions using
the Lambda console, AWS SDKs, AWS Command Line Interface (AWS CLI), or AWS CloudFormation.
Follow these steps to change the instruction set architecture for an existing Lambda function from
the console.

1. Open the Functions page of the Lambda console.

2. Choose the name of the function that you want to configure the instruction set architecture
for.

Configuring the instruction set architecture 213

https://github.com/aws/aws-graviton-getting-started
https://github.com/aws/aws-graviton-getting-started
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

3. On the main Code tab, for the Runtime settings section, choose Edit.

4. Under Architecture, choose the instruction set architecture you want your function to use.

5. Choose Save.

Configuring the instruction set architecture 214

AWS Lambda Developer Guide

Configure Lambda function timeout

Lambda runs your code for a set amount of time before timing out. Timeout is the maximum
amount of time in seconds that a Lambda function can run. The default value for this setting is 3
seconds, but you can adjust this in increments of 1 second up to a maximum value of 900 seconds
(15 minutes).

This page describes how and when to update the timeout setting for a Lambda function.

Sections

Determining the appropriate timeout value for a Lambda function

Configuring timeout (console)

Configuring timeout (AWS CLI)

Configuring timeout (AWS SAM)

Determining the appropriate timeout value for a Lambda function

If the timeout value is close to the average duration of a function, there is a higher risk that the
function will time out unexpectedly. The duration of a function can vary based on the amount of
data transfer and processing, and the latency of any services the function interacts with. Some
common causes of timeout include:

» Downloads from Amazon Simple Storage Service (Amazon S3) are larger or take longer than
average.
« A function makes a request to another service, which takes longer to respond.

» The parameters provided to a function require more computational complexity in the function,
which causes the invocation to take longer.

When testing your application, ensure that your tests accurately reflect the size and quantity of
data and realistic parameter values. Tests often use small samples for convenience, but you should
use datasets at the upper bounds of what is reasonably expected for your workload.

Configuring timeout (console)

You can configure function timeout in the Lambda console.

Timeout 215

AWS Lambda Developer Guide

To modify the timeout for a function

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. Choose the Configuration tab and then choose General configuration.

Code Test Monitor Configuration Aliases Versions

General configuration e :
| 9 General configuration info

Triggers

Description Memory Ephemeral storage
128 MB 512 MB

Permissions

Destinations ~ ~
Timeout SnapStart Info

Function URL 0 min 3 sec None

Environment variables

4. Under General configuration, choose Edit.
For Timeout, set a value between 1 and 900 seconds (15 minutes).

6. Choose Save.

Configuring timeout (AWS CLI)

You can use the update-function-configuration command to configure the timeout value, in
seconds. The following example command increases the function timeout to 120 seconds (2
minutes).

Example

aws lambda update-function-configuration \
--function-name my-function \
--timeout 120

Configuring timeout (AWS SAM)

You can use the AWS Serverless Application Model to configure the timeout value for your
function. Update the Timeout property in your template.yaml file and then run sam deploy.

Example template.yaml

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31

Using the AWS CLI 216

https://console.aws.amazon.com/lambda/home#/functions
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-configuration.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-getting-started.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-function.html#sam-function-timeout
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-cli-command-reference-sam-deploy.html

AWS Lambda Developer Guide

Description: An AWS Serverless Application Model template describing your function.
Resources:
my-function:
Type: AWS::Serverless::Function
Properties:
CodeUri:
Description:
MemorySize: 128
Timeout: 120
Other function properties...

Using AWS SAM 217

AWS Lambda Developer Guide

Working with Lambda environment variables

You can use environment variables to adjust your function's behavior without updating code. An
environment variable is a pair of strings that is stored in a function's version-specific configuration.
The Lambda runtime makes environment variables available to your code and sets additional
environment variables that contain information about the function and invocation request.

(® Note

To increase security, we recommend that you use AWS Secrets Manager instead of
environment variables to store database credentials and other sensitive information like
API keys or authorization tokens. For more information, see Create and manage secrets
with AWS Secrets Manager.

Environment variables are not evaluated before the function invocation. Any value you define is
considered a literal string and not expanded. Perform the variable evaluation in your function code.

Creating Lambda environment variables

You can configure environment variables in Lambda using the Lambda console, the AWS Command
Line Interface (AWS CLI), AWS Serverless Application Model (AWS SAM), or using an AWS SDK.

Console

You define environment variables on the unpublished version of your function. When you
publish a version, the environment variables are locked for that version along with other
version-specific configuration settings.

You create an environment variable for your function by defining a key and a value. Your
function uses the name of the key to retrieve the value of the environment variable.

To set environment variables in the Lambda console

Open the Functions page of the Lambda console.

Choose a function.
Choose the Configuration tab, then choose Environment variables.

Under Environment variables, choose Edit.

i A W=

Choose Add environment variable.

Environment variables 218

https://docs.aws.amazon.com/secretsmanager/latest/userguide/managing-secrets.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/managing-secrets.html
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

6. Enter a key and value.

Requirements

Keys start with a letter and are at least two characters.

Keys only contain letters, numbers, and the underscore character ().

Keys aren't reserved by Lambda.

The total size of all environment variables doesn't exceed 4 KB.

7. Choose Save.

To generate a list of environment variables in the console code editor

You can generate a list of environment variables in the Lambda code editor. This is a quick way
to reference your environment variables while you code.

1. Choose the Code tab.

2. Scroll down to the ENVIRONMENT VARIABLES section of the code editor. Existing
environment variables are listed here:
 ENVIRONMENT VARIABLES
23 id =1

£3 name = Jane

3. To create new environment variables, choose the choose the plus sign
+
“+ ENVIRONMENT VARIABLES 4+

ab— - - c -
g id =1 Add E|1'v'|r|:-'@jnt Variables
%3 name = Jane

Environment variables remain encrypted when listed in the console code editor. If you enabled
encryption helpers for encryption in transit, then those settings remain unchanged. For more
information, see Securing Lambda environment variables.

The environment variables list is read-only and is available only on the Lambda console. This
file is not included when you download the function's .zip file archive, and you can't add
environment variables by uploading this file.

Create environment variables 219

AWS Lambda Developer Guide

AWS CLI

The following example sets two environment variables on a function named my-function.

aws lambda update-function-configuration \
--function-name my-function \
--environment "Variables={BUCKET=amzn-s3-demo-bucket,KEY=file.txt}"

When you apply environment variables with the update-function-configuration
command, the entire contents of the Variables structure is replaced. To retain existing
environment variables when you add a new one, include all existing values in your request.

To get the current configuration, use the get-function-configuration command.

aws lambda get-function-configuration \
--function-name my-function

You should see the following output:

{
"FunctionName": "my-function",
"FunctionArn": "arn:aws:lambda:us-east-2:111122223333:function:my-function",
"Runtime": "nodejs22.x",
"Role": "arn:aws:iam::111122223333:role/lambda-role",
"Environment": {
"Variables": {
"BUCKET": "amzn-s3-demo-bucket",
"KEY": "file.txt"
}
1,
"RevisionId": "0894d3cl-2a3d-4d48-bf7f-abade99f3cl5",
}

You can pass the revision ID from the output of get-function-configurationasa
parameter to update-function-configuration. This ensures that the values don't change
between when you read the configuration and when you update it.

To configure a function's encryption key, set the KMSKeyARN option.

aws lambda update-function-configuration \

Create environment variables 220

AWS Lambda Developer Guide

--function-name my-function \
--kms-key-arn arn:aws:kms:us-east-2:111122223333:key/055efbb4-xmpl-4336-
ba9c-538c7d31f599

AWS SAM

You can use the AWS Serverless Application Model to configure environment variables for your
function. Update the Environment and Variables properties in your template.yaml file and

then run sam deploy.

Example template.yaml

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Description: An AWS Serverless Application Model template describing your function.
Resources:
my-function:
Type: AWS::Serverless::Function
Properties:
CodeUri:
Description: "'
MemorySize: 128
Timeout: 120
Handler: index.handler
Runtime: nodejs22.x
Architectures:
- x86_64
EphemeralStorage:
Size: 10240
Environment:
Variables:
BUCKET: amzn-s3-demo-bucket
KEY: file.txt
Other function properties...

AWS SDKs
To manage environment variables using an AWS SDK, use the following API operations.

» UpdateFunctionConfiguration

» GetFunctionConfiguration

e CreateFunction

Create environment variables 221

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-getting-started.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-function.html#sam-function-environment
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-lambda-function-environment.html#cfn-lambda-function-environment-variables
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-cli-command-reference-sam-deploy.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionConfiguration.html
https://docs.aws.amazon.com/lambda/latest/api/API_GetFunctionConfiguration.html
https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunction.html

AWS Lambda Developer Guide

To learn more, refer to the AWS SDK documentation for your preferred programming language.

Example scenario for environment variables

You can use environment variables to customize function behavior in your test environment and
production environment. For example, you can create two functions with the same code but
different configurations. One function connects to a test database, and the other connects to a
production database. In this situation, you use environment variables to pass the hostname and
other connection details for the database to the function.

The following example shows how to define the database host and database name as environment

variables.
ENVIRONMENT DEVELOPMENT Remove
databaseHost lambdadb Remove
databaseName rdTowwlydynnmb5.cuovuayfg08’ Remove

If you want your test environment to generate more debug information than the production
environment, you could set an environment variable to configure your test environment to use
more verbose logging or more detailed tracing.

For example, in your test environment, you could set an environment variable with the key
LOG_LEVEL and a value indicating a log level of debug or trace. In your Lambda function's code,
you can then use this environment variable to set the log level.

The following code examples in Python and Node.js illustrate how you can achieve this. These
examples assume your environment variable has a value of DEBUG in Python or debug in Node.js.

Python

Example Python code to set log level

import os
import logging

Example scenario for environment variables 222

https://aws.amazon.com/developer/tools/

AWS Lambda Developer Guide

Initialize the logger
logger = logging.getlLogger()

Get the log level from the environment variable and default to INFO if not set
log_level = os.environ.get('LOG_LEVEL', 'INFO')

Set the log level
logger.setlLevel(log_level)

def lambda_handler(event, context):

Produce some example log outputs

logger.debug('This is a log with detailed debug information - shown only in test
environment')

logger.info('This is a log with standard information - shown in production and
test environments')

Node.js (ES module format)
Example Node.js code to set log level

This example uses the winston logging library. Use npm to add this library to your function's
deployment package. For more information, see the section called “Creating a .zip deployment

package with dependencies”.

import winston from 'winston';

// Initialize the logger using the log level from environment variables, defaulting
to INFO if not set
const logger = winston.createlLogger({
level: process.env.LOG_LEVEL || 'info',
format: winston.format.json(),
transports: [new winston.transports.Console()]

1)

export const handler = async (event) => {
// Produce some example log outputs
logger.debug('This is a log with detailed debug information - shown only in test
environment');
logger.info('This is a log with standard information - shown in production and
test environment');

};

Example scenario for environment variables 223

AWS Lambda Developer Guide

Retrieving Lambda environment variables

To retrieve environment variables in your function code, use the standard method for your
programming language.

Node.js
let region = process.env.AWS_REGION
Python

import os
region = os.environ['AWS_REGION']

(@ Note

In some cases, you may need to use the following format:

region = os.environ.get('AWS_REGION')

Ruby
region = ENV["AWS_REGION"]
Java
String region = System.getenv("AWS_REGION");
Go
var region = os.Getenv("AWS_REGION")
C#

string region = Environment.GetEnvironmentVariable("AWS_REGION");

Retrieve environment variables 224

AWS Lambda Developer Guide

PowerShell

$region = $env:AWS_REGION

Lambda stores environment variables securely by encrypting them at rest. You can configure
Lambda to use a different encryption key, encrypt environment variable values on the client side,

or set environment variables in an AWS CloudFormation template with AWS Secrets Manager.

Defined runtime environment variables

Lambda runtimes set several environment variables during initialization. Most of the environment
variables provide information about the function or runtime. The keys for these environment
variables are reserved and cannot be set in your function configuration.

Reserved environment variables

o _HANDLER - The handler location configured on the function.
o _X_AMZN_TRACE_ID - The X-Ray tracing header. This environment variable changes with each

invocation.

« This environment variable is not defined for OS-only runtimes (the provided runtime family).
You can set _X_AMZN_TRACE_ID for custom runtimes using the Lambda-Runtime-Trace-Id
response header from the Next invocation.

« For Java runtime versions 17 and later, this environment variable is not used. Instead, Lambda
stores tracing information in the com.amazonaws . xray.traceHeader system property.

o AWS_DEFAULT_REGION - The default AWS Region where the Lambda function is executed.

o AWS_REGION - The AWS Region where the Lambda function is executed. If defined, this value
overrides the AWS_DEFAULT_REGION.

« For more information about using the AWS Region environment variables with AWS SDKs, see
AWS Region in the AWS SDKs and Tools Reference Guide.

o AWS_EXECUTION_ENV - The runtime identifier, prefixed by AWS_Lambda_ (for example,
AWS_Lambda_java8). This environment variable is not defined for OS-only runtimes (the

provided runtime family).
o AWS_LAMBDA_FUNCTION_NAME - The name of the function.

o AWS_LAMBDA_FUNCTION_MEMORY_SIZE - The amount of memory available to the function in
MB.

Defined runtime environment variables 225

https://docs.aws.amazon.com/sdkref/latest/guide/feature-region.html#feature-region-sdk-compat

AWS Lambda Developer Guide

o AWS_LAMBDA_FUNCTION_VERSION - The version of the function being executed.

o AWS_LAMBDA_INITIALIZATION_TYPE - The initialization type of the function, which is on-
demand, provisioned-concurrency, or snap-start. For information, see Configuring
provisioned concurrency or Improving startup performance with Lambda SnapStart.

o AWS_LAMBDA_LOG_GROUP_NAME, AWS_LAMBDA_LOG_STREAM_NAME — The name of the Amazon
CloudWatch Logs group and stream for the function. The AWS_LAMBDA_LOG_GROUP_NAME and
AWS_LAMBDA_LOG_STREAM_NAME environment variables are not available in Lambda SnapStart
functions.

o AWS_ACCESS_KEY, AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, AWS_SESSION_TOKEN -
The access keys obtained from the function's execution role.

o AWS_LAMBDA_RUNTIME_API - (Custom runtime) The host and port of the runtime API.

« LAMBDA_TASK_ROOT - The path to your Lambda function code.
o LAMBDA_RUNTIME_DIR - The path to runtime libraries.

The following additional environment variables aren't reserved and can be extended in your
function configuration.

Unreserved environment variables

e LANG - The locale of the runtime (en_US.UTF-8).
e PATH - The execution path (/usr/local/bin:/usx/bin/:/bin:/opt/bin).

e LD_LIBRARY_PATH - The system library path (/var/lang/lib:/1ib64:/usr/1ib64:
$LAMBDA_RUNTIME_DIR:$LAMBDA_RUNTIME_DIR/1ib:$LAMBDA_TASK_ROOT:
$LAMBDA_TASK_ROOT/1ib:/opt/1ib).

« NODE_PATH - (Node.js) The Node.js library path (/opt/nodejs/nodel2/node_modules/:/
opt/nodejs/node_modules:$LAMBDA_RUNTIME_DIR/node_modules).

« PYTHONPATH - (Python) The Python library path ($LAMBDA_RUNTIME_DIR).

+ GEM_PATH - (Ruby) The Ruby library path ($LAMBDA_TASK_ROOT/vendor/bundle/
ruby/3.3.0:/opt/ruby/gems/3.3.0).

o AWS_XRAY_CONTEXT_MISSING - For X-Ray tracing, Lambda sets this to LOG_ERROR to avoid
throwing runtime errors from the X-Ray SDK.

o AWS_XRAY_DAEMON_ADDRESS - For X-Ray tracing, the IP address and port of the X-Ray daemon.

Defined runtime environment variables 226

AWS Lambda Developer Guide

o AWS_LAMBDA_DOTNET_PREJIT - (.NET) Set this variable to enable or disable .NET specific
runtime optimizations. Values include always, never, and provisioned-concurrency. For
more information, see Configuring provisioned concurrency for a function.

« TZ - The environment's time zone (: UTC). The execution environment uses NTP to synchronize
the system clock.

The sample values shown reflect the latest runtimes. The presence of specific variables or their
values can vary on earlier runtimes.

Securing Lambda environment variables

For securing your environment variables, you can use server-side encryption to protect your data at
rest and client-side encryption to protect your data in transit.

(® Note

To increase database security, we recommend that you use AWS Secrets Manager instead of
environment variables to store database credentials. For more information, see Using AWS
Lambda with Amazon RDS.

Security at rest

Lambda always provides server-side encryption at rest with an AWS KMS key. By default, Lambda
uses an AWS managed key. If this default behavior suits your workflow, you don't need to set

up anything else. Lambda creates the AWS managed key in your account and manages the
permissions for you. AWS doesn't charge you to use this key.

If you prefer, you can provide an AWS KMS customer managed key instead. You might do this

to have control over rotation of the KMS key or to meet the requirements of your organization
for managing KMS keys. When you use a customer managed key, only users in your account with
access to the KMS key can view or manage environment variables on the function.

Customer managed keys incur standard AWS KMS charges. For more information, see AWS Key
Management Service pricing.

Security in transit

Securing environment variables 227

https://aws.amazon.com/kms/pricing/
https://aws.amazon.com/kms/pricing/

AWS Lambda Developer Guide

For additional security, you can enable helpers for encryption in transit, which ensures that your

environment variables are encrypted client-side for protection in transit.

To configure encryption for your environment variables

1.

5.
6.

Use the AWS Key Management Service (AWS KMS) to create any customer managed keys for
Lambda to use for server-side and client-side encryption. For more information, see Creating
keys in the AWS Key Management Service Developer Guide.

Using the Lambda console, navigate to the Edit environment variables page.

a. Open the Functions page of the Lambda console.

b. Choose a function.

c. Choose Configuration, then choose Environment variables from the left navigation bar.
d. Inthe Environment variables section, choose Edit.

e. Expand Encryption configuration.

(Optional) Enable console encryption helpers to use client-side encryption to protect your data
in transit.

a. Under Encryption in transit, choose Enable helpers for encryption in transit.

b. For each environment variable that you want to enable console encryption helpers for,
choose Encrypt next to the environment variable.

c. Under AWS KMS key to encrypt in transit, choose a customer managed key that you
created at the beginning of this procedure.

d. Choose Execution role policy and copy the policy. This policy grants permission to your
function's execution role to decrypt the environment variables.

Save this policy to use in the last step of this procedure.

e. Add code to your function that decrypts the environment variables. To see an example,
choose Decrypt secrets snippet.

(Optional) Specify your customer managed key for encryption at rest.

a. Choose Use a customer master key.
b. Choose a customer managed key that you created at the beginning of this procedure.
Choose Save.

Set up permissions.

Securing environment variables 228

https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

If you're using a customer managed key with server-side encryption, grant permissions to
any users or roles that you want to be able to view or manage environment variables on the
function. For more information, see Managing permissions to your server-side encryption KMS

key.

If you're enabling client-side encryption for security in transit, your function needs permission
to call the kms :Decrypt API operation. Add the policy that you saved previously in this
procedure to the function's execution role.

Managing permissions to your server-side encryption KMS key

No AWS KMS permissions are required for your user or the function's execution role to use the
default encryption key. To use a customer managed key, you need permission to use the key.
Lambda uses your permissions to create a grant on the key. This allows Lambda to use it for
encryption.

o kms:ListAliases - To view keys in the Lambda console.
o kms:CreateGrant, kms:Encrypt — To configure a customer managed key on a function.

« kms:Decrypt - To view and manage environment variables that are encrypted with a customer
managed key.

You can get these permissions from your AWS account or from a key's resource-based permissions
policy. ListAliases is provided by the managed policies for Lambda. Key policies grant the
remaining permissions to users in the Key users group.

Users without Decrypt permissions can still manage functions, but they can't view environment
variables or manage them in the Lambda console. To prevent a user from viewing environment
variables, add a statement to the user's permissions that denies access to the default key, a
customer managed key, or all keys.

Example IAM policy - Deny access by key ARN

"Version": "2012-10-17",
"Statement": [

{
"Sid": "VisualEditoro",

Securing environment variables 229

AWS Lambda Developer Guide

"Effect": "Deny",
"Action": [
"kms:Decrypt"
1,
"Resource": "arn:aws:kms:us-east-2:111122223333:key/3bel@e2d-xmpl-4be4-
bc9d-0405a71945cc"

}

For details on managing key permissions, see Key policies in AWS KMS in the AWS Key Management

Service Developer Guide.

Securing environment variables 230

https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html

AWS Lambda Developer Guide

Giving Lambda functions access to resources in an Amazon VPC

With Amazon Virtual Private Cloud (Amazon VPC), you can create private networks in your AWS
account to host resources such as Amazon Elastic Compute Cloud (Amazon EC2) instances, Amazon
Relational Database Service (Amazon RDS) instances, and Amazon ElastiCache instances. You

can give your Lambda function access to resources hosted in an Amazon VPC by attaching your
function to the VPC through the private subnets that contain the resources. Follow the instructions
in the following sections to attach a Lambda function to an Amazon VPC using the Lambda
console, the AWS Command Line Interface (AWS CLI), or AWS SAM.

(® Note

Every Lambda function runs inside a VPC that is owned and managed by the Lambda
service. These VPCs are maintained automatically by Lambda and are not visible to
customers. Configuring your function to access other AWS resources in an Amazon VPC has
no effect on the Lambda-managed VPC your function runs inside.

Sections

« Required IAM permissions

« Attaching Lambda functions to an Amazon VPC in your AWS account

+ Internet access when attached to a VPC

 |IPv6 support

» Best practices for using Lambda with Amazon VPCs

« Understanding Hyperplane Elastic Network Interfaces (ENIs)

» Using IAM condition keys for VPC settings

« VPC tutorials

Required IAM permissions

To attach a Lambda function to an Amazon VPC in your AWS account, Lambda needs permissions
to create and manage the network interfaces it uses to give your function access to the resources in
the VPC.

Attaching functions to a VPC 231

AWS Lambda Developer Guide

The network interfaces that Lambda creates are known as Hyperplane Elastic Network Interfaces,
or Hyperplane ENIs. To learn more about these network interfaces, see the section called

“Understanding Hyperplane Elastic Network Interfaces (ENIs)".

You can give your function the permissions it needs by attaching the AWS managed policy

AWSLambdaVPCAccessExecutionRole to your function's execution role. When you create a new
function in the Lambda console and attach it to a VPC, Lambda automatically adds this permissions
policy for you.

If you prefer to create your own IAM permissions policy, make sure to add all of the following
permissions:
» ec2:CreateNetworkinterface

» ec2:DescribeNetworkinterfaces — This action only works if it's allowed on all resources
("Resource": "*").

« ec2:DescribeSubnets

« ec2:DeleteNetworkinterface - If you don't specify a resource ID for DeleteNetworkinterface
in the execution role, your function may not be able to access the VPC. Either specify a unique
resource ID, or include all resource IDs, for example, "Resource": "arn:aws:ec2:us-
west-2:123456789012:*/*",

» ec2:AssignPrivatelpAddresses

« ec2:UnassignPrivatelpAddresses

Note that your function's role only needs these permissions to create the network interfaces, not
to invoke your function. You can still invoke your function successfully when it's attached to an
Amazon VPC, even if you remove these permissions from your function's execution role.

To attach your function to a VPC, Lambda also needs to verify network resources using your |IAM
user role. Ensure that your user role has the following IAM permissions:

» ec2:DescribeSecurityGroups

» ec2:DescribeSubnets

» ec2:DescribeVpcs

» ec2:getSecurityGroupForVpc

Required IAM permissions 232

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies

AWS Lambda

Developer Guide

® Note

The Amazon EC2 permissions that you grant to your function's execution role are used

by the Lambda service to attach your function to a VPC. However, you're also implicitly

granting these permissions to your function's code. This means that your function code is

able to make these Amazon EC2 API calls. For advice on following security best practices,

see the section called “Security best practices”.

Attaching Lambda functions to an Amazon VPC in your AWS account

Attach your function to an Amazon VPC in your AWS account by using the Lambda console, the
AWS CLI or AWS SAM. If you're using the AWS CLI or AWS SAM, or attaching an existing function to
a VPC using the Lambda console, make sure that your function's execution role has the necessary
permissions listed in the previous section.

Lambda functions can't connect directly to a VPC with dedicated instance tenancy. To connect to

resources in a dedicated VPC, peer it to a second VPC with default tenancy.

Lambda console

To attach a function to an Amazon VPC when you create it

1. Open the Functions page of the Lambda console and choose Create function.

2. Under Basic information, for Function name, enter a name for your function.

3. Configure VPC settings for the function by doing the following:

a.

b.

Expand Advanced settings.
Select Enable VPC, and then select the VPC you want to attach the function to.

(Optional) To allow outbound IPv6 traffic, select Allow IPv6 traffic for dual-stack
subnets.

Choose the subnets and security groups to create the network interface for. If you
selected Allow IPv6 traffic for dual-stack subnets, all selected subnets must have an
IPv4 CIDR block and an IPv6 CIDR block.

Attaching Lambda functions to an Amazon VPC in your AWS account 233

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/dedicated-instance.html
https://aws.amazon.com/premiumsupport/knowledge-center/lambda-dedicated-vpc/
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

® Note

To access private resources, connect your function to private subnets. If your
function needs internet access, see the section called “Internet access for VPC

functions”. Connecting a function to a public subnet doesn't give it internet
access or a public IP address.

4. Choose Create function.

To attach an existing function to an Amazon VPC

1. Open the Functions page of the Lambda console and select your function.

Choose the Configuration tab, then choose VPC.
Choose Edit.
Under VPC, select the Amazon VPC you want to attach your function to.

(Optional) To allow outbound IPv6 traffic, select Allow IPv6 traffic for dual-stack subnets.

A

Choose the subnets and security groups to create the network interface for. If you selected
Allow IPv6 traffic for dual-stack subnets, all selected subnets must have an IPv4 CIDR
block and an IPv6 CIDR block.

® Note

To access private resources, connect your function to private subnets. If your
function needs internet access, see the section called “Internet access for VPC
functions”. Connecting a function to a public subnet doesn't give it internet access
or a public IP address.

7. Choose Save.

AWS CLI
To attach a function to an Amazon VPC when you create it

e To create a Lambda function and attach it to a VPC, run the following CLI create-
function command.

Attaching Lambda functions to an Amazon VPC in your AWS account 234

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

aws lambda create-function --function-name my-function \

--runtime nodejs22.x --handler index.js --zip-file fileb://function.zip \

--role arn:aws:iam::123456789012:role/lambda-role \

--vpc-config
Ipv6AllowedForDualStack=true,SubnetIds=subnet-071f712345678e7c8,subnet-07fd123456788a03

Specify your own subnets and security groups and set Ipv6AllowedForDualStack to
true or false according to your use case.

To attach an existing function to an Amazon VPC

e To attach an existing function to a VPC, run the following CLI update-function-
configuration command.

aws lambda update-function-configuration --function-name my-function \
--vpc-config Ipv6AllowedForDualStack=true,
SubnetIds=subnet-071f712345678e7c8,subnet-07fd123456788a036,SecurityGroupIds=sg-0859123

To unattach your function from a VPC

e To unattach your function from a VPC, run the following update-function-
configurationCLlI command with an empty list of VPC subnets and security groups.

aws lambda update-function-configuration --function-name my-function \
--vpc-config SubnetIds=[],SecurityGroupIds=[]

AWS SAM
To attach your function to a VPC

e To attach a Lambda function to an Amazon VPC, add the VpcConfig property to your
function definition as shown in the following example template. For more information
about this property, see AWS::Lambda::Function VpcConfig in the AWS CloudFormation User
Guide (the AWS SAM VpcConfig property is passed directly to the VpcConfig property of
an AWS CloudFormation AWS: : Lambda: : Function resource).

Attaching Lambda functions to an Amazon VPC in your AWS account 235

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-lambda-function-vpcconfig.html

AWS Lambda

Developer Guide

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31

Resources:
MyFunction:
Type: AWS::Serverless::Function
Properties:
CodeUri: ./lambda_function/
Handler: lambda_function.handler
Runtime: python3.12
VpcConfig:
SecurityGroupIds:
- !Ref MySecurityGroup
SubnetIds:
- IRef MySubnetl
- IRef MySubnet2
Policies:
- AWSLambdaVPCAccessExecutionRole

MySecurityGroup:
Type: AWS::EC2::SecurityGroup
Properties:
GroupDescription: Security group for Lambda function
VpcId: !Ref MyVPC

MySubnetl:
Type: AWS::EC2::Subnet
Properties:
VpcId: !Ref MyVPC
CidrBlock: 10.0.1.0/24

MySubnet2:
Type: AWS::EC2::Subnet
Properties:
VpcId: !Ref MyVPC
CidrBlock: 10.0.2.0/24

MyVPC:
Type: AWS::EC2::VPC
Properties:

CidrBlock: 10.0.0.0/16

Attaching Lambda functions to an Amazon VPC in your AWS account

236

AWS Lambda Developer Guide

For more information about configuring your VPC in AWS SAM, see AWS::EC2::VPC in the
AWS CloudFormation User Guide.

Internet access when attached to a VPC

By default, Lambda functions have access to the public internet. When you attach your function

to a VPC, it can only access resources available within that VPC. To give your function access to the
internet, you also need to configure the VPC to have internet access. To learn more, see the section
called “Internet access for VPC functions".

IPv6 support

Your function can connect to resources in dual-stack VPC subnets over IPv6. This option is
turned off by default. To allow outbound IPv6 traffic, use the console or the --vpc-config
Ipv6AllowedForDualStack=true option with the create-function or update-function-
configuration command.

(® Note

To allow outbound IPv6 traffic in a VPC, all of the subnets that are connected to the
function must be dual-stack subnets. Lambda doesn't support outbound IPv6 connections
for IPv6-only subnets in a VPC, outbound IPv6 connections for functions that are not
connected to a VPC, or inbound IPv6 connections using VPC endpoints (AWS PrivateLink).

You can update your function code to explicitly connect to subnet resources over IPv6. The
following Python example opens a socket and connects to an IPv6 server.

Example — Connect to IPv6 server

def connect_to_server(event, context):
server_address = event['host']
server_port = event['port']
message = event['message']
run_connect_to_server(server_address, server_port, message)

def run_connect_to_server(server_address, server_port, message):
sock = socket.socket(socket.AF_INET6, socket.SOCK_STREAM, @)

Internet access when attached to a VPC 237

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ec2-vpc.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/create-function.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-configuration.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-configuration.html

AWS Lambda Developer Guide

try:
Send data
sock.connect((server_address, int(server_port), @, 0))
sock.sendall(message.encode())
BUFF_SIZE = 4096
data = b"'
while True:
segment = sock.recv(BUFF_SIZE)
data += segment
Either 0 or end of data
if len(segment) < BUFF_SIZE:
break
return data
finally:

sock.close()

Best practices for using Lambda with Amazon VPCs

To ensure that your Lambda VPC configuration meets best practice guidelines, follow the advice in
the following sections.

Security best practices

To attach your Lambda function to a VPC, you need to give your function'’s execution role a number
of Amazon EC2 permissions. These permissions are required to create the network interfaces your
function uses to access the resources in the VPC. However, these permissions are also implicitly
granted to your function’s code. This means that your function code has permission to make these
Amazon EC2 API calls.

To follow the principle of least-privilege access, add a deny policy like the following example to
your function’s execution role. This policy prevents your function from making calls to the Amazon
EC2 APIs that the Lambda service uses to attach your function to a VPC.

"Version": "2012-10-17",
"Statement": [
{
"Effect": "Deny",
"Action": [
"ec2:CreateNetworkInterface",
"ec2:DeleteNetworkInterface",

Best practices for using Lambda with Amazon VPCs 238

AWS Lambda Developer Guide

"ec2:DescribeNetworkInterfaces",
"ec2:DescribeSubnets",
"ec2:DetachNetworkInterface",
"ec2:AssignPrivateIpAddresses",
"ec2:UnassignPrivateIpAddresses"”
1,
"Resource": ["*" 1],
"Condition": {
"ArnEquals": {
"lambda:SourceFunctionArn": [
"arn:aws:lambda:us-west-2:123456789012:function:my_function"

AWS provides security groups and network Access Control Lists (ACLs) to increase security in your
VPC. Security groups control inbound and outbound traffic for your resources, and network ACLs
control inbound and outbound traffic for your subnets. Security groups provide enough access
control for most subnets. You can use network ACLs if you want an additional layer of security for
your VPC. For general guidelines on security best practices when using Amazon VPCs, see Security
best practices for your VPC in the Amazon Virtual Private Cloud User Guide.

Performance best practices

When you attach your function to a VPC, Lambda checks to see if there is an available network
resource (Hyperplane ENI) it can use to connect to. Hyperplane ENIs are associated with a particular
combination of security groups and VPC subnets. If you've already attached one function to a VPC,
specifying the same subnets and security groups when you attach another function means that
Lambda can share the network resources and avoid the need to create a new Hyperplane ENI. For
more information about Hyperplane ENIs and their lifecycle, see the section called “Understanding
Hyperplane Elastic Network Interfaces (ENIs)".

Understanding Hyperplane Elastic Network Interfaces (ENIs)

A Hyperplane ENI is a managed resource that acts as a network interface between your Lambda
function and the resources you want your function to connect to. The Lambda service creates and
manages these ENIs automatically when you attach your function to a VPC.

Understanding Hyperplane Elastic Network Interfaces (ENIs) 239

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-network-acls.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-security-best-practices.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-security-best-practices.html

AWS Lambda Developer Guide

Hyperplane ENIs are not directly visible to you, and you don't need to configure or manage them.
However, knowing how they work can help you to understand your function's behavior when you
attach it to a VPC.

The first time you attach a function to a VPC using a particular subnet and security group
combination, Lambda creates a Hyperplane ENI. Other functions in your account that use the
same subnet and security group combination can also use this ENI. Wherever possible, Lambda
reuses existing ENIs to optimize resource utilization and minimize the creation of new ENIs.

Each Hyperplane ENI supports up to 65,000 connections/ports. If the number of connections
exceeds this limit, Lambda scales the number of ENIs automatically based on network traffic and
concurrency requirements.

For new functions, while Lambda is creating a Hyperplane ENI, your function remains in the
Pending state and you can't invoke it. Your function transitions to the Active state only when the
Hyperplane ENI is ready, which can take several minutes. For existing functions, you can't perform
additional operations that target the function, such as creating versions or updating the function’s
code, but you can continue to invoke previous versions of the function.

(® Note

As part of managing the ENI lifecycle, Lambda may delete and recreate ENIs to load
balance network traffic across ENIs or to address issues found in ENI health-checks.
Additionally, if a Lambda function remains idle for 30 days, Lambda reclaims any unused
Hyperplane ENIs and sets the function state to idle. The next invocation attempt will fail,
and the function re-enters the Pending state until Lambda completes the creation or
allocation of a Hyperplane ENI.

We recommend that your design doesn't rely on the persistence of ENIs.

Using IAM condition keys for VPC settings

You can use Lambda-specific condition keys for VPC settings to provide additional permission
controls for your Lambda functions. For example, you can require that all functions in your
organization are connected to a VPC. You can also specify the subnets and security groups that the
function's users can and can't use.

Lambda supports the following condition keys in IAM policies:

« lambda:Vpclds - Allow or deny one or more VPCs.

Using IAM condition keys for VPC settings 240

AWS Lambda Developer Guide

« lambda:Subnetids — Allow or deny one or more subnets.

« lambda:SecurityGrouplds — Allow or deny one or more security groups.

The Lambda API operations CreateFunction and UpdateFunctionConfiguration support these
condition keys. For more information about using condition keys in IAM policies, see IAM JSON
Policy Elements: Condition in the IAM User Guide.

® Tip
If your function already includes a VPC configuration from a previous API request, you can
send an UpdateFunctionConfiguration request without the VPC configuration.

Example policies with condition keys for VPC settings

The following examples demonstrate how to use condition keys for VPC settings. After you create
a policy statement with the desired restrictions, append the policy statement for the target user or
role.

Ensure that users deploy only VPC-connected functions

To ensure that all users deploy only VPC-connected functions, you can deny function create and
update operations that don't include a valid VPC ID.

Note that VPCID is not an input parameter to the CreateFunction or
UpdateFunctionConfiguration request. Lambda retrieves the VPC ID value based on the
subnet and security group parameters.

"Version": "2012-10-17",
"Statement": [
{
"Sid": "EnforceVPCFunction",
"Action": [
"lambda:CreateFunction",
"lambda:UpdateFunctionConfiguration

1,
"Effect": "Deny",
"Resource": "*",

"Condition": {

Using IAM condition keys for VPC settings 241

https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunction.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionConfiguration.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html

AWS Lambda Developer Guide

"Null": {
"lambda:VpcIds": "true"

Deny users access to specific VPCs, subnets, or security groups

To deny users access to specific VPCs, use StringEquals to check the value of the
lambda:VpcIds condition. The following example denies users access to vpc-1 and vpc-2.

"Version": "2012-10-17",
"Statement": [
{
"Sid": "EnforceOutOfVPC",
"Action": [
"lambda:CreateFunction",
"lambda:UpdateFunctionConfiguration"
1,
"Effect": "Deny",
"Resource": "*",
"Condition": {
"StringEquals": {
"lambda:VpcIds": ["vpc-1", "vpc-2"]

To deny users access to specific subnets, use StringEquals to check the value of the
lambda:SubnetIds condition. The following example denies users access to subnet-1 and
subnet-2.

"Sid": "EnforceOutOfSubnet",

"Action": [
"lambda:CreateFunction",
"lambda:UpdateFunctionConfiguration"

Using IAM condition keys for VPC settings 242

AWS Lambda Developer Guide

1,
"Effect": "Deny",
"Resource": "*",

"Condition": {
"ForAnyValue:StringEquals": {
"lambda:SubnetIds": ["subnet-1", "subnet-2"]

To deny users access to specific security groups, use StringEquals to check the value of the
lambda:SecurityGroupIds condition. The following example denies users access to sg-1 and
sg-2.

"Sid": "EnforceOutOfSecurityGroups",

"Action": [
"lambda:CreateFunction",
"lambda:UpdateFunctionConfiguration"

1,

"Effect": "Deny",

"Resource": "*",

"Condition": {

"ForAnyValue:StringEquals": {
"lambda:SecurityGroupIds": ["sg-1", "sg-2"]

Allow users to create and update functions with specific VPC settings

To allow users to access specific VPCs, use StringEquals to check the value of the
lambda:VpcIds condition. The following example allows users to access vpc-1 and vpc-2.

"Version": "2012-10-17",
"Statement": [
{

Using IAM condition keys for VPC settings 243

AWS Lambda Developer Guide

"Sid": "EnforceStayInSpecificVpc",
"Action": [
"lambda:CreateFunction",
"lambda:UpdateFunctionConfiguration"

1,
"Effect": "Allow",
"Resource": "*",

"Condition": {
"StringEquals": {
"lambda:VpcIds": ["vpc-1", "vpc-2"]

To allow users to access specific subnets, use StringEquals to check the value of the
lambda:SubnetIds condition. The following example allows users to access subnet-1 and
subnet-2.

"Sid": "EnforceStayInSpecificSubnets",
"Action": [
"lambda:CreateFunction",
"lambda:UpdateFunctionConfiguration"

1,
"Effect": "Allow",
"Resource": "*",

"Condition": {
"ForAllValues:StringEquals": {
"lambda:SubnetIds": ["subnet-1", "subnet-2"]

To allow users to access specific security groups, use StringEquals to check the value of the
lambda:SecurityGroupIds condition. The following example allows users to access sg-1 and
sg-2.

"Sid": "EnforceStayInSpecificSecurityGroup",
"Action": [

Using IAM condition keys for VPC settings 244

AWS Lambda Developer Guide

"lambda:CreateFunction",
"lambda:UpdateFunctionConfiguration"

1,
"Effect": "Allow",
"Resource": "*",

"Condition": {
"ForAllValues:StringEquals": {
"lambda:SecurityGroupIds": ["sg-1", "sg-2"]

VPC tutorials

In the following tutorials, you connect a Lambda function to resources in your VPC.

 Tutorial: Using a Lambda function to access Amazon RDS in an Amazon VPC

» Tutorial: Configuring a Lambda function to access Amazon ElastiCache in an Amazon VPC

VPC tutorials 245

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-lambda-tutorial.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/Lambda.html

AWS Lambda Developer Guide

Giving Lambda functions access to a resource in an Amazon
VPC in another account

You can give your AWS Lambda function access to a resource in a Amazon VPC in Amazon Virtual
Private Cloud managed by another account, without exposing either VPC to the internet. This
access pattern allows you to share data with other organizations using AWS. Using this access
pattern, you can share data between VPCs with a greater level of security and performance than
over the internet. Configure your Lambda function to use a Amazon VPC peering connection to
access these resources.

/A Warning

When you allow access between accounts or VPCs, check that your plan meets the security
requirements of the respective organizations that manage these accounts. Following the
instructions in this document will affect the security posture of your resources.

In this tutorial, you connect two accounts together with a peering connection using IPv4. You
configure a Lambda function that is not already connected to a Amazon VPC. You configure DNS
resolution to connect your function to resources that do not provide static IPs. To adapt these
instructions to other peering scenarios, consult the VPC Peering Guide.

Prerequisites

To give a Lambda function access to a resource in another acccount, you must have:

A Lambda function, configured to authenticate with and then read from your resource.

A resource in another account, such as an Amazon RDS cluster, available through Amazon VPC.

» Credentials for your Lambda function's account and your resource's account. If you are not
authorized to use your resource's account, contact an authorized user to prepare that account.

» Permission to create and update a VPC (and supporting Amazon VPC resources) to associate with
your Lambda function.

« Permission to update the execution role and VPC configuration for your Lambda function.
» Permission to create a VPC peering connection in your Lambda function's account.

« Permission to accept a VPC peering connection in your resource's account.

Attaching functions to resources in another account 246

https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html

AWS Lambda Developer Guide

» Permission to update the configuration of your resource's VPC (and supporting Amazon VPC
resources).

« Permission to invoke your Lambda function.

Create an Amazon VPC in your function's account

Create an Amazon VPC, subnets, route tables, and a security group in your Lambda function's
account.

To create a VPC, subnets, and other VPC resources using the console

1. Open the Amazon VPC Console at https://console.aws.amazon.com/vpc/.

2. On the dashboard, choose Create VPC.

3. For IPv4 CIDR block, provide a private CIDR block. Your CIDR block must not overlap with
blocks used in your resource's VPC. Don't pick a block your resources' VPC uses to assign IPs
to resources or a block already defined in the route tables in your resources VPC. For more
information about defining appropriate CIDR blocks, see VPC CIDR blocks.

Choose Customize AZs.
Select the same AZs as your resource.
For Number of public subnets, choose 0.

For VPC endpoints, choose None.

© N o U A

Choose Create VPC.

Grant VPC permissions to your function's execution role

Attach AWSLambdaVPCAccessExecutionRole to your function’s execution role to allow it to connect
to VPGCs.

To grant VPC permissions to your function's execution role

1. Open the Functions page of the Lambda console.

2. Choose the name of your function.
3. Choose Configuration.
4

Choose Permissions.

Create an Amazon VPC in your function's account 247

https://console.aws.amazon.com/vpc/
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-cidr-blocks.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSLambdaVPCAccessExecutionRole.html
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

Under Role name, choose the execution role.

In the Permissions policies section, choose Add permissions.

5

6

7. Inthe dropdown list, choose Attach policies.

8. Inthe search box, enter AWSLambdaVPCAccessExecutionRole.
9

To the left of the policy name, choose the checkbox.

10. Choose Add permissions.

To attach your function to your Amazon VPC

1. Open the Functions page of the Lambda console.

Choose the name of your function.

Choose the Configuration tab, then choose VPC.
Choose Edit.

Under VPC, select your VPC

Under Subnets, choose your subnets.

Under Security groups, choose the default security group for your VPC.

© N o u B W DN

Choose Save.

Create a VPC peering connection request

Create a VPC peering connection request from your function's VPC (the requester VPC) to your
resource's VPC (the accepter VPC).

To request a VPC peering connection from your function's VPC

1. Open the https://console.aws.amazon.com/vpc/.

In the navigation pane, choose Peering connections.
Choose Create peering connection.
For VPC ID (Requester), select your function's VPC.

For Account ID, enter the ID of your resource's account.

o v B~ W N

For VPC ID (Accepter), enter your resource's VPC.

Create a VPC peering connection request 248

https://console.aws.amazon.com/lambda/home#/functions
https://console.aws.amazon.com/vpc/

AWS Lambda Developer Guide

Prepare your resource's account

To create your peering connection and prepare your resource's VPC to use the connection, log in to
your resource's account with a role that holds the permissions listed in the prerequisites. The steps
to log in may be different based on how the account is secured. For more information about how to
sign in to an AWS account, see the AWS Sign-in User Guide. In your resource's account, perform the
following procedures.

To accept the VPC peering connection request

Open the https://console.aws.amazon.com/vpc/.

In the navigation pane, choose Peering connections.

Select the pending VPC peering connection (the status is pending-acceptance).
Choose Actions

From the dropdown list, choose Accept request.

When prompted for confirmation, choose Accept request.

N o u bk~ wnN =

Choose Modify my route tables now to add a route to the main route table for your VPC so
that you can send and receive traffic across the peering connection.

Inspect the route tables for the resource's VPC. The route generated by Amazon VPC might not
establish connectivity, based on how your resource's VPC is set up. Check for conflicts between the
new route and existing configuration for the VPC. For more information about troubleshooting, see
Troubleshoot a VPC peering connection in the Amazon Virtual Private Cloud VPC Peering Guide.

To update the security group for your resource

1. Open the https://console.aws.amazon.com/vpc/.

In the navigation pane, choose Security groups.
Select the security group for your resource.

Choose Actions.

From the dropdown list, choose Edit inbound rules.

Choose Add rule.

N o u B~ WD

For Source enter your function's account ID and security group ID, separated by a forward
slash (for example, 111122223333 /sg-1a2b3c4d).

8. Choose Edit outbound rules.

Prepare your resource's account 249

https://docs.aws.amazon.com/signin/latest/userguide/what-is-sign-in.html
https://console.aws.amazon.com/vpc/
https://docs.aws.amazon.com/vpc/latest/peering/troubleshoot-vpc-peering-connections.html
https://console.aws.amazon.com/vpc/

AWS Lambda Developer Guide

9. Check whether outbound traffic is restricted. Default VPC settings allow all outbound traffic. If
outbound traffic is restricted, continue to the next step.

10. Choose Add rule.

11. For Destination enter your function's account ID and security group ID, separated by a forward
slash (for example, 111122223333 /sg-1a2b3c4d).

12. Choose Save rules.

To enable DNS resolution for your peering connection

Open the https://console.aws.amazon.com/vpc/.

In the navigation pane, choose Peering connections.
Select your peering connection.
Choose Actions.

Choose Edit DNS settings.

o vk W=

Below Accepter DNS resolution, select Allow requester VPC to resolve DNS of accepter VPC
hosts to private IP.

7. Choose Save changes.

Update VPC configuration in your function's account
Log in to your function's account, then update the VPC configuration.
To add a route for your VPC peering connection

1. Open the https://console.aws.amazon.com/vpc/.

In the navigation pane, choose Route tables.

W

Select the check box next to the name of the route table for the subnet you associated with
your function.

Choose Actions.

Choose Edit routes.

Choose Add route.

For Destination, enter the CIDR block for your resource's VPC.

For Target, select your VPC peering connection.

© ® N o u &

Choose Save changes.

Update VPC configuration in your function's account 250

https://console.aws.amazon.com/vpc/
https://console.aws.amazon.com/vpc/

AWS Lambda Developer Guide

For more information about considerations you may encounter while updating your route tables,
consult Update your route tables for a VPC peering connection.

To update the security group for your Lambda function

A A

Open the https://console.aws.amazon.com/vpc/.

In the navigation pane, choose Security groups.
Choose Actions.

Choose Edit inbound rules.

Choose Add rule.

For Source enter your resource's account ID and security group ID, separated by a forward
slash (for example, 111122223333 /sg-1a2b3c4d).

Choose Save rules.

To enable DNS resolution for your peering connection

A A A

Open the https://console.aws.amazon.com/vpc/.

In the navigation pane, choose Peering connections.
Select your peering connection.

Choose Actions.

Choose Edit DNS settings.

Below Requester DNS resolution, select Allow accepter VPC to resolve DNS of requester VPC
hosts to private IP.

Choose Save changes.

Test your function

To create a test event and inspect your function's output

1.
2.

In the Code source pane, choose Test.
Select Create new event.

In the Event JSON panel, replace the default values with an input appropriate for your Lambda
function.

Choose Invoke.

Test your function 251

https://docs.aws.amazon.com/vpc/latest/peering/vpc-peering-routing.html
https://console.aws.amazon.com/vpc/
https://console.aws.amazon.com/vpc/

AWS Lambda Developer Guide

5. In the Execution results tab, confirm that Response contains your expected output.

Additionally, you can check your function's logs to verify the logs are as you expect.
To view your function's invocation records in CloudWatch Logs

1. Choose the Monitor tab.

2. Choose View CloudWatch logs.

3. Inthe Log streams tab, choose the log stream for your function's invocation.
4

Confirm your logs are as you expect.

Test your function 252

AWS Lambda Developer Guide

Enable internet access for VPC-connected Lambda functions

By default, Lambda functions run in a Lambda-managed VPC that has internet access. To access
resources in a VPC in your account, you can add a VPC configuration to a function. This restricts the
function to resources within that VPC, unless the VPC has internet access. This page explains how
to provide internet access to VPC-connected Lambda functions.

I don't have a VPC yet
Create the VPC

The Create VPC workflow creates all VPC resources required for a Lambda function to access the
public internet from a private subnet, including subnets, NAT gateway, internet gateway, and route
table entries.

To create the VPC

Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
On the dashboard, choose Create VPC.

1
2
3. For Resources to create, choose VPC and more.
4. Configure the VPC

a. For Name tag auto-generation, enter a name for the VPC.

b. For IPv4 CIDR block, you can keep the default suggestion, or alternatively you can enter
the CIDR block required by your application or network.

c. If your application communicates by using IPv6 addresses, choose IPv6 CIDR block,
Amazon-provided IPv6 CIDR block.

5. Configure the subnets

a. For Number of Availability Zones, choose 2. We recommend at least two AZs for high
availability.
b. For Number of public subnets, choose 2.

c. For Number of private subnets, choose 2.

d. You can keep the default CIDR block for the public subnet, or alternatively you can expand
Customize subnet CIDR blocks and enter a CIDR block. For more information, see Subnet
CIDR blocks .

6. For NAT gateways, choose 1 per AZ to improve resiliency.

Internet access for VPC functions 253

https://console.aws.amazon.com/vpc/
https://docs.aws.amazon.com/vpc/latest/userguide/subnet-sizing.html
https://docs.aws.amazon.com/vpc/latest/userguide/subnet-sizing.html

AWS Lambda Developer Guide

7. For Egress only internet gateway, choose Yes if you opted to include an IPv6 CIDR block.

8. For VPC endpoints, keep the default (S3 Gateway). There is no cost for this option. For more
information, see Types of VPC endpoints for Amazon S3.

9. For DNS options, keep the default settings.
10. Choose Create VPC.

Configure the Lambda function
To configure a VPC when you create a function

1. Open the Functions page of the Lambda console.

Choose Create function.

Under Basic information, for Function name, enter a name for your function.
Expand Advanced settings.

Select Enable VPC, and then choose a VPC.

(Optional) To allow outbound IPv6 traffic, select Allow IPv6 traffic for dual-stack subnets.

N o u B~ W N

For Subnets, select all private subnets. The private subnets can access the internet through the
NAT gateway. Connecting a function to a public subnet doesn't give it internet access.

® Note

If you selected Allow IPv6 traffic for dual-stack subnets, all selected subnets must
have an IPv4 CIDR block and an IPv6 CIDR block.

8. For Security groups, select a security group that allows outbound traffic.

9. Choose Create function.

Lambda automatically creates an execution role with the AWSLambdaVPCAccessExecutionRole
AWS managed policy. The permissions in this policy are required only to create elastic network
interfaces for the VPC configuration, not to invoke your function. To apply least-privilege
permissions, you can remove the AWSLambdaVPCAccessExecutionRole policy from your execution
role after you create the function and VPC configuration. For more information, see Required |IAM

permissions.

Internet access for VPC functions 254

https://docs.aws.amazon.com/AmazonS3/latest/userguide/privatelink-interface-endpoints.html#types-of-vpc-endpoints-for-s3
https://console.aws.amazon.com/lambda/home#/functions
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSLambdaVPCAccessExecutionRole.html

AWS Lambda Developer Guide

To configure a VPC for an existing function

To add a VPC configuration to an existing function, the function's execution role
must have permission to create and manage elastic network interfaces. The

AWSLambdaVPCAccessExecutionRole AWS managed policy includes the required permissions. To
apply least-privilege permissions, you can remove the AWSLambdaVPCAccessExecutionRole policy
from your execution role after you create the VPC configuration.

1. Open the Functions page of the Lambda console.

Choose a function.

Choose the Configuration tab, and then choose VPC.
Under VPC, choose Edit.

Select the VPC.

(Optional) To allow outbound IPv6 traffic, select Allow IPv6 traffic for dual-stack subnets.

N o u B~ W N

For Subnets, select all private subnets. The private subnets can access the internet through the
NAT gateway. Connecting a function to a public subnet doesn't give it internet access.

® Note

If you selected Allow IPv6 traffic for dual-stack subnets, all selected subnets must
have an IPv4 CIDR block and an IPv6 CIDR block.

8. For Security groups, select a security group that allows outbound traffic.

9. Choose Save.

Test the function

Use the following sample code to confirm that your VPC-connected function can reach the public
internet. If successful, the code returns a 200 status code. If unsuccessful, the function times out.

Node.js

1. Inthe Code source pane on the Lambda console, paste the following code into the
index.mjs file. The function makes an HTTP GET request to a public endpoint and returns
the HTTP response code to test if the function has access to the public internet.

Internet access for VPC functions 255

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSLambdaVPCAccessExecutionRole.html
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

Code source info

“ 2 example
= EXPLORER index.mjs
“ EXAMPLE index.mjs > ...
[E; index.mjs 1 const url = "https://aws.amazon.com/";
2
j:) 3 export const handler = async{event) =»

Example — HTTP request with async/await

const url = "https://aws.amazon.com/";

export const handler = async(event) => {
try {
// fetch is available with Node.js 18 and later runtimes
const res = await fetch(url);
console.info("status", res.status);
return res.status;

}

catch (e) {
console.error(e);
return 500;

}

};

2. Inthe DEPLOY section, choose Deploy to update your function's code:

» DEPLOY [UNDEPLOYED CHAMNGES]

& You have undeployed changes.

Deploy {Ctrl+Shift+LU)

||

Test (Ctri+Shift+1)

3. Choose the Test tab.

Internet access for VPC functions 256

AWS Lambda Developer Guide

Code Test Monitor Configuration Aliases Versions

Test event info

4. Choose Test.

5. The function returns a 200 status code. This means that the function has outbound
internet access.

@ Executing function: succeeded (logs [4])

v Details

The area below shows the last 4 KB of the execution log.

200

If the function can't reach the public internet, you get an error message like this:

"errorMessage": "2024-04-11T17:22:20.857Z abel2jlc-640a-8157-0249-9be825c2y110
Task timed out after 3.01 seconds"

}

Python

1. In the Code source pane on the Lambda console, paste the following code into the
lambda_function.py file. The function makes an HTTP GET request to a public endpoint
and returns the HTTP response code to test if the function has access to the public internet.

Internet access for VPC functions 257

AWS Lambda Developer Guide

Code source info

&« 2 example
= EXPLORER index.myjs ® lambda_functionpy X
~ EXAMPLE @ lambda_function.py
@ @ lambda_function.py 1 import wrllib.request
2
}:) 3 def lambda_ handler(event, context):
4 try:

import urllib.request

def lambda_handler(event, context):

try:
response = urllib.request.urlopen('https://aws.amazon.com')
status_code = response.getcode()
print('Response Code:', status_code)
return status_code

except Exception as e:
print('Error:', e)
raise e

2. Inthe DEPLOY section, choose Deploy to update your function's code:

~ DEPLOY [UNDEPLOYED CHANGES]

& You have undeployed changes.

Deploy (Ctrl+Shift+U)

Test (Ctri+Shift+1)

3. Choose the Test tab.

Code Test Monitor Configuration Aliases Versions

Test event info

4. Choose Test.

Internet access for VPC functions 258

AWS Lambda Developer Guide

5. The function returns a 200 status code. This means that the function has outbound
internet access.

@ Executing function: succeeded (logs [7])
v Details

The area below shows the last 4 KB of the execution log.

200

If the function can't reach the public internet, you get an error message like this:

"errorMessage": "2024-04-11T17:22:20.857Z abel2jlc-640a-8157-0249-9be825c2y110
Task timed out after 3.01 seconds"

}

I already have a VPC

If you already have a VPC but you need to configure public internet access for a Lambda function,
follow these steps. This procedure assumes that your VPC has at least two subnets. If you don't
have two subnets, see Create a subnet in the Amazon VPC User Guide.

Verify the route table configuration

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

2. Choose the VPCID.

Your VPCs (3) info

Q Search |
] Name v VPCID v | State v |
] - vpc-2 ® Available
] lambda-test-vpc vpc-0 ® Available

3. Scroll down to the Resource map section. Note the route table mappings. Open each route
table that is mapped to a subnet.

Internet access for VPC functions 259

https://docs.aws.amazon.com/vpc/latest/userguide/create-subnets.html
https://console.aws.amazon.com/vpc/

AWS Lambda Developer Guide

Resource map CIDRs Flow logs Tags Integrations

Resource map info

Subnets (4) Route tables (4)

Subnets within this VPC Route network traffic to resources

us-west-2a rtb-0

QO lambda- -US-W... lambda- -us-west-2a

A lambda- -us-... lambda- -us-west-2b

us-west-2b ambda- [4 ZE i
2 subnet associations

@ lambda- -US-w... 2 routes including local

B lambda- '-us-...

4. Scroll down to the Routes tab. Review the routes to determine if one of the following is true.
Each of these requirements must be satisfied by a separate route table.

« Internet-bound traffic (0.0.0.0/0 for IPv4, : : /0 for IPv6) is routed to an internet gateway

(1gw-xxxxxxxxxx). This means that the subnet associated with the route table is a public
subnet.

(® Note

If your subnet doesn't have an IPv6 CIDR block, you will only see the IPv4 route
(0.0.0.0/0).

Internet access for VPC functions 260

AWS Lambda

Developer Guide

Example public subnet route table

Routes Subnet associations Edge associations Route propagation Tags
Routes (4)
‘ Q. Filter routes
Destination v Target v ‘ Status
::/0 igw-0 ® Active
/56 local © Active

0.0.0.0/0 igw-0 @ Active

/16 local © Active

 Internet-bound traffic for IPv4 (0.0.0.0/0) is routed to a NAT gateway (nat-xxXXxXXXXxxXx)
that is associated with a public subnet. This means that the subnet is a private subnet that

can access the internet through the NAT gateway.

(@ Note

If your subnet has an IPv6 CIDR block, the route table must also route internet-
bound IPv6 traffic (: : /@) to an egress-only internet gateway (eigw-XXXXXXXXXX).
If your subnet doesn't have an IPv6 CIDR block, you will only see the IPv4 route

(0.0.0.0/0).

Internet access for VPC functions

261

AWS Lambda Developer Guide

Example private subnet route table

Routes Subnet associations Edge associations Route propagation Tags

Routes (4)

‘ Q. Filter routes

Destination v Target v ‘ Status
::/0 eigw-0 © Active
::/56 local © Active
0.0.0.0/0 nat-0 © Active
/16 local ®© Active

5. Repeat the previous step until you have reviewed each route table associated with a subnet
in your VPC and confirmed that you have a route table with an internet gateway and a route
table with a NAT gateway.

If you don't have two route tables, one with a route to an internet gateway and one with a
route to a NAT gateway, follow these steps to create the missing resources and route table
entries.

Create a route table

Follow these steps to create a route table and associate it with a subnet.

To create a custom route table using the Amazon VPC console

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

In the navigation pane, choose Route tables.

Choose Create route table.

(Optional) For Name, enter a name for your route table.

For VPC, choose your VPC.

(Optional) To add a tag, choose Add new tag and enter the tag key and tag value.

N o ok~ WD

Choose Create route table.

Internet access for VPC functions 262

https://console.aws.amazon.com/vpc/

AWS Lambda Developer Guide

8.

9.

On the Subnet associations tab, choose Edit subnet associations.

Routes Subnet associations Edge associations Route propagation Tags

Explicit subnet associations (0) | Edit subnet associations |
Q, Find subnet association ‘ 1 {3

Name v | SubnetID v | IPv4 CIDR v | IPv6CIDR v

No subnet associations

You do not have any subnet associations.

Select the check box for the subnet to associate with the route table.

10. Choose Save associations.

Create an internet gateway

Follow these steps to create an internet gateway, attach it to your VPC, and add it to your public
subnet's route table.

To create an internet gateway

—

N o u B W N

Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

In the navigation pane, choose Internet gateways.

Choose Create internet gateway.

(Optional) Enter a name for your internet gateway.

(Optional) To add a tag, choose Add new tag and enter the tag key and value.
Choose Create internet gateway.

Choose Attach to a VPC from the banner at the top of the screen, select an available VPC, and
then choose Attach internet gateway.

(® The following internet gateway was created: igw-0 - lambda-igw. You can now attach to a Attach to a VPC

VPC to enable the VPC to communicate with the internet.

VPC > Internet gateways > igw-0

igw-0 / lambda-igw

Choose the VPC ID.

Internet access for VPC functions 263

https://console.aws.amazon.com/vpc/

AWS Lambda

Developer Guide

®© Internet gateway igw-0 successfully attached to vpc-0

VPC > Internet gateways > igw-0

igw-0 / lambda-igw

Details info

Internet gateway ID State VPCID
igw-0 @) Attached vpc-0 o
9. Choose the VPC ID again to open the VPC details page.
Your VPCs (1) info
| Q, Search
| VPCID : vpc-0 X | | Clear filters
] Name v | VPCID v | State v
] vpc- vpc-0 ® Available
10. Scroll down to the Resource map section and then choose a subnet. The subnet details are
displayed in a new tab.
Internet access for VPC functions 264

AWS Lambda

Developer Guide

Resource map CIDRs Flow logs

Resource map info

VPC show details

Your AWS virtual network

lambda-

11. Choose the link under Route table.

VPC » Subnets » subnet-

subnet-

Details

Subnet ID
subnet-

Available |IPv4 addresses
4090

Metwork border group
us-west-2

Subnet ARN

arm:aws:ec2:us-west- @Available

Integrations

Subnets (4)

Subnets within this VPC

us-west-2a

0 lambda-

B lambda- [>efs-...

us-west-2b
© lambda- -LIS-W. ..

B lambda: T-us-...

State

Availability Zone
us-west-2b

Route table
rth-

12. Choose the Route table ID to open the route table details page.

Internet access for VPC functions

265

AWS Lambda Developer Guide

Route tables (1) info

| Q, Find resources by attribute or tag

RoutetableID:vtb-0 | X | | Clear filters |
] Name v | Route table ID v
O - rtb-0 T

13. Under Routes, choose Edit routes.

Routes Subnet associations Edge associations Route propagation Tags

Routes (1) | Both ¥ H Edit routes |
Q, Filter routes ‘ o — &)
Destination v Target v | Status
10.0.0.0/24 local ® Active

14. Choose Add route, and then enter @.0.0.0/0 in the Destination box.

Edit routes

Destination Target Status
10.0.0.0/24 | local v | ® Active
| Q local X ‘
Q| | | | v] -
0.0.0.0/0 B ‘
0.0.0.0/8
] 0.0.0.0/16

15. For Target, select Internet gateway, and then choose the internet gateway that you created
earlier. If your subnet has an IPv6 CIDR block, you must also add a route for : : /@ to the same
internet gateway.

Internet access for VPC functions 266

AWS Lambda Developer Guide

Edit routes
Destination Target
10.0.0.0/24 | local v ‘
| Q local X ‘
| Q 00.00/0 x| | s

Carrier Gateway

Egress Only Internet Gateway
Gateway Load Balancer Endpoint
Instance

Internet Gateway @

16. Choose Save changes.

Create a NAT gateway

Follow these steps to create a NAT gateway, associate it with a public subnet, and then add it to
your private subnet's route table.

To create a NAT gateway and associate it with a public subnet

1. In the navigation pane, choose NAT gateways.
2. Choose Create NAT gateway.

3. (Optional) Enter a name for your NAT gateway.
4

For Subnet, select a public subnet in your VPC. (A public subnet is a subnet that has a direct
route to an internet gateway in its route table.)

® Note

NAT gateways are associated with a public subnet, but the route table entry is in the
private subnet.

5. For Elastic IP allocation ID, select an elastic IP address or choose Allocate Elastic IP.

6. Choose Create NAT gateway.

Internet access for VPC functions 267

AWS Lambda Developer Guide

To add a route to the NAT gateway in the private subnet's route table

1. In the navigation pane, choose Subnets.

2. Select a private subnet in your VPC. (A private subnet is a subnet that doesn't have a route to
an internet gateway in its route table.)

3. Choose the link under Route table.

VPC » Subnets » subnet-

subnet-
Details
Subnet 1D Subnet ARN State
subnet- arm:aws:ec?:us-west- (® Available
Available IPv4 addresses Availability Zone
4090 us-west-2b
IPvé CIDR
Metwork border group _ Route table
us-west-2 rth-
Tl

4. Choose the Route table ID to open the route table details page.

Route tables (1) info

| Q, Find resources by attribute or tag

RoutetableID:rtb-0 I X | | Clear filters |

[] Name v | Route table ID v

O - rtb-0 L

5. Scroll down and choose the Routes tab, then choose Edit routes
rth-0

Details Subnet associations Edge associations Route propagation Tags
Routes (3) ‘ Both w H Edit routes |
‘ Q, Filter routes ‘ 1 &

Internet access for VPC functions 268

AWS Lambda Developer Guide

6. Choose Add route, and then enter@.0.0.0/0 in the Destination box.

Edit routes

Destination Target Status
10.0.0.0/24 | local v | © Active
| Q, local X |
Q| I | | v] -
0.0.0.0/0 ‘
0.0.0.0/8
] 0.0.0.0/16

7. For Target, select NAT gateway, and then choose the NAT gateway that you created earlier.

VPC » Routetables » rth- » Edit routes

Edit routes

Destination Target
/16 ‘ lacal v ‘
‘ Q, local » ‘
| Q 000.0/0 X| | a |

Carrier Gateway

Egress Only Internet Gateway

Gateway Load Balancer Endpoint
Instance
Internet Gateway

local

NAT Gateway

Network Interface

8. Choose Save changes.

Create an egress-only internet gateway (IPv6 only)

Follow these steps to create an egress-only internet gateway and add it to your private subnet's
route table.

Internet access for VPC functions 269

AWS Lambda Developer Guide

To create an egress-only internet gateway

1.

o v A WD

9.

In the navigation pane, choose Egress-only internet gateways.
Choose Create egress only internet gateway.

(Optional) Enter a name.

Select the VPC in which to create the egress-only internet gateway.
Choose Create egress only internet gateway.

Choose the link under Attached VPC ID.

VPC » Egress only internet gateways » eigw-0

eigw-0
Details info
Egress only internet gateway |D Attached VPCID
eigw-0 vpc-0

Choose the link under VPC ID to open the VPC details page.

Scroll down to the Resource map section and then choose a private subnet. (A private subnet
is a subnet that doesn't have a route to an internet gateway in its route table.) The subnet
details are displayed in a new tab.

Resource map CIDRs Flow logs Tags Integrations

Resource map info

VPC Show details Subnets (4)
Your AWS virtual network Subnets within this VPC
lambda- us-west-2a
& lambda- -US-W...
lambda: I-... [A

Choose the link under Route table.

Internet access for VPC functions 270

AWS Lambda Developer Guide
subnet-Q -subnet-private1-us-west-2a
Details
Subnet ID Subnet ARN State
subnet- am:aws:ec2:us-west- @ Available

Available IPv4 addresses Availability Zone

4090 IPv6 CIDR us-west-2a
/64
Metwork border group Route table
us-wast-2 VPC rtb-0
vpc-0)) west-2a
Default subnet
Nao Auto-assign public IPv4 address Auto-assign IPvé address

10. Choose the Route table ID to open the route table details page.

Route tables (1) info

| Q, Find resources by attribute or tag

|EE’.‘JF?_I.@?[‘%-'.'?.E_['E'}_:@__ I ><| | Clear filters |

- | Route table ID v

rth-0 N

[] Name
D _

11. Under Routes, choose Edit routes.

Routes Subnet associations Edge associations Route propagation Tags
Routes (1) | Both ¥ ‘ | Edit routes |
‘Q Filter routes ‘ 1T &)
Destination v Target v | Status
10.0.0.0/24 local ® Active
12. Choose Add route, and then enter : : /0 in the Destination box.
Edit routes
Destination Target Status
10.0.0.0/24 | local v | © Active
| Q, local X |
Q| I | | v] -
0.0.0.0/0 =
0.0.0.0/8
| 0.0.0.0/16

Internet access for VPC functions

271

AWS Lambda Developer Guide

13. For Target, select Egress Only Internet Gateway, and then choose the gateway that you

created earlier.

Edit routes
Destination Target Status
2/56 | local v | ©Active
| Q local X |
10.0.0.0/16 ‘ local v ‘ @ Active
[Q tocal X |
|Q 0.0.0.0/0 X | | NAT Gateway v | @ Active
‘ Q nat- X ‘
Q0 X | | Egress Only Internet Gateway v | ©Active
[Q eigw X |

14. Choose Save changes.

Configure the Lambda function

To configure a VPC when you create a function

N o v s~ w2

8.
9.

Open the Functions page of the Lambda console.

Choose Create function.

Under Basic information, for Function name, enter a name for your function.

Expand Advanced settings.

Select Enable VPC, and then choose a VPC.

(Optional) To allow outbound IPv6 traffic, select Allow IPv6 traffic for dual-stack subnets.

For Subnets, select all private subnets. The private subnets can access the internet through the
NAT gateway. Connecting a function to a public subnet doesn't give it internet access.

(® Note

If you selected Allow IPv6 traffic for dual-stack subnets, all selected subnets must
have an IPv4 CIDR block and an IPv6 CIDR block.

For Security groups, select a security group that allows outbound traffic.

Choose Create function.

Internet access for VPC functions 272

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

Lambda automatically creates an execution role with the AWSLambdaVPCAccessExecutionRole
AWS managed policy. The permissions in this policy are required only to create elastic network
interfaces for the VPC configuration, not to invoke your function. To apply least-privilege
permissions, you can remove the AWSLambdaVPCAccessExecutionRole policy from your execution
role after you create the function and VPC configuration. For more information, see Required |IAM

permissions.

To configure a VPC for an existing function

To add a VPC configuration to an existing function, the function's execution role

must have permission to create and manage elastic network interfaces. The
AWSLambdaVPCAccessExecutionRole AWS managed policy includes the required permissions. To
apply least-privilege permissions, you can remove the AWSLambdaVPCAccessExecutionRole policy
from your execution role after you create the VPC configuration.

1. Open the Functions page of the Lambda console.

Choose a function.

Choose the Configuration tab, and then choose VPC.
Under VPC, choose Edit.

Select the VPC.

(Optional) To allow outbound IPv6 traffic, select Allow IPv6 traffic for dual-stack subnets.

N o u M W DN

For Subnets, select all private subnets. The private subnets can access the internet through the
NAT gateway. Connecting a function to a public subnet doesn't give it internet access.

(® Note

If you selected Allow IPv6 traffic for dual-stack subnets, all selected subnets must
have an IPv4 CIDR block and an IPv6 CIDR block.

8. For Security groups, select a security group that allows outbound traffic.
9. Choose Save.
Test the function

Use the following sample code to confirm that your VPC-connected function can reach the public
internet. If successful, the code returns a 200 status code. If unsuccessful, the function times out.

Internet access for VPC functions 273

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSLambdaVPCAccessExecutionRole.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSLambdaVPCAccessExecutionRole.html
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

Node.js

1. In the Code source pane on the Lambda console, paste the following code into the
index.mjs file. The function makes an HTTP GET request to a public endpoint and returns
the HTTP response code to test if the function has access to the public internet.

Code source info

“ 2 example
= EXPLORER index.mjs
“ EXAMPLE index.mjs > ...
[E; index.mijs 1 const url = "https://aws.amazon.com/";
2
j:) 3 export const handler = async{event) =»

Example — HTTP request with async/await

const url = "https://aws.amazon.com/";

export const handler = async(event) => {
try {
// fetch is available with Node.js 18 and later runtimes
const res = await fetch(url);
console.info("status", res.status);
return res.status;

}

catch (e) {
console.error(e);
return 500;

}

};

2. Inthe DEPLOY section, choose Deploy to update your function's code:

» DEPLOY [UNDEPLOYED CHAMNGES]

& You have undeployed changes.

Deploy {Ctrl+Shift+LU)

Test (Ctri+Shift+1)

3. Choose the Test tab.

Internet access for VPC functions 274

AWS Lambda Developer Guide

Code Test Monitor Configuration Aliases Versions

Test event info

4. Choose Test.

5. The function returns a 200 status code. This means that the function has outbound
internet access.

@ Executing function: succeeded (logs [4])

v Details

The area below shows the last 4 KB of the execution log.

200

If the function can't reach the public internet, you get an error message like this:

"errorMessage": "2024-04-11T17:22:20.857Z abel2jlc-640a-8157-0249-9be825c2y110
Task timed out after 3.01 seconds"

}

Python

1. In the Code source pane on the Lambda console, paste the following code into the
lambda_function.py file. The function makes an HTTP GET request to a public endpoint
and returns the HTTP response code to test if the function has access to the public internet.

Internet access for VPC functions 275

AWS Lambda Developer Guide

Code source info

&« 2 example
= EXPLORER index.myjs ® lambda_functionpy X
~ EXAMPLE @ lambda_function.py
@ @ lambda_function.py 1 import wrllib.request
2
}:) 3 def lambda_ handler(event, context):
4 try:

import urllib.request

def lambda_handler(event, context):

try:
response = urllib.request.urlopen('https://aws.amazon.com')
status_code = response.getcode()
print('Response Code:', status_code)
return status_code

except Exception as e:
print('Error:', e)
raise e

2. Inthe DEPLOY section, choose Deploy to update your function's code:

~ DEPLOY [UNDEPLOYED CHANGES]

& You have undeployed changes.

Deploy (Ctrl+Shift+U)

Test (Ctri+Shift+1)

3. Choose the Test tab.

Code Test Monitor Configuration Aliases Versions

Test event info

4. Choose Test.

Internet access for VPC functions 276

AWS Lambda Developer Guide

5. The function returns a 200 status code. This means that the function has outbound
internet access.

@ Executing function: succeeded (logs [7])
v Details

The area below shows the last 4 KB of the execution log.

200

If the function can't reach the public internet, you get an error message like this:

"errorMessage": "2024-04-11T17:22:20.857Z abel2jlc-640a-8157-0249-9be825c2y110
Task timed out after 3.01 seconds"

}

Internet access for VPC functions 277

AWS Lambda Developer Guide

Connecting inbound interface VPC endpoints for Lambda

If you use Amazon Virtual Private Cloud (Amazon VPC) to host your AWS resources, you can
establish a connection between your VPC and Lambda. You can use this connection to invoke your
Lambda function without crossing the public internet.

To establish a private connection between your VPC and Lambda, create an interface VPC

endpoint. Interface endpoints are powered by AWS PrivateLink, which enables you to privately
access Lambda APIs without an internet gateway, NAT device, VPN connection, or AWS Direct

Connect connection. Instances in your VPC don't need public IP addresses to communicate with
Lambda APIs. Traffic between your VPC and Lambda does not leave the AWS network.

Each interface endpoint is represented by one or more elastic network interfaces in your subnets. A

network interface provides a private IP address that serves as an entry point for traffic to Lambda.

Sections

» Considerations for Lambda interface endpoints

» Creating an interface endpoint for Lambda

« Creating an interface endpoint policy for Lambda

Considerations for Lambda interface endpoints

Before you set up an interface endpoint for Lambda, be sure to review Interface endpoint

properties and limitations in the Amazon VPC User Guide.

You can call any of the Lambda API operations from your VPC. For example, you can invoke the
Lambda function by calling the Invoke API from within your VPC. For the full list of Lambda APIs,
see Actions in the Lambda API reference.

usel-az3is a limited capacity Region for Lambda VPC functions. You shouldn't use subnets in this
availability zone with your Lambda functions because this can result in reduced zonal redundancy
in the event of an outage.

Keep-alive for persistent connections

Lambda purges idle connections over time, so you must use a keep-alive directive to maintain
persistent connections. Attempting to reuse an idle connection when invoking a function results in
a connection error. To maintain your persistent connection, use the keep-alive directive associated

Inbound networking 278

https://docs.aws.amazon.com/vpc/latest/privatelink/vpce-interface.html
https://docs.aws.amazon.com/vpc/latest/privatelink/vpce-interface.html
https://aws.amazon.com/privatelink
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html
https://docs.aws.amazon.com/vpc/latest/privatelink/vpce-interface.html#vpce-interface-limitations
https://docs.aws.amazon.com/vpc/latest/privatelink/vpce-interface.html#vpce-interface-limitations
https://docs.aws.amazon.com/lambda/latest/dg/API_Operations.html

AWS Lambda Developer Guide

with your runtime. For an example, see Reusing Connections with Keep-Alive in Node.js in the AWS
SDK for JavaScript Developer Guide.

Billing Considerations

There is no additional cost to access a Lambda function through an interface endpoint. For more
Lambda pricing information, see AWS Lambda Pricing.

Standard pricing for AWS PrivateLink applies to interface endpoints for Lambda. Your AWS account
is billed for every hour an interface endpoint is provisioned in each Availability Zone and for data
processed through the interface endpoint. For more interface endpoint pricing information, see
AWS PrivateLink pricing.

VPC Peering Considerations

You can connect other VPCs to the VPC with interface endpoints using VPC peering. VPC peering is
a networking connection between two VPCs. You can establish a VPC peering connection between
your own two VPCs, or with a VPC in another AWS account. The VPCs can also be in two different
AWS Regions.

Traffic between peered VPCs stays on the AWS network and does not traverse the public internet.
Once VPCs are peered, resources like Amazon Elastic Compute Cloud (Amazon EC2) instances,
Amazon Relational Database Service (Amazon RDS) instances, or VPC-enabled Lambda functions in
both VPCs can access the Lambda API through interface endpoints created in the one of the VPCs.

Creating an interface endpoint for Lambda

You can create an interface endpoint for Lambda using either the Amazon VPC console or the AWS
Command Line Interface (AWS CLI). For more information, see Creating an interface endpoint in
the Amazon VPC User Guide.

To create an interface endpoint for Lambda (console)

1. Open the Endpoints page of the Amazon VPC console.

Choose Create Endpoint.
For Service category, verify that AWS services is selected.

For Service Name, choose com.amazonaws.region.lambda. Verify that the Type is Interface.

ok W

Choose a VPC and subnets.

Creating an interface endpoint for Lambda 279

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/node-reusing-connections.html
https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/privatelink/pricing/
https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html
https://docs.aws.amazon.com/vpc/latest/privatelink/vpce-interface.html#create-interface-endpoint
https://console.aws.amazon.com/vpc/home?#Endpoints

AWS Lambda Developer Guide

6. To enable private DNS for the interface endpoint, select the Enable DNS Name check box. We
recommend that you enable private DNS names for your VPC endpoints for AWS services. This
ensures that requests that use the public service endpoints, such as requests made through an
AWS SDK, resolve to your VPC endpoint.

For Security group, choose one or more security groups.

8. Choose Create endpoint.

To use the private DNS option, you must set the enableDnsHostnames and
enableDnsSupportattributes of your VPC. For more information, see Viewing and updating
DNS support for your VPC in the Amazon VPC User Guide. If you enable private DNS for the
interface endpoint, you can make API requests to Lambda using its default DNS name for the
Region, for example, lambda.us-east-1.amazonaws.com. For more service endpoints, see

Service endpoints and quotas in the AWS General Reference.

For more information, see Accessing a service through an interface endpoint in the Amazon VPC
User Guide.

For information about creating and configuring an endpoint using AWS CloudFormation, see the
AWS::EC2::VPCEndpoint resource in the AWS CloudFormation User Guide.

To create an interface endpoint for Lambda (AWS CLI)

Use the create-vpc-endpoint command and specify the VPC ID, VPC endpoint type (interface),
service name, subnets that will use the endpoint, and security groups to associate with the

endpoint's network interfaces. For example:

aws ec2 create-vpc-endpoint
--vpc-id vpc-ec43eb89
--vpc-endpoint-type Interface
--service-name com.amazonaws.us-east-1.lambda
--subnet-id subnet-abababab
--security-group-id sg-1a2b3c4d

Creating an interface endpoint policy for Lambda

To control who can use your interface endpoint and which Lambda functions the user can access,
you can attach an endpoint policy to your endpoint. The policy specifies the following information:

» The principal that can perform actions.

Creating an interface endpoint policy for Lambda 280

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html#vpc-dns-updating
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html#vpc-dns-updating
https://docs.aws.amazon.com/general/latest/gr/aws-service-information.html
https://docs.aws.amazon.com/vpc/latest/privatelink/vpce-interface.html#access-service-though-endpoint
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ec2-vpcendpoint.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/create-vpc-endpoint.html

AWS Lambda Developer Guide

« The actions that the principal can perform.

» The resources on which the principal can perform actions.

For more information, see Controlling access to services with VPC endpoints in the Amazon VPC
User Guide.

Example: Interface endpoint policy for Lambda actions
The following is an example of an endpoint policy for Lambda. When attached to an endpoint, this

policy allows user MyUser to invoke the function my-function.

(@ Note

You need to include both the qualified and the unqualified function ARN in the resource.

{
"Statement": [
{

"Principal":

{

"AWS": "arn:aws:iam::111122223333:user/MyUser"

.

"Effect":"Allow",

"Action":[

"lambda:InvokeFunction"

1,

"Resource": [
"arn:aws:lambda:us-east-2:123456789012:function:my-function",
"arn:aws:lambda:us-east-2:123456789012:function:my-function:*"

]
}
]
}

Creating an interface endpoint policy for Lambda 281

https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-access.html

AWS Lambda Developer Guide

Configuring file system access for Lambda functions

You can configure a function to mount an Amazon Elastic File System (Amazon EFS) file system
to a local directory. With Amazon EFS, your function code can access and modify shared resources
safely and at high concurrency.

Sections

« Execution role and user permissions

« Configuring a file system and access point

« Connecting to a file system (console)

Execution role and user permissions

If the file system doesn't have a user-configured AWS Identity and Access Management (IAM)
policy, EFS uses a default policy that grants full access to any client that can connect to the file
system using a file system mount target. If the file system has a user-configured IAM policy, your
function's execution role must have the correct elasticfilesystem permissions.

Execution role permissions

« elasticfilesystem:ClientMount

« elasticfilesystem:ClientWrite (not required for read-only connections)

These permissions are included in the AmazonElasticFileSystemClientReadWriteAccess managed
policy. Additionally, your execution role must have the permissions required to connect to the file

system's VPC.

When you configure a file system, Lambda uses your permissions to verify mount targets. To
configure a function to connect to a file system, your user needs the following permissions:

User permissions

« elasticfilesystem:DescribeMountTargets

File system 282

AWS Lambda Developer Guide

Configuring a file system and access point

Create a file system in Amazon EFS with a mount target in every Availability Zone that your
function connects to. For performance and resilience, use at least two Availability Zones. For
example, in a simple configuration you could have a VPC with two private subnets in separate
Availability Zones. The function connects to both subnets and a mount target is available in each.
Ensure that NFS traffic (port 2049) is allowed by the security groups used by the function and
mount targets.

® Note

When you create a file system, you choose a performance mode that can't be changed later.
General purpose mode has lower latency, and Max I/0 mode supports a higher maximum
throughput and IOPS. For help choosing, see Amazon EFS performance in the Amazon
Elastic File System User Guide.

An access point connects each instance of the function to the right mount target for the
Availability Zone it connects to. For best performance, create an access point with a non-root path,
and limit the number of files that you create in each directory. The following example creates a
directory named my-function on the file system and sets the owner ID to 1001 with standard
directory permissions (755).

Example access point configuration

« Name-files

e UserID-1001

e Group ID -1001

e Path - /my-function
« Permissions — 755

e Owner user ID - 1001
e Group userID -1001

When a function uses the access point, it is given user ID 1001 and has full access to the directory.

For more information, see the following topics in the Amazon Elastic File System User Guide:

Configuring a file system and access point 283

https://docs.aws.amazon.com/efs/latest/ug/performance.html

AWS Lambda Developer Guide

» Creating resources for Amazon EFS

« Working with users, groups, and permissions

Connecting to a file system (console)

A function connects to a file system over the local network in a VPC. The subnets that your
function connects to can be the same subnets that contain mount points for your file system, or
subnets in the same Availability Zone that can route NFS traffic (port 2049) to the file system.

® Note

If your function is not already connected to a VPC, see Giving Lambda functions access to
resources in an Amazon VPC.

To configure file system access

1. Open the Functions page of the Lambda console.
2. Choose a function.
3. Choose Configuration and then choose File systems.
4. Under File system, choose Add file system.
5. Configure the following properties:
 EFS file system — The access point for a file system in the same VPC.
» Local mount path - The location where the file system is mounted on the Lambda function,
starting with /mnt/.
@ Pricing

Amazon EFS charges for storage and throughput, with rates that vary by storage class. For
details, see Amazon EFS pricing.

Lambda charges for data transfer between VPCs. This only applies if your function's VPC is
peered to another VPC with a file system. The rates are the same as for Amazon EC2 data
transfer between VPCs in the same Region. For details, see Lambda pricing.

Connecting to a file system (console) 284

https://docs.aws.amazon.com/efs/latest/ug/creating-using.html
https://docs.aws.amazon.com/efs/latest/ug/accessing-fs-nfs-permissions.html
https://console.aws.amazon.com/lambda/home#/functions
https://aws.amazon.com/efs/pricing
https://aws.amazon.com/lambda/pricing

AWS Lambda Developer Guide

Create an alias for a Lambda function

You can create aliases for your Lambda function. A Lambda alias is a pointer to a function version
that you can update. The function's users can access the function version using the alias Amazon
Resource Name (ARN). When you deploy a new version, you can update the alias to use the new
version, or split traffic between two versions.

Console
To create an alias using the console

Open the Functions page of the Lambda console.

1
2. Choose a function.

3. Choose Aliases and then choose Create alias.
4

On the Create alias page, do the following:

Enter a Name for the alias.

a
b. (Optional) Enter a Description for the alias.

()

For Version, choose a function version that you want the alias to point to.

d. (Optional) To configure routing on the alias, expand Weighted alias. For more
information, see Implement Lambda canary deployments using a weighted alias.

e. Choose Save.

AWS CLI

To create an alias using the AWS Command Line Interface (AWS CLI), use the create-alias
command.

aws lambda create-alias \
--function-name my-function \
--name alias-name \
--function-version version-number \
--description " "

To change an alias to point a new version of the function, use the update-alias command.

aws lambda update-alias \
--function-name my-function \

Aliases 285

https://console.aws.amazon.com/lambda/home#/functions
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/create-alias.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-alias.html

AWS Lambda Developer Guide

--name alias-name \
--function-version version-number

To delete an alias, use the delete-alias command.

aws lambda delete-alias \
--function-name my-function \
--name alias-name

The AWS CLI commands in the preceding steps correspond to the following Lambda API
operations:
o CreateAlias

« UpdateAlias
« DeleteAlias

Aliases 286

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/delete-alias.html
https://docs.aws.amazon.com/lambda/latest/api/API_CreateAlias.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateAlias.html
https://docs.aws.amazon.com/lambda/latest/api/API_DeleteAlias.html

AWS Lambda Developer Guide

Using Lambda aliases in event sources and permissions policies

Each alias has a unique ARN. An alias can point only to a function version, not to another alias. You
can update an alias to point to a new version of the function.

Event sources such as Amazon Simple Storage Service (Amazon S3) invoke your Lambda function.
These event sources maintain a mapping that identifies the function to invoke when events occur.
If you specify a Lambda function alias in the mapping configuration, you don't need to update the
mapping when the function version changes. For more information, see How Lambda processes

records from stream and queue-based event sources.

In a resource policy, you can grant permissions for event sources to use your Lambda function.
If you specify an alias ARN in the policy, you don't need to update the policy when the function
version changes.

Resource policies

You can use a resource-based policy to give a service, resource, or account access to your function.

The scope of that permission depends on whether you apply it to an alias, a version, or the entire
function. For example, if you use an alias name (such as helloworld:PROD), the permission allows
you to invoke the helloworld function using the alias ARN (helloworld:PROD).

If you attempt to invoke the function without an alias or a specific version, then you get a
permission error. This permission error still occurs even if you attempt to directly invoke the
function version associated with the alias.

For example, the following AWS CLI command grants Amazon S3 permissions to invoke the PROD
alias of the helloworld function when Amazon S3 is acting on behalf of amzn-s3-demo-
bucket.

aws lambda add-permission \
--function-name helloworld \
--qualifier PROD \
--statement-id 1 \
--principal s3.amazonaws.com \
--action lambda:InvokeFunction \
--source-arn arn:aws:s3:::amzn-s3-demo-bucket \
--source-account 123456789012

For more information about using resource names in policies, see Fine-tuning the Resources and
Conditions sections of policies.

Using aliases 287

AWS Lambda Developer Guide

Implement Lambda canary deployments using a weighted alias

You can use a weighted alias to split traffic between two different versions of the same function.
With this approach, you can test new versions of your functions with a small percentage of traffic
and quickly roll back if necessary. This is known as a canary deployment. Canary deployments differ
from blue/green deployments by exposing the new version to only a portion of requests rather
than switching all traffic at once.

You can point an alias to a maximum of two Lambda function versions. The versions must meet the
following criteria:

+ Both versions must have the same execution role.

» Both versions must have the same dead-letter queue configuration, or no dead-letter queue

configuration.

« Both versions must be published. The alias cannot point to $LATEST.

(® Note

Lambda uses a simple probabilistic model to distribute the traffic between the two function
versions. At low traffic levels, you might see a high variance between the configured and
actual percentage of traffic on each version. If your function uses provisioned concurrency,
you can avoid spillover invocations by configuring a higher number of provisioned

concurrency instances during the time that alias routing is active.

Create a weighted alias
Console

To configure routing on an alias using the console

(® Note

Verify that the function has at least two published versions. To create additional
versions, follow the instructions in Creating function versions.

1. Open the Functions page of the Lambda console.

Weighted aliases 288

https://docs.aws.amazon.com/whitepapers/latest/overview-deployment-options/canary-deployments.html
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

2. Choose a function.
3. Choose Aliases and then choose Create alias.

4. On the Create alias page, do the following:

a. Enter a Name for the alias.
b. (Optional) Enter a Description for the alias.

For Version, choose the first function version that you want the alias to point to.

n

d. Expand Weighted alias.

e. For Additional version, choose the second function version that you want the alias to
point to.

f. For Weight (%), enter a weight value for the function. Weight is the percentage of
traffic that is assigned to that version when the alias is invoked. The first version
receives the residual weight. For example, if you specify 10 percent to Additional
version, the first version is assigned 90 percent automatically.

g. Choose Save.

AWS CLI

Use the create-alias and update-alias AWS CLI commands to configure the traffic weights
between two function versions. When you create or update the alias, you specify the traffic
weight in the routing-config parameter.

The following example creates a Lambda function alias named routing-alias that points
to version 1 of the function. Version 2 of the function receives 3 percent of the traffic. The
remaining 97 percent of traffic is routed to version 1.

aws lambda create-alias \
--name routing-alias \
--function-name my-function \
--function-version 1 \
--routing-config AdditionalVersionWeights={"2"=0.03}

Use the update-alias command to increase the percentage of incoming traffic to version 2.
In the following example, you increase the traffic to 5 percent.

aws lambda update-alias \
--name routing-alias \

Weighted aliases 289

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/create-alias.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-alias.html

AWS Lambda Developer Guide

--function-name my-function \
--routing-config AdditionalVersionWeights={"2"=0.05}

To route all traffic to version 2, use the update-alias command to change the function-
version property to point the alias to version 2. The command also resets the routing
configuration.

aws lambda update-alias \
--name routing-alias \
--function-name my-function \
--function-version 2 \
--routing-config AdditionalVersionWeights={}

The AWS CLI commands in the preceding steps correspond to the following Lambda API
operations:

+ CreateAlias

« UpdateAlias

Determining which version was invoked

When you configure traffic weights between two function versions, there are two ways to
determine the Lambda function version that has been invoked:

« CloudWatch Logs — Lambda automatically emits a START log entry that contains the invoked
version ID for every function invocation. Example:

START RequestId: 1dh194d3759ed-4v8b-a7b4-1e541f60235f Version: 2

For alias invocations, Lambda uses the ExecutedVersion dimension to filter the metric data by
the invoked version. For more information, see Viewing metrics for Lambda functions.

» Response payload (synchronous invocations) — Responses to synchronous function invocations
include an x-amz-executed-version header to indicate which function version has been
invoked.

Create a rolling deployment with weighted aliases

Use AWS CodeDeploy and AWS Serverless Application Model (AWS SAM) to create a rolling
deployment that automatically detects changes to your function code, deploys a new version of

Weighted aliases 290

https://docs.aws.amazon.com/lambda/latest/api/API_CreateAlias.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateAlias.html

AWS Lambda Developer Guide

your function, and gradually increase the amount of traffic flowing to the new version. The amount
of traffic and rate of increase are parameters that you can configure.

In a rolling deployment, AWS SAM performs these tasks:
» Configures your Lambda function and creates an alias. The weighted alias routing configuration
is the underlying capability that implements the rolling deployment.

» Creates a CodeDeploy application and deployment group. The deployment group manages the
rolling deployment and the rollback, if needed.

» Detects when you create a new version of your Lambda function.
» Triggers CodeDeploy to start the deployment of the new version.

Example AWS SAM template

The following example shows an AWS SAM template for a simple rolling deployment.

AWSTemplateFormatVersion : '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Description: A sample SAM template for deploying Lambda functions

Resources:
Details about the myDateTimeFunction Lambda function
myDateTimeFunction:
Type: AWS::Serverless::Function

Properties:

Handler: myDateTimeFunction.handler

Runtime: nodejsl8.x
Creates an alias named "live" for the function, and automatically publishes when you

update the function.

AutoPublishAlias: live

DeploymentPreference:
Specifies the deployment configuration

Type: Linearl@PercentEvery2Minutes

This template defines a Lambda function named myDateTimeFunction with the following
properties.

Weighted aliases 291

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-template-basics.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-function.html

AWS Lambda Developer Guide

AutoPublishAlias

The AutoPublishAlias property creates an alias named live. In addition, the AWS SAM
framework automatically detects when you save new code for the function. The framework
then publishes a new function version and updates the 1ive alias to point to the new version.

DeploymentPreference

The DeploymentPreference property determines the rate at which the CodeDeploy
application shifts traffic from the original version of the Lambda function to the new version.
The value Linearl@PercentEvery2Minutes shifts an additional ten percent of the traffic to
the new version every two minutes.

For a list of the predefined deployment configurations, see Deployment configurations.

For more information on how to create rolling deployments with CodeDeploy and AWS SAM, see
the following:

« Tutorial: Deploy an updated Lambda function with CodeDeploy and the AWS Serverless

Application Model

« Deploying serverless applications gradually with AWS SAM

Weighted aliases 292

https://docs.aws.amazon.com/codedeploy/latest/userguide/deployment-configurations.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/tutorial-lambda-sam.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/tutorial-lambda-sam.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/automating-updates-to-serverless-apps.html

AWS Lambda Developer Guide

Manage Lambda function versions

You can use versions to manage the deployment of your functions. For example, you can publish a
new version of a function for beta testing without affecting users of the stable production version.
Lambda creates a new version of your function each time that you publish the function. The new
version is a copy of the unpublished version of the function. The unpublished version is named
$LATEST.

Importantly, any time you deploy your function code, you overwrite the current code in $LATEST.
To save the current iteration of $LATEST, create a new function version. If $LATEST is identical to a
previously published version, you won't be able to create a new version until you deploy changes to
$LATEST. These changes can include updating the code, or modifying the function configuration
settings.

After you publish a function version, its code, runtime, architecture, memory, layers, and most
other configuration settings are immutable. This means that you can't change these settings
without publishing a new version from $LATEST. You can configure the following items for a
published function version:

Triggers

Destinations

Provisioned concurrency

Asynchronous invocation

Database connections and proxies

(@ Note

When using runtime management controls with Auto mode, the runtime version used by

the function version is updated automatically. When using Function update or Manual
mode, the runtime version is not updated. For more information, see the section called

“Runtime version updates”.

Sections

» Creating function versions

« Using versions

Versions 293

AWS Lambda Developer Guide

» Granting permissions

Creating function versions

You can change the function code and settings only on the unpublished version of a function.
When you publish a version, Lambda locks the code and most of the settings to maintain a
consistent experience for users of that version.

You can create a function version using the Lambda console.
To create a new function version

1. Open the Functions page of the Lambda console.

Choose a function and then choose the Versions tab.
On the versions configuration page, choose Publish new version.
(Optional) Enter a version description.

Choose Publish.

ik W

Alternatively, you can publish a version of a function using the PublishVersion APl operation.

The following AWS CLI command publishes a new version of a function. The response returns
configuration information about the new version, including the version number and the function
ARN with the version suffix.

aws lambda publish-vexrsion --function-name my-function

You should see the following output:

"FunctionName": "my-function",

"FunctionArn": "arn:aws:lambda:us-east-2:123456789012:function:my-function:1",
"Version": "1",

"Role": "arn:aws:iam::123456789012:role/lambda-role",

"Handler": "function.handler",

"Runtime": "nodejs22.x",

Creating function versions 294

https://console.aws.amazon.com/lambda/home#/functions
https://docs.aws.amazon.com/lambda/latest/api/API_PublishVersion.html

AWS Lambda Developer Guide

® Note

Lambda assigns monotonically increasing sequence numbers for versioning. Lambda never
reuses version numbers, even after you delete and recreate a function.

Using versions
You can reference your Lambda function using either a qualified ARN or an unqualified ARN.

« Qualified ARN - The function ARN with a version suffix. The following example refers to version
42 of the helloworld function.

arn:aws:lambda:aws-region:acct-id:function:helloworld:42

« Unqualified ARN - The function ARN without a version suffix.

arn:aws:lambda:aws-region:acct-id:function:helloworld

You can use a qualified or an unqualified ARN in all relevant APl operations. However, you can't use
an unqualified ARN to create an alias.

If you decide not to publish function versions, you can invoke the function using either the
qualified or unqualified ARN in your event source mapping. When you invoke a function using an
unqualified ARN, Lambda implicitly invokes $LATEST.

Lambda publishes a new function version only if the code has never been published, or if the code
has changed from the last published version. If there is no change, the function version remains at
the last published version.

The qualified ARN for each Lambda function version is unique. After you publish a version, you
can't change the ARN or the function code.

Granting permissions

You can use a resource-based policy or an identity-based policy to grant access to your function.
The scope of the permission depends on whether you apply the policy to a function or to one
version of a function. For more information about function resource names in policies, see Fine-
tuning the Resources and Conditions sections of policies.

Using versions 295

AWS Lambda Developer Guide

You can simplify the management of event sources and AWS Identity and Access Management
(IAM) policies by using function aliases. For more information, see Create an alias for a Lambda

function.

Granting permissions 296

AWS Lambda Developer Guide

Using tags on Lambda functions

You can tag functions to organize and manage your resources. Tags are free-form key-value pairs
associated with your resources that are supported across AWS services. For more information about
use cases for tags, see Common tagging strategies in the Tagging AWS Resources and Tag Editor
Guide.

Tags apply at the function level, not to versions or aliases. Tags are not part of the version-specific
configuration that AWS Lambda creates a snapshot of when you publish a version. You can use the
Lambda API to view and update tags. You can also view and update tags while managing a specific
function in the Lambda console.

Sections

» Permissions required for working with tags

» Using tags with the Lambda console

« Using tags with the AWS CLI

Permissions required for working with tags

To allow an AWS Identity and Access Management (IAM) identity (user, group, or role) to read or set
tags on a resource, grant it the corresponding permissions:

« lambda:ListTags-When a resource has tags, grant this permission to anyone who needs to call
ListTags onit. For tagged functions, this permission is also necessary for GetFunction.

« lambda:TagResource-Grant this permission to anyone who needs to call TagResource or
perform a tag on create.

Optionally, consider granting the lambda:UntagResource permission as well to allow
UntagResource calls to the resource.

For more information, see Identity-based IAM policies for Lambda.

Using tags with the Lambda console

You can use the Lambda console to create functions that have tags, add tags to existing functions,
and filter functions by tags that you add.

Tags 297

https://docs.aws.amazon.com/tag-editor/latest/userguide/best-practices-and-strats.html#tag-strategies

AWS Lambda Developer Guide

To add tags when you create a function

1.

2
3.
4

o

Open the Functions page of the Lambda console.

Choose Create function.
Choose Author from scratch or Container image.

Under Basic information, set up your function. For more information about configuring
functions, see Configuring functions.

Expand Advanced settings, and then select Enable tags.

Choose Add new tag, and then enter a Key and an optional Value. To add more tags, repeat
this step.

Choose Create function.

To add tags to an existing function

ok W

Open the Functions page of the Lambda console.

Choose the name of a function.
Choose Configuration, and then choose Tags.
Under Tags, choose Manage tags.

Choose Add new tag, and then enter a Key and an optional Value. To add more tags, repeat
this step.

Choose Save.

To filter functions with tags

P WD

Open the Functions page of the Lambda console.

Choose the search box to see a list of function properties and tag keys.
Choose a tag key to see a list of values that are in use in the current AWS Region.

Select Use: "tag-name" to see all functions tagged with this key, or choose an Operator to
further filter by value.

Select your tag value to filter by a combination of tag key and value.

The search bar also supports searching for tag keys. Enter tag to see only a list of tag keys, or
enter the name of a key to find it in the list.

Using tags with the console 298

https://console.aws.amazon.com/lambda/home#/functions
https://console.aws.amazon.com/lambda/home#/functions
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

Using tags with the AWS CLI

You can add and remove tags on existing Lambda resources, including functions, with the Lambda
API. You can also add tags when creating a function, which allows you to keep a resource tagged
through its entire lifecycle.

Updating tags with the Lambda tag APIs

You can add and remove tags for supported Lambda resources through the TagResource and
UntagResource API operations.

You can call these operations using the AWS CLI. To add tags to an existing resource, use the tag-
resource command. This example adds two tags, one with the key Department and one with the
key CostCenter.

aws lambda tag-resource \
--resource arn:aws:lambda:us-east-2:123456789012:resource-type:my-resource \
--tags Department=Marketing,CostCenter=1234ABCD

To remove tags, use the untag-resource command. This example removes the tag with the key
Department.

aws lambda untag-resouxrce --resource arn:aws:lambda:us-east-1:123456789012:resource-
type:resource-identifier \
--tag-keys Department

Adding tags when creating a function

To create a new Lambda function with tags, use the CreateFunction APl operation. Specify the
Tags parameter. You can call this operation with the create-function CLI command and the
--tags option. Before using the tags parameter with CreateFunction, ensure that your role

has permission to tag resources alongside the usual permissions needed for this operation. For
more information about permissions for tagging, see the section called "Permissions required for
working with tags”. This example adds two tags, one with the key Department and one with the
key CostCenter.

aws lambda create-function --function-name my-function
--handler index.js --runtime nodejs22.x \
--role arn:aws:iam::123456789012:xo0le/lambda-role \

Using tags with the AWS CLI 299

https://docs.aws.amazon.com/lambda/latest/api/API_TagResource.html
https://docs.aws.amazon.com/lambda/latest/api/API_UntagResource.html
https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunction.html

AWS Lambda Developer Guide

--tags Department=Marketing,CostCentexr=1234ABCD

Viewing tags on a function

To view the tags that are applied to a specific Lambda resource, use the ListTags APl operation.
For more information, see ListTags.

You can call this operation with the 1ist-tags AWS CLI command by providing an ARN (Amazon
Resource Name).

aws lambda list-tags --resource arn:aws:lambda:us-east-1:123456789012:resource-
type:resource-identifier

You can view the tags that are applied to a specific resource with the GetFunction API operation.
Comparable functionality is not available for other resource types.

You can call this operation with the get-function CLI command:

aws lambda get-function --function-name my-function

Filtering resources by tag

You can use the AWS Resource Groups Tagging APl GetResources APl operation to filter your

resources by tags. The GetResources operation receives up to 10 filters, with each filter
containing a tag key and up to 10 tag values. You provide GetResources with a ResourceType
to filter by specific resource types.

You can call this operation using the get-resources AWS CLI command. For examples of using
get-resources, see get-resources in the AWS CLI Command Reference.

Using tags with the AWS CLI 300

https://docs.aws.amazon.com/lambda/latest/api/API_ListTags.html
https://docs.aws.amazon.com/lambda/latest/api/API_GetFunction.html
https://docs.aws.amazon.com/resourcegroupstagging/latest/APIReference/API_GetResources.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/resourcegroupstaggingapi/get-resources.html#examples

AWS Lambda Developer Guide

Response streaming for Lambda functions

You can configure your Lambda function URLs to stream response payloads back to clients.
Response streaming can benefit latency sensitive applications by improving time to first byte
(TTFB) performance. This is because you can send partial responses back to the client as they
become available. Additionally, you can use response streaming to build functions that return
larger payloads. Response stream payloads have a soft limit of 20 MB as compared to the 6 MB
limit for buffered responses. Streaming a response also means that your function doesn’t need to
fit the entire response in memory. For very large responses, this can reduce the amount of memory
you need to configure for your function.

The speed at which Lambda streams your responses depends on the response size. The streaming
rate for the first 6MB of your function’s response is uncapped. For responses larger than 6MB,
the remainder of the response is subject to a bandwidth cap. For more information on streaming
bandwidth, see Bandwidth limits for response streaming.

Streaming responses incurs a cost. For more information, see AWS Lambda Pricing.

Lambda supports response streaming on Node.js managed runtimes. For other languages, you

can use a custom runtime with a custom Runtime APl integration to stream responses or use the
Lambda Web Adapter. You can stream responses through Lambda function URLs, the AWS SDK, or
using the Lambda InvokeWithResponseStream API.

(® Note

When testing your function through the Lambda console, you'll always see responses as
buffered.

Topics

Bandwidth limits for response streaming

Writing response streaming-enabled Lambda functions

Invoking a response streaming enabled function using Lambda function URLs

Tutorial: Creating a response streaming Lambda function with a function URL

Response streaming 301

https://aws.amazon.com/lambda/pricing/
https://github.com/awslabs/aws-lambda-web-adapter
https://docs.aws.amazon.com/lambda/latest/dg/API_InvokeWithResponseStream.html

AWS Lambda Developer Guide

Bandwidth limits for response streaming

The first 6MB of your function's response payload has uncapped bandwidth. After this initial burst,
Lambda streams your response at a maximum rate of 2MBps. If your function responses never
exceed 6MB, then this bandwidth limit never applies.

(® Note

Bandwidth limits only apply to your function’s response payload, and not to network access
by your function.

The rate of uncapped bandwidth varies depending on a number of factors, including your
function’s processing speed. You can normally expect a rate higher than 2MBps for the first 6MB of
your function's response. If your function is streaming a response to a destination outside of AWS,
the streaming rate also depends on the speed of the external internet connection.

Writing response streaming-enabled Lambda functions

Writing the handler for response streaming functions is different than typical handler patterns.
When writing streaming functions, be sure to do the following:

« Wrap your function with the awslambda.streamifyResponse() decorator that the native
Node.js runtimes provide.

« End the stream gracefully to ensure that all data processing is complete.

Configuring a handler function to stream responses

To indicate to the runtime that Lambda should stream your function's responses, you must wrap
your function with the streamifyResponse() decorator. This tells the runtime to use the proper
logic path for streaming responses and enables the function to stream responses.

The streamifyResponse() decorator accepts a function that accepts the following parameters:

e event - Provides information about the function URL's invocation event, such as the HTTP
method, query parameters, and the request body.

« responseStream - Provides a writable stream.

Bandwidth limits for response streaming 302

AWS Lambda Developer Guide

« context - Provides methods and properties with information about the invocation, function,
and execution environment.

The responseStream object is a Node.js writableStream. As with any such stream, you should
use the pipeline() method.

Example response streaming-enabled handler

const pipeline = require("util").promisify(require("stream").pipeline);
const { Readable } = require('stream');

exports.echo = awslambda.streamifyResponse(async (event, responseStream, _context) => {
// As an example, convert event to a readable stream.
const requestStream = Readable.from(Buffer.from(JSON.stringify(event)));

await pipeline(requestStream, responseStream);

1)

While responseStream offers the write() method to write to the stream, we recommend that
you use pipeline() wherever possible. Using pipeline() ensures that the writable stream is
not overwhelmed by a faster readable stream.

Ending the stream

Make sure that you properly end the stream before the handler returns. The pipeline() method
handles this automatically.

For other use cases, call the responseStream.end() method to properly end a stream. This
method signals that no more data should be written to the stream. This method isn't required if
you write to the stream with pipeline() or pipe().

Example Example ending a stream with pipeline()

const pipeline = require("util").promisify(require("stream").pipeline);

exports.handler = awslambda.streamifyResponse(async (event, responseStream, _context)
:>{
await pipeline(requestStream, responseStream);

1)

Writing functions 303

https://nodesource.com/blog/understanding-streams-in-nodejs/
https://nodejs.org/api/stream.html#streampipelinesource-transforms-destination-callback

AWS Lambda Developer Guide

Example Example ending a stream without pipeline()

exports.handler = awslambda.streamifyResponse(async (event, responseStream, _context)
=> {

responseStream.write("Hello ");

responseStream.write("world ");

responseStream.write("from ");

responseStream.write("Lambda!");

responseStream.end();

1)

Invoking a response streaming enabled function using Lambda
function URLs

(® Note

You must invoke your function using a function URL to stream the responses.

You can invoke response streaming enabled functions by changing the invoke mode of your
function's URL. The invoke mode determines which API operation Lambda uses to invoke your
function. The available invoke modes are:

« BUFFERED - This is the default option. Lambda invokes your function using the Invoke API
operation. Invocation results are available when the payload is complete. The maximum payload
size is 6 MB.

o RESPONSE_STREAM - Enables your function to stream payload results as they become available.
Lambda invokes your function using the InvokeWithResponseStream APl operation. The
maximum response payload size is 20 MB. However, you can request a quota increase.

You can still invoke your function without response streaming by directly calling the Invoke API
operation. However, Lambda streams all response payloads for invocations that come through the
function's URL until you change the invoke mode to BUFFERED.

Console
To set the invoke mode of a function URL (console)

1. Open the Functions page of the Lambda console.

Invoking functions 304

https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

2. Choose the name of the function that you want to set the invoke mode for.

3. Choose the Configuration tab, and then choose Function URL.
4. Choose Edit, then choose Additional settings.
5. Under Invoke mode, choose your desired invoke mode.
6. Choose Save.
AWS CLI

To set the invoke mode of a function's URL (AWS CLI)

aws lambda update-function-url-config \
--function-name my-function \
--invoke-mode RESPONSE_STREAM

AWS CloudFormation

To set the invoke mode of a function's URL (AWS CloudFormation)

MyFunctionUrl:
Type: AWS::Lambda::Url
Properties:
AuthType: AWS_IAM
InvokeMode: RESPONSE_STREAM

For more information about configuring function URLs, see Lambda function URLs.

Tutorial: Creating a response streaming Lambda function with a
function URL
In this tutorial, you create a Lambda function defined as a .zip file archive with a function URL

endpoint that returns a response stream. For more information about configuring function URLs,
see Function URLs.

Prerequisites

This tutorial assumes that you have some knowledge of basic Lambda operations and the Lambda
console. If you haven't already, follow the instructions in Create a Lambda function with the
console to create your first Lambda function.

Tutorial: Creating a response streaming function with a function URL 305

AWS Lambda Developer Guide

To complete the following steps, you need the AWS CLI version 2. Commands and the expected
output are listed in separate blocks:

aws --version

You should see the following output:

aws-cli/2.13.27 Python/3.11.6 Linux/4.14.328-248.540.amzn2.x86_64 exe/x86_64.amzn.2

For long commands, an escape character (\) is used to split a command over multiple lines.

On Linux and macOS, use your preferred shell and package manager.

(® Note

In Windows, some Bash CLI commands that you commonly use with Lambda (such as
zip) are not supported by the operating system's built-in terminals. To get a Windows-
integrated version of Ubuntu and Bash, install the Windows Subsystem for Linux. Example

CLI commands in this guide use Linux formatting. Commands which include inline JSON
documents must be reformatted if you are using the Windows CLI.

Create an execution role

Create the execution role that gives your Lambda function permission to access AWS resources.

To create an execution role

1. Open the Roles page of the AWS Identity and Access Management (IAM) console.
2. Choose Create role.

3. Create a role with the following properties:

» Trusted entity type — AWS service
o Use case - Lambda
+ Permissions - AWSLambdaBasicExecutionRole

» Role name - response-streaming-role

Tutorial: Creating a response streaming function with a function URL 306

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://console.aws.amazon.com/iam/home#/roles

AWS Lambda Developer Guide

The AWSLambdaBasicExecutionRole policy has the permissions that the function needs to write
logs to Amazon CloudWatch Logs. After you create the role, note down the its Amazon Resource
Name (ARN). You'll need it in the next step.

Create a response streaming function (AWS CLI)

Create a response streaming Lambda function with a function URL endpoint using the AWS
Command Line Interface (AWS CLI).

To create a function that can stream responses

1. Copy the following code example into a file named index.mjs.

import util from 'util';

import stream from 'stream';

const { Readable } = stream;

const pipeline = util.promisify(stream.pipeline);

/* global awslambda */
export const handler = awslambda.streamifyResponse(async (event, responseStream,
_context) => {

const requestStream = Readable.from(Buffer.from(JSON.stringify(event)));

await pipeline(requestStream, responseStream);

1)

2. Create a deployment package.

zip function.zip index.mjs

3. Create a Lambda function with the create-function command. Replace the value of --
role with the role ARN from the previous step.

aws lambda create-function \
--function-name my-streaming-function \
--runtime nodejsl6.x \
--zip-file fileb://function.zip \
--handler index.handler \
--role arn:aws:iam::123456789012:role/response-streaming-role

Tutorial: Creating a response streaming function with a function URL 307

AWS Lambda Developer Guide

To create a function URL

1. Add a resource-based policy to your function to allow access to your function URL. Replace the
value of --principal with your AWS account ID.

aws lambda add-permission \
--function-name my-streaming-function \
--action lambda:InvokeFunctionUrl \
--statement-id 12345 \
--principal 123456789012 \
--function-url-auth-type AWS_IAM \
--statement-id url

2. Create a URL endpoint for the function with the create-function-url-config command.

aws lambda create-function-url-config \
--function-name my-streaming-function \
--auth-type AWS_IAM \
--invoke-mode RESPONSE_STREAM

Test the function URL endpoint

Test your integration by invoking your function. You can open your function's URL in a browser, or
you can use curl.

curl --request GET "<function_url>" --user "<key:token>" --aws-sigv4 "aws:amz:us-
east-1:lambda" --no-buffer

Our function URL uses the TAM_AUTH authentication type. This means that you need to sign
requests with both your AWS access key and secret key. In the previous command, replace

<key :token> with the AWS access key ID. Enter your AWS secret key when prompted. If you don't
have your AWS secret key, you can use temporary AWS credentials instead.

Clean up your resources

You can now delete the resources that you created for this tutorial, unless you want to retain them.
By deleting AWS resources that you're no longer using, you prevent unnecessary charges to your
AWS account.

Tutorial: Creating a response streaming function with a function URL 308

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_request.html

AWS Lambda Developer Guide

To delete the execution role

1. Open the Roles page of the IAM console.

2. Select the execution role that you created.
3. Choose Delete.
4

Enter the name of the role in the text input field and choose Delete.

To delete the Lambda function

Open the Functions page of the Lambda console.

1
2. Select the function that you created.
3. Choose Actions, Delete.
4

Type confixrmin the text input field and choose Delete.

Tutorial: Creating a response streaming function with a function URL 309

https://console.aws.amazon.com/iam/home#/roles
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

Understanding Lambda function invocation methods

After you deploy your Lambda function, you can invoke it in several ways:

» The Lambda console — Use the Lambda console to quickly create a test event to invoke your
function.

« The AWS SDK - Use the AWS SDK to programmatically invoke your function.
» The Invoke APl — Use the Lambda Invoke API to directly invoke your function.

e« The AWS Command Line Interface (AWS CLI) — Use the aws lambda invoke AWS CLI command
to directly invoke your function from the command line.

o A function URL HTTP(S) endpoint — Use function URLs to create a dedicated HTTP(S) endpoint
that you can use to invoke your function.

All of these methods are direct ways to invoke your function. In Lambda, a common use case is to
invoke your function based on an event that occurs elsewhere in your application. Some services
can invoke a Lambda function with each new event. This is called a trigger. For stream and queue-
based services, Lambda invokes the function with batches of records. This is called an event source
mapping.

When you invoke a function, you can choose to invoke it synchronously or asynchronously. With
synchronous invocation, you wait for the function to process the event and return a response.

With asynchronous invocation, Lambda queues the event for processing and returns a response

immediately. The InvocationType request parameter in the Invoke APl determines how Lambda

invokes your function. A value of RequestResponse indicates synchronous invocation, and a value
of Event indicates asynchronous invocation.

To invoke your function over IPv6, use Lambda's public dual-stack endpoints. Dual-stack endpoints
support both IPv4 and IPv6. Lambda dual-stack endpoints use the following syntax:

protocol://lambda.us-east-1.api.aws

You can also use Lambda function URLs to invoke functions over IPv6. Function URL endpoints
have the following format:

https://url-id.lambda-url.us-east-1.on.aws

310

https://aws.amazon.com/developer/tools/
https://docs.aws.amazon.com/lambda/latest/api/API_Invoke.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/invoke.html
https://docs.aws.amazon.com/lambda/latest/api/API_Invoke.html#API_Invoke_RequestParameters
https://docs.aws.amazon.com/general/latest/gr/rande.html#dual-stack-endpoints

AWS Lambda Developer Guide

If the function invocation results in an error, for synchronous invocations, view the error message

in the response and retry the invocation manually. For asynchronous invocations, Lambda handles
retries automatically and can send invocation records to a destination.

311

AWS Lambda Developer Guide

Invoke a Lambda function synchronously

When you invoke a function synchronously, Lambda runs the function and waits for a response.
When the function completes, Lambda returns the response from the function's code with
additional data, such as the version of the function that was invoked. To invoke a function
synchronously with the AWS CLI, use the invoke command.

aws lambda invoke --function-name my-function \
--cli-binary-format raw-in-base64-out \
--payload '{ "key": "value" }' response.json

The cli-binary-format option is required if you're using AWS CLI version 2. To make this the default
setting, run aws configure set cli-binary-format raw-in-base64-out. For more
information, see AWS CLI supported global command line options in the AWS Command Line

Interface User Guide for Version 2.

You should see the following output:

"ExecutedVersion": "$LATEST",
"StatusCode": 200

The following diagram shows clients invoking a Lambda function synchronously. Lambda sends the
events directly to the function and sends the function's response back to the invoker.

Synchronous Invocation

Lambda
Clients Events function

_
—
==
_—

The payload is a string that contains an event in JSON format. The name of the file where the

AWS CLI writes the response from the function is response. json. If the function returns an

Invoke a function synchronously 312

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list

AWS Lambda Developer Guide

object or error, the response body is the object or error in JSON format. If the function exits
without error, the response body is null.

® Note

Lambda does not wait for external extensions to complete before sending the response.
External extensions run as independent processes in the execution environment and
continue to run after the function invocation is complete. For more information, see
Augment Lambda functions using Lambda extensions.

The output from the command, which is displayed in the terminal, includes information from
headers in the response from Lambda. This includes the version that processed the event (useful
when you use aliases), and the status code returned by Lambda. If Lambda was able to run the
function, the status code is 200, even if the function returned an error.

(® Note

For functions with a long timeout, your client might be disconnected during synchronous
invocation while it waits for a response. Configure your HTTP client, SDK, firewall, proxy, or
operating system to allow for long connections with timeout or keep-alive settings.

If Lambda isn't able to run the function, the error is displayed in the output.

aws lambda invoke --function-name my-function \
--cli-binary-format raw-in-base64-out \
--payload value response.json

You should see the following output:

An error occurred (InvalidRequestContentException) when calling the Invoke operation:
Could not parse request body into json: Unrecognized token 'value': was expecting
('true', 'false' or 'null')
at [Source: (byte[])"value"; line: 1, column: 11]

The AWS CLI is an open-source tool that enables you to interact with AWS services using
commands in your command line shell. To complete the steps in this section, you must have the
AWS CLI version 2.

Invoke a function synchronously 313

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html

AWS Lambda Developer Guide

You can use the AWS CLI to retrieve logs for an invocation using the --1og-type command
option. The response contains a LogResult field that contains up to 4 KB of base64-encoded logs
from the invocation.

Example retrieve a log ID

The following example shows how to retrieve a log ID from the LogResult field for a function
named my-function.

aws lambda invoke --function-name my-function out --log-type Tail

You should see the following output:

{
"StatusCode": 200,
"LogResult":
"U1RBU1QgUmVxdWVzdE1kOiA4N2QwNDRiOCImMTUOLTEXZTgtOGNkYS@yOTc@YzVINGZiMjEgVmVyc2lvb...",
"ExecutedVersion": "$LATEST"
}

Example decode the logs

In the same command prompt, use the base64 utility to decode the logs. The following example
shows how to retrieve base64-encoded logs for my-function.

aws lambda invoke --function-name my-function out --log-type Tail \
--query 'LogResult' --output text --cli-binary-format raw-in-base64-out | base64 --
decode

The cli-binary-format option is required if you're using AWS CLI version 2. To make this the default
setting, run aws configure set cli-binary-format raw-in-base64-out. For more
information, see AWS CLI supported global command line options in the AWS Command Line

Interface User Guide for Version 2.

You should see the following output:

START RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8 Version: $LATEST
"AWS_SESSION_TOKEN": "AgoJlb3JpZ2luX2VjELj...", "_X_AMZN_TRACE_ID": "Root=1-5d02e5ca-
£5792818b6Te8368e5b51d50; Parent=191db58857df8395; Sampled=0"", ask/1lib:/opt/1lib",

END RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8

Invoke a function synchronously 314

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list

AWS Lambda Developer Guide

REPORT RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8 Duration: 79.67 ms Billed
Duration: 80 ms Memory Size: 128 MB Max Memory Used: 73 MB

The base64 utility is available on Linux, macOS, and Ubuntu on Windows. macOS users may need
to use base64 -D.

For more information about the Invoke API, including a full list of parameters, headers, and
errors, see Invoke.

When you invoke a function directly, you can check the response for errors and retry. The AWS CLI
and AWS SDK also automatically retry on client timeouts, throttling, and service errors. For more
information, see Understanding retry behavior in Lambda.

Invoke a function synchronously 315

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://docs.aws.amazon.com/lambda/latest/api/API_Invoke.html

AWS Lambda Developer Guide

Invoking a Lambda function asynchronously

Several AWS services, such as Amazon Simple Storage Service (Amazon S3) and Amazon Simple
Notification Service (Amazon SNS), invoke functions asynchronously to process events. You can
also invoke a Lambda function asynchronously using the AWS Command Line Interface (AWS CLI)
or one of the AWS SDKs. When you invoke a function asynchronously, you don't wait for a response
from the function code. You hand off the event to Lambda and Lambda handles the rest. You can
configure how Lambda handles errors, and can send invocation records to a downstream resource
such as Amazon Simple Queue Service (Amazon SQS) or Amazon EventBridge (EventBridge) to
chain together components of your application.

The following diagram shows clients invoking a Lambda function asynchronously. Lambda queues
the events before sending them to the function.

Asynchronous Invocation

Lambda function

Events Event queue —|
== . -
i

For asynchronous invocation, Lambda places the event in a queue and returns a success response
without additional information. A separate process reads events from the queue and sends them to

VvV

your function.

To invoke a Lambda function asynchronously using the AWS Command Line Interface (AWS CLI) or
one of the AWS SDKs, set the InvocationType parameter to Event. The following example shows
an AWS CLI command to invoke a function.

aws lambda invoke \
--function-name my-function \
--invocation-type Event \
--cli-binary-format raw-in-base64-out \

Asynchronous invocation 316

https://docs.aws.amazon.com/lambda/latest/api/API_Invoke.html#lambda-Invoke-request-InvocationType

AWS Lambda Developer Guide

--payload '{ "key": "value" }' response.json

You should see the following output:

"StatusCode": 202

The cli-binary-format option is required if you're using AWS CLI version 2. To make this the default
setting, run aws configure set cli-binary-format raw-in-base64-out. For more
information, see AWS CLI supported global command line options in the AWS Command Line

Interface User Guide for Version 2.

The output file (response. json) doesn't contain any information, but is still created when you
run this command. If Lambda isn't able to add the event to the queue, the error message appears
in the command output.

How Lambda handles errors and retries with asynchronous invocation

Lambda manages your function's asynchronous event queue and attempts to retry on errors. If the
function returns an error, by default Lambda attempts to run it two more times, with a one-minute
wait between the first two attempts, and two minutes between the second and third attempts.
Function errors include errors returned by the function's code and errors returned by the function's
runtime, such as timeouts.

If the function doesn't have enough concurrency available to process all events, additional requests
are throttled. For throttling errors (429) and system errors (500-series), Lambda returns the event
to the queue and attempts to run the function again for up to 6 hours by default. The retry interval
increases exponentially from 1 second after the first attempt to a maximum of 5 minutes. If the
queue contains many entries, Lambda increases the retry interval and reduces the rate at which it
reads events from the queue.

Even if your function doesn't return an error, it's possible for it to receive the same event from
Lambda multiple times because the queue itself is eventually consistent. If the function can't keep
up with incoming events, events might also be deleted from the queue without being sent to the
function. Ensure that your function code gracefully handles duplicate events, and that you have
enough concurrency available to handle all invocations.

Error handling 317

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list

AWS Lambda Developer Guide

When the queue is very long, new events might age out before Lambda has a chance to send them
to your function. When an event expires or fails all processing attempts, Lambda discards it. You
can configure error handling for a function to reduce the number of retries that Lambda performs,
or to discard unprocessed events more quickly.

You can also configure Lambda to send an invocation record to another service. See Capturing
records of Lambda asynchronous invocations to learn more.

Configuring error handling settings for Lambda asynchronous
invocations

Use the following settings to configure how Lambda handles errors and retries for asynchronous
function invocations:

« MaximumEventAgelnSeconds: The maximum amount of time, in seconds, that Lambda keeps an

event in the asynchronous event queue before discarding it.

o MaximumRetryAttempts: The maximum number of times that Lambda retries events when the

function returns an error.
Use the Lambda console or AWS CLI to configure error handling settings on a function, a version, or
an alias.
Console
To configure error handling

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. Choose Configuration and then choose Asynchronous invocation.
4. Under Asynchronous invocation, choose Edit.
5

Configure the following settings.

« Maximum age of event — The maximum amount of time Lambda retains an event in the
asynchronous event queue, up to 6 hours.

« Retry attempts — The number of times Lambda retries when the function returns an
error, between 0 and 2.

6. Choose Save.

Configuration 318

https://docs.aws.amazon.com/lambda/latest/api/API_PutFunctionEventInvokeConfig.html#lambda-PutFunctionEventInvokeConfig-request-MaximumEventAgeInSeconds
https://docs.aws.amazon.com/lambda/latest/api/API_PutFunctionEventInvokeConfig.html#lambda-PutFunctionEventInvokeConfig-request-MaximumRetryAttempts
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

AWS CLI

To configure asynchronous invocation with the AWS CLI, use the put-function-event-invoke-
config command. The following example configures a function with a maximum event age of 1
hour and no retries.

aws lambda put-function-event-invoke-config \
--function-name error \
--maximum-event-age-in-seconds 3600 \
--maximum-retry-attempts 0

The put-function-event-invoke-config command overwrites any existing configuration
on the function, version, or alias. To configure an option without resetting others, use update-
function-event-invoke-config. The following example configures Lambda to send a record to a
standard SQS queue named destination when an event can't be processed.

aws lambda update-function-event-invoke-config \

--function-name my-function \

--destination-config '{"OnFailure":{"Destination": "arn:aws:sqs:us-
east-1:123456789012:destination"}}"'

You should see the following output:

"LastModified": 1573686021.479,
"FunctionArn": "arn:aws:lambda:us-east-1:123456789012:function:my-function:
$LATEST",
"MaximumRetryAttempts": 0,
"MaximumEventAgeInSeconds": 3600,
"DestinationConfig": {
"OnSuccess": {3},
"OnFailure": {}

When an invocation event exceeds the maximum age or fails all retry attempts, Lambda discards it.
To retain a copy of discarded events, configure a failed-event destination.

Configuration 319

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/put-function-event-invoke-config.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/put-function-event-invoke-config.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-event-invoke-config.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-event-invoke-config.html

AWS Lambda Developer Guide

Capturing records of Lambda asynchronous invocations

Lambda can send records of asynchronous invocations to one of the following AWS services.

Amazon SQS - A standard SQS queue
Amazon SNS - A standard SNS topic

Amazon S3 — An Amazon S3 bucket (on failure only)

AWS Lambda - A Lambda function

Amazon EventBridge - An EventBridge event bus

The invocation record contains details about the request and response in JSON format. You can
configure separate destinations for events that are processed successfully, and events that fail all
processing attempts. Alternatively, you can configure a standard Amazon SQS queue or standard
Amazon SNS topic as a dead-letter queue for discarded events. For dead-letter queues, Lambda
only sends the content of the event, without details about the response.

If Lambda can't send a record to a destination you have configured, it sends a
DestinationDeliveryFailures metric to Amazon CloudWatch. This can happen if your
configuration includes an unsupported destination type, such as an Amazon SQS FIFO queue or an
Amazon SNS FIFO topic. Delivery errors can also occur due to permissions errors and size limits. For
more information on Lambda invocation metrics, see the section called “Invocation metrics”.

(® Note

To prevent a function from triggering, you can set the function's reserved concurrency to
zero. When you set reserved concurrency to zero for an asynchronously invoked function,
Lambda begins sending new events to the configured dead-letter queue or the on-failure

event destination, without any retries. To process events that were sent while reserved

concurrency was set to zero, you must consume the events from the dead-letter queue or
the on-failure event destination.

Adding a destination

To retain records of asynchronous invocations, add a destination to your function. You can choose
to send either successful or failed invocations to a destination. Each function can have multiple

Retaining records 320

AWS Lambda Developer Guide

destinations, so you can configure separate destinations for successful and failed events. Each
record sent to the destination is a JSON document with details about the invocation. Like error
handling settings, you can configure destinations on a function, function version, or alias.

® Tip
You can also retain records of failed invocations for the following event source mapping
types: Amazon Kinesis, Amazon DynamoDB, self-managed Apache Kafka, and Amazon MSK.

The following table lists supported destinations for asynchronous invocation records. For Lambda
to successfully send records to your chosen destination, ensure that your function's execution role
also contains the relevant permissions. The table also describes how each destination type receives
the JSON invocation record.

Destination type Required permission Destination-specific JSON
format

Amazon SQS queue sgs:SendMessage Lambda passes the invocation
record as the Message to the
destination.

Amazon SNS topic sns:Publish Lambda passes the invocation
record as the Message to the
destination.

Amazon S3 bucket (on failure s3:PutObject « Lambda stores the

only) . invocation record as a JSON

s3:ListBucket object in the destination
bucket.

« The S3 object name uses
the following naming
convention:

aws/lambda/async/<
function-name>/YYY
Y/MM/DD/YYYY-MM-DD

Retaining records 321

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.aws.amazon.com/sns/latest/api/API_Publish.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_PutObject.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_ListObjectsV2.html

AWS Lambda

Developer Guide

Destination type

Lambda function

EventBridge

® Note

Required permission

lambda:InvokeFunction

events:PutEvents

Destination-specific JSON
format

THH.MM.SS-<Random
UUID>

Lambda passes the invocatio
n record as the payload to the
function.

Lambda passes the
invocation record as the
detail in the PutEvents
call.

The value for the source
event field is 1ambda.

The value for the detail-
type event field is either
"Lambda Function Invocatio
n Result - Success" or
"Lambda Function Invocatio
n Result - Failure".

The resource event field
contains the function

and destination Amazon
Resource Names (ARNS).

For other event fields,
see Amazon EventBridge

events.

For Amazon S3 destinations, if you have enabled encryption on the bucket using a KMS key,

your function also needs the kms:GenerateDataKey permission.

Retaining records

322

https://docs.aws.amazon.com/lambda/latest/api/API_Invoke.html
https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_PutEvents.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-events.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-events.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html

AWS Lambda Developer Guide

The following steps describe how to configure a destination for a function using the Lambda
console and the AWS CLI.

Console

—

Open the Functions page of the Lambda console.

Choose a function.
Under Function overview, choose Add destination.

For Source, choose Asynchronous invocation.

i A W

For Condition, choose from the following options:

« On failure - Send a record when the event fails all processing attempts or exceeds the
maximum age.

« On success — Send a record when the function successfully processes an asynchronous
invocation.

6. For Destination type, choose the type of resource that receives the invocation record.
7. For Destination, choose a resource.

8. Choose Save.

AWS CLI

To configure a destination using the AWS CLI, run the update-function-event-invoke-config

command. The following example configures Lambda to send a record to a standard SQS queue
named destination when an event can't be processed.

aws lambda update-function-event-invoke-config \

--function-name my-function \

--destination-config '{"OnFailure":{"Destination": "arn:aws:sqs:us-
east-1:123456789012:destination"}}"

Security best practices for Amazon S3 destinations

Deleting an S3 bucket that's configured as a destination without removing the destination from
your function's configuration can create a security risk. If another user knows your destination
bucket's name, they can recreate the bucket in their AWS account. Records of failed invocations will
be sent to their bucket, potentially exposing data from your function.

Retaining records 323

https://console.aws.amazon.com/lambda/home#/functions
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-event-invoke-config.html

AWS Lambda Developer Guide

/A Warning

To ensure that invocation records from your function can't be sent to an S3 bucket
in another AWS account, add a condition to your function's execution role that limits
s3:PutObject permissions to buckets in your account.

The following example shows an IAM policy that limits your function's s3:PutObject permissions
to buckets in your account. This policy also gives Lambda the s3:ListBucket permission it needs
to use an S3 bucket as a destination.

"Version": "2012-10-17",
"Statement": [
{
"Sid": "S3BucketResourceAccountWrite",
"Effect": "Allow",
"Action": [
"s3:PutObject",
"s3:ListBucket"
1,
"Resource": "arn:aws:s3:::*/*",
"Condition": {
"StringEquals": {
"s3:ResourceAccount": "111122223333"

To add a permissions policy to your funcion's execution role using the AWS Management Console
or AWS CLI, refer to the instructions in the following procedures:

Console
To add a permissions policy to a function's execution role (console)

1. Open the Functions page of the Lambda console.

2. Select the Lambda function whose execution role you want to modify.

Retaining records 324

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

3. In the Configuration tab, select Permissions.
4. In the Execution role tab, select your function's Role name to open the role's IAM console
page.
5. Add a permissions policy to the role by doing the following:
a. Inthe Permissions policies pane, choose Add permissions and select Create inline
policy.
b. In Policy editor, select JSON.
c. Paste the policy you want to add into the editor (replacing the existing JSON), and
then choose Next.
d. Under Policy details, enter a Policy name.
e. Choose Create policy.
AWS CLI

To add a permissions policy to a function's execution role (CLI)

1.

Create a JSON policy document with the required permissions and save it in a local
directory.

Use the IAM put-role-policy CLI command to add the permissions to your function's
execution role. Run the following command from the directory you saved your JSON policy
document in and replace the role name, policy name, and policy document with your own
values.

aws iam put-role-policy \

--role-name my_lambda_role \
--policy-name LambdaS3DestinationPolicy \
--policy-document file://my_policy.json

Example invocation record

When an invocation matches the condition, Lambda sends a JSON document with details about the
invocation to the destination. The following example shows an invocation record for an event that
failed three processing attempts due to a function error.

Retaining records 325

AWS Lambda Developer Guide

Example

"version": "1.0",
"timestamp": "2019-11-14T18:16:05.568Z",
"requestContext": {
"requestId": "e4b46cbf-b738-xmpl-8880-a18cdf61200e",
"functionArn": "arn:aws:lambda:us-east-1:123456789012:function:my-function:
$LATEST",
"condition": "RetriesExhausted",
"approximateInvokeCount": 3

.
"requestPayload": {

"ORDER_IDS": [
"9e@7af0@3-ce31-4ff3-xmpl-36dce652ch4f",
"637de236-e7b2-464e-xmpl-baf57f86bb53",
"a8lddcab-2c35-45¢c7-xmpl-c3a@3a3ledls”

},

"responseContext": {
"statusCode": 200,
"executedVersion": "$LATEST",
"functionError": "Unhandled"

I
"responsePayload": {
"errorMessage": "RequestId: e4b46cbf-b738-xmpl-8880-al8cdf61200e Process exited
before completing request"

}

The invocation record contains details about the event, the response, and the reason that the
record was sent.

Tracing requests to destinations

You can use AWS X-Ray to see a connected view of each request as it's queued, processed by a
Lambda function, and passed to the destination service. When you activate X-Ray tracing for a
function or a service that invokes a function, Lambda adds an X-Ray header to the request and
passes the header to the destination service. Traces from upstream services are automatically
linked to traces from downstream Lambda functions and destination services, creating an end-
to-end view of the entire application. For more information about tracing, see Visualize Lambda

function invocations using AWS X-Ray.

Retaining records 326

AWS Lambda Developer Guide

Adding a dead-letter queue

As an alternative to an on-failure destination, you can configure your function with a dead-letter

queue to save discarded events for further processing. A dead-letter queue acts the same as an on-
failure destination in that it is used when an event fails all processing attempts or expires without
being processed. However, you can only add or remove a dead-letter queue at the function level.
Function versions use the same dead-letter queue settings as the unpublished version ($LATEST).
On-failure destinations also support additional targets and include details about the function's
response in the invocation record.

To reprocess events in a dead-letter queue, you can set it as an event source for your Lambda
function. Alternatively, you can manually retrieve the events.

You can choose an Amazon SQS standard queue or Amazon SNS standard topic for your dead-
letter queue. FIFO queues and Amazon SNS FIFO topics are not supported.

« Amazon SQS queue — A queue holds failed events until they're retrieved. Choose an Amazon SQS

standard queue if you expect a single entity, such as a Lambda function or CloudWatch alarm, to
process the failed event. For more information, see Using Lambda with Amazon SQS.

« Amazon SNS topic — A topic relays failed events to one or more destinations. Choose an Amazon

SNS standard topic if you expect multiple entities to act on a failed event. For example, you
can configure a topic to send events to an email address, a Lambda function, and/or an HTTP
endpoint. For more information, see Invoking Lambda functions with Amazon SNS notifications.

To send events to a queue or topic, your function needs additional permissions. Add a policy with
the required permissions to your function's execution role.

If the target queue or topic is encrypted with a customer managed key, the execution role must
also be a user in the key's resource-based policy.

After creating the target and updating your function's execution role, add the dead-letter queue to
your function. You can configure multiple functions to send events to the same target.

Console

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. Choose Configuration and then choose Asynchronous invocation.

Retaining records 327

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-create-queue.html
https://docs.aws.amazon.com/sns/latest/gsg/CreateTopic.html
https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

4. Under Asynchronous invocation, choose Edit.

5. Set Dead-letter queue service to Amazon SQS or Amazon SNS.
6. Choose the target queue or topic.
7

Choose Save.

AWS CLI

To configure a dead-letter queue with the AWS CLI, use the update-function-configuration
command.

aws lambda update-function-configuration \
--function-name my-function \
--dead-letter-config TargetArn=arn:aws:sns:us-east-1:123456789012:my-topic

Lambda sends the event to the dead-letter queue as-is, with additional information in attributes.
You can use this information to identify the error that the function returned, or to correlate the
event with logs or an AWS X-Ray trace.

Dead-letter queue message attributes

» RequestID (String) — The ID of the invocation request. Request IDs appear in function logs. You
can also use the X-Ray SDK to record the request ID on an attribute in the trace. You can then
search for traces by request ID in the X-Ray console.

e ErrorCode (Number) — The HTTP status code.

» ErrorMessage (String) — The first 1 KB of the error message.

If Lambda can't send a message to the dead-letter queue, it deletes the event and emits the
DeadLetterErrors metric. This can happen because of lack of permissions, or if the total size of the
message exceeds the limit for the target queue or topic. For example, say that an Amazon SNS
notification with a body close to 256 KB in size triggers a function that results in an error. In that
case, the event data that Amazon SNS adds, combined with the attributes that Lambda adds, can
cause the message to exceed the maximum size allowed in the dead-letter queue.

If you're using Amazon SQS as an event source, configure a dead-letter queue on the Amazon
SQS queue itself and not on the Lambda function. For more information, see Using Lambda with
Amazon SQS.

Retaining records 328

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-configuration.html

AWS Lambda Developer Guide

How Lambda processes records from stream and queue-based
event sources

An event source mapping is a Lambda resource that reads items from stream and queue-based
services and invokes a function with batches of records. Within an event source mapping, resources
called event pollers actively poll for new messages and invoke functions. By default, Lambda
automatically scales event pollers, but for certain event source types, you can use provisioned
mode to control the minimum and maximum number of event pollers dedicated to your event
source mapping.

The following services use event source mappings to invoke Lambda functions:

« Amazon DocumentDB (with MongoDB compatibility) (Amazon DocumentDB)

 Amazon DynamoDB

« Amazon Kinesis

« Amazon MQ

« Amazon Managed Streaming for Apache Kafka (Amazon MSK)

» Self-managed Apache Kafka

« Amazon Simple Queue Service (Amazon SQS)

/A Warning

Lambda event source mappings process each event at least once, and duplicate processing
of records can occur. To avoid potential issues related to duplicate events, we strongly
recommend that you make your function code idempotent. To learn more, see How do |
make my Lambda function idempotent in the AWS Knowledge Center.

How event source mappings differ from direct triggers

Some AWS services can directly invoke Lambda functions using triggers. These services push
events to Lambda, and the function is invoked immediately when the specified event occurs.
Triggers are suitable for discrete events and real-time processing. When you create a trigger using
the Lambda console, the console interacts with the corresponding AWS service to configure the
event notification on that service. The trigger is actually stored and managed by the service that

Event source mappings 329

https://repost.aws/knowledge-center/lambda-function-idempotent
https://repost.aws/knowledge-center/lambda-function-idempotent

AWS Lambda Developer Guide

generates the events, not by Lambda. Here are some examples of services that use triggers to
invoke Lambda functions:

« Amazon Simple Storage Service (Amazon S3): Invokes a function when an object is created,
deleted, or modified in a bucket. For more information, see Tutorial: Using an Amazon S3 trigger

to invoke a Lambda function.

« Amazon Simple Notification Service (Amazon SNS): Invokes a function when a message is
published to an SNS topic. For more information, see Tutorial: Using AWS Lambda with Amazon
Simple Notification Service.

« Amazon API Gateway: Invokes a function when an API request is made to a specific endpoint.
For more information, see Invoking a Lambda function using an Amazon API Gateway endpoint.

Event source mappings are Lambda resources created and managed within the Lambda service.
Event source mappings are designed for processing high-volume streaming data or messages from
queues. Processing records from a stream or queue in batches is more efficient than processing
records individually.

Batching behavior

By default, an event source mapping batches records together into a single payload that Lambda
sends to your function. To fine-tune batching behavior, you can configure a batching window
(MaximumBatchingWindowInSeconds) and a batch size (BatchSize). A batching window is the

maximum amount of time to gather records into a single payload. A batch size is the maximum
number of records in a single batch. Lambda invokes your function when one of the following
three criteria is met:

« The batching window reaches its maximum value. Default batching window behavior varies
depending on the specific event source.

» For Kinesis, DynamoDB, and Amazon SQS event sources: The default batching window is 0
seconds. This means that Lambda invokes your function as soon as records are available. To
set a batching window, configure MaximumBatchingWindowInSeconds. You can set this
parameter to any value from 0 to 300 seconds in increments of 1 second. If you configure
a batching window, the next window begins as soon as the previous function invocation
completes.

« For Amazon MSK, self-managed Apache Kafka, Amazon MQ, and Amazon
DocumentDB event sources: The default batching window is 500 ms. You can configure

Batching behavior 330

https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html#lambda-CreateEventSourceMapping-request-MaximumBatchingWindowInSeconds
https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html#lambda-CreateEventSourceMapping-response-BatchSize

AWS Lambda Developer Guide

MaximumBatchingWindowInSeconds to any value from 0 seconds to 300 seconds in
increments of seconds. A batching window begins as soon as the first record arrives.

(® Note

Because you can only change MaximumBatchingWindowInSeconds in increments
of seconds, you cannot revert to the 500 ms default batching window after you have
changed it. To restore the default batching window, you must create a new event
source mapping.

» The batch size is met. The minimum batch size is 1. The default and maximum batch size
depend on the event source. For details about these values, see the BatchSize specification for
the CreateEventSourceMapping API operation.

« The payload size reaches 6 MB. You cannot modify this limit.

The following diagram illustrates these three conditions. Suppose a batching window begins at t

= 7 seconds. In the first scenario, the batching window reaches its 40 second maximumatt = 47
seconds after accumulating 5 records. In the second scenario, the batch size reaches 10 before the
batching window expires, so the batching window ends early. In the third scenario, the maximum
payload size is reached before the batching window expires, so the batching window ends early.

Batching behavior 331

https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html#lambda-CreateEventSourceMapping-request-BatchSize
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html

AWS Lambda

Developer Guide

Max Batching Window = 40 Seconds

Max Batch Size = 10
Max Batch Size in Bytes =6 MB

(1) Batching Window Expires

0 7 10 20 30 40 4?§ 50 60
EENEY 5]
Batching Window Starts Batching Window Ends
(2) Batching Size is reached
0 |7 10 20 30 20 4750 60
[131[<[s] [[[Te]e] [ro]
Batching Window Starts Batching Window Ends
(3) Batch Size in bytes is reached
0 |7 10 20 30 40 47150 0

L3][4ls] [[s]

Time

Batching behavior

Batching Window Starts

Batching Window Ends

332

AWS Lambda Developer Guide

We recommend that you test with different batch and record sizes so that the polling frequency
of each event source is tuned to how quickly your function is able to complete its task. The
CreateEventSourceMapping BatchSize parameter controls the maximum number of records that

can be sent to your function with each invoke. A larger batch size can often more efficiently absorb
the invoke overhead across a larger set of records, increasing your throughput.

Lambda doesn't wait for any configured extensions to complete before sending the next batch
for processing. In other words, your extensions may continue to run as Lambda processes the next
batch of records. This can cause throttling issues if you breach any of your account's concurrency
settings or limits. To detect whether this is a potential issue, monitor your functions and check
whether you're seeing higher concurrency metrics than expected for your event source mapping.

Due to short times in between invokes, Lambda may briefly report higher concurrency usage than
the number of shards. This can be true even for Lambda functions without extensions.

By default, if your function returns an error, the event source mapping reprocesses the entire batch
until the function succeeds, or the items in the batch expire. To ensure in-order processing, the
event source mapping pauses processing for the affected shard until the error is resolved. For
stream sources (DynamoDB and Kinesis), you can configure the maximum number of times that
Lambda retries when your function returns an error. Service errors or throttles where the batch
does not reach your function do not count toward retry attempts. You can also configure the event
source mapping to send an invocation record to a destination when it discards an event batch.

Provisioned mode

Lambda event source mappings use event pollers to poll your event source for new messages. By
default, Lambda manages the autoscaling of these pollers depending on message volume. When
message traffic increases, Lambda automatically increases the number of event pollers to handle
the load, and reduces them when traffic decreases.

In provisioned mode, you can fine-tune the throughput of your event source mapping by defining
minimum and maximum limits for the number of provisioned event pollers. Lambda then scales
your event source mapping between the minimum and maximum number of event pollers in a
responsive manner. These provisioned event pollers are dedicated to your event source mapping,
enhancing your ability to handle unpredictable spikes in events.

In Lambda, an event poller is a compute unit capable of handling up to 5 MBps of throughput.
For reference, suppose your event source produces an average payload of 1MB, and the average
function duration is 1 sec. If the payload doesn’t undergo any transformation (such as filtering),

Provisioned mode 333

https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html

AWS Lambda Developer Guide

a single poller can support 5 MBps throughput, and 5 concurrent Lambda invocations. Using
provisioned mode incurs additional costs. For pricing estimates, see AWS Lambda pricing.

Provisioned mode is supported only for Amazon MSK and self-managed Apache Kafka event
sources. While concurrency settings give you control over the scaling of your function, provisioned
mode gives you control over the throughput of your event source mapping. To ensure maximum
performance, you may need to adjust both settings independently. For details about configuring
provisioned mode, see the following sections:

» Configuring provisioned mode for Amazon MSK event source mappings

» Configuring provisioned mode for self-managed Apache Kafka event source mappings

After configuring provisioned mode, you can observe the usage of event pollers for your workload
by monitoring the ProvisionedPollers metric. For more information, see the section called

“Event source mapping metrics”.

Event source mapping API

To manage an event source with the AWS Command Line Interface (AWS CLI) or an AWS SDK, you
can use the following API operations:

» CreateEventSourceMapping

« ListEventSourceMappings

» GetEventSourceMapping

» UpdateEventSourceMapping

» DeleteEventSourceMapping

Using tags on event source mappings

You can tag event source mappings to organize and manage your resources. Tags are free-form
key-value pairs associated with your resources that are supported across AWS services. For more
information about use cases for tags, see Common tagging strategies in the Tagging AWS Resources
and Tag Editor Guide.

Event source mappings are associated with functions, which can have their own tags. Event source
mappings do not automatically inherit tags from functions. You can use the AWS Lambda API to

Event source mapping API 334

https://aws.amazon.com/lambda/pricing/
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://aws.amazon.com/getting-started/tools-sdks/
https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html
https://docs.aws.amazon.com/lambda/latest/api/API_ListEventSourceMappings.html
https://docs.aws.amazon.com/lambda/latest/api/API_GetEventSourceMapping.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateEventSourceMapping.html
https://docs.aws.amazon.com/lambda/latest/api/API_DeleteEventSourceMapping.html
https://docs.aws.amazon.com/tag-editor/latest/userguide/best-practices-and-strats.html#tag-strategies

AWS Lambda Developer Guide

view and update tags. You can also view and update tags while managing a specific event source
mapping in the Lambda console.

Permissions required for working with tags

To allow an AWS Identity and Access Management (IAM) identity (user, group, or role) to read or set
tags on a resource, grant it the corresponding permissions:

« lambda:ListTags-When a resource has tags, grant this permission to anyone who needs to call
ListTags on it. For tagged functions, this permission is also necessary for GetFunction.

« lambda:TagResource-Grant this permission to anyone who needs to call TagResource or
perform a tag on create.

Optionally, consider granting the lambda:UntagResource permission as well to allow
UntagResource calls to the resource.

For more information, see Identity-based IAM policies for Lambda.

Using tags with the Lambda console

You can use the Lambda console to create event source mappings that have tags, add tags to
existing event source mappings, and filter event source mappings by tag.

When you add a trigger for supported stream and queue-based services using the Lambda console,
Lambda automatically creates an event source mapping. For more information about these event
sources, see the section called "Event source mappings”. To create an event source mapping in the

console, you will need the following prerequisites:

o A function.

« An event source from an affected service.

You can add the tags as part of the same user interface you use to create or update triggers.
To add a tag when you create a event source mapping

1. Open the Functions page of the Lambda console.

2. Choose the name of your function.

3. Under Function overview, choose Add trigger.

Event source mapping tags 335

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

4.

Under Trigger configuration, in the dropdown list, choose the name of the service your event
source comes from.

Provide the core configuration for your event source. For more information about configuring
your event source, consult the section for the related service in Integrating other services.

Under Event source mapping configuration, choose Additional settings.
Under Tags, choose Add new tag

In the Key field, enter your tag key. For information about tagging restrictions, see Tag naming
limits and requirements in the Tagging AWS Resources and Tag Editor Guide.

Choose Add.

To add tags to an existing event source mapping

AL

Open Event source mappings in the Lambda console.

From the resource list, choose the UUID for the event source mapping corresponding to your
Function and Event source ARN.

From the tab list below the General configuration pane, choose Tags.
Choose Manage tags.
Choose Add new tag.

In the Key field, enter your tag key. For information about tagging restrictions, see Tag naming
limits and requirements in the Tagging AWS Resources and Tag Editor Guide.

Choose Save.

To filter event source mappings by tag

P WN

Open Event source mappings in the Lambda console.

Choose the search box.
From the dropdown list, select your tag key from below the Tags subheading.

Select Use: "tag-name" to see all event source mappings tagged with this key, or choose an
Operator to further filter by value.

Select your tag value to filter by a combination of tag key and value.

The search box also supports searching for tag keys. Enter the name of a key to find it in the list.

Event source mapping tags 336

https://docs.aws.amazon.com/tag-editor/latest/userguide/best-practices-and-strats.html#id_tags_naming_best_practices
https://docs.aws.amazon.com/tag-editor/latest/userguide/best-practices-and-strats.html#id_tags_naming_best_practices
https://console.aws.amazon.com/lambda/home#/event-source-mappings
https://docs.aws.amazon.com/tag-editor/latest/userguide/best-practices-and-strats.html#id_tags_naming_best_practices
https://docs.aws.amazon.com/tag-editor/latest/userguide/best-practices-and-strats.html#id_tags_naming_best_practices
https://console.aws.amazon.com/lambda/home#/event-source-mappings

AWS Lambda Developer Guide

Using tags with the AWS CLI

You can add and remove tags on existing Lambda resources, including event source mappings, with
the Lambda API. You can also add tags when creating an event source mapping, which allows you
to keep a resource tagged through its entire lifecycle.

Updating tags with the Lambda tag APIs

You can add and remove tags for supported Lambda resources through the TagResource and
UntagResource API operations.

You can call these operations using the AWS CLI. To add tags to an existing resource, use the tag-
resource command. This example adds two tags, one with the key Department and one with the
key CostCenter.

aws lambda tag-resource \
--resource arn:aws:lambda:us-east-2:123456789012:resource-type:my-resource \
--tags Department=Marketing,CostCenter=1234ABCD

To remove tags, use the untag-resource command. This example removes the tag with the key
Department.

aws lambda untag-resource --resource arn:aws:lambda:us-east-1:123456789012:resource-
type:resource-identifier \
--tag-keys Department

Adding tags when you create an event source mapping

To create a new Lambda event source mapping with tags, use the CreateEventSourceMapping

API operation. Specify the Tags parameter. You can call this operation with the create-event-
source-mapping AWS CLI command and the --tags option. For more information about the CLI
command, see create-event-source-mapping in the AWS CLI Command Reference.

Before using the Tags parameter with CreateEventSourceMapping, ensure that your role

has permission to tag resources alongside the usual permissions needed for this operation. For
more information about permissions for tagging, see the section called “Permissions required for
working with tags”.

Event source mapping tags 337

https://docs.aws.amazon.com/lambda/latest/api/API_TagResource.html
https://docs.aws.amazon.com/lambda/latest/api/API_UntagResource.html
https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/create-event-source-mapping.html

AWS Lambda Developer Guide

Viewing tags with the Lambda tag APIs

To view the tags that are applied to a specific Lambda resource, use the ListTags API operation.
For more information, see ListTags.

You can call this operation with the 1ist-tags AWS CLI command by providing an ARN (Amazon
Resource Name).

aws lambda list-tags --resource arn:aws:lambda:us-east-1:123456789012:resource-
type:resource-identifier

Filtering resources by tag

You can use the AWS Resource Groups Tagging API GetResources APl operation to filter your

resources by tags. The GetResources operation receives up to 10 filters, with each filter
containing a tag key and up to 10 tag values. You provide GetResources with a ResourceType
to filter by specific resource types.

You can call this operation using the get-resources AWS CLI command. For examples of using
get-resources, see get-resources in the AWS CLI Command Reference.

Event source mapping tags 338

https://docs.aws.amazon.com/lambda/latest/api/API_ListTags.html
https://docs.aws.amazon.com/resourcegroupstagging/latest/APIReference/API_GetResources.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/resourcegroupstaggingapi/get-resources.html#examples

AWS Lambda Developer Guide

Control which events Lambda sends to your function

You can use event filtering to control which records from a stream or queue Lambda sends to
your function. For example, you can add a filter so that your function only processes Amazon SQS
messages containing certain data parameters. Event filtering works only with certain event source
mappings. You can add filters to event source mappings for the following AWS services:

« Amazon DynamoDB

« Amazon Kinesis Data Streams

« Amazon MQ

« Amazon Managed Streaming for Apache Kafka (Amazon MSK)
» Self-managed Apache Kafka

« Amazon Simple Queue Service (Amazon SQS)

For specific information about filtering with specific event sources, see the section called
“Using filters with different AWS services”. Lambda doesn't support event filtering for Amazon
DocumentDB.

By default, you can define up to five different filters for a single event source mapping. Your filters
are logically ORed together. If a record from your event source satisfies one or more of your filters,
Lambda includes the record in the next event it sends to your function. If none of your filters are
satisfied, Lambda discards the record.

(@ Note

If you need to define more than five filters for an event source, you can request a quota
increase for up to 10 filters for each event source. If you attempt to add more filters than
your current quota permits, Lambda will return an error when you try to create the event
source.

Topics

« Understanding event filtering basics

« Handling records that don't meet filter criteria

o Filter rule syntax

Event filtering 339

AWS Lambda Developer Guide

« Attaching filter criteria to an event source mapping (console)

Attaching filter criteria to an event source mapping (AWS CLI)

Attaching filter criteria to an event source mapping (AWS SAM)

Encryption of filter criteria

Using filters with different AWS services

Understanding event filtering basics

A filter criteria (FilterCriteria) object is a structure that consists of a list of filters (Filtexrs).
Each filter is a structure that defines an event filtering pattern (Pattexrn). A pattern is a string
representation of a JSON filter rule. The structure of a FilterCriteria object is as follows.

"Filters": [
{
"Pattern": "{ \"Metadatal\": [rulel], \"data\": { \"Datal\":
[rule2] }3}"

}

For added clarity, here is the value of the filter's Pattern expanded in plain JSON.

{
"Metadatal": [rulel],
"data": {
"Datal": [rule2]
}
}

Your filter pattern can include metadata properties, data properties, or both. The available
metadata parameters and the format of the data parameters vary according to the AWS service
which is acting as the event source. For example, suppose your event source mapping receives the
following record from an Amazon SQS queue:

"messageld": "059f36b4-87a3-44ab-83d2-661975830a7d",

Understanding event filtering basics 340

AWS Lambda Developer Guide

"receiptHandle": "AQEBwJInKyrHigUMZj6rYigCgxlaS3SLy@a...",
"body": "{\n "City": "Seattle",\n "State": "WA",\n "Temperature": "46"\n}",
"attributes": {
"ApproximateReceiveCount": "1",
"SentTimestamp": "1545082649183",
"SenderId": "AIDAIENQZJOLO23YVI4VO",
"ApproximateFirstReceiveTimestamp": "1545082649185"
I
"messageAttributes": {3},
"md50fBody": "e4e68fb7bd0e697a0ae8f1bb342846b3",

"eventSource": "aws:sqs",
"eventSourceARN": "arn:aws:sqs:us-east-2:123456789012:my-queue",
"awsRegion": "us-east-2"

« Metadata properties are the fields containing information about the event that created the
record. In the example Amazon SQS record, the metadata properties include fields such as
messagelD, eventSourceArn, and awsRegion.

» Data properties are the fields of the record containing the data from your stream or queue. In
the Amazon SQS event example, the key for the data field is body, and the data properties are
the fields City State, and Temperature.

Different types of event source use different key values for their data fields. To filter on data
properties, make sure that you use the correct key in your filter's pattern. For a list of data filtering
keys, and to see examples of filter patterns for each supported AWS service, refer to Using filters
with different AWS services.

Event filtering can handle multi-level JSON filtering. For example, consider the following fragment
of a record from a DynamoDB stream:

"dynamodb": {
"Keys": {
"ID": {
"S": "ABCD"
}
"Number": {
"N'": "1234"
.
}

Understanding event filtering basics 341

AWS Lambda Developer Guide

Suppose you want to process only those records where the value of the sort key Number is 4567. In
this case, your FilterCriteria object would look like this:

"Filters": [
{
"Pattern": "{ \"dynamodb\": { \"Keys\": { \"Number\": { \"N\":
["4567" 1} } } }"
}
]

For added clarity, here is the value of the filter's Pattern expanded in plain JSON.

{
"dynamodb": {
"Keys": {
"Number": {
"N": ["4567"]
}
}
}
}

Handling records that don't meet filter criteria
How Lambda handles records that don't meet your filter criteria depends on the event source.

« For Amazon SQS, if a message doesn't satisfy your filter criteria, Lambda automatically removes
the message from the queue. You don't have to manually delete these messages in Amazon SQS.

« For Kinesis and DynamoDB, after your filter criteria evaluates a record, the streams iterator
advances past this record. If the record doesn't satisfy your filter criteria, you don't have to
manually delete the record from your event source. After the retention period, Kinesis and
DynamoDB automatically delete these old records. If you want records to be deleted sooner, see
Changing the Data Retention Period.

» For Amazon MSK, self-managed Apache Kafka, and Amazon MQ messages, Lambda drops
messages that don't match all fields included in the filter. For Amazon MSK and self-managed
Apache Kafka, Lambda commits offsets for matched and unmatched messages after successfully
invoking the function. For Amazon MQ, Lambda acknowledges matched messages after
successfully invoking the function, and acknowledges unmatched messages when filtering them.

Handling records that don't meet filter criteria 342

https://docs.aws.amazon.com/streams/latest/dev/kinesis-extended-retention.html

AWS Lambda

Developer Guide

Filter rule syntax

For filter rules, Lambda supports the Amazon EventBridge rules and uses the same syntax as

EventBridge. For more information, see Amazon EventBridge event patterns in the Amazon

EventBridge User Guide.

The following is a summary of all the comparison operators available for Lambda event filtering.

Comparison operator
Null

Empty

Equals

Equals (ignore case)

And

Or

Or (multiple fields)

Not

Numeric (equals)

Numeric (range)

Exists

Example

UserlD is null
LastName is empty
Name is "Alice"

Name is "Alice"

Location is "New York" and
Day is "Monday"

PaymentType is "Credit" or
"Debit"

Location is "New York", or Day
is "Monday".

Weather is anything but
"Raining"

Price is 100

Price is more than 10, and
less than or equal to 20

ProductName exists

Rule syntax
"UserID": [null]
"LastName": [""]
"Name": ["Alice"]

"Name": [{ "equals-ignore-cas
e": "alice" }]

"Location": ["New York"],
"Day": ["Monday"]

"PaymentType": ["Credit",
"Debit"]

"$or": [{ "Location":
["New York"]}, { "Day™:
["Monday"]}1]

"Weather": [{ "anything-but":
["Raining"]}]

"Price": [{ "numeric": ["=",
1001} 1]

"Price": [{ "numeric": [">", 10,
"<=",201}]

"ProductName": [{ "exists":
true }]

Filter rule syntax

343

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-event-patterns.html

AWS Lambda Developer Guide

Comparison operator Example Rule syntax
Does not exist ProductName does not exist "ProductName": [{ "exists":
false }]
Begins with Region is in the US "Region": [{"prefix": "us-"}1]
Ends with FileName ends with a .png "FileName": [{ "suffix":
extension. "png" }1]
(® Note

Like EventBridge, for strings, Lambda uses exact character-by-character matching without
case-folding or any other string normalization. For numbers, Lambda also uses string
representation. For example, 300, 300.0, and 3.0e2 are not considered equal.

Note that the Exists operator only works on leaf nodes in your event source JSON. It doesn't

match intermediate nodes. For example, with the following JSON, the filter pattern { "person":
{ "address": [{ "exists": true }] } }" wouldn't find a match because "address" is
an intermediate node.

{
"person": {
"name": "John Doe",
"age": 30,
"address": {
"street": "123 Main St",
"city": "Anytown",
"country": "USA"
}
}
}

Attaching filter criteria to an event source mapping (console)

Follow these steps to create a new event source mapping with filter criteria using the Lambda
console.

Attaching filter criteria to an event source mapping (console) 344

AWS Lambda Developer Guide

To create a new event source mapping with filter criteria (console)

1.

2
3.
4

b

Open the Functions page of the Lambda console.

Choose the name of a function to create an event source mapping for.
Under Function overview, choose Add trigger.

For Trigger configuration, choose a trigger type that supports event filtering. For a list of
supported services, refer to the list at the beginning of this page.

Expand Additional settings.

Under Filter criteria, choose Add, and then define and enter your filters. For example, you can
enter the following.

{ "Metadata" : [1, 2] }

This instructs Lambda to process only the records where field Metadata is equal to 1 or 2. You
can continue to select Add to add more filters up to the maximum allowed amount.

When you have finished adding your filters, choose Save.

When you enter filter criteria using the console, you enter only the filter pattern and don't
need to provide the Pattern key or escape quotes. In step 6 of the preceding instructions,
{ "Metadata" : [1, 2] } corresponds to the following FilterCriteria.

"Filters": [
{
"Pattern": "{ \"Metadata\" : [1, 2] }"
}

After creating your event source mapping in the console, you can see the formatted
FilterCriteria in the trigger details. For more examples of creating event filters using the
console, see Using filters with different AWS services.

Attaching filter criteria to an event source mapping (AWS CLI)

Suppose you want an event source mapping to have the following FilterCriteria:

Attaching filter criteria to an event source mapping (AWS CLI) 345

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

{
"Filters": [
{
"Pattern": "{ \"Metadata\" : [1, 2 1 }"
}
]
}

To create a new event source mapping with these filter criteria using the AWS Command Line
Interface (AWS CLI), run the following command.

aws lambda create-event-source-mapping \
--function-name my-function \
--event-source-arn arn:aws:sqs:us-east-2:123456789012:my-queue \
--filter-criteria '{"Filters": [{"Pattern": "{ \"Metadata\" : [1, 2]1}"}]1}'

This create-event-source-mapping command creates a new Amazon SQS event source mapping for
function my-function with the specified FilterCriteria.

To add these filter criteria to an existing event source mapping, run the following command.

aws lambda update-event-source-mapping \
--uuid "alb2c3d4-5678-90ab-cdef-11111EXAMPLE" \
--filter-criteria '{"Filters": [{"Pattern": "{ \"Metadata\" : [1, 2 1}"}1}'

Note that to update an event source mapping, you need its UUID. You can get the UUID from
a list-event-source-mappings call. Lambda also returns the UUID in the create-event-source-

mapping CLI response.

To remove filter criteria from an event source, you can run the following update-event-source-

mapping command with an empty FilterCriteria object.

aws lambda update-event-source-mapping \
--uuid "alb2c3d4-5678-90ab-cdef-11111EXAMPLE" \
--filter-criteria "{}"

For more examples of creating event filters using the AWS CLI, see Using filters with different AWS

services.

Attaching filter criteria to an event source mapping (AWS CLI) 346

https://docs.aws.amazon.com/cli/latest/reference/lambda/create-event-source-mapping.html
https://docs.aws.amazon.com/cli/latest/reference/lambda/list-event-source-mappings.html
https://docs.aws.amazon.com/cli/latest/reference/lambda/create-event-source-mapping.html
https://docs.aws.amazon.com/cli/latest/reference/lambda/create-event-source-mapping.html
https://docs.aws.amazon.com/cli/latest/reference/lambda/update-event-source-mapping.html
https://docs.aws.amazon.com/cli/latest/reference/lambda/update-event-source-mapping.html

AWS Lambda Developer Guide

Attaching filter criteria to an event source mapping (AWS SAM)

Suppose you want to configure an event source in AWS SAM to use the following filter criteria:

{
"Filters": [
{
"Pattern": "{ \"Metadata\" : [1, 2] }"
}
]
}

To add these filter criteria to your event source mapping, insert the following snippet into the
YAML template for your event source.

FilterCriteria:
Filters:
- Pattern: '{"Metadata": [1, 2]}'

For more information on creating and configuring an AWS SAM template for an event source
mapping, see the EventSource section of the AWS SAM Developer Guide. Fore more examples of
creating event filters using AWS SAM templates, see Using filters with different AWS services.

Encryption of filter criteria

By default, Lambda doesn't encrypt your filter criteria object. For use cases where you may include
sensitive information in your filter criteria object, you can use your own KMS key to encrypt it.

After you encrypt your filter criteria object, you can view its plaintext version using a
GetEventSourceMapping API call. You must have kms :Decrypt permissions to be able to
successfully view the filter criteria in plaintext.

(@ Note

If your filter criteria object is encrypted, Lambda redacts the value of the FilterCriteria
field in the response of ListEventSourceMappings calls. Instead, this field displays as null.
To see the true value of FilterCriteria, use the GetEventSourceMapping API.

To view the decrypted value of FilterCriteria in the console, ensure that your IAM role

contains permissions for GetEventSourceMapping.

Attaching filter criteria to an event source mapping (AWS SAM) 347

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-property-function-eventsource.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#kms_keys
https://docs.aws.amazon.com/lambda/latest/api/API_GetEventSourceMapping.html
https://docs.aws.amazon.com/lambda/latest/api/API_ListEventSourceMappings.html
https://docs.aws.amazon.com/lambda/latest/api/API_GetEventSourceMapping.html
https://docs.aws.amazon.com/lambda/latest/api/API_GetEventSourceMapping.html

AWS Lambda Developer Guide

You can specify your own KMS key via the console, API/CLI, or AWS CloudFormation.

To encrypt filter criteria with a customer-owned KMS key (console)

1.
2.

Open the Functions page of the Lambda console.

Choose Add trigger. If you already have an existing trigger, choose the Configuration tab, and
then choose Triggers. Select the existing trigger, and choose Edit.

Select the checkbox next to Encrypt with customer managed KMS key.

For Choose a customer managed KMS encryption key, select an existing enabled key

or create a new key. Depending on the operation, you need some or all of the following
permissions: kms : DescribeKey, kms:GenerateDataKey, and kms :Decrypt. Use the KMS
key policy to grant these permissions.

If you use your own KMS key, the following API operations must be permitted in the key policy:

kms :Decrypt — Must be granted to the regional Lambda service principal
(Lambda.AWS_region.amazonaws . com). This allows Lambda to decrypt data with this KMS
key.

« To prevent a cross-service confused deputy problem, the key policy uses the aws: SourceArn

global condition key. The correct value of the aws : SourceArn key is the ARN of your event
source mapping resource, so you can add this to your policy only after you know its ARN.
Lambda also forwards the aws : lambda: FunctionArn and aws:lambda:EventSourceArn
keys and their respective values in the encryption context when making a decryption request
to KMS. These values must match the specified conditions in the key policy for the decryption
request to succeed. You don't need to include EventSourceArn for Self-managed Kafka event
sources since they don't have an EventSourceArn.

kms :Decrypt — Must also be granted to the principal that intends to use the key to view the
plaintext filter criteria in GetEventSourceMapping or DeleteEventSourceMapping API calls.

kms :DescribeKey — Provides the customer managed key details to allow the specified principal
to use the key.

kms :GenerateDataKey - Provides permissions for Lambda to generate a data key to encrypt
the filter criteria, on behalf of the specified principal (envelope encryption).

You can use AWS CloudTrail to track AWS KMS requests that Lambda makes on your behalf. For
sample CloudTrail events, see 2?2,

Encryption of filter criteria 348

https://console.aws.amazon.com/lambda/home#/functions
https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#encrypt_context
https://docs.aws.amazon.com/lambda/latest/api/API_GetEventSourceMapping.html
https://docs.aws.amazon.com/lambda/latest/api/API_DeleteEventSourceMapping.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#enveloping

AWS Lambda Developer Guide

We also recommend using the kms : ViaService condition key to limit the use of the KMS key

to requests from Lambda only. The value of this key is the regional Lambda service principal
(lambda.AWS_region.amazonaws.com). The following is a sample key policy that grants all the
relevant permissions:

Example AWS KMS key policy

"Version": "2012-10-17",
"Id": "example-key-policy-1",
"Statement": [
{
"Sid": "Allow Lambda to decrypt using the key",
"Effect": "Allow",
"Principal": {
"Service": "lambda.us-east-1.amazonaws.com"
.
"Action": [
"kms:Decrypt"
1,
"Resource": "*",
"Condition": {
"ArnEquals" : {
"aws:SourceArn": [
"arn:aws:lambda:us-east-1:123456789012:event-source-
mapping:<esm_uuid>"

]
1,
"StringEquals": {
"kms:EncryptionContext:aws:lambda:FunctionArn": "arn:aws:lambda:us-
east-1:123456789012:function:test-function",
"kms:EncryptionContext:aws:lambda:EventSourceArn": "arn:aws:sqs:us-
east-1:123456789012:test-queue"
}
}
1,
{

"Sid": "Allow actions by an AWS account on the key",
"Effect": "Allow",
"Principal": {
"AWS": "arn:aws:iam::123456789012:root"
3,

"Action": "kms:*",

Encryption of filter criteria 349

https://docs.aws.amazon.com/kms/latest/developerguide/conditions-kms.html#conditions-kms-via-service

AWS Lambda Developer Guide

"Resource": "*"
I
{
"Sid": "Allow use of the key to specific roles",
"Effect": "Allow",
"Principal": {
"AWS": "arn:aws:iam::123456789012:role/ExampleRole"
I
"Action": [
"kms:Decrypt",
"kms:DescribeKey",
"kms:GenerateDataKey"
1,
"Resource": "*",
"Condition": {
"StringEquals" : {
"kms:ViaService": "lambda.us-east-1.amazonaws.com"
}
}
}

To use your own KMS key to encrypt filter criteria, you can also use the following
CreateEventSourceMapping AWS CLI command. Specify the KMS key ARN with the --kms-key-
arn flag.

aws lambda create-event-source-mapping --function-name my-function \
--maximum-batching-window-in-seconds 60 \
--event-source-arn arn:aws:sqs:us-east-1:123456789012:my-queue \
--filter-criteria "{\"filters\": [{\"pattern\": \"{\"a\": [\"I\", \"2\"1}\" }1}" \
--kms-key-arn arn:aws:kms:us-east-1:123456789012:key/055efbb4-xmpl-4336-
ba9c-538c7d311599

If you have an existing event source mapping, use the UpdateEventSourceMapping AWS CLI
command instead. Specify the KMS key ARN with the --kms-key-arn flag.

aws lambda update-event-source-mapping --function-name my-function \
--maximum-batching-window-in-seconds 60 \
--event-source-arn arn:aws:sqs:us-east-1:123456789012:my-queue \

--filter-criteria "{\"filters\": [{\"pattern\": \"{\"a\": [\"I\", \"2\"1}\" 313" \

Encryption of filter criteria 350

https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateEventSourceMapping.html

AWS Lambda Developer Guide

--kms-key-arn arn:aws:kms:us-east-1:123456789012:key/055efbb4-xmpl-4336-
ba9c-538c7d31f599

This operation overwrites any KMS key that was previously specified. If you specify the - -kms-
key-arn flag along with an empty argument, Lambda stops using your KMS key to encrypt filter
criteria. Instead, Lambda defaults back to using an Amazon-owned key.

To specify your own KMS key in a AWS CloudFormation template, use the KMSKeyArn property
of the AWS: : Lambda: :EventSourceMapping resource type. For example, you can insert the
following snippet into the YAML template for your event source.

MyEventSourceMapping:
Type: AWS::Lambda::EventSourceMapping
Properties:

FilterCriteria:
Filters:
- Pattern: '{"a": [1, 2]}
KMSKeyArn: "arn:aws:kms:us-east-1:123456789012:key/055efbb4-xmpl-4336-
ba9c-538c7d31f599"

To be able to view your encrypted filter criteria in plaintext in a GetEventSourceMapping or
DeleteEventSourceMapping API call, you must have kms : Decrypt permissions.

Starting August 6, 2024, the FilterCriteria field no longer shows up in AWS CloudTrail logs
from CreateEventSourceMapping, UpdateEventSourceMapping, and DeleteEventSourceMapping

API calls if your function doesn't use event filtering. If your function does use event filtering, the
FilterCriteria field shows up as empty ({}). You can still view your filter criteria in plaintext in
the response of GetEventSourceMapping API calls if you have kms : Decrypt permissions for the
correct KMS key.

Sample CloudTrail log entry for Create/Update/DeleteEventSourceMapping calls

In the following AWS CloudTrail sample log entry for a CreateEventSourceMapping call,
FilterCriteria shows up as empty ({}) because the function uses event filtering. This is the
case even if FilterCriteria object contains valid filter criteria that your function is actively
using. If the function doesn't use event filtering, CloudTrail won't display the FilterCriteria
field at all in log entries.

Encryption of filter criteria 351

https://docs.aws.amazon.com/lambda/latest/api/API_GetEventSourceMapping.html
https://docs.aws.amazon.com/lambda/latest/api/API_DeleteEventSourceMapping.html
https://docs.aws.amazon.com/lambda/latest/api/API_CreateEventSourceMapping.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateEventSourceMapping.html
https://docs.aws.amazon.com/lambda/latest/api/API_DeleteEventSourceMapping.html
https://docs.aws.amazon.com/lambda/latest/api/API_GetEventSourceMapping.html

AWS Lambda Developer Guide

"eventVersion": "1.08",
"userIdentity": {
"type": "AssumedRole",
"principalId": "AROA123456789EXAMPLE:useridl",
"arn": "arn:aws:sts::123456789012:assumed-role/Example/example-role",
"accountId": "123456789012",
"accessKeyId": "ASIAIOSFODNN7EXAMPLE",
"sessionContext": {
"sessionIssuer": {
"type": "Role",
"principalId": "AROA987654321EXAMPLE",
"arn": "arn:aws:iam::123456789012:role/Userl",
"accountId": "123456789012",
"userName": "Userl"
},
"webIdFederationData": {3},
"attributes": {
"creationDate": "2024-05-09T720:35:01Z",
"mfaAuthenticated": "false"

}

},

"invokedBy": "AWS Internal"
},
"eventTime": "2024-05-09T21:05:41Z2",
"eventSource": "lambda.amazonaws.com",
"eventName": "CreateEventSourceMapping20150331",
"awsRegion": "us-east-2",

"sourceIPAddress": "AWS Internal",
"userAgent": "AWS Internal",
"requestParameters": {
"eventSourceArn": "arn:aws:sqs:us-east-2:123456789012:example-queue",
"functionName": "example-function",
"enabled": true,
"batchSize": 10,
"filterCriteria": {3},
"kMSKeyArn": "arn:aws:kms:us-east-2:123456789012:key/alb2c3d4-5678-90ab-cdef-
EXAMPLE11111",
"scalingConfig": {3},
"maximumBatchingWindowInSeconds": 0,
"sourceAccessConfigurations": []
},
"responseElements": {
"uUID": "alb2c3d4-5678-90ab-cdef-EXAMPLEaaaaa",
"batchSize": 10,

Encryption of filter criteria 352

AWS Lambda Developer Guide

"maximumBatchingWindowInSeconds": 0,
"eventSourceArn": "arn:aws:sqs:us-east-2:123456789012:example-queue",
"filterCriteria": {3},
"kMSKeyArn": "arn:aws:kms:us-east-2:123456789012:key/alb2c3d4-5678-90ab-cdef-
EXAMPLE11111",
"functionArn": "arn:aws:lambda:us-east-2:123456789012:function:example-
function",
"lastModified": "May 9, 2024, 9:05:41 PM",
"state": "Creating",
"stateTransitionReason": "USER_INITIATED",
"functionResponseTypes": [],
"eventSourceMappingArn": "arn:aws:lambda:us-east-2:123456789012:event-source-
mapping:alb2c3d4-5678-90ab-cdef-EXAMPLEbbbbb"
.
"requestID": "alb2c3d4-5678-90ab-cdef-EXAMPLE33333",
"eventID": "alb2c3d4-5678-90ab-cdef-EXAMPLE22222",
"readOnly": false,
"eventType": "AwsApiCall",
"managementEvent": true,
"recipientAccountId": "123456789012",
"eventCategory": '"Management",
"sessionCredentialFromConsole": "true"

Using filters with different AWS services

Different types of event source use different key values for their data fields. To filter on data
properties, make sure that you use the correct key in your filter's pattern. The following table gives
the filtering keys for each supported AWS service.

AWS service Filtering key
DynamoDB dynamodb
Kinesis data
Amazon MQ data
Amazon MSK value
Self-managed Apache Kafka value

Using filters with different AWS services 353

AWS Lambda Developer Guide

AWS service Filtering key

Amazon SQS body

The following sections give examples of filter patterns for different types of event sources. They
also provide definitions of supported incoming data formats and filter pattern body formats for
each supported service.

 the section called "“Event filtering"”

 the section called "Event filtering”

 the section called "“Event filtering”

 the section called "Event filtering”

 the section called "“Event filtering”

 the section called "“Event filtering”

Using filters with different AWS services 354

AWS Lambda Developer Guide

Testing Lambda functions in the console

You can test your Lambda function in the console by invoking your function with a test event. A
test event is a JSON input to your function. If your function doesn't require input, the event can be
an empty document ({3}).

When you run a test in the console, Lambda synchronously invokes your function with the test
event. The function runtime converts the event JSON into an object and passes it to your code's
handler method for processing.

(® Create a test event

Before you can test in the console, you need to create a private or shareable test event.

Invoking functions with test events

To test a function

1. Open the Functions page of the Lambda console.

2. Choose the name of the function that you want to test.

3. Choose the Test tab.

4. Under Test event, choose Create new event or Edit saved event and then choose the saved
event that you want to use.

5. Optionally - choose a Template for the event JSON.

6. Choose Test.

7. Toreview the test results, under Execution result, expand Details.

To invoke your function without saving your test event, choose Test before saving. This creates an
unsaved test event that Lambda preserves only for the duration of the session.

For the Node.js, Python, and Ruby runtimes, you can also access your existing saved and unsaved
test events on the Code tab. Use the TEST EVENTS section to create, edit, and run tests.

Testing in console 355

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

Creating private test events

Private test events are available only to the event creator, and they require no additional
permissions to use. You can create and save up to 10 private test events per function.

To create a private test event

Open the Functions page of the Lambda console.

1

2. Choose the name of the function that you want to test.
3. Choose the Test tab.
4

Under Test event, do the following:

a. Choose a Template.

b. Enter a Name for the test.

¢. Inthe text entry box, enter the JSON test event.
d. Under Event sharing settings, choose Private.

5. Choose Save changes.

For the Node.js, Python, and Ruby runtimes, you can also create test events on the Code tab. Use
the TEST EVENTS section to create, edit, and run tests.

Creating shareable test events

Shareable test events are test events that you can share with other users in the same AWS account.
You can edit other users' shareable test events and invoke your function with them.

Lambda saves shareable test events as schemas in an Amazon EventBridge (CloudWatch Events)

schema registry named lambda-testevent-schemas. As Lambda utilizes this registry to store

and call shareable test events you create, we recommend that you do not edit this registry or
create a registry using the lambda-testevent-schemas name.

To see, share, and edit shareable test events, you must have permissions for all of the following
EventBridge (CloudWatch Events) schema registry APl operations:

» schemas.CreateRegistry

e schemas.CreateSchema

e schemas.DeleteSchema

Creating private test events 356

https://console.aws.amazon.com/lambda/home#/functions
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-schema-registry.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-schema-registry.html
https://docs.aws.amazon.com/eventbridge/latest/schema-reference/operations.html
https://docs.aws.amazon.com/eventbridge/latest/schema-reference/v1-registries-name-registryname.html#CreateRegistry
https://docs.aws.amazon.com/eventbridge/latest/schema-reference/v1-registries-name-registryname-schemas-name-schemaname.html#CreateSchema
https://docs.aws.amazon.com/eventbridge/latest/schema-reference/v1-registries-name-registryname-schemas-name-schemaname.html#DeleteSchema

AWS Lambda

Developer Guide

Note that saving edits made to a shareable test event overwrites that event.

schemas.

DeleteSchemaVersion

schemas.

DescribeRegistry

schemas.

DescribeSchema

schemas.

GetDiscoveredSchema

schemas.

ListSchemaVersions

schemas.

UpdateSchema

If you cannot create, edit, or see shareable test events, check that your account has the required

permissions for these operations. If you have the required permissions but still cannot access

shareable test events, check for any resource-based policies that might limit access to the

EventBridge (CloudWatch Events) registry.

To create a shareable test event

P wWN

Open the Functions page of the Lambda console.

Choose the name of the function that you want to test.

Choose the Test tab.

Under Test event, do the following:

a. Choose a Template.

b. Enter a Name for the test.

¢. Inthe text entry box, enter the JSON test event.

d. Under Event sharing settings, choose Shareable.

Choose Save changes.

(@ Use shareable test events with AWS Serverless Application Model.

You can use AWS SAM to invoke shareable test events. See sam remote test-event in

the AWS Serverless Application Model Developer Guide

Creating shareable test events

357

https://docs.aws.amazon.com/eventbridge/latest/schema-reference/v1-registries-name-registryname-schemas-name-schemaname-version-schemaversion.html#DeleteSchemaVersion
https://docs.aws.amazon.com/eventbridge/latest/schema-reference/v1-registries-name-registryname.html#DescribeRegistry
https://docs.aws.amazon.com/eventbridge/latest/schema-reference/v1-registries-name-registryname-schemas-name-schemaname.html#DescribeSchema
https://docs.aws.amazon.com/eventbridge/latest/schema-reference/v1-discover.html#GetDiscoveredSchema
https://docs.aws.amazon.com/eventbridge/latest/schema-reference/v1-registries-name-registryname-schemas-name-schemaname-versions.html#ListSchemaVersions
https://docs.aws.amazon.com/eventbridge/latest/schema-reference/v1-registries-name-registryname-schemas-name-schemaname.html#UpdateSchema
https://console.aws.amazon.com/lambda/home#/functions
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/using-sam-cli-remote-test-event.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/using-sam-cli-remote-test-event.html

AWS Lambda Developer Guide

Deleting shareable test event schemas

When you delete shareable test events, Lambda removes them from the 1ambda-testevent-
schemas registry. If you remove the last shareable test event from the registry, Lambda deletes
the registry.

If you delete the function, Lambda does not delete any associated shareable test event schemas.
You must clean up these resources manually from the EventBridge (CloudWatch Events) console.

Deleting shareable test event schemas 358

https://console.aws.amazon.com/events

AWS Lambda Developer Guide

Lambda function states

Lambda includes a State field in the function configuration for all functions to indicate when your
function is ready to invoke. State provides information about the current status of the function,
including whether you can successfully invoke the function. Function states do not change the
behavior of function invocations or how your function runs the code.

® Note

Function state definitions differ slightly for SnapStart functions. For more information, see
Lambda SnapStart and function states.

Function states include:

« Pending - After Lambda creates the function, it sets the state to pending. While in pending
state, Lambda attempts to create or configure resources for the function, such as VPC or EFS
resources. Lambda does not invoke a function during pending state. Any invocations or other API
actions that operate on the function will fail.

« Active - Your function transitions to active state after Lambda completes resource
configuration and provisioning. Functions can only be successfully invoked while active.

« Failed - Indicates that resource configuration or provisioning encountered an error.

« Inactive - A function becomes inactive when it has been idle long enough for Lambda to
reclaim the external resources that were configured for it. When you try to invoke a function that
is inactive, the invocation fails and Lambda sets the function to pending state until the function
resources are recreated. If Lambda fails to recreate the resources, the function returns to the
inactive state. If your function is stuck in the inactive state, refer to the function's StatusCode
and StatusCodeReason attributes for further troubleshooting. You may need to resolve any
errors and redeploy your function to restore it to the active state.

If you are using SDK-based automation workflows or calling Lambda’s service APIs directly, ensure
that you check a function's state before invocation to verify that it is active. You can do this with
the Lambda API action GetFunction, or by configuring a waiter using the AWS SDK for Java 2.0.

aws lambda get-function --function-name my-function --query 'Configuration.[State,
LastUpdateStatus]’

Function states 359

https://docs.aws.amazon.com/lambda/latest/api/API_FunctionConfiguration.html#lambda-Type-FunctionConfiguration-State
https://docs.aws.amazon.com/lambda/latest/api/API_GetFunction.html
https://github.com/aws/aws-sdk-java-v2

AWS Lambda Developer Guide

You should see the following output:

[
"Active",
"Successful"

]

The following operations fail while function creation is pending:

Invoke

UpdateFunctionCode

UpdateFunctionConfiguration

PublishVersion

Function states while updating

Lambda provides additional context for functions undergoing updates with the
LastUpdateStatus attribute, which can have the following statuses:

« InProgress - An update is happening on an existing function. While a function update is in
progress, invocations go to the function’s previous code and configuration.

« Successful - The update has completed. Once Lambda finishes the update, this stays set until
a further update.

o Failed - The function update has failed. Lambda aborts the update and the function’s previous
code and configuration remain available.
Example

The following is the result of get-function-configuration on a function undergoing an
update.

{
"FunctionName": "my-function",
"FunctionArn": "arn:aws:lambda:us-east-2:123456789012:function:my-function",
"Runtime": "nodejs22.x",

"VpcConfig": {
"SubnetIds": [
"subnet-071f712345678e7c8",

Function states while updating 360

https://docs.aws.amazon.com/lambda/latest/api/API_Invoke.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionCode.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionConfiguration.html
https://docs.aws.amazon.com/lambda/latest/api/API_PublishVersion.html

AWS Lambda Developer Guide

"subnet-07fd123456788a036",
"subnet-0804f77612345cact"
1,
"SecurityGroupIds": [
"sg-085912345678492fb"
1,
"VpcId": "vpc-08el234569e011e83"
1,
"State": "Active",
"LastUpdateStatus": "InProgress",

FunctionConfiguration has two other attributes, LastUpdateStatusReason and

LastUpdateStatusReasonCode, to help troubleshoot issues with updating.

The following operations fail while an asynchronous update is in progress:

UpdateFunctionCode

UpdateFunctionConfiguration

PublishVersion
TagResource

Function states while updating 361

https://docs.aws.amazon.com/lambda/latest/api/API_FunctionConfiguration.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionCode.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionConfiguration.html
https://docs.aws.amazon.com/lambda/latest/api/API_PublishVersion.html
https://docs.aws.amazon.com/lambda/latest/api/API_TagResource.html

AWS Lambda Developer Guide

Understanding retry behavior in Lambda

When you invoke a function directly, you determine the strategy for handling errors related to
your function code. Lambda does not automatically retry these types of errors on your behalf. To
retry, you can manually re-invoke your function, send the failed event to a queue for debugging,
or ignore the error. Your function's code might have run completely, partially, or not at all. If you
retry, ensure that your function's code can handle the same event multiple times without causing
duplicate transactions or other unwanted side effects.

When you invoke a function indirectly, you need to be aware of the retry behavior of the invoker
and any service that the request encounters along the way. This includes the following scenarios.

« Asynchronous invocation — Lambda retries function errors twice. If the function doesn't have
enough capacity to handle all incoming requests, events might wait in the queue for hours to be
sent to the function. You can configure a dead-letter queue on the function to capture events
that weren't successfully processed. For more information, see the section called “Dead-letter

queues”.
» Event source mappings — Event source mappings that read from streams retry the entire batch

of items. Repeated errors block processing of the affected shard until the error is resolved or the
items expire. To detect stalled shards, you can monitor the Iterator Age metric.

For event source mappings that read from a queue, you determine the length of time between
retries and destination for failed events by configuring the visibility timeout and redrive policy
on the source queue. For more information, see How Lambda processes records from stream and

qgueue-based event sources and the service-specific topics under Invoking Lambda with events
from other AWS services.

» AWS services — AWS services can invoke your function synchronously or asynchronously. For

synchronous invocation, the service decides whether to retry. For example, Amazon S3 batch
operations retries the operation if the Lambda function returns a TemporaryFailure response
code. Services that proxy requests from an upstream user or client may have a retry strategy or
may relay the error response back to the requester. For example, APl Gateway always relays the
error response back to the requester.

For asynchronous invocation, the retry logic is the same regardless of the invocation source. By
default, Lambda retries a failed asynchronous invocation up to two times. For more information,
see How Lambda handles errors and retries with asynchronous invocation.

Retries 362

AWS Lambda Developer Guide

» Other accounts and clients - When you grant access to other accounts, you can use resource-
based policies to restrict the services or resources they can configure to invoke your function.
To protect your function from being overloaded, consider putting an API layer in front of your
function with Amazon API Gateway.

To help you deal with errors in Lambda applications, Lambda integrates with services like Amazon
CloudWatch and AWS X-Ray. You can use a combination of logs, metrics, alarms, and tracing to
quickly detect and identify issues in your function code, API, or other resources that support your
application. For more information, see Monitoring and troubleshooting Lambda functions.

Retries 363

AWS Lambda Developer Guide

Use Lambda recursive loop detection to prevent infinite loops

When you configure a Lambda function to output to the same service or resource that invokes the
function, it's possible to create an infinite recursive loop. For example, a Lambda function might
write a message to an Amazon Simple Queue Service (Amazon SQS) queue, which then invokes the
same function. This invocation causes the function to write another message to the queue, which in
turn invokes the function again.

Unintentional recursive loops can result in unexpected charges being billed to your AWS account.
Loops can also cause Lambda to scale and use all of your account'’s available concurrency. To help
reduce the impact of unintentional loops, Lambda detects certain types of recursive loops shortly
after they occur. By default, when Lambda detects a recursive loop, it stops your function being
invoked and notifies you. If your design intentionally uses recursive patterns, you can a change

a function's default configuration to allow it to be invoked recursively. See the section called

“Allowing a Lambda function to run in a recursive loop” for more information.

Sections

« Understanding recursive loop detection

o Supported AWS services and SDKs

» Recursive loop notifications

« Responding to recursive loop detection notifications

« Allowing a Lambda function to run in a recursive loop

« Supported regions for Lambda recursive loop detection

Understanding recursive loop detection

Recursive loop detection in Lambda works by tracking events. Lambda is an event-driven compute
service that runs your function code when certain events occur. For example, when an item is
added to an Amazon SQS queue or Amazon Simple Notification Service (Amazon SNS) topic.
Lambda passes events to your function as JSON objects, which contain information about the
change in the system state. When an event causes your function to run, this is called an invocation.

To detect recursive loops, Lambda uses AWS X-Ray tracing headers. When AWS services that

support recursive loop detection send events to Lambda, those events are automatically annotated

with metadata. When your Lambda function writes one of these events to another supported AWS

Recursive loop detection 364

https://docs.aws.amazon.com/xray/latest/devguide/aws-xray.html

AWS Lambda Developer Guide

service using a supported version of an AWS SDK, it updates this metadata. The updated metadata
includes a count of the number of times that the event has invoked the function.

® Note

You don't need to enable X-Ray active tracing for this feature to work. Recursive loop
detection is turned on by default for all AWS customers. There is no charge to use the
feature.

A chain of requests is a sequence of Lambda invocations caused by the same triggering event.
For example, imagine that an Amazon SQS queue invokes your Lambda function. Your Lambda
function then sends the processed event back to the same Amazon SQS queue, which invokes
your function again. In this example, each invocation of your function falls in the same chain of
requests.

If your function is invoked approximately 16 times in the same chain of requests, then Lambda
automatically stops the next function invocation in that request chain and notifies you. If your
function is configured with multiple triggers, then invocations from other triggers aren't affected.

® Note

Even when the maxReceiveCount setting on the source queue's redrive policy is
higher than 16, Lambda recursion protection does not prevent Amazon SQS from
retrying the message after a recursive loop is detected and terminated. When
Lambda detects a recursive loop and drops subsequent invocations, it returns a
RecursivelInvocationException to the event source mapping. This increments
the receiveCount value on the message. Lambda continues to retry the message,
and continues to block function invocations, until Amazon SQS determines that the
maxReceiveCount is exceeded and sends the message to the configured dead-letter
queue.

If you have an on-failure destination or dead-letter queue configured for your function, then
Lambda also sends the event from the stopped invocation to your destination or dead-letter
queue. When configuring a destination or dead-letter queue for your function, be sure not to use
an Amazon SNS topic or Amazon SQS queue that your function also uses as an event trigger or

Understanding recursive loop detection 365

AWS Lambda Developer Guide

event source mapping. If you send events to the same resource that invokes your function, then
you can create another recursive loop.

Supported AWS services and SDKs

Lambda can detect only recursive loops that include certain supported AWS services. For recursive
loops to be detected, your function must also use one of the supported AWS SDKs.

Supported AWS services

Lambda currently detects recursive loops between your functions, Amazon SQS, Amazon S3, and
Amazon SNS. Lambda also detects loops comprised only of Lambda functions, which may invoke
each other synchronously or asynchronously. The following diagrams show some examples of loops

that Lambda can detect:
W, /)

Lambda function Lambda function

)\
—_— ﬂ'i):I')ﬂ -
\—/

53 bucket Amazon 505 queue

oy

Lambda function

S\

Amazon S5 queue Amazon SHNS Lambda function 53 bucket

When another AWS service such as Amazon DynamoDB forms part of the loop, Lambda can't
currently detect and stop it.

Supported AWS services and SDKs 366

AWS Lambda Developer Guide

Because Lambda currently detects only recursive loops involving Amazon SQS, Amazon S3, and
Amazon SNS, it's still possible that loops involving other AWS services can result in unintended
usage of your Lambda functions.

To guard against unexpected charges being billed to your AWS account, we recommend that you
configure Amazon CloudWatch alarms to alert you to unusual usage patterns. For example, you can

configure CloudWatch to notify you about spikes in Lambda function concurrency or invocations.
You can also configure a billing alarm to notify you when spending in your account exceeds a
threshold that you specify. Or, you can use AWS Cost Anomaly Detection to alert you to unusual
billing patterns.

Supported AWS SDKs
For Lambda to detect recursive loops, your function must use one of the following SDK versions or
higher:
Runtime Minimum required AWS SDK version
Node.js 2.1147.0 (SDK version 2)
3.105.0 (SDK version 3)
Python 1.24.46 (boto3)
1.27.46 (botocore)
Java 8 and Java 11 2.17.135
Java 17 2.20.81
Java 21 2.21.24
.NET 3.7.293.0
Ruby 3.134.0
PHP 3.232.0
Go V2 SDK 1.57.0

Supported AWS services and SDKs 367

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/monitor_estimated_charges_with_cloudwatch.html
https://docs.aws.amazon.com/cost-management/latest/userguide/manage-ad.html

AWS Lambda Developer Guide

Some Lambda runtimes such as Python and Node.js include a version of the AWS SDK. If the SDK
version included in your function's runtime is lower than the minimum required, then you can
add a supported version of the SDK to your function's deployment package. You can also add a
supported SDK version to your function using a Lambda layer. For a list of the SDKs included with

each Lambda runtime, see Lambda runtimes.

Recursive loop notifications

When Lambda stops a recursive loop, you receive notifications through the AWS Health Dashboard
and through email. You can also use CloudWatch metrics to monitor the number of recursive

invocations that Lambda has stopped.
AWS Health Dashboard notifications

When Lambda stops a recursive invocation, the AWS Health Dashboard displays a notification
on the Your account health page, under Open and recent issues. Note that it can take up to 3.5

hours after Lambda stops a recursive invocation before this notification is displayed. For more
information about viewing account events in the AWS Health Dashboard, see Getting started with
your AWS Health Dashboard — Your account health in the AWS Health User Guide.

Email alerts

When Lambda first stops a recursive invocation of your function, it sends you an email alert.
Lambda sends a maximum of one email every 24 hours for each function in your AWS account.
After Lambda sends an email notification, you won't receive any more emails for that function for
another 24 hours, even if Lambda stops further recursive invocations of the function. Note that it
can take up to 3.5 hours after Lambda stops a recursive invocation before you receive this email
alert.

Lambda sends recursive loop email alerts to your AWS account's primary account contact and
alternate operations contact. For information about viewing or updating the email addresses in
your account, see Updating contact information in the AWS General Reference.

Amazon CloudWatch metrics

The CloudWatch metric RecursiveInvocationsDropped records the number of function

invocations that Lambda has stopped because your function has been invoked more than
approximately 16 times in a single chain of requests. Lambda emits this metric as soon as it stops
a recursive invocation. To view this metric, follow the instructions for Viewing metrics on the

CloudWatch console and choose the metric RecursiveInvocationsDropped.

Recursive loop notifications 368

https://aws.amazon.com/premiumsupport/technology/aws-health-dashboard/
https://health.aws.amazon.com/health/home#/account/dashboard/open-issues
https://docs.aws.amazon.com/health/latest/ug/getting-started-health-dashboard.html
https://docs.aws.amazon.com/health/latest/ug/getting-started-health-dashboard.html
https://docs.aws.amazon.com/accounts/latest/reference/manage-acct-update-contact.html
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-metrics.html#monitoring-metrics-console
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-metrics.html#monitoring-metrics-console

AWS Lambda Developer Guide

Responding to recursive loop detection notifications

When your function is invoked more than approximately 16 times by the same triggering event,
Lambda stops the next function invocation for that event to break the recursive loop. To prevent a
reoccurrence of a recursive loop that Lambda has broken, do the following:

« Reduce your function's available concurrency to zero, which throttles all future invocations.
« Remove or disable the trigger or event source mapping that's invoking your function.

« Identify and fix code defects that write events back to the AWS resource that's invoking your
function. A common source of defects occurs when you use variables to define a function's event
source and target. Check that you're not using the same value for both variables.

Additionally, if the event source for your Lambda function is an Amazon SQS queue, then consider
configuring a dead-letter queue on the source queue.

(® Note

Make sure that you configure the dead-letter queue on the source queue, not on the
Lambda function. The dead-letter queue that you configure on a function is used for the
function's asynchronous invocation queue, not for event source queues.

If the event source is an Amazon SNS topic, then consider adding an on-failure destination for your
function.

To reduce your function's available concurrency to zero (console)

1. Open the Functions page of the Lambda console.

2. Choose the name of your function.
3. Choose Throttle.
4

In the Throttle your function dialog box, choose Confirm.

To remove a trigger or event source mapping for your function (console)

1. Open the Functions page of the Lambda console.

2. Choose the name of your function.

Responding to recursive loop detection notifications 369

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-configure-dead-letter-queue.html
https://console.aws.amazon.com/lambda/home#/functions
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

3. Choose the Configuration tab, then choose Triggers.

4. Under Triggers, select the trigger or event source mapping that you want to delete, then
choose Delete.

5. In the Delete triggers dialog box, choose Delete.

To disable an event source mapping for your function (AWS CLI)

1. To find the UUID for the event source mapping that you want to disable, run the AWS
Command Line Interface (AWS CLI) list-event-source-mappings command.

aws lambda list-event-source-mappings

2. To disable the event source mapping, run the following AWS CLI update-event-source-
mapping command.

aws lambda update-event-source-mapping --function-name MyFunction \
--uuid alb2c3d4-5678-90ab-cdef-EXAMPLE11111 --no-enabled

Allowing a Lambda function to run in a recursive loop

If your design intentionally uses a recursive loop, you can configure a Lambda function to allow
it to be invoked recursively. We recommend that you avoid using recursive loops in your design.
Implementation errors can lead to recursive invocations using all of your AWS account's available
concurrency and to unexpected charges being billed to your account.

/A Important

If you use recursive loops, treat them with caution. Implement best practice guard rails
to minimize the risks of implementation errors. To learn more about best practices for
using recursive patterns, see Recursive patterns that cause run-away Lambda functions in
Serverless Land.

You can configure functions to allow recursive loops using the Lambda console, the AWS Command
Line Interface (AWS CLI), and the PutFunctionRecursionConfig API. You can also configure a
function's recursive loop detection setting in AWS SAM and AWS CloudFormation.

Allowing a Lambda function to run in a recursive loop 370

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/list-event-source-mappings.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-event-source-mapping.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-event-source-mapping.html
https://serverlessland.com/content/service/lambda/guides/aws-lambda-operator-guide/recursive-runaway
https://docs.aws.amazon.com/lambda/latest/api/API_PutFunctionRecursionConfig.html

AWS Lambda Developer Guide

By default, Lambda detects and terminates recursive loops. Unless your design intentionally uses a
recursive loop, we recommend that you don't change your functions' default configuration.

Note that when you configure a function to allow recursive loops, the CloudWatch metric
RecursiveInvocationsDropped isn't emitted.

Console
To allow a function to run in a recursive loop (console)

1. Open the Functions page of the Lambda console.

2. Choose the name of your function to open the function detail page.
3. Choose the Configuration tab, then choose Concurrency and recursion detection.
4. Beside Recursive loop detection, choose Edit.
5. Select Allow recursive loops.
6. Choose Save.
AWS CLI

You can use the PutFunctionRecursionConfig API to allow your function to be invoked in a
recursive loop. Specify Al1low for the recursive loop parameter. For example, you can call this
API with the put-function-recursion-config AWS CLI command:

aws lambda put-function-recursion-config --function-name yourFunctionName --
recursive-loop Allow

You can change your function's configuration back to the default setting so that Lambda
terminates recursive loops when it detects them. Edit your function's configuration using the
Lambda console or the AWS CLI.

Console

To configure a function so that recursive loops are terminated (console)

1. Open the Functions page of the Lambda console.

2. Choose the name of your function to open the function detail page.

3. Choose the Configuration tab, then choose Concurrency and recursion detection.

Allowing a Lambda function to run in a recursive loop 371

https://console.aws.amazon.com/lambda/home#/functions
https://docs.aws.amazon.com/lambda/latest/api/API_PutFunctionRecursionConfig.html
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

4. Beside Recursive loop detection, choose Edit.
5. Select Terminate recursive loops.
6. Choose Save.

AWS CLI

You can use the PutFunctionRecursionConfig API to configure your function so that Lambda

terminates recursive loops when it detects them. Specify Terminate for the recursive loop
parameter. For example, you can call this APl with the put-function-recursion-config
AWS CLI command:

aws lambda put-function-recursion-config --function-name yourFunctionName --
recursive-loop Terminate

Supported regions for Lambda recursive loop detection

Lambda recursive loop detection is supported in the following AWS Regions.

« US East (N. Virginia)

« US East (Ohio)

« US West (N. California)
» US West (Oregon)

o Africa (Cape Town)

« Asia Pacific (Hong Kong)
« Asia Pacific (Jakarta)

« Asia Pacific (Mumbai)

« Asia Pacific (Osaka)

« Asia Pacific (Seoul)

« Asia Pacific (Singapore)
« Asia Pacific (Sydney)

« Asia Pacific (Tokyo)

« Canada (Central)

o Europe (Frankfurt)

Supported regions for Lambda recursive loop detection 372

https://docs.aws.amazon.com/lambda/latest/api/API_PutFunctionRecursionConfig.html

AWS Lambda Developer Guide

» Europe (Ireland)

» Europe (London)

» Europe (Milan)

» Europe (Paris)

o Europe (Stockholm)
» Middle East (Bahrain)

« South America (Sao Paulo)

Supported regions for Lambda recursive loop detection 373

AWS Lambda Developer Guide

Creating and managing Lambda function URLs

A function URL is a dedicated HTTP(S) endpoint for your Lambda function. You can create and
configure a function URL through the Lambda console or the Lambda API.

® Tip
Lambda offers two ways to invoke your function through an HTTP endpoint: function URLs

and Amazon AP| Gateway. If you're not sure which is the best method for your use case, see
the section called “Function URLs vs Amazon API Gateway".

When you create a function URL, Lambda automatically generates a unique URL endpoint for you.
Once you create a function URL, its URL endpoint never changes. Function URL endpoints have the
following format:

https://<url-id>.lambda-url.<region>.on.aws

(® Note

Function URLs are not supported in the following AWS Regions: Asia Pacific (Hyderabad)
(ap-south-2), Asia Pacific (Melbourne) (ap-southeast-4), Asia Pacific (Malaysia) (ap-
southeast-5), Canada West (Calgary) (ca-west-1), Europe (Spain) (eu-south-2),
Europe (Zurich) (eu-central-2), Israel (Tel Aviv) (i1-central-1), and Middle East (UAE)
(me-central-1).

Function URLs are dual stack-enabled, supporting IPv4 and IPv6. After you configure a function
URL for your function, you can invoke your function through its HTTP(S) endpoint via a web
browser, curl, Postman, or any HTTP client.

(® Note

You can access your function URL through the public Internet only. While Lambda functions
do support AWS PrivateLink, function URLs do not.

Function URLs 374

AWS Lambda Developer Guide

Lambda function URLs use resource-based policies for security and access control. Function URLs

also support cross-origin resource sharing (CORS) configuration options.

You can apply function URLs to any function alias, or to the $LATEST unpublished function version.
You can't add a function URL to any other function version.

The following section show how to create and manage a function URL using the Lambda console,
AWS CLI, and AWS CloudFormation template

Topics

» Creating a function URL (console)

» Creating a function URL (AWS CLlI)

« Adding a function URL to a CloudFormation template

» Cross-origin resource sharing (CORS)

o Throttling function URLs

» Deactivating function URLs

» Deleting function URLs

o Control access to Lambda function URLs

 Invoking Lambda function URLs

» Monitoring Lambda function URLs

» Select a method to invoke your Lambda function using an HTTP request

» Tutorial: Creating a webhook endpoint using a Lambda function URL

Creating a function URL (console)

Follow these steps to create a function URL using the console.

To create a function URL for an existing function (console)

1. Open the Functions page of the Lambda console.

2. Choose the name of the function that you want to create the function URL for.
3. Choose the Configuration tab, and then choose Function URL.
4

Choose Create function URL.

Creating a function URL (console) 375

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

5. For Auth type, choose AWS_IAM or NONE. For more information about function URL
authentication, see Access control.

6. (Optional) Select Configure cross-origin resource sharing (CORS), and then configure the
CORS settings for your function URL. For more information about CORS, see Cross-origin
resource sharing (CORS).

7. Choose Save.

This creates a function URL for the $LATEST unpublished version of your function. The function
URL appears in the Function overview section of the console.

To create a function URL for an existing alias (console)

1. Open the Functions page of the Lambda console.

2. Choose the name of the function with the alias that you want to create the function URL for.

3. Choose the Aliases tab, and then choose the name of the alias that you want to create the
function URL for.

4. Choose the Configuration tab, and then choose Function URL.
Choose Create function URL.

6. For Auth type, choose AWS_IAM or NONE. For more information about function URL
authentication, see Access control.

7. (Optional) Select Configure cross-origin resource sharing (CORS), and then configure the
CORS settings for your function URL. For more information about CORS, see Cross-origin
resource sharing (CORS).

8. Choose Save.

This creates a function URL for your function alias. The function URL appears in the console's
Function overview section for your alias.

To create a new function with a function URL (console)

To create a new function with a function URL (console)

1. Open the Functions page of the Lambda console.

2. Choose Create function.

3. Under Basic information, do the following:

Creating a function URL (console) 376

https://console.aws.amazon.com/lambda/home#/functions
https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

a. For Function name, enter a name for your function, such as my-function.
b. For Runtime, choose the language runtime that you prefer, such as Node.js 18.x.
c. For Architecture, choose either x86_64 or arm64.

d. Expand Permissions, then choose whether to create a new execution role or use an
existing one.

4. Expand Advanced settings, and then select Function URL.

For Auth type, choose AWS_IAM or NONE. For more information about function URL
authentication, see Access control.

6. (Optional) Select Configure cross-origin resource sharing (CORS). By selecting this option
during function creation, your function URL allows requests from all origins by default.
You can edit the CORS settings for your function URL after creating the function. For more
information about CORS, see Cross-origin resource sharing (CORS).

7. Choose Create function.

This creates a new function with a function URL for the $LATEST unpublished version of the
function. The function URL appears in the Function overview section of the console.

Creating a function URL (AWS CLI)

To create a function URL for an existing Lambda function using the AWS Command Line Interface
(AWS CLI), run the following command:

aws lambda create-function-url-config \
--function-name my-function \
--qualifier prod \ // optional
--auth-type AWS_IAM
--cors-config {AllowOrigins="https://example.com"} // optional

This adds a function URL to the prod qualifier for the function my-function. For more
information about these configuration parameters, see CreateFunctionUrlConfig in the API
reference.

® Note

To create a function URL via the AWS CLI, the function must already exist.

Creating a function URL (AWS CLI) 377

https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunctionUrlConfig.html

AWS Lambda Developer Guide

Adding a function URL to a CloudFormation template

To add an AWS: : Lambda: : Ur1 resource to your AWS CloudFormation template, use the following
syntax:

JSON
{
"Type" : "AWS::Lambda::Url",
"Properties" : {
"AuthType" : String,
"Cors" : Cors,
"Qualifier" : String,
"TargetFunctionArn" : String
}
}
YAML

Type: AWS::Lambda::Url
Properties:
AuthType: String
Cors:
Cors
Qualifier: String
TargetFunctionArn: String

Parameters

» (Required) AuthType - Defines the type of authentication for your function URL. Possible values
are either AWS_TIAM or NONE. To restrict access to authenticated users only, set to AWS_IAM. To
bypass IAM authentication and allow any user to make requests to your function, set to NONE.

« (Optional) Cors - Defines the CORS settings for your function URL. To add Cozrs to your
AWS: :Lambda: :Url resource in CloudFormation, use the following syntax.

Example AWS::Lambda::Url.Cors (JSON)

{

"AllowCredentials" : Boolean,
"AllowHeaders" : [String, ... 1,

Adding a function URL to a CloudFormation template 378

Developer Guide

AWS Lambda
"AllowMethods" : [String, ... 1],
"AllowOrigins" : [String, ... 1,
"ExposeHeaders" : [String, ... 1],

"MaxAge" : Integer

Example AWS::Lambda::Url.Cors (YAML)

AllowCredentials: Boolean

AllowHeaders:

- String
AllowMethods:

- String
AllowOrigins:

- String
ExposeHeaders:

- String
MaxAge: Integer

o (Optional) Qualifier — The alias name.

» (Required) TargetFunctionArn - The name or Amazon Resource Name (ARN) of the Lambda

function. Valid name formats include the following:

« Function name - my-function

« Function ARN - arn:aws:lambda:us-west-2:123456789012: function:my-function

« Partial ARN - 123456789012 : function:my-function

Cross-origin resource sharing (CORS)

To define how different origins can access your function URL, use cross-origin resource sharing
(CORS). We recommend configuring CORS if you intend to call your function URL from a different
domain. Lambda supports the following CORS headers for function URLs.

CORS header

Access-Control-Allow-Origin

CORS configuration property

AllowOrigins

Example values
* (allow all origins)

https://www.exampl
e.com

Cross-origin resource sharing (CORS)

379

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Allow-Origin

AWS Lambda Developer Guide

CORS header CORS configuration property Example values
http://localhost:6
0905

Access-Control-Allow-Method AllowMethods GET, POST, DELETE, *

S

Access-Control-Allow-Header AllowHeaders Date, Keep-Alive , X-

S Custom-Header

Access-Control-Expose-Heade ExposeHeaders Date, Keep-Alive , X-

rs Custom-Header

Access-Control-Allow-Creden AllowCredentials TRUE

tials

Access-Control-Max-Age MaxAge 5 (default), 300

When you configure CORS for a function URL using the Lambda console or the AWS CLI, Lambda
automatically adds the CORS headers to all responses through the function URL. Alternatively, you
can manually add CORS headers to your function response. If there are conflicting headers, the
expected behavior depends on the type of request:

» For preflight requests such as OPTIONS requests, the configured CORS headers on the function
URL take precedence. Lambda returns only these CORS headers in the response.

« For non-preflight requests such as GET or POST requests, Lambda returns both the configured
CORS headers on the function URL, as well as the CORS headers returned by the function.
This can result in duplicate CORS headers in the response. You may see an error similar to the
following: The 'Access-Control-Allow-0rigin' header contains multiple values
'* *' but only one is allowed.

In general, we recommend configuring all CORS settings on the function URL, rather than sending
CORS headers manually in the function response.

Cross-origin resource sharing (CORS) 380

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Allow-Methods
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Allow-Methods
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Allow-Headers
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Allow-Headers
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Expose-Headers
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Expose-Headers
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Allow-Credentials
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Allow-Credentials
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Max-Age

AWS Lambda Developer Guide

Throttling function URLs

Throttling limits the rate at which your function processes requests. This is useful in many
situations, such as preventing your function from overloading downstream resources, or handling a
sudden surge in requests.

You can throttle the rate of requests that your Lambda function processes through a function
URL by configuring reserved concurrency. Reserved concurrency limits the number of maximum
concurrent invocations for your function. Your function's maximum request rate per second (RPS)
is equivalent to 10 times the configured reserved concurrency. For example, if you configure your
function with a reserved concurrency of 100, then the maximum RPS is 1,000.

Whenever your function concurrency exceeds the reserved concurrency, your function URL returns
an HTTP 429 status code. If your function receives a request that exceeds the 10x RPS maximum
based on your configured reserved concurrency, you also receive an HTTP 429 error. For more
information about reserved concurrency, see Configuring reserved concurrency for a function.

Deactivating function URLs

In an emergency, you might want to reject all traffic to your function URL. To deactivate your
function URL, set the reserved concurrency to zero. This throttles all requests to your function
URL, resulting in HTTP 429 status responses. To reactivate your function URL, delete the reserved
concurrency configuration, or set the configuration to an amount greater than zero.

Deleting function URLs

When you delete a function URL, you can't recover it. Creating a new function URL will result in a
different URL address.

(® Note

If you delete a function URL with auth type NONE, Lambda doesn't automatically delete the
associated resource-based policy. If you want to delete this policy, you must manually do
so.

1. Open the Functions page of the Lambda console.

2. Choose the name of the function.

3. Choose the Configuration tab, and then choose Function URL.

Throttling function URLs 381

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

4. Choose Delete.
5. Enter the word delete into the field to confirm the deletion.

6. Choose Delete.

(@ Note

When you delete a function that has a function URL, Lambda asynchronously deletes the
function URL. If you immediately create a new function with the same name in the same
account, it is possible that the original function URL will be mapped to the new function

instead of deleted.

Control access to Lambda function URLs

You can control access to your Lambda function URLs using the AuthType parameter combined
with resource-based policies attached to your specific function. The configuration of these two

components determines who can invoke or perform other administrative actions on your function
URL.

The AuthType parameter determines how Lambda authenticates or authorizes requests to your
function URL. When you configure your function URL, you must specify one of the following
AuthType options:

o AWS_IAM - Lambda uses AWS Identity and Access Management (IAM) to authenticate and
authorize requests based on the IAM principal's identity policy and the function's resource-based
policy. Choose this option if you want only authenticated users and roles to invoke your function
via the function URL.

« NONE - Lambda doesn't perform any authentication before invoking your function. However,
your function's resource-based policy is always in effect and must grant public access before your
function URL can receive requests. Choose this option to allow public, unauthenticated access to
your function URL.

In addition to AuthType, you can also use resource-based policies to grant permissions to other
AWS accounts to invoke your function. For more information, see Viewing resource-based IAM

policies in Lambda.

Access control 382

AWS Lambda Developer Guide

For additional insights into security, you can use AWS ldentity and Access Management Access
Analyzer to get a comprehensive analysis of external access to your function URL. IAM Access

Analyzer also monitors for new or updated permissions on your Lambda functions to help you
identify permissions that grant public and cross-account access. IAM Access Analyzer is free to
use for any AWS customer. To get started with IAM Access Analyzer, see Using AWS IAM Access

Analyzer.

This page contains examples of resource-based policies for both auth types, and also how to create
these policies using the AddPermission APl operation or the Lambda console. For information on
how to invoke your function URL after you've set up permissions, see Invoking Lambda function
URLs.

Topics

» Using the AWS_IAM auth type

» Using the NONE auth type

« Governance and access control

Using the AWS_IAM auth type

If you choose the AWS_IAM auth type, users who need to invoke your Lambda function URL must
have the 1ambda: InvokeFunctionUrl permission. Depending on who makes the invocation
request, you may have to grant this permission using a resource-based policy.

If the principal making the request is in the same AWS account as the function URL, then the
principal must either have 1lambda: InvokeFunctionUrl permissions in their identity-based

policy, or have permissions granted to them in the function's resource-based policy. In other
words, a resource-based policy is optional if the user already has 1ambda: InvokeFunctionUrl
permissions in their identity-based policy. Policy evaluation follows the rules outlined in
Determining whether a request is allowed or denied within an account.

If the principal making the request is in a different account, then the principal must have both an
identity-based policy that gives them lambda:InvokeFunctionUrl permissions and permissions
granted to them in a resource-based policy on the function that they are trying to invoke. In these
cross-account cases, policy evaluation follows the rules outlined in Determining whether a cross-

account request is allowed.

Access control 383

https://docs.aws.amazon.com/IAM/latest/UserGuide/what-is-access-analyzer.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/what-is-access-analyzer.html
https://docs.aws.amazon.com/lambda/latest/api/API_AddPermission.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_identity-vs-resource.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_identity-vs-resource.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html#policy-eval-denyallow
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic-cross-account.html#policy-eval-cross-account
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic-cross-account.html#policy-eval-cross-account

AWS Lambda Developer Guide

For an example cross-account interaction, the following resource-based policy allows the example
role in AWS account 444455556666 to invoke the function URL associated with function my-
function:

Example function URL cross-account invoke policy

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {
"AWS": "arn:aws:iam::444455556666:r0le/example"
I
"Action": "lambda:InvokeFunctionUrl",
"Resource": "arn:aws:lambda:us-east-1:123456789012:function:my-function",
"Condition": {
"StringEquals": {
"lambda:FunctionUrlAuthType": "AWS_IAM"
}
}
}
]
}

You can create this policy statement through the console by following these steps:
To grant URL invocation permissions to another account (console)

Open the Functions page of the Lambda console.

Choose the name of the function that you want to grant URL invocation permissions for.
Choose the Configuration tab, and then choose Permissions.

Under Resource-based policy, choose Add permissions.

Choose Function URL.

For Auth type, choose AWS_IAM.

(Optional) For Statement ID, enter a statement ID for your policy statement.

© N o U kA WD =

For Principal, enter account ID or the Amazon Resource Name (ARN) of the user or role that
you want to grant permissions to. For example: 444455556666.

9. Choose Save.

Access control 384

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

Alternatively, you can create this policy statement using the following add-permission AWS
Command Line Interface (AWS CLI) command:

aws lambda add-permission --function-name my-function \
--statement-id example@-cross-account-statement \
--action lambda:InvokeFunctionUrl \
--principal 444455556666 \
--function-url-auth-type AWS_IAM

In the previous example, the lambda: FunctionUrlAuthType condition key value is AWS_IAM.
This policy only allows access when your function URL's auth type is also AWS_IAM.

Using the NONE auth type

/A Important

When your function URL auth type is NONE and you have a resource-based policy that
grants public access, any unauthenticated user with your function URL can invoke your
function.

In some cases, you may want your function URL to be public. For example, you might want to serve
requests made directly from a web browser. To allow public access to your function URL, choose
the NONE auth type.

If you choose the NONE auth type, Lambda doesn't use IAM to authenticate requests to your
function URL. However, users must still have 1ambda: InvokeFunctionUrl permissions in
order to successfully invoke your function URL. You can grant 1ambda: InvokeFunctionUrl
permissions using the following resource-based policy:

Example function URL invoke policy for all unauthenticated principals

"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Principal": "*",
"Action": "lambda:InvokeFunctionUrl",
"Resource": "arn:aws:lambda:us-east-1:123456789012:function:my-function",

Access control 385

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/add-permission.html

AWS Lambda Developer Guide

"Condition": {
"StringEquals": {
"lambda:FunctionUrlAuthType": "NONE"
}

(® Note

When you create a function URL with auth type NONE via the console or AWS Serverless
Application Model (AWS SAM), Lambda automatically creates the preceding resource-
based policy statement for you. If the policy already exists, or the user or role creating the
application doesn't have the appropriate permissions, then Lambda won't create it for you.
If you're using the AWS CLI, AWS CloudFormation, or the Lambda API directly, you must
add 1lambda: InvokeFunctionUrl permissions yourself. This makes your function public.
In addition, if you delete your function URL with auth type NONE, Lambda doesn't
automatically delete the associated resource-based policy. If you want to delete this policy,
you must manually do so.

In this statement, the 1ambda: FunctionUrlAuthType condition key value is NONE. This policy
statement allows access only when your function URL's auth type is also NONE.

If a function's resource-based policy doesn't grant 1ambda:invokeFunctionUrl permissions,
then users will get a 403 Forbidden error code when they try to invoke your function URL, even if
the function URL uses the NONE auth type.

Governance and access control

In addition to function URL invocation permissions, you can also control access on actions used to
configure function URLs. Lambda supports the following IAM policy actions for function URLs:

e lambda:InvokeFunctionUrl - Invoke a Lambda function using the function URL.
o lambda:CreateFunctionUrlConfig - Create a function URL and set its AuthType.

o lambda:UpdateFunctionUrlConfig - Update a function URL configuration and its
AuthType.

e lambda:GetFunctionUrlConfig - View the details of a function URL.

Access control 386

AWS Lambda Developer Guide

e lambda:ListFunctionUrlConfigs - List function URL configurations.

« lambda:DeleteFunctionUrlConfig - Delete a function URL.

(@ Note

The Lambda console supports adding permissions only for lambda: InvokeFunctionUrl.
For all other actions, you must add permissions using the Lambda API or AWS CLI.

To allow or deny function URL access to other AWS entities, include these actions in IAM policies.
For example, the following policy grants the example role in AWS account 444455556666
permissions to update the function URL for function my-function in account 123456789012.

Example cross-account function URL policy

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {
"AWS": "arn:aws:iam::444455556666:r0le/example"
1,
"Action": "lambda:UpdateFunctionUrlConfig",
"Resource": "arn:aws:lambda:us-east-2:123456789012:function:my-function"
}
]
}

Condition keys

For fine-grained access control over your function URLs, use a condition key. Lambda supports one
additional condition key for function URLs: FunctionUrlAuthType. The FunctionUrlAuthType
key defines an enum value describing the auth type that your function URL uses. The value can be

either AWS_IAM or NONE.

You can use this condition key in policies associated with your function. For example, you

might want to restrict who can make configuration changes to your function URLs. To deny all
UpdateFunctionUrlConfig requests to any function with URL auth type NONE, you can define
the following policy:

Access control 387

AWS Lambda Developer Guide

Example function URL policy with explicit deny

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Deny",
"Principal": "*",
"Action":[
"lambda:UpdateFunctionUrlConfig"
1)
"Resource": "arn:aws:lambda:us-east-1:123456789012:function:*",
"Condition": {
"StringEquals": {
"lambda:FunctionUrlAuthType": "NONE"
}
}
}
]
}

To grant the example role in AWS account 444455556666 permissions to make
CreateFunctionUrlConfig and UpdateFunctionUrlConfig requests on functions with URL
auth type AWS_IAM, you can define the following policy:

Example function URL policy with explicit allow

"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {
"AWS": "arn:aws:iam::444455556666:r0le/example"
},
"Action":[
"lambda:CreateFunctionUrlConfig",
"lambda:UpdateFunctionUrlConfig"
1,
"Resource": "arn:aws:lambda:us-east-1:123456789012:function:*",
"Condition": {
"StringEquals": {
"lambda:FunctionUrlAuthType": "AWS_IAM"

Access control 388

AWS Lambda Developer Guide

You can also use this condition key in a service control policy (SCP). Use SCPs to manage
permissions across an entire organization in AWS Organizations. For example, to deny users from
creating or updating function URLs that use anything other than the AWS_IAM auth type, use the
following service control policy:

Example function URL SCP with explicit deny

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Deny",
"Action":[
"lambda:CreateFunctionUrlConfig",
"lambda:UpdateFunctionUrlConfig"
1,
"Resource": "arn:aws:lambda:*:123456789012:function:*",
"Condition": {
"StringNotEquals": {
"lambda:FunctionUrlAuthType": "AWS_IAM"
}
}
}
]
}

Access control 389

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html

AWS Lambda Developer Guide

Invoking Lambda function URLs

A function URL is a dedicated HTTP(S) endpoint for your Lambda function. You can create and
configure a function URL through the Lambda console or the Lambda API.

® Tip
Lambda offers two ways to invoke your function through an HTTP endpoint: function URLs
and Amazon API Gateway. If you're not sure which is the best method for your use case, see
the section called “Function URLs vs Amazon API Gateway".

When you create a function URL, Lambda automatically generates a unique URL endpoint for you.
Once you create a function URL, its URL endpoint never changes. Function URL endpoints have the
following format:

https://<url-id>.lambda-url.<region>.on.aws

(® Note

Function URLs are not supported in the following AWS Regions: Asia Pacific (Hyderabad)
(ap-south-2), Asia Pacific (Melbourne) (ap-southeast-4), Asia Pacific (Malaysia) (ap-
southeast-5), Canada West (Calgary) (ca-west-1), Europe (Spain) (eu-south-2),
Europe (Zurich) (eu-central-2), Israel (Tel Aviv) (i1-central-1), and Middle East (UAE)
(me-central-1).

Function URLs are dual stack-enabled, supporting IPv4 and IPv6. After configuring your function
URL, you can invoke your function through its HTTP(S) endpoint via a web browser, curl, Postman,
or any HTTP client. To invoke a function URL, you must have 1lambda: InvokeFunctionUrl
permissions. For more information, see Access control.

Topics

« Function URL invocation basics

» Request and response payloads

Invoking function URLs 390

AWS Lambda Developer Guide

Function URL invocation basics

If your function URL uses the AWS_TIAM auth type, you must sign each HTTP request using AWS
Signature Version 4 (SigV4). Tools such as awscurl, Postman, and AWS SigV4 Proxy offer built-in

ways to sign your requests with SigV4.

If you don't use a tool to sign HTTP requests to your function URL, you must manually sign each
request using SigV4. When your function URL receives a request, Lambda also calculates the Sigv4
signature. Lambda processes the request only if the signatures match. For instructions on how to
manually sign your requests with SigV4, see Signing AWS requests with Signature Version 4 in the

Amazon Web Services General Reference Guide.

If your function URL uses the NONE auth type, you don't have to sign your requests using SigV4.
You can invoke your function using a web browser, curl, Postman, or any HTTP client.

To test simple GET requests to your function, use a web browser. For example, if your function
URLis https://abcdefg.lambda-url.us-east-1.on.aws, and it takes in a string parameter
message, your request URL could look like this:

https://abcdefg.lambda-url.us-east-1.on.aws/?message=HelloWorld

To test other HTTP requests, such as a POST request, you can use a tool such as curl. For example,
if you want to include some JSON data in a POST request to your function URL, you could use the
following curl command:

curl -v 'https://abcdefg.lambda-url.us-east-1.on.aws/?message=HelloWorld' \
-H 'content-type: application/json' \
-d '{ "example": "test" }'

Request and response payloads

When a client calls your function URL, Lambda maps the request to an event object before passing
it to your function. Your function's response is then mapped to an HTTP response that Lambda
sends back to the client through the function URL.

The request and response event formats follow the same schema as the Amazon API Gateway

payload format version 2.0.

Request payload format

A request payload has the following structure:

Invoking function URLs 391

https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://github.com/okigan/awscurl
http://www.postman.com/
https://github.com/awslabs/aws-sigv4-proxy
https://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api-develop-integrations-lambda.html#http-api-develop-integrations-lambda.proxy-format
https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api-develop-integrations-lambda.html#http-api-develop-integrations-lambda.proxy-format

AWS Lambda Developer Guide

"version": "2.0",
"routeKey": "$default",
"rawPath": "/my/path",
"rawQueryString": "parameterl=valuel¶meterl=value2¶meter2=value",
"cookies": [
"cookiel",
"cookie2"
1,
"headers": {
"headerl": "valuel",
"header2": "valuel,value2"
.
"queryStringParameters": {
"parameterl": "valuel,value2",
"parameter2": "value"
.
"requestContext": {
"accountId": "123456789012",
"apild": "<urlid>",
"authentication": null,
"authorizer": {
"iam": {
"accessKey": "AKIA...",
"accountId": "111122223333",
"callerId": "AIDA...",
"cognitoIdentity": null,
"principalOrgId": null,
"userArn": "arn:aws:iam::111122223333:user/example-user",
"userId": "AIDA..."

}
1,
"domainName": "<url-id>.lambda-url.us-west-2.on.aws",
"domainPrefix": "<url-id>",
"http": {
"method": "POST",
"path": "/my/path",
"protocol": "HTTP/1.1",
"sourcelp": "123.123.123.123",
"userAgent": "agent"
.

"requestId": "id",
"routeKey": "$default",

Invoking function URLs 392

AWS Lambda Developer Guide

"stage": "$default",
"time": "12/Mar/2020:19:03:58 +0000",
"timeEpoch": 1583348638390

.

"body": "Hello from client!",
"pathParameters": null,
"isBaseb64Encoded": false,
"stageVariables": null

Parameter Description Example

version The payload format version 2.0
for this event. Lambda
function URLs currently
support payload format

version 2.0.

routeKey Function URLs don't use this $default
parameter. Lambda sets this
to $default as a placehold
er.

rawPath The request path. For /example/test/demo
example, if the request URL
ishttps://{url-id}.1
ambda-url. {region}
.on.aws/example/te
st/demo , then the raw path
value is /example/test/
demo .

rawQueryString The raw string containing "?parameterl=value
the request's query string 1l¶meter2=value
parameters. Supported 2"
characters include a-z, A-Z,
0-9, .,_,-,% & = and +.

Invoking function URLs 393

https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api-develop-integrations-lambda.html#http-api-develop-integrations-lambda.proxy-format
https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api-develop-integrations-lambda.html#http-api-develop-integrations-lambda.proxy-format

AWS Lambda

Developer Guide

Parameter

cookies

headers

queryStringParamet
ers

requestContext

requestContext.acc
ountId

requestContext.apild

requestContext.aut
hentication

Description

An array containing all
cookies sent as part of the
request.

The list of request headers,
presented as key-value pairs.

The query parameters for the
request. For example, if the
request URL is https://{
url-id}.lambda-url
.{region}.on.aws/e
xample?name=Jane ,then
the queryStringParamet
ers valueisa JSON object
with a key of name and a

value of Jane.

An object that contains
additional information about
the request, such as the
requestId , the time of
the request, and the identity
of the caller if authorized
via AWS Identity and Access
Management (IAM).

The AWS account ID of the
function owner.

The ID of the function URL.

Function URLs don't use this
parameter. Lambda sets this
to null.

Example

["Cookie_1=Value_1",
"Cookie_2=Value_2"]

{"headerl":
"header2":

"valuel",
"value2"}

{"name": "Jane"}

"123456789012"

"33anwqw8fj"

null

Invoking function URLs

394

palOrgId

requestContext.aut

horizer.iam.userArn

requestContext.aut
horizer.iam.userlId

The user Amazon Resource
Name (ARN) of the caller
identity.

The user ID of the caller
identity.

"arn:aws:iam::1111
22223333 :user/exam
ple-user"

"AIDACOSFODNN7EXAM
PLE2"

AWS Lambda Developer Guide
Parameter Description Example
requestContext.aut An object that contains
horizer information about the caller

identity, if the function URL

uses the AWS_TAM auth type.

Otherwise, Lambda sets this

to null.
requestContext.aut The access key of the caller "AKIAIOSFODNN7EXAM
horizer.iam.access identity. PLE"
Key
requestContext.aut The AWS account ID of the "111122223333"
horizer.iam.accoun caller identity.
tId
requestContext.aut The ID (user ID) of the caller. "AIDACKCEVSQ6C2EXA
horizer.iam.caller MPLE"
Id
requestContext.aut Function URLs don't use this null
horizer.iam.cognit parameter. Lambda sets this
oIdentity to null or excludes this from

the JSON.
requestContext.aut The principal org ID associate "AIDACKCEVSQORGEXA
horizer.iam.princi d with the caller identity. MPLE"

Invoking function URLs

395

AWS Lambda

Developer Guide

Parameter

requestContext.dom
ainName

requestContext.dom
ainPrefix

requestContext.http

requestContext.htt
p.method

requestContext.htt
p.path

requestContext.htt
p.protocol

requestContext.htt
p.sourcelp

Description

The domain name of the
function URL.

The domain prefix of the
function URL.

An object that contains
details about the HTTP
request.

The HTTP method used in
this request. Valid values
include GET, POST, PUT,
HEAD, OPTIONS, PATCH, and
DELETE.

The request path. For
example, if the request URL
ishttps://{url-id}.1
ambda-url. {region}
.on.aws/example/te
st/demo , then the path
value is /example/test/
demo .

The protocol of the request.

The source IP address of the
immediate TCP connection
making the request.

Example

"<url-id>.lambda-u
rl.us-west-2.0on.aw
SIl

"<url-id>"

GET

/example/test/demo

HTTP/1.1

123.123.123.123

Invoking function URLs

396

AWS Lambda

Developer Guide

Parameter

requestContext.htt
p.userAgent

requestContext.req
uestId

requestContext.rou
teKey

requestContext.stage

requestContext.time

requestContext.tim
eEpoch

body

pathParameters

Description

The User-Agent request
header value.

The ID of the invocation
request. You can use this ID to
trace invocation logs related
to your function.

Function URLs don't use this
parameter. Lambda sets this
to $default as a placehold
er.

Function URLs don't use this
parameter. Lambda sets this
to $default as a placehold
er.

The timestamp of the
request.

The timestamp of the
request, in Unix epoch time.

The body of the request.

If the content type of the
request is binary, the body is
base64-encoded.

Function URLs don't use this
parameter. Lambda sets this
to null or excludes this from
the JSON.

Example

Mozilla/5.0 (Macintos
h; Intel Mac 0S X
10_15_7) Gecko/201
00101 Firefox/42.0

e1l506fd5-9e7b-434F-
bd42-4f8fa224b599

$default

$default

"Q7/Sep/2021:22:50
122 +0000"

"1631055022677"

{"keyl": "valuel",
"key2": "value2"}

null

Invoking function URLs

397

AWS Lambda Developer Guide

Parameter Description Example

isBase64Encoded TRUE if the body is a binary FALSE
payload and base64-encoded.
FALSE otherwise.

stageVariables Function URLs don't use this null
parameter. Lambda sets this
to null or excludes this from
the JSON.

Response payload format

When your function returns a response, Lambda parses the response and converts it into an HTTP
response. Function response payloads have the following format:

{
"statusCode": 201,
"headers": {
"Content-Type": "application/json",
"My-Custom-Header": "Custom Value"
},
"body": "{ \"message\": \"Hello, world!\" }",
"cookies": [
"Cookie_1=Valuel; Expires=21 Oct 2021 07:48 GMT",
"Cookie_2=Value2; Max-Age=78000"
1,
"isBaseb4Encoded": false
}

Lambda infers the response format for you. If your function returns valid JSON and doesn't return
a statusCode, Lambda assumes the following:

statusCode is 200.

content-typeis application/json.

body is the function response.

isBaseb64Encodedis false.

Invoking function URLs 398

AWS Lambda

Developer Guide

The following examples show how the output of your Lambda function maps to the response
payload, and how the response payload maps to the final HTTP response. When the client invokes

your function URL, they see the HTTP response.

Example output for a string response

Lambda function output Interpreted response output

"Hello, world!" {
"statusCode": 200,
"body": "Hello,
world!",

"headers": {
"content-type":
"application/json"
.
"isBase64Encoded":
false
}

Example output for a JSON response

Lambda function output Interpreted response output

{ {
"message": "Hello, "statusCode": 200,
world!" "body": {
} "message": "Hello,
world!"
Y
"headers": {
"content-type":
"application/json"
Y
"isBaseb4Encoded":
false

HTTP response (what the

client sees)

HTTP/2 200

date: Wed, 08 Sep 2021
18:02:24 GMT
content-type: applicati

on/json

content-length: 15

"Hello, world!"

HTTP response (what the
client sees)

HTTP/2 200

date: Wed, 08 Sep 2021
18:02:24 GMT
content-type: applicati

on/json

content-length: 34

"message":
world!"

}

"Hello,

Invoking function URLs

399

AWS Lambda

Developer Guide

Lambda function output

Interpreted response output

Example output for a custom response

Lambda function output

"statusCode": 201,
"headers": {
"Content-Type":
"application/json",
"My-Custom-
Header": "Custom Value"
1,
"body": JSON.stri
ngify({
"message":
"Hello, world!"
b,
"isBase64Encoded":
false
}

Cookies

Interpreted response output

"statusCode": 201,
"headers": {
"Content-Type":
"application/json",
"My-Custom-
Header": "Custom Value"
1,
"body": JSON.stri
ngify({
"message":
"Hello, world!"
b,
"isBase64Encoded":
false
}

HTTP response (what the
client sees)

HTTP response (what the
client sees)

HTTP/2 201

date: Wed, 08 Sep 2021
18:02:24 GMT
content-type: applicati
on/json

content-length: 27

my-custom-header:
Custom Value

"message": "Hello,
world!"

}

To return cookies from your function, don't manually add set-cookie headers. Instead, include
the cookies in your response payload object. Lambda automatically interprets this and adds them
as set-cookie headers in your HTTP response, as in the following example.

Lambda function output

"statusCode": 201,
"headers": {

HTTP response (what the client sees)

HTTP/2 201

date: Wed, 08 Sep 2021 18:02:24 GMT
content-type: application/json

Invoking function URLs

400

AWS Lambda

Developer Guide

Lambda function output

"Content-Type": "application/

json",
"My-Custom-Header": "Custom
Value"
.
"body": JSON.stringify({
"message": "Hello, world!"
B

"cookies": [
"Cookie_1=Valuel; Expires=21
Oct 2021 @7:48 GMT",
"Cookie_2=Value2; Max-Age=7
8000"
1l

"isBaseb64Encoded": false

HTTP response (what the client sees)

content-length: 27
my-custom-header: Custom Value
set-cookie: Cookie_1=Value2;
Expires=21 Oct 2021 07:48 GMT
set-cookie: Cookie_2=Value2; Max-

Age=78000
{

"message": "Hello, world!"
}

Invoking function URLs

401

AWS Lambda Developer Guide

Monitoring Lambda function URLs

You can use AWS CloudTrail and Amazon CloudWatch to monitor your function URLs.

Topics

» Monitoring function URLs with CloudTrail

o CloudWatch metrics for function URLs

Monitoring function URLs with CloudTrail

For function URLs, Lambda automatically supports logging the following APl operations as events
in CloudTrail log files:

CreateFunctionUrlConfig

UpdateFunctionUrlConfig

DeleteFunctionUrlConfig

GetFunctionUrlConfig

ListFunctionUrlConfigs

Each log entry contains information about the caller identity, when the request was made, and
other details. You can see all events within the last 90 days by viewing your CloudTrail Event
history. To retain records past 90 days, you can create a trail.

By default, CloudTrail doesn't log InvokeFunctionUzrl requests, which are considered data
events. However, you can turn on data event logging in CloudTrail. For more information, see
Logging data events for trails in the AWS CloudTrail User Guide.

CloudWatch metrics for function URLs

Lambda sends aggregated metrics about function URL requests to CloudWatch. With these metrics,
you can monitor your function URLs, build dashboards, and configure alarms in the CloudWatch
console.

Function URLs support the following invocation metrics. We recommend viewing these metrics
with the Sum statistic.

« UrlRequestCount — The number of requests made to this function URL.

Monitoring function URLs 402

https://docs.aws.amazon.com/lambda/latest/api/API_CreateFunctionUrlConfig.html
https://docs.aws.amazon.com/lambda/latest/api/API_UpdateFunctionUrlConfig.html
https://docs.aws.amazon.com/lambda/latest/api/API_DeleteFunctionUrlConfig.html
https://docs.aws.amazon.com/lambda/latest/api/API_GetFunctionUrlConfig.html
https://docs.aws.amazon.com/lambda/latest/api/API_ListFunctionUrlConfigs.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html

AWS Lambda Developer Guide

e Url4axxCount — The number of requests that returned a 4XX HTTP status code. 4XX series codes
indicate client-side errors, such as bad requests.

e Url5xxCount — The number of requests that returned a 5XX HTTP status code. 5XX series codes
indicate server-side errors, such as function errors and timeouts.

Function URLs also support the following performance metric. We recommend viewing this metric
with the Average or Max statistics.

« UrlRequestLatency - The time between when the function URL receives a request and when
the function URL returns a response.

Each of these invocation and performance metrics supports the following dimensions:

« FunctionName - View aggregate metrics for function URLs assigned to a function's $LATEST
unpublished version, or to any of the function's aliases. For example, hello-world-function.

« Resource - View metrics for a specific function URL. This is defined by a function name, along
with either the function's $LATEST unpublished version or one of the function's aliases. For
example, hello-world-function:$LATEST.

« ExecutedVersion - View metrics for a specific function URL based on the executed version.
You can use this dimension primarily to track the function URL assigned to the $LATEST
unpublished version.

Select a method to invoke your Lambda function using an HTTP
request

Many common use cases for Lambda involve invoking your function using an HTTP request. For
example, you might want a web application to invoke your function through a browser request.
Lambda functions can also be used to create full REST APIs, handle user interactions from mobile
apps, process data from external services via HTTP calls, or create custom webhooks.

The following sections explain what your choices are for invoking Lambda through HTTP and
provide information to help you make the right decision for your particular use case.

Function URLs vs Amazon API Gateway 403

AWS Lambda Developer Guide

What are your choices when selecting an HTTP invoke method?

Lambda offers two main methods to invoke a function using an HTTP request - function URLs and

API Gateway. The key differences between these two options are as follows:

o Lambda function URLs provide a simple, direct HTTP endpoint for a Lambda function. They are
optimized for simplicity and cost-effectiveness and provide the fastest path to expose a Lambda
function via HTTP.

« API Gateway is a more advanced service for building fully-featured APIs. APl Gateway is
optimized for building and managing productions APIs at scale and provides comprehensive
tools for security, monitoring, and traffic management.

Recommendations if you already know your requirements
If you're already clear on your requirements, here are our basic recommendations:

We recommend function URLs for simple applications or prototyping where you only need basic

authentication methods and request/response handling and where you want to keep costs and
complexity to @ minimum.

API Gateway is a better choice for production applications at scale or for cases where you need
more advanced features like OpenAPI Description support, a choice of authentication options,

custom domain names, or rich request/response handling including throttling, caching, and
request/response transformation.

What to consider when selecting a method to invoke your Lambda function

When selecting between function URLs and API Gateway, you need to consider the following
factors:

» Your authentication needs, such as whether you require OAuth or Amazon Cognito to
authenticate users

 Your scaling requirements and the complexity of the APl you want to implement

« Whether you need advanced features such as request validation and request/response
formatting

« Your monitoring requirements

» Your cost goals

Function URLs vs Amazon API Gateway 404

https://www.openapis.org/

AWS Lambda Developer Guide

By understanding these factors, you can select the option that best balances your security,
complexity, and cost requirements.

The following information summarizes the main differences between the two options.

Authentication

« Function URLs provide basic authentication options through AWS Identity and Access
Management (IAM). You can configure your endpoints to be either public (no authentication) or
to require IAM authentication. With IAM authentication, you can use standard AWS credentials
or IAM roles to control access. While straightforward to set up, this approach provides limited
options compared with other authenticaton methods.

« API Gateway provides access to a more comprehensive range of authentication options. As
well as IAM authentication, you can use Lambda authorizers (custom authentication logic),
Amazon Cognito user pools, and OAuth2.0 flows. This flexibility allows you to implement
complex authentication schemes, including third-party authentication providers, token-based
authentication, and multi-factor authentication.

Request/response handling

« Function URLs provide basic HTTP request and response handling. They support standard HTTP
methods and include built-in cross-origin resource sharing (CORS) support. While they can
handle JSON payloads and query parameters naturally, they don't offer request transformation
or validation capabilities. Response handling is similarly straightforward - the client receives the
response from your Lambda function exactly as Lambda returns it.

« API Gateway provides sophisticated request and response handling capabilities. You can define
request validators, transform requests and responses using mapping templates, set up request/
response headers, and implement response caching. APl Gateway also supports binary payloads
and custom domain names and can modify responses before they reach the client. You can set
up models for request/response validation and transformation using JSON Schema.

Scaling

o Function URLs scale directly with your Lambda function's concurrency limits and handle traffic
spikes by scaling your function up to its maximum configured concurrency limit. Once that limit
is reached, Lambda responds to additional requests with HTTP 429 responses. There's no built-
in queuing mechanism, so handling scaling is entirely dependent on your Lambda function's

Function URLs vs Amazon API Gateway 405

https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-use-lambda-authorizer.html
https://docs.aws.amazon.com/cognito/latest/developerguide/what-is-amazon-cognito.html

AWS Lambda Developer Guide

configuration. By default, Lambda functions have a limit of 1,000 concurrent executions per AWS
Region.

« API Gateway provides additional scaling capabilities on top of Lambda's own scaling. It includes
built-in request queuing and throttling controls, allowing you to manage traffic spikes more
gracefully. APl Gateway can handle up to 10,000 requests per second per region by default,
with a burst capacity of 5,000 requests per second. It also provides tools to throttle requests at
different levels (API, stage, or method) to protect your backend.

Monitoring

« Function URLs offer basic monitoring through Amazon CloudWatch metrics, including request
count, latency, and error rates. You get access to standard Lambda metrics and logs, which show
the raw requests coming into your function. While this provides essential operational visibility,
the metrics are focused mainly on function execution.

« API Gateway provides comprehensive monitoring capabilities including detailed metrics, logging,
and tracing options. You can monitor API calls, latency, error rates, and cache hit/miss rates
through CloudWatch. API Gateway also integrates with AWS X-Ray for distributed tracing and
provides customizable logging formats.

Cost

« Function URLs follow the standard Lambda pricing model — you only pay for function
invocations and compute time. There are no additional charges for the URL endpoint itself. This
makes it a cost-effective choice for simple APIs or low-traffic applications if you don't need the
additional features of API Gateway.

« API Gateway offers a free tier that includes one million API calls received for REST APIs and
one million API calls received for HTTP APIs. After this, APl Gateway charges for API calls, data
transfer, and caching (if enabled). Refer to the APl Gateway pricing page to understand the costs
for your own use case.

Other features

» Function URLs are designed for simplicity and direct Lambda integration. They support both
HTTP and HTTPS endpoints, offer built-in CORS support, and provide dual-stack (IPv4 and IPv6)
endpoints. While they lack advanced features, they excel in scenarios where you need a quick,
straightforward way to expose Lambda functions via HTTP.

Function URLs vs Amazon API Gateway 406

https://aws.amazon.com/api-gateway/pricing/#Free_Tier
https://aws.amazon.com/api-gateway/pricing/

AWS Lambda Developer Guide

« API Gateway includes numerous additional features such as API versioning, stage management,
API keys for usage plans, APl documentation through Swagger/OpenAPIl, WebSocket APIs,
private APIs within a VPC, and WAF integration for additional security. It also supports canary
deployments, mock integrations for testing, and integration with other AWS services beyond
Lambda.

Select a method to invoke your Lambda function

Now that you've read about the criteria for selecting between Lambda function URLs and API
Gateway and the key differences between them, you can select the option that best meets your
needs and use the following resources to help you get started using it.

Function URLs

Get started with function URLs with the following resources

 Follow the tutorial Creating a Lambda function with a function URL

» Learn more about function URLs in the the section called “"Function URLs" chapter of this
guide

« Try the in-console guided tutorial Create a simple web app by doing the following:

1. Open the functions page of the Lambda console.

2. Open the help panel by choosing the icon in the top right corner of the screen.

4

C

Create function
1 (3

3. Select Tutorials.

4. In Create a simple web app, choose Start tutorial.

Function URLs vs Amazon API Gateway 407

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

API Gateway
Get started with Lambda and API Gateway with the following resources

 Follow the tutorial Using Lambda with APl Gateway to create a REST API integrated with a
backend Lambda function.

« Learn more about the different kinds of APl offered by API Gateway in the following sections
of the Amazon API Gateway Developer Guide:

» API Gateway REST APIs
» API Gateway HTTP APIs
« API Gateway WebSocket APIs

« Try one or more of the examples in the Tutorials and workshops section of the Amazon API

Gateway Developer Guide.

Function URLs vs Amazon API Gateway 408

https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-rest-api.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-websocket-api.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-tutorials.html

AWS Lambda Developer Guide

Tutorial: Creating a webhook endpoint using a Lambda function URL

In this tutorial, you create a Lambda function URL to implement a webhook endpoint. A webhook
is a lightweight, event-driven communication that automatically sends data between applications
using HTTP. You can use a webhook to receive immediate updates about events happening in
another system, such as when a new customer signs up on a website, a payment is processed, or a
file is uploaded.

With Lambda, webhooks can be implemented using either Lambda function URLs or APl Gateway.
Function URLs are a good choice for simple webhooks that don't require features like advanced
authorization or request validation.

® Tip
If you're not sure which solution is best for your particular use case, see the section called
“Function URLs vs Amazon API Gateway".

Prerequisites

To complete this tutorial, you must have either Python (version 3.8 or later) or Node.js (version 18
or later) installed on your local machine.

To test the endpoint using an HTTP request, the tutorial uses curl, a command line tool you can use
to transfer data using various network protocols. Refer to the curl documentation to learn how to

install the tool if you don't already have it.
Create the Lambda function

First create the Lambda function that runs when an HTTP request is sent to your webhook
endpoint. In this example, the sending application sends an update whenever a payment is
submitted and indicates in the body of the HTTP request whether the payment was successful. The
Lambda function parses the request and takes action according to the status of the payment. In
this example, the code just prints the order ID for the payment, but in a real application, you might
add the order to a database or send a notification.

The function also implements the most common authentication method used for webhooks,

hash-based message authentication (HMAC). With this method, both the sending and receiving
applications share a secret key. The sending application uses a hashing algorithm to generate a
unique signature using this key together with the message content, and includes the signature

Tutorial: Creating a webhook endpoint 409

https://curl.se/
https://curl.se/docs/install.html

AWS Lambda

Developer Guide

in the webhook request as an HTTP header. The receiving application then repeats this step,
generating the signature using the secret key, and compares the resulting value with the signature
sent in the request header. If the result matches, the request is considered legitimate.

Create the function using the Lambda console with either the Python or Node.js runtime.

Python

Create the Lambda function

1. Open the Functions page of the Lambda console.

2. Create a basic 'Hello world' function by doing the following:

a
b.
C.
d.

e.

Choose Create function.

Select Author from scratch.

For Function name, enter myLambdaWebhook.
For Runtime, select python3.13.

Choose Create function.

3. Inthe Code source pane, replace the existing code by copying and pasting the following:

import json
import hmac
import hashlib
import os

def lambda_handler(event, context):

Get the webhook secret from environment variables
webhook_secret = os.environ['WEBHOOK_SECRET']

Verify the webhook signature
if not verify_signature(event, webhook_secret):

return {

'statusCode': 401,

'body': json.dumps({'error': 'Invalid signature'})
}

try:
Parse the webhook payload
payload = json.loads(event['body'])

Tutorial: Creating a webhook endpoint 410

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda Developer Guide

Handle different event types
event_type = payload.get('type')

if event_type == 'payment.success':
Handle successful payment
order_id = payload.get('orderId')
print(f"Processing successful payment for order {order_id}")

Add your business logic here
For example, update database, send notifications, etc.

elif event_type == 'payment.failed':
Handle failed payment
order_id = payload.get('orderId')
print(f"Processing failed payment for order {order_id}")

Add your business logic here

else:
print(f"Received unhandled event type: {event_typel}")

Return success response
return {
'statusCode': 200,
'body': json.dumps({'received': True})

except json.JSONDecodeError:
return {
'statusCode': 400,
'body': json.dumps({'error': 'Invalid JSON payload'})
}
except Exception as e:
print(f"Error processing webhook: {e}")

return {

'statusCode': 500,

'body': json.dumps({'error': 'Internal server error'})
}

def verify_signature(event, webhook_secret):

Verify the webhook signature using HMAC

try:

Tutorial: Creating a webhook endpoint 411

AWS Lambda Developer Guide

Get the signature from headers
signature = event['headers'].get('x-webhook-signature')

if not signature:
print("Error: Missing webhook signature in headers")
return False

Get the raw body (return an empty string if the body key doesn't
exist)
body = event.get('body', '')

Create HMAC using the secret key

expected_signature = hmac.new(
webhook_secret.encode('utf-8'),
body.encode('utf-8'),
hashlib.sha256

) .hexdigest()

Compare the expected signature with the received signature to
authenticate the message
is_valid = hmac.compare_digest(signature, expected_signature)
if not is_valid:
print(f"Error: Invalid signature. Received: {signature}, Expected:
{expected_signaturel}")
return False

return True
except Exception as e:
print(f"Error verifying signature: {el}")

return False

4. Inthe DEPLOY section, choose Deploy to update your function's code.

Node.js
Create the Lambda function

1. Open the Functions page of the Lambda console.

2. Create a basic 'Hello world' function by doing the following:

a. Choose Create function.

b. Select Author from scratch.

Tutorial: Creating a webhook endpoint 412

https://console.aws.amazon.com/lambda/home#/functions

AWS Lambda

Developer Guide

c. For Function name, enter myLambdaWebhook.

d. For Runtime, select nodejs22.x.

e. Choose Create function.

3. Inthe Code source pane, replace the existing code by copying and pasting the following:

import crypto from 'crypto';

export const handler = async (event, context) => {
// Get the webhook secret from environment variables
const webhookSecret = process.env.WEBHOOK_SECRET;

// Verify the webhook signature
if (!verifySignature(event, webhookSecret)) {

return {

statusCode: 401,
body: JSON.stringify({ error: 'Invalid signature' })

I

try {

// Parse the webhook payload
const payload = JSON.parse(event.body);

// Handle different event types
const eventType = payload.type;

switch (eventType) {
case 'payment.success': {

${orderId}’);

// Handle successful payment
const orderId = payload.orderld;
console.log(Processing successful payment for order

// Add your business logic here
// For example, update database, send notifications, etc.
break;

case 'payment.failed': {

// Handle failed payment
const orderId = payload.orderld;

console.log(Processing failed payment for order ${orderId}

)

Tutorial: Creating a webhook endpoint

413

AWS Lambda Developer Guide

// Add your business logic here
break;

default:

console.log("Received unhandled event type: ${eventTypel});

// Return success response
return {
statusCode: 200,
body: JSON.stringify({ received: true })

};

} catch (error) {
if (error instanceof SyntaxError) {
// Handle JSON parsing errors
return {
statusCode: 400,
body: JSON.stringify({ error: 'Invalid JSON payload' })

};

// Handle all other errors
console.error('Error processing webhook:', error);
return {
statusCode: 500,
body: JSON.stringify({ error: 'Internal server error' })

13
13
// Verify the webhook signature using HMAC

const verifySignature = (event, webhookSecret) => {
try {
// Get the signature from headers
const signature = event.headers['x-webhook-signature'];

if (!signature) {
console.log('No signature found in headers:', event.headers);
return false;

Tutorial: Creating a webhook endpoint

414

AWS Lambda Developer Guide

// Get the raw body (return an empty string if the body key doesn't
exist)
const body = event.body || '';

// Create HMAC using the secret key
const hmac = crypto.createHmac('sha256', webhookSecret);
const expectedSignature = hmac.update(body).digest('hex"');

// Compare expected and received signatures
const isValid = signature === expectedSignature;
if (!'isValid) {
console.log(Invalid signature. Received: ${signature}, Expected:
${expectedSignaturel});
return false;

return true;
} catch (error) {
console.error('Error during signature verification:', error);
return false;
}
};

4. Inthe DEPLOY section, choose Deploy to update your function's code.

Create the secret key

For the Lambda function to authenticate the webhook request, it uses a secret key which it shares
with the calling application. In this example, the key is stored in an environment variable. In a
production application, we recommend that you use AWS Secrets Manager as a more secure
option. To learn more about using Secrets Manager to store secret keys, see Create an AWS Secrets
Manager secret and Get secrets from AWS Secrets Manager in the AWS Secrets Manager User Guide.

Create and store the webhook secret key

1. Generate a long, random string using a cryptographically secure random number generator.
You can use the following code snippets in Python or Node.js to generate and print a 32-
character secret, or use your own preferred method.

Tutorial: Creating a webhook endpoint 415

https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/retrieving-secrets.html

AWS Lambda Developer Guide

Python

Example code to generate a secret

import secrets
webhook_secret = secrets.token_urlsafe(32)
print(webhook_secret)

Node.js

Example code to generate a secret (ES module format)

import crypto from 'crypto';
let webhookSecret = crypto.randomBytes(32).toString('baseb4');
console.log(webhookSecret)

2. Store your generated string as an environment variable for your function by doing the
following:
a. Inthe Configuration tab for your function, select Environment variables.
b. Choose Edit.
c. Choose Add environment variable.

d. For Key, enter WEBHOOK_SECRET, then for Value, enter the secret you generated in the
previous step.

e. Choose Save.

You'll need to use this secret again later in the tutorial to test your function, so make a note of it
Now.

Create the function URL endpoint

Create an endpoint for your webhook using a Lambda function URL. Beacuse you use the auth type
of NONE to create an endpoint with public access, anyone with the URL can invoke your function. To
learn more about controlling access to function URLs, see the section called “Access control”. If you

need more advanced authentication options for your webhook, consider using APl Gateway.

Tutorial: Creating a webhook endpoint 416

AWS Lambda Developer Guide

Create the function URL endpoint

1. In the Configuration tab for your function, select Function URL.
2. Choose Create function URL.

3. For Auth type, select NONE.
4

Choose Save.

The endpoint for the function URL you just created is displayed in the Function URL pane. Copy
the endpoint to use later in the tutorial.

Test the function in the console

Before using an HTTP request to invoke your function using the URL endpoint, test it in the console
to confirm your code is working as expected.

To verify the function in the console, you first calculate a webhook signature using the secret you
generated earlier in the tutorial with the following test JSON payload:

{
"type": "payment.success",
"orderId": "1234",
"amount": "99.99"

}

Use either of the following Python or Node.js code examples to calculate the webhook signature
using your own secret.

Python
Calculate the webhook signature

1. Save the following code as a file named calculate_signature. py. Replace the
webhook secret in the code with your own value.

import secrets
import hmac
import json
import hashlib

Tutorial: Creating a webhook endpoint 417

AWS Lambda Developer Guide

webhook_secret = "arlbSDCP86n_1H90s0fL_Q@b2NAHBIBQOyGIOX4Zay4M"

body = json.dumps({"type": "payment.success", "orderId": "1234", "amount":
"99.99"})

signature = hmac.new(
webhook_secret.encode('utf-8'),
body.encode('utf-8'),
hashlib.sha256
) .hexdigest()

print(signature)

2. Calculate the signature by running the following command from the same directory you
saved the code in. Copy the signature the code outputs.

python calculate_signature.py

Node.js
Calculate the webhook signature

1. Save the following code as a file named calculate_signature.mjs. Replace the
webhook secret in the code with your own value.

import crypto from 'crypto';

const webhookSecret = "arlbSDCP86n_1H90s0fL_Qb2NAHBIBQOyGIOX4Zay4M"

const body = "{\"type\": \"payment.success\", \"orderId\": \"1234\", \"amount\":
\Il99 . 99\"}" ;

let hmac = crypto.createHmac('sha256', webhookSecret);
let signature = hmac.update(body).digest('hex');

console.log(signature);

2. Calculate the signature by running the following command from the same directory you
saved the code in. Copy the signature the code outputs.

node calculate_signature.mjs

Tutorial: Creating a webhook endpoint 418

AWS Lambda Developer Guide

You can now test your function code using a test HTTP request in the console.

Test the function in the console

1. Select the Code tab for your function.

2. Inthe TEST EVENTS section, choose Create new test event

3. For Event Name, enter myEvent.

4. Replace the existing JSON by copying and pasting the following into the Event JSON pane.

Replace the webhook signature with the value you calculated in the previous step.

"headers": {
"Content-Type": "application/json",
"x-webhook-signature":
"2d672e7a0423fab740fbc040e801d1241f2df32d2ffd8989617a599486553e2a"
},
"body": "{\"type\": \"payment.success\", \"orderId\": \"1234\", \"amount\":
\"99.99\"}"
}

5. Choose Save.

6. Choose Invoke.

You should see output similar to the following:

Python

Status: Succeeded
Test Event Name: myEvent

Response:
{
"statusCode": 200,
"body": "{\"received\": truel}"

Function Logs:

START RequestId: 50cc0788-d70e-453a-9a22-ceaa2l@e8ac6 Version: $LATEST
Processing successful payment for order 1234

END RequestId: 50cc@788-d70e-453a-9a22-ceaa2l@e8ach

Tutorial: Creating a webhook endpoint 419

AWS Lambda Developer Guide

REPORT RequestId: 50cc0788-d70e-453a-9a22-ceaa2l@e8ac6 Duration: 1.55 ms Billed
Duration: 2 ms Memory Size: 128 MB Max Memory Used: 36 MB Init Duration: 136.32
ms

Node.js

Status: Succeeded
Test Event Name: myEvent

Response:

{
"statusCode": 200,

"body": "{\"received\":truel}"

Function Logs:

START RequestId: e54fe6c7-1df9-4f05-a4c4-0f71cacd64fs Version: $LATEST

2025-01-10T18:05:42.062Z e54febc7-1df9-4f05-a4c4-0f71cacd64f4 INFO Processing
successful payment for order 1234

END RequestId: e54febc7-1df9-4f05-a4c4-0f71cacd64afsa

REPORT RequestId: e54fe6c7-1df9-4f05-a4c4-0f71cacd64f4 Duration: 60.10 ms Billed
Duration: 61 ms Memory Size: 128 MB Max Memory Used: 72 MB Init Duration:
174.46 ms

Request ID: e54fe6c7-1df9-4f05-a4c4-0f71cacd6afsa

Test the function using an HTTP request

Use the curl command line tool to test your webhook endpoint.
Test the function using HTTP requests

1. Inaterminal or shell program, run the following curl command. Replace the URL with the
value for your own function URL endpoint and replace the webhook signature with the
signature you calculated using your own secret key.

curl -X POST https://ryqgmbx5xjzxahif6frvzikpreobpvpf.lambda-url.us-west-2.on.aws/
\

-H "Content-Type: application/json" \

-H "x-webhook-

signature: d5f52b76ffba65ff60ea73da67bdf1fc5825d4db56b5d3ffadb64b7cb85ef48b" \

Tutorial: Creating a webhook endpoint 420

AWS Lambda Developer Guide

-d '{"type": "payment.success", "orderId": "1234", "amount": "99.99"}'

You should see the following output:

{"received": true}

2. Inspect the CloudWatch logs for your function to confirm it parsed the payload correctly by
doing the following:

a. Open the Logs group page in the Amazon CloudWatch console.
b. Select your function's log group (/aws/lambda/myLambdawWebhook).

c. Select the most recent log stream.

You should see output similar to the following in your function's logs:

Python
Processing successful payment for order 1234
Node.js

2025-01-10T18:05:42.062Z e54fe6c7-1df9-4f05-a4c4-0f71cacd64f4 INFO
Processing successful payment for order 1234

3. Confirm that your code detects an invalid signature by running the following curl command.
Replace the URL with your own function URL endpoint.

cuxl -X POST https://ryqgmbx5xjzxahif6frvzikpreobpvpf.lambda-url.us-west-2.on.aws/

\

-H "Content-Type: application/json" \

-H "x-webhook-signature: abcdefg" \

-d '{"type": "payment.success", "orderId": "1234", "amount": "99.99"}'

You should see the following output:

"error": "Invalid signature"}

Tutorial: Creating a webhook endpoint 421

https://console.aws.amazon.com/cloudwatch/home#logsV2:log-groups

AWS Lambda Developer Guide

Clean up your resources

You can now delete the resources that you created for this tutorial, unless you want to retain them.
By deleting AWS resources that you're no longer using, you prevent unnecessary charges to your
AWS account.

To delete the Lambda function

1

2
3.
4

Open the Functions page of the Lambda console.

Select the function that you created.
Choose Actions, Delete.

Type confixm in the text input field and choose Delete.

When you created the Lambda function in the console, Lambda also created an execution role for
your function.

To delete the execution role

Open the Roles page of the IAM console.

Select the execution role that Lambda created. The role has the name format
myLambdaWebhook-role-<random string>.

Choose Delete.

Enter the name of the role in the text input field and choose Delete.

Tutorial: Creating a webhook endpoint 422

https://console.aws.amazon.com/lambda/home#/functions
https://console.aws.amazon.com/iam/home#/roles

AWS Lambda Developer Guide

Understanding Lambda function scaling

Concurrency is the number of in-flight requests that your AWS Lambda function is handling at the
same time. For each concurrent request, Lambda provisions a separate instance of your execution
environment. As your functions receive more requests, Lambda automatically handles scaling the
number of execution environments until you reach your account's concurrency limit. By default,
Lambda provides your account with a total concurrency limit of 1,000 concurrent executions across
all functions in an AWS Region. To support your specific account needs, you can request a quota

increase and configure function-level concurrency controls so that your critical functions don't
experience throttling.

This topic explains concurrency concepts and function scaling in Lambda. By the end of this topic,
you'll be able to understand how to calculate concurrency, visualize the two main concurrency
control options (reserved and provisioned), estimate appropriate concurrency control settings, and
view metrics for further optimization.

Sections

« Understanding and visualizing concurrency

» Calculating concurrency for a function

« Understanding reserved concurrency and provisioned concurrency

» Understanding concurrency and requests per second

« Concurrency quotas

» Configuring reserved concurrency for a function

» Configuring provisioned concurrency for a function

« Lambda scaling behavior

» Monitoring concurrency

Understanding and visualizing concurrency

Lambda invokes your function in a secure and isolated execution environment. To handle a request,

Lambda must first initialize an execution environment (the Init phase), before using it to invoke
your function (the Invoke phase):

Understanding and visualizing concurrency 423

https://aws.amazon.com/premiumsupport/knowledge-center/lambda-concurrency-limit-increase/
https://aws.amazon.com/premiumsupport/knowledge-center/lambda-concurrency-limit-increase/

AWS Lambda Developer Guide

Time >

L Init Invoke
Execution environment busy

(® Note

Actual Init and Invoke durations can vary depending on many factors, such as the runtime
you choose and the Lambda function code. The previous diagram isn't meant to represent
the exact proportions of Init and Invoke phase durations.

The previous diagram uses a rectangle to represent a single execution environment. When your
function receives its very first request (represented by the yellow circle with label 1), Lambda
creates a new execution environment and runs the code outside your main handler during the Init
phase. Then, Lambda runs your function's main handler code during the Invoke phase. During this
entire process, this execution environment is busy and cannot process other requests.

When Lambda finishes processing the first request, this execution environment can then process
additional requests for the same function. For subsequent requests, Lambda doesn't need to re-
initialize the environment.

Time >
1 Init Invoke 2 Invoke
Execution environment busy Execution environment
busy

In the previous diagram, Lambda reuses the execution environment to handle the second request
(represented by the yellow circle with label 2).

Understanding and visualizing concurrency 424

AWS Lambda

Developer Guide

So far, we've focused on just a single instance of your execution environment (that is, a concurrency
of 1). In practice, Lambda may need to provision multiple execution environment instances in
parallel to handle all incoming requests. When your function receives a new request, one of two

things can happen:

« If a pre-initialized execution environment instance is available, Lambda uses it to process the

request.

« Otherwise, Lambda creates a new execution environment instance to process the request.

For example, let's explore what happens when your function receives 10 requests:

Time

=
A 1 Init Invoke 6 Invoke

B 2 Init Invoke 7 Invoke

C 3 Init Invoke 8 Invoke

D 4 Init Invoke 10 Invoke

E 5 Init Invoke

F 9 Init Invoke

In the previous diagram, each horizontal plane represents a single execution environment instance
(labeled from A through F). Here's how Lambda handles each request:

Request Lambda behavior Reasoning
1 Provisions new environment This is the first request;
A no execution environment
instances are available.
2 Provisions new environment B Existing execution environme

nt instance A is busy.

Understanding and visualizing concurrency

425

AWS Lambda

Developer Guide

Request

3

10

Lambda behavior

Provisions new environment C

Provisions new environment

D

Provisions new environment E

Reuses environment A

Reuses environment B

Reuses environment C

Provisions new environment F

Reuses environment D

Reasoning

Existing execution environme
nt instances A and B are both
busy.

Existing execution environme
nt instances A, B, and C are all
busy.

Existing execution environme
nt instances A, B, C, and D are
all busy.

Execution environment
instance A has finished
processing request 1 and is
now available.

Execution environment
instance B has finished
processing request 2 and is
now available.

Execution environment
instance C has finished
processing request 3 and is
now available.

Existing execution environme
nt instances A, B, C, D, and E
are all busy.

Execution environment
instance D has finished
processing request 4 and is
now available.

Understanding and visualizing concurrency

426

AWS Lambda Developer Guide

As your function receives more concurrent requests, Lambda scales up the number of execution
environment instances in response. The following animation tracks the number of concurrent
requests over time:

v

Time

i?
i|

—t s s s s s s R s R,

Concurrent
requests

By freezing the previous animation at six distinct points in time, we get the following diagram:

_ it (2 it3 ‘t4 ‘t5 :t6
Time - - - : . —

i

Concurrent :
requests :z

B
o
e
.ﬁ | L |

Understanding and visualizing concurrency 427

AWS Lambda Developer Guide

In the previous diagram, we can draw a vertical line at any point in time and count the number of
environments that intersect this line. This gives us the number of concurrent requests at that point
in time. For example, at time t1, there are three active environments serving three concurrent
requests. The maximum number of concurrent requests in this simulation occurs at time t4, when
there are six active environments serving six concurrent requests.

To summarize, your function's concurrency is the number of concurrent requests that it's handling
at the same time. In response to an increase in your function's concurrency, Lambda provisions
more execution environment instances to meet request demand.

Calculating concurrency for a function

In general, concurrency of a system is the ability to process more than one task simultaneously.

In Lambda, concurrency is the number of in-flight requests that your function is handling at the
same time. A quick and practical way of measuring concurrency of a Lambda function is to use the
following formula:

Concurrency = (average requests per second) * (average request duration in seconds)

Concurrency differs from requests per second. For example, suppose your function receives 100
requests per second on average. If the average request duration is one second, then it's true that
the concurrency is also 100:

Concurrency = (100 requests/second) * (1 second/request) = 100

However, if the average request duration is 500 ms, then the concurrency is 50:

Concurrency = (100 requests/second) * (0.5 second/request) = 50

What does a concurrency of 50 mean in practice? If the average request duration is 500 ms,

then you can think of an instance of your function as being able to handle two requests per
second. Then, it takes 50 instances of your function to handle a load of 100 requests per second.

A concurrency of 50 means that Lambda must provision 50 execution environment instances to
efficiently handle this workload without any throttling. Here's how to express this in equation form:

Concurrency = (100 requests/second) / (2 requests/second) = 50

Calculating concurrency for a function 428

AWS Lambda Developer Guide

If your function receives double the number of requests (200 requests per second), but only
requires half the time to process each request (250 ms), then the concurrency is still 50:

Concurrency = (200 requests/second) * (0.25 second/request) = 50

Test your understanding of concurrency

Suppose you have a function that takes, on average, 200 ms to run. During peak load, you observe
5,000 requests per second. What is the concurrency of your function during peak load?

Answer

The average function duration is 200 ms, or 0.2 seconds. Using the concurrency formula, you can
plug in the numbers to get a concurrency of 1,000:

Concurrency = (5,000 requests/second) * (0.2 seconds/request) = 1,000

Alternatively, an average function duration of 200 ms means that your function can process 5
requests per second. To handle the 5,000 request per second workload, you need 1,000 execution
environment instances. Thus, the concurrency is 1,000