Annotate picture with remote VLM
Describe pictures using VLM models via API runtimes
What this example does
- Demonstrates using presets with API runtimes (LM Studio, watsonx.ai)
- Shows that API is just a runtime choice, not a different options class
- Explains pre-configured API types and custom API configuration
Prerequisites
- Install Docling and
python-dotenvif loading env vars from a.envfile. - For LM Studio: ensure LM Studio is running with a VLM model loaded
- For watsonx.ai: set
WX_API_KEYandWX_PROJECT_IDin the environment.
How to run
- From the repo root:
python docs/examples/pictures_description_api.py. - watsonx.ai example runs automatically if credentials are available
Notes
- The NEW runtime system unifies API and local inference
- For legacy approach, see
pictures_description_api_legacy.py
In [ ]:
Copied!
import logging
import os
from pathlib import Path
import requests
from docling_core.types.doc import PictureItem
from dotenv import load_dotenv
from docling.datamodel.base_models import InputFormat
from docling.datamodel.pipeline_options import (
PdfPipelineOptions,
PictureDescriptionVlmEngineOptions,
)
from docling.datamodel.vlm_engine_options import (
ApiVlmEngineOptions,
VlmEngineType,
)
from docling.document_converter import DocumentConverter, PdfFormatOption
def run_lm_studio_example(input_doc_path: Path):
"""Example 1: Using Granite Vision preset with LM Studio API runtime."""
print("=" * 70)
print("Example 1: Granite Vision with LM Studio (pre-configured API type)")
print("=" * 70)
# Start LM Studio with granite-vision model loaded
# The preset is pre-configured for LM Studio API type
picture_desc_options = PictureDescriptionVlmEngineOptions.from_preset(
"granite_vision",
engine_options=ApiVlmEngineOptions(
runtime_type=VlmEngineType.API_LMSTUDIO,
# url is pre-configured for LM Studio (http://localhost:1234/v1/chat/completions)
# model name is pre-configured from the preset
timeout=90,
),
)
pipeline_options = PdfPipelineOptions()
pipeline_options.do_picture_description = True
pipeline_options.picture_description_options = picture_desc_options
pipeline_options.enable_remote_services = True # Required for API runtimes
print("\nOther API types are also pre-configured:")
print("- VlmEngineType.API_OLLAMA: http://localhost:11434/v1/chat/completions")
print("- VlmEngineType.API_OPENAI: https://api.openai.com/v1/chat/completions")
print("- VlmEngineType.API: Generic API endpoint (you specify the URL)")
print("\nEach preset has pre-configured model names for these API types.")
print("For example, granite_vision preset knows:")
print('- Ollama model name: "ibm/granite3.3-vision:2b"')
print('- LM Studio model name: "granite-vision-3.3-2b"')
print("- OpenAI model name: would use the HuggingFace repo_id\n")
doc_converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(
pipeline_options=pipeline_options,
)
}
)
result = doc_converter.convert(input_doc_path)
for element, _level in result.document.iterate_items():
if isinstance(element, PictureItem):
print(
f"Picture {element.self_ref}\n"
f"Caption: {element.caption_text(doc=result.document)}\n"
f"Meta: {element.meta}\n"
)
def run_watsonx_example(input_doc_path: Path):
"""Example 2: Using Granite Vision preset with watsonx.ai."""
print("\n" + "=" * 70)
print("Example 2: Granite Vision with watsonx.ai (custom API configuration)")
print("=" * 70)
# Check if running in CI environment
if os.environ.get("CI"):
print("Skipping watsonx.ai example in CI environment")
return
# Load environment variables
load_dotenv()
api_key = os.environ.get("WX_API_KEY")
project_id = os.environ.get("WX_PROJECT_ID")
# Check if credentials are available
if not api_key or not project_id:
print("WARNING: watsonx.ai credentials not found.")
print(
"Set WX_API_KEY and WX_PROJECT_ID environment variables to run this example."
)
print("Skipping watsonx.ai example.\n")
return
def _get_iam_access_token(api_key: str) -> str:
res = requests.post(
url="https://iam.cloud.ibm.com/identity/token",
headers={"Content-Type": "application/x-www-form-urlencoded"},
data=f"grant_type=urn:ibm:params:oauth:grant-type:apikey&apikey={api_key}",
)
res.raise_for_status()
return res.json()["access_token"]
# For watsonx.ai, we need to provide custom URL, headers, and params
picture_desc_options = PictureDescriptionVlmEngineOptions.from_preset(
"granite_vision",
engine_options=ApiVlmEngineOptions(
runtime_type=VlmEngineType.API, # Generic API type
url="https://us-south.ml.cloud.ibm.com/ml/v1/text/chat?version=2023-05-29",
headers={
"Authorization": "Bearer " + _get_iam_access_token(api_key=api_key),
},
params={
# Note: Granite Vision models are no longer available on watsonx.ai (they are model on demand)
# "model_id": "ibm/granite-vision-3-3-2b",
"model_id": "meta-llama/llama-3-2-11b-vision-instruct",
"project_id": project_id,
"parameters": {"max_new_tokens": 400},
},
timeout=60,
),
)
pipeline_options = PdfPipelineOptions()
pipeline_options.do_picture_description = True
pipeline_options.picture_description_options = picture_desc_options
pipeline_options.enable_remote_services = True
doc_converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(
pipeline_options=pipeline_options,
)
}
)
result = doc_converter.convert(input_doc_path)
for element, _level in result.document.iterate_items():
if isinstance(element, PictureItem):
print(
f"Picture {element.self_ref}\n"
f"Caption: {element.caption_text(doc=result.document)}\n"
f"Meta: {element.meta}\n"
)
def main():
logging.basicConfig(level=logging.INFO)
data_folder = Path(__file__).parent / "../../tests/data"
input_doc_path = data_folder / "pdf/2206.01062.pdf"
# Run LM Studio example
run_lm_studio_example(input_doc_path)
# Run watsonx.ai example (skips if in CI or credentials not found)
run_watsonx_example(input_doc_path)
if __name__ == "__main__":
main()
import logging
import os
from pathlib import Path
import requests
from docling_core.types.doc import PictureItem
from dotenv import load_dotenv
from docling.datamodel.base_models import InputFormat
from docling.datamodel.pipeline_options import (
PdfPipelineOptions,
PictureDescriptionVlmEngineOptions,
)
from docling.datamodel.vlm_engine_options import (
ApiVlmEngineOptions,
VlmEngineType,
)
from docling.document_converter import DocumentConverter, PdfFormatOption
def run_lm_studio_example(input_doc_path: Path):
"""Example 1: Using Granite Vision preset with LM Studio API runtime."""
print("=" * 70)
print("Example 1: Granite Vision with LM Studio (pre-configured API type)")
print("=" * 70)
# Start LM Studio with granite-vision model loaded
# The preset is pre-configured for LM Studio API type
picture_desc_options = PictureDescriptionVlmEngineOptions.from_preset(
"granite_vision",
engine_options=ApiVlmEngineOptions(
runtime_type=VlmEngineType.API_LMSTUDIO,
# url is pre-configured for LM Studio (http://localhost:1234/v1/chat/completions)
# model name is pre-configured from the preset
timeout=90,
),
)
pipeline_options = PdfPipelineOptions()
pipeline_options.do_picture_description = True
pipeline_options.picture_description_options = picture_desc_options
pipeline_options.enable_remote_services = True # Required for API runtimes
print("\nOther API types are also pre-configured:")
print("- VlmEngineType.API_OLLAMA: http://localhost:11434/v1/chat/completions")
print("- VlmEngineType.API_OPENAI: https://api.openai.com/v1/chat/completions")
print("- VlmEngineType.API: Generic API endpoint (you specify the URL)")
print("\nEach preset has pre-configured model names for these API types.")
print("For example, granite_vision preset knows:")
print('- Ollama model name: "ibm/granite3.3-vision:2b"')
print('- LM Studio model name: "granite-vision-3.3-2b"')
print("- OpenAI model name: would use the HuggingFace repo_id\n")
doc_converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(
pipeline_options=pipeline_options,
)
}
)
result = doc_converter.convert(input_doc_path)
for element, _level in result.document.iterate_items():
if isinstance(element, PictureItem):
print(
f"Picture {element.self_ref}\n"
f"Caption: {element.caption_text(doc=result.document)}\n"
f"Meta: {element.meta}\n"
)
def run_watsonx_example(input_doc_path: Path):
"""Example 2: Using Granite Vision preset with watsonx.ai."""
print("\n" + "=" * 70)
print("Example 2: Granite Vision with watsonx.ai (custom API configuration)")
print("=" * 70)
# Check if running in CI environment
if os.environ.get("CI"):
print("Skipping watsonx.ai example in CI environment")
return
# Load environment variables
load_dotenv()
api_key = os.environ.get("WX_API_KEY")
project_id = os.environ.get("WX_PROJECT_ID")
# Check if credentials are available
if not api_key or not project_id:
print("WARNING: watsonx.ai credentials not found.")
print(
"Set WX_API_KEY and WX_PROJECT_ID environment variables to run this example."
)
print("Skipping watsonx.ai example.\n")
return
def _get_iam_access_token(api_key: str) -> str:
res = requests.post(
url="https://iam.cloud.ibm.com/identity/token",
headers={"Content-Type": "application/x-www-form-urlencoded"},
data=f"grant_type=urn:ibm:params:oauth:grant-type:apikey&apikey={api_key}",
)
res.raise_for_status()
return res.json()["access_token"]
# For watsonx.ai, we need to provide custom URL, headers, and params
picture_desc_options = PictureDescriptionVlmEngineOptions.from_preset(
"granite_vision",
engine_options=ApiVlmEngineOptions(
runtime_type=VlmEngineType.API, # Generic API type
url="https://us-south.ml.cloud.ibm.com/ml/v1/text/chat?version=2023-05-29",
headers={
"Authorization": "Bearer " + _get_iam_access_token(api_key=api_key),
},
params={
# Note: Granite Vision models are no longer available on watsonx.ai (they are model on demand)
# "model_id": "ibm/granite-vision-3-3-2b",
"model_id": "meta-llama/llama-3-2-11b-vision-instruct",
"project_id": project_id,
"parameters": {"max_new_tokens": 400},
},
timeout=60,
),
)
pipeline_options = PdfPipelineOptions()
pipeline_options.do_picture_description = True
pipeline_options.picture_description_options = picture_desc_options
pipeline_options.enable_remote_services = True
doc_converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(
pipeline_options=pipeline_options,
)
}
)
result = doc_converter.convert(input_doc_path)
for element, _level in result.document.iterate_items():
if isinstance(element, PictureItem):
print(
f"Picture {element.self_ref}\n"
f"Caption: {element.caption_text(doc=result.document)}\n"
f"Meta: {element.meta}\n"
)
def main():
logging.basicConfig(level=logging.INFO)
data_folder = Path(__file__).parent / "../../tests/data"
input_doc_path = data_folder / "pdf/2206.01062.pdf"
# Run LM Studio example
run_lm_studio_example(input_doc_path)
# Run watsonx.ai example (skips if in CI or credentials not found)
run_watsonx_example(input_doc_path)
if __name__ == "__main__":
main()
Key Concepts¶
Pre-configured API Types¶
The new runtime system has pre-configured API types:
- API_OLLAMA: Ollama server (port 11434)
- API_LMSTUDIO: LM Studio server (port 1234)
- API_OPENAI: OpenAI API
- API: Generic API endpoint (you provide URL)
Each preset knows the appropriate model names for these API types.
Custom API Configuration¶
For services like watsonx.ai that need custom configuration:
- Use
VlmEngineType.API(generic) - Provide custom
url,headers, andparams - The preset still provides the base model configuration
Same Preset, Different Runtime¶
You can use the same preset (e.g., "granite_vision") with:
- Local Transformers runtime (see
picture_description_inline.py) - Local MLX runtime (macOS)
- LM Studio API runtime (this example)
- watsonx.ai API runtime (this example)
- Any other API endpoint
This makes it easy to develop locally and deploy to production!